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Abstract

Our paper analyzes some new lines to advance on an evolving concept,
the so-called Entropy. We need to model this measure by adequate con-
ditions, departing from vague pieces of information. For this, it will be
very necessary to analyze the relationship between some such measures,
which may be of di¤erent types, with their very interesting applications, as
Graph Entropy, Metric Entropy, Algorithmic Entropy, Quantum Entropy,
and Topological Entropy.
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1. Introduction
The study of di¤erent concepts of Entropy will be very interesting now, and

not only on Physics, but also on Information Theory [27] and other Mathe-
matical Sciences, considered in its more general vision [6, 44]. Also may be a
very useful tool on Biocomputing, for instance, or in many others, as studying
Environmental Sciences. Because, among other interpretations, with important
practical consequences, the law of Entropy means that energy cannot be fully
recycled.

Many quotations are made until now referring to the content and signi�cance
of this fuzzy measure. Between them, we pick up

"Gain in Entropy always means loss of Information, and nothing more" (G.
N. Lewis).

"Information is just known Entropy. Entropy is just unknown Information"
(M. P. Frank, Physical Limits of Computing).

Mutual Information and Relative Entropy , also called Kullback-Leibler di-
vergence, among other related concepts [6, 11-14, 17], have been very useful in
Learning Systems, both on supervised and on unsupervised cases.

Our paper attempt to analyze the mutual relationship between the distinct
types of entropies, as

- the Quantum Entropy, also called Von Neumann Entropy;

1AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

601



- the KS-Entropy (for Kolmogorov and Sinai), which is also called Metric
Entropy;

- the Topological Entropy, or

- the Graph Entropy, among others.

2. Quantum Entropy
This entropy was �rst de�ned by the Hungarian mathematician Janos Neu-

mann (the same people as John von Neumann) in 1927, with the purpose to
shown the irreversible behavior of quantum measurement processes [22].
In fact, the Quantum Entropy (from now, denoted as QE ) is an extension

of the precedent Gibbs Entropy to the quantum realm [18, 23, 29]. It will be
interpreted as the average information the experimenter obtains, when he make
many copies of a series of observations, on an identically prepared mixed state.
It plays a very important role for studying correlated systems, and also for

de�ning entanglement measures. Recall that "Entanglement" is one of the prop-
erties of Quantum Mechanics that caused Einstein to dislike this theory. But
from then, Quantum Mechanics has reached high success predicting experimen-
tal results, and also the correlation predicted by the theory of such entanglement
have been proved.
We can aply the notion of QE to Networks [28]. As QE is de�ned for quantum

states, we need a method to map graphs into states. Such states for a quantum
mechanical system are described by a density matrix. Usually, it is denoted as
�: In fact, it is a positive semide�nite matrix with unitary trace

tr (�) = 1

But there exist many di¤erent ways to associate graphs to density matrices.
Until now, we dispose of certain interesting results [24-27, 30], but still remains
many open problems.

Between the known results, we can see that

the entropy for a d-regular graph tends, in the limit, when n!1;
to the entropy of Kn, the complete n-graph

Another result may be that

the entropy of graphs increase as a function of the cardinality of their edges

Between the open problems, we can list some of them, as the relative to a
very related matrix, called the Normalized Laplacian. It is de�ned by

$ (G) = ��1=2 L (G) ��1=2
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The Combinatorial Laplacian Matrix of G (abridgedly Laplacian of G) is
given as

L (G) = � (G)�A (G)

being computable by the di¤erence between the matrix degree, �(G) ; and the
adjacency matrix, A (G).

Note. Let G = (V;E) be an UG (undirected graph), with set of nodes

V (G) = f1; 2; :::; ng

and set of edges

E (G) � [V (G)� V (G)]� f(v; v)gv2V (G)

Then, the Adjacency Matrix of G, denoted by A (G) ; will be de�ned by

[A (G)]u;v =

�
1; if fu; vg 2 E (G)

0; otherwise;

The degree of a node, v; is the number of edges adjacent to v:

Usually, it is denoted by d (v) :

The degree sum of the graph G is dG; and it will be given by

dG =
P
d (v)

The average degree of G is expressed as

d�G = m
P
d (v)

where m is the number of non-isolated nodes.

