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Abstract: This note describes a novel approach to Routh-Padé approximation problem relating to the construction of a stable 
reduced-order approximants for  continuous-time  Controller. In this method, stability and the first r time-moments/Markov-
parameters are preserved as well as the errors between a set of subsequent time-moments/Markov-parameters of the system and 
those of the model are minimized. For the solution of this problem a method using the concept of Pareto-optimality is 
proposed. Pareto-optimal curve is the solution of Multi-objective Optimization problem. Evolutionary Algorithm such as real 
parameter Genetic Algorithm is used to get Pareto-optimal curve. The search area for GA is very wide and it usually converges 
to a point near global optima. 

  Index Terms: Model reduction, Padé approximation, Routh criterion, Pareto-optimal solutions, Controller design, VEGA