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Abstract

Our paper analyzes here some new lines to introduce the evolving
concept of an important Uncertainty Measure, the so-called Entropy. We
need to obtain these new ways to model adequate conditions, departing
from vague pieces of information. For this, it will be very necessary to
analyze certain type of such measures, with very interesting applications,
as Graph Entropy, Metric Entropy and Topological entropy.
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1. Introduction
The study of concepts such as Entropy and Symmetry is very important in

the current science, not only on Physics, but also on Information Theory and
Mathematical Sciences, in general. This paper attempt to show this fact.
For instance, it will be very suprising the way open by the Romanian mathe-

matician Nicolae Georgescu-Roegen [15], a very inspirate and unortodox disciple
of Karl Pearson and Joseph Schumpeter, suggesting the application of the 2nd
Law of Thermodynamics to Economics. Later developed into Evolutionary Eco-
nomics. This and subsequent developments give rise to currently very essential
�elds as Bioeconomics, or Ecological Entropy. Also to many important studies,
as on Equilibrium Theory, and so on.
Also may be a very useful tool on Biocomputing, for instance, or in many

others, as studying Environmental Sciences.

2. Metric Entropy
We may consider the Metric Entropy, also called Kolmogorov Entropy, or

Kolmogorov-Sinai Entropy, in acronym K-S Entropy. Its name is given in hon-
our of the great Russian mathematician Andrei N. Kolmogorov and its disciple,
Yakov Sinai [22-24].
In a dynamical system, the metric entropy is equal to zero, for nonchaotic

motion, and is strictly greater than zero, for chaotic motion. So, it is a simple
indicator of the complexity of a dynamical system.
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To de�ne the K-S Entropy, we need to divide the phase space into n-
dimensional hypercubes of content "n.
Let Pi0;i1;:::;in the probability that is in the hypercube expressed by

ij at T = jT; for all j 2 f0; 1; :::; ng

Then, we introduce

Kn = �
P

i0;i1;:::;in
Pi0;i1;:::;in lnPi0;i1;:::;in

as the information needed to predict which hypercube the trajectory will be in
at (n+ 1)T; given trajectories up to nT:

The K-S entropy is then de�ned by

K = limT!0

h
lim"!0

h
limn!+1

Pn�1
j=0 (kj+1 � kj)

ii
And now, from a measure theoretical view of point.

Let (X;
; �) be a probability space, or in a more general way, a fuzzy
measurable space.

Recall that a measurable partition of X is such that each of their elements
is a measurable set; therefore, an element of the fuzzy ��algebra;
. And let
IX be the set of mappings from X to the closed unit interval, [0; 1]:
A fuzzy ��algebra, �; on a nonempty set, X; is a subfamily of IX satisfying

that

(1) 1 2 �:

(2) If � 2 �; then 1� � 2 �:

(3) If f�ig is a sequence in �; then _1i=1�i = sup�i 2 �:

A fuzzy probability measure, on a fuzzy ��algebra, �; is a function

m : �! [0; 1]

which holds

[1] m(1) = 1

[2] for all � 2 �; m (1� �) = 1�m(�)

[3] for all �; � 2 �; m (� _ �) +m (� ^ �) = m (�) +m (�)

[4] If f�ig is a sequence in �; such that �i " �; with � 2 �; then

m (�) = sup m (�i)
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We call (X;
; �) a fuzzy-probability measure space, and the elements of 

are called measurable fuzzy sets.

The notion of "fuzzy partition" was introduced by E. Ruspini.

Given a �nite measurable partition, }; we can de�ne its Entropy by

H� (}) =
P

p2}�� (p) log� (p)

As usually in these cases, we take as convention that 0 log 0 = 0.

Let T : X ! X be a measure-preserving transformation. Then, the Entropy
of T w.r.t. a �nite measurable partition, }; is expressed as

h� (T; }) = limn!1H�
�
_n�1k=0T

�k}
�

with H� the entropy of a partition, and _ denotes here the join of partitions.
Such limit always exists. So,we may de�ne the Entropy of T by

h� (T ) = sup} h� (T; })

Taking the supremum over all �nite measurable partitions.

Many times h� (T ) is named the Metric Entropy of T. So,we may to di¤er-
entiate this mathematical object from the Topological Entropy.

We may to see the mutual relationship between Metric Entropy and the
Covering Numbers.
Let (X; d) a metric space, and let Y � X a subset of X:
We says that Y � � X is an �� cover of Y; if for each y 2 Y; there exists a

y� 2 Y � such that

d (y; y�) � "

There are many di¤erent covers of Y:
But we are specially interested here in one which contains the lesser number

of elements. We call [2] the cardinal, or size, of such a cover its Covering Number.