A graph, G, is d-regular, if d (v) = d; for all v 2 V (G) :
The degree matrix of G is a (n� n)�matrix with entries given as

[� (G)]u;v =

�
d (v) ; if u = v
0; otherwise

So, the Laplacian of a graph, G; scaled by its degree-sum is a density matrix,
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�G =
L(G)
dG

= L(G)
tr(�(G)) =

L(G)
m d�G

With the well-known expression for the entropy of a density matrix, �;

S (�) = �tr (� log2 �)

Hence, departing from the concept of Laplacian of a Graph, we can say that
S (�G) is the QE of G:
If we suppose two decreasing sequences of eigenvalues of L (G) and �G;

respectively given by

�1 � �2 � ::: � �n = 0
and

�1 � �2 � ::: � �n = 0

mutually related by a scaling factor, i.e.

�i =
�i
dG
= �i

m d�G

Therefore, the Entropy of a density matrix �G can also be written as

S (G) = �
P
�i log2 �i

with the usual convention

0 log 0 = 0

Since its rows sum up to 0; we can conclude that the smallest eigenvalue of
the density matrix must also be equal to zero. And the number of connected
components of the graph is given by the multiplicity of 0 as an eigenvalue.

The QE is a very useful tool for problems [17, 18, 22, 24-27, 29] such as
when it is applied to the Enumeration of Spanning Trees.

3. Algorithmic Entropy
Algorithmic Entropy is the size of the smallest program that generates a

string.

It is denoted by K (x) ; or AE:

It receive many di¤erent names [4, 5, 36-38], as may be, for instance, Kolmogorov-
Chaitin Complexity, or only Kolmogorov Complexity. But also Stochastic Com-
plexity, or Program-size complexity.
AE is a measure of the amount of information in an object, x: Therefore, it

also measures its randomness degree [4, 5, 39].
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The AE of an object is a measure of the computational resources needed
to specify such object. I. e. the AE of a string is the length of the shortest
program that can produce this string as its output.
So, the Quantum Algorithmic Entropy (QAE), also called Quantum Kol-

mogorov Complexity (QKC) is the length of the shortest quantum input to a
Universal Quantum Turing Machine (UQTM) that produces the initial qubit
string with high �delity.

Hence, the concept is very di¤erent of the Shannon Entropy, because whereas
this will be based on probability distributions, the AE is based on the size of
programs.

All strings used may be elements of �� = f0; 1g�; being ordered lexicograph-
ically.

The length of a string x is denoted by jxj :

Let U be a �xed pre�x-free Universal Turing Machine.

For any string x of �� = f0; 1g�; the Algorithmic Entropy of x will be de�ned
by

K (x) = minpfjpj : U (p) = xg

From these concept, we can introduce the t-time- Kolmogorov Complexity,
or t-time-bounded algorithmic entropy.

For any time constructible t, we introduce a re�nement by

Kt (x) = minpfjpj : U (p) = x; in at most t (jxj) stepsg

From these, we may obtain that for all x and y;

i) K (x) � Kt (x) � jxj+O (1)

and also

ii) Kt (x=y) � Kt (x) +O (1)

The AE or KC as a new tool have many applications, in �elds as diverse
as may be Combinatorics, Graph Theory, Analysis of Algorithms, or Learning
Theory, among others.

4. Metric Entropy
We may consider the Metric Entropy, also called Kolmogorov Entropy, or

Kolmogorov-Sinai Entropy, in acronym K-S Entropy [2, 3, 32].
Its name is given in hommage to Andrei N. Kolmogorov, and its disciple,

Yakov Sinai [36-38].
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Let (X;
; �) be a probability space, or in a more general way, a fuzzy
measurable space.
Recall that a measurable partition of X is such that each of their elements

is a measurable set; therefore, an element of the fuzzy ��algebra; 
:
And let IX be the set of mappings from X to the closed unit interval,

I = [0; 1]:

A fuzzy �-algebra, �; on a nonempty set, X; is a subfamily of IX satisfying
that

(1) 1 2 �:

(2) If � 2 �; then 1� � 2 �:

(3) If f�ig is a sequence in �; then

_1i=1�i = sup�i 2 �

A fuzzy probability measure, on a fuzzy ��algebra, �; is a function

m : �! [0; 1]

which holds

[1] m(1) = 1

[2] for all � 2 �; m (1� �) = 1�m(�)

[3] for all �; � 2 �; m (� _ �) +m (� ^ �) = m (�) +m (�)

[4] If f�ig is a sequence in �; such that �i " �; with � 2 �; then

m (�) = sup m (�i)

We call (X;
; �) a fuzzy-probability measure space, and the elements of 

are called measurable fuzzy sets.

The notion of "fuzzy partition" was introduced by E. Ruspini.