Mathematically expressed, the �� covering number of Y is

N ("; Y; d) = minfcard(Y �) : Y � is an �� coverg

A proper cover is one where Y � � Y: And a proper covering number is
de�ned in terms of the cardinality of the minimum proper cover.
Both, covering numbers and proper covering numbers are related by
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N (�; Y ) � Nproper (�; Y ) � N
�
"
2 ; Y

�
Furthermore, we recall that the Metric Entropy, H (�; Y ) ; is a natural rep-

resentation of the cardinal of the set of bits needed to send, in order to identify
an element of the set up to precision ":
It will be expressed by

H (�; Y ) = logN (�; Y )

3. Topological Entropy
Let (X ; d) be a compact metric space, and let f : X ! X be a continuous

map.
For each n > 0 ; we de�ne a new metric, dn; by

dn(x; y) = maxfd(f i(x); f i(y)) : 0 � i < ng

Two points, x and y, are close with respect to (w. r. t.) this metric, if their
�rst n iterates (given by f i, i=1,2,. . . ) are close.
For � > 0; and n 2 N�; we say that S � X is an (n;�)� separated set ; if for

each pair, x ; y, of points of S ; we have

dn(x; y) > �

Denote by N(n; �) the maximum cardinality of a (n, �)-separated set.
It must be �nite, because X is compact. In general, this limit may exists,

but it could be in�nite.

A possible interpretation of this number [3] is as a measure the average
exponential growth of the number of distinguishable orbit segments. So, we
could say that the higher the topological entropy is, the more essentially di¤erent
orbits we have.

The topological entropy is a continuous, monotonically increasing function.

This concept was introduced, in 1965, by Adler, Konheim and McAndrew
[1].

N(n; �) shows the number of �distinguishable� orbit segments of length n;
assuming we cannot distinguish points that are less than � apart.
The topological entropy of f is then de�ned by

Htop = lim�!0 lim supn!1
�
1
n logN (n; �)

�
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We can see now tsome basic properties of topological entropy

[I] h (T ) � h (S) ; if (Y; S) is a topological factor of (X;T ):
I. e., if � : X ! Y is any continuous and surjective application.

[II] If (X;T ) and (Y; S) are topologically conjugate, then h(T ) = h(S):

Recall that T and S are topologically conjugate when T = �S��1; being �
a homeomorphism.

[III] h(Tn) = n h (T ) ; if n � 0:

[IV ] h(T ) = h(T�1); if T is a homeomorphism.

[V ] h (T � S) = h(T ) + h(S):

[V I] h (T � S) = h (S � T )

4. Graph Entropy

The entropy of a system represent [21] the amount of uncertainty one ob-
server has about the state of the system. The simplest example of a system will
be a random variable, which can be shown by a node into the graph, being their
edges the representation of the mutual relationship between them. Information
measures the amount of correlation between two systems, and it reduces to a
mere di¤erence in entropies.

We consider a functional on a graph, G = (V ;E ); with P a probability dis-
tribution on its node (or vertex) set, V . These mathematical construct will be
denoted by GE :
It is a concept introduced by Körner, as solution of a coding problem for-

mulated in Information Theory. Because its sub-additivity, has become a useful
tool in proving some lower bounds results in Computational Complexity Theory.
The search for exact additivity has produced certain interesting combinato-

rial structures. One of such results is the characterization of perfect graphs by
the additivity of GE.
It will be de�ned as

H (G ;P) = min
P
pi log pi

Observe that such function is convex. It tends to +1 on the boundary of
the non-negative orthant of Rn , and monotonically to �1 along rays from the
origin.

So, such minimum is always achieved and it will be �nite.

The properties of Graph Entropy [21] may be very essential in aplications.

Let V be their set of nodes, or vertices, and E their set of edges, or links.

These properties may be

- Monotonicity: If F and G are two graphs, with
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V (F ) = V (G)

and

E(F ) � E(G)

Then, it holds

H(F; P ) � H(G;P )

- Subadditivity: Let F and G be as above. And let F [ G the graph with
node set

E(F ) [ E(G)

Then,for any �xed probability distribution, P, we have

H(F [G) � H(F; P ) +H(G;P )

- Additivity of Substitution: Let F and G be two node disjoint graphs, and
let v be a node of G: By substituting F for v, we said deleting v and joining
everynode of F to those nodes of G whichhave been adjacent with v. The
resulting graph is denoted by

Gv F

It will be possible to extend such concept to probability distributions.
So,

Pv Q (u) = P (u); if u 2 V (G)� fvg; and equal to P (v)Q(u); if u 2 V (F )

The Substitution Lemma says that being F and G two node disjoint graphs,
v 2 V (G), with P and Q two probability distributions on the respective set of
nodes, then

H(Gv F ; Pv Q) = H(G;P ) + P (v) H(F; P )

As example, we refer to the entropy of some special graphs,

i) the entropy of the empty graph is always null

H(G?) = 0

ii) the entropy of Kn, the complete graph on n nodes is given by
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H(Kn; P ) = H(P )

5. Conclusions
Statistical entropy is a probabilistic measure of uncertainty [19], or ignorance

about data. Whereas Information is a measure of a reduction in that uncertainty
[20].

The Entropy of a probability distribution is just the expected value of the
information of such distribution [19].

All these improved tools must permits to advance not only in �elds as Opti-
mization Theory, but also on Generalized Fuzzy Measures [7], Economics [15],
modeling in Biology, and so on.
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