Given a �nite measurable partition, }; we can de�ne its Entropy by

H� (}) =
P

p2}�� (p) log� (p)

As usually in these cases, we take as convention that 0 log 0 = 0.

Let T : X ! X be a measure-preserving transformation. Then, the Entropy
of T w.r.t. a �nite measurable partition, }; is expressed as

h� (T; }) = limn!1H�
�
_n�1k=0T

�k}
�
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with H� the entropy of a partition, and where _ denotes the join of partitions.
Such limit always exists.
Therefore, we may de�ne the Entropy of T by

h� (T ) = sup} h� (T; })

taking the supremum over all �nite measurable partitions.

Many times h� (T ) is named the Metric Entropy of T. So, we may to di¤er-
entiate this mathematical object from the well-known as Topological Entropy
[2, 43, 45].

We may to investigate the mutual relationship between the Metric Entropy
and the Covering Numbers.

Let (X; d) a metric space, and let Y � X a subset of X:

We says that Y � � X is an �� cover of Y; if for each y 2 Y; there exists a
y� 2 Y � such that

d (y; y�) � "

It is clear that there are many di¤erent covers of Y: But we are specially
interested here in one which contains the lesser number of elements. We call [2]
the cardinal, or size, of such a cover its Covering Number.

Mathematically expressed, the �� covering number of Y is

N ("; Y; d) = minfcard (Y �) : Y � is an �� coverg

A proper cover is one where Y � � Y:
And a proper covering number is de�ned in terms of the cardinality of the

minimum proper cover.
Both, covering numbers and proper covering numbers are related by

N (�; Y ) � Nproper (�; Y ) � N
�
"
2 ; Y

�
Furthermore, we recall that the Metric Entropy, H (�; Y ) ; is a natural rep-

resentation of the cardinal of the set of bits needed to send, in order to identify
an element of the set up to precision ":
It will be expressed by

H (�; Y ) = logN (�; Y )
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In a dynamical system, the metric entropy is equal to zero for nonchaotic
motion. And it is strictly greater than zero for chaotic motion. So, it will be
interpreted as a simple indicator of the complexity of a dynamical system.

5. Topological Entropy
Let (X ; d) be a compact metric space, and let f : X ! X be a continuous

map [1, 39, 43, 44, 45].
For each n > 0 ; we de�ne a new metric, dn; by

dn(x; y) = maxfd(f i(x); f i(y)) : 0 � i < ng

Two points, x and y, are close with respect to (w. r. t.) this metric, if their
�rst n iterates (given by f i, i=1,2,. . . ) are close.

For � > 0; and n 2 N�; we say that S � X is an (n;�)� separated set ; if for
each pair, x ; y, of points of S ; we have

dn(x; y) > �

Denote by N(n; �) the maximum cardinality of a (n, �)-separated set.
It must be �nite, because X is compact. In general, this limit may exists,

but it could be in�nite.

A possible interpretation of this number [3] is as a measure the average
exponential growth of the number of distinguishable orbit segments. So, we
could say that

the higher the topological entropy is,

the more essentially di¤erent orbits we have.

From an analytical viewpoint, the topological entropy is a continuous, and
monotonically increasing function.

This concept was introduced, in 1965, by Adler, Konheim and McAndrew
[1].

N(n; �) shows the number of �distinguishable�orbit segments of length n;
assuming we cannot distinguish points that are less than � apart.
The topological entropy of f is then de�ned by

Htop = lim�!0 lim supn!1
�
1
n logN (n; �)

�
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Therefore, TE is a non-negative number measuring the complexity degree
of the system. So, it gives the exponential growth of the cardinality for the set
of distinguished orbits, according the time advances.

6. Graph Entropy and Chromatic Entropy
A system [7-9] can be de�ned as a set of components functioning togheter

as a whole. A systemic point of view allows us to isolate a part of the world,
and so, we can focus on those aspect that interact more closely than others.

The entropy of a system represent [4, 35, 43] the amount of uncertainty
one observer has about the state of the system. The simplest example of a
system will be a random variable, which can be shown by a node into the
graph, being their edges the representation of the mutual relationship between
them. Information measures the amount of correlation between two systems,
and it reduces to a mere di¤erence between entropies.
So, the Entropy of a Graph (from now, denoted by GE ) is a measure of

graph structure, or lack of it. Therefore, it may be interpreted as the amount
of Information, or the degree of "surprise", communicated by a message.
And as the basic unit of Information is the bit, Entropy also may be viewed

as the number of bits of "randomness" in the graph, verifying that

the higher the entropy,

the more random is the graph

We consider a functional on a graph, G = (V ;E ); with P a probability dis-
tribution on its node (or vertex) set, V . These mathematical construct will be
denoted by GE : It will be de�ned as

H (G ;P) = min
P
pi log pi

Observe that such H is a convex function.
It tends to +1 on the boundary of the non-negative orthant of Rn , and

monotonically to �1 along rays from the origin.
So, such minimum is always achieved and it will be �nite.

Let G be now an arbitrary �nite rooted Directed Acyclic Graph (DAG, in
acronym).
For each node, v; we denote i(v) the number of their edges that terminates

at v:
Then, the Entropy of the graph is expresable as

H (G) =
P
v2V

i(v) � 2

[i (v)� 1] log2
�
Card (E) � Card (V ) + 1

i(v)�1

�
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H (X) may be interpreted in some di¤erent ways. For instance, given a
random variable, X; it informs us about how random X is, how uncertainty we
should about X; or how much variability X has.

In a variant of the "Graph Coloring Problem", we take as the objective
function to minimize the Entropy of such coloring. So, it is called the Minimum
Entropy Coloring.

As Chromatic Entropy, we understand the minimum Entropy of a coloring.
Its role is essential in the problem of coding. If we consider this problem from
a computational viewpoint, it is NP-hard ; for instance, on Interval Graphs.

7. Mutual relationship between Entropies
In the mid 1950�s, the Russian mathematician Kolmogorov imported Shan-

non�s probabilistic notion of entropy into the theory of dynamical systems [36,
38], and showed how entropy can be used to tell whether two dynamical systems
are non-conjugate, i.e., non-isomorphic.
His work inspired a whole new approach in which entropy appears as a

numerical invariant of a class of dynamical systems. Because the Kolmogorov´s
metric entropy is an invariant of measure theoretical dynamical systems, and
thus, it is closely related to Shannon´s source entropy.

Ornstein [24-27] showed that metric entropy su¢ ces to completely classify
two-sided Bernoulli processes, a basic problem which for many decades appeared
completely intractable. Recently, S. Tuncel [32, 34, 39, 40-42] has shown how
to classify one-sided Bernoulli processes; this turns out to be quite a bit harder.

In 1961, Adler et al. [1] introduced the aforementioned topological entropy,
which is the analogous invariant for topological dynamical systems.
There exist a simple relationship between these quantities, because maximiz-

ing the metric entropy, over a suitable class of measures de�ned on a dynamical
system, gives its topological entropy.

The relationship between TE and the Entropy in the sense of Measure The-
ory (K-S) is given by the so-called Variational Principle, which established that

h(T ) = supfh� (T )g�2P (X)

This may be interpreted as that TE is equal to the supremum of Kolmogorov-
Sinai (or K-S) entropies, h� (T ) ; with � belonging to the set of all T-invariant
Borel probability measures on X.

The mutual relationship between Algorithmic Entropy and Shannon En-
tropy is that the expectation of the former gives us the latter, up to a constant
depending on the distribution. Also we may expressed, departing of P(x) as a
recursive probability distribution, that

0 �
P
P (x) K (x)�H (P ) � K (P )
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Finally, we recall that given a random variable, X; its Shannon Entropy is
given by

H (X) = �
P
P (x) log2 P (x)

whereas the Rényi Entropy of order � 6= 1 of such random variable is

H� (X) =
1

1�� log2 (
P
P (x)

�
)

The Renyi Entropy of order � converges to the Shannon Entropy, when �
tends to one, i.e.

lim�!1

n
1

1�� log2 (
P
P (x)

�
)
o
= �

P
P (x) log2 P (x)

So,

lim�!1H� (X) = H (X)

Therefore, the Rényi Entropy may be considered as a generalization of the
Shannon Entropy, or dually expressed, the Shannon Entropy will be a particular
case of Rényi Entropy.

8. Conclusions
Statistical entropy is a probabilistic measure of uncertainty [17, 31], or ig-

norance about data. Whereas Information is a measure of a reduction in that
uncertainty [21, 33, 40-42]. And the Entropy of a probability distribution is just
the expected value of the information of such distribution [26].

All these improved tools must permits to advance not only in essential �elds
as Optimization Theory, but also on many others, as Generalized Fuzzy Mea-
sures [6, 10-14]; Economics [15]; Machine Learning, or on A. I. in general [40-42,
43, 46]; constructing biological or ecological models; describing economical or
psychological behavior, and so on.

With this paper, my clear purpose was attempt to reach an ever partial
completion of a very long cycle on Analysis of Fuzzy Symmetry and Entropies.
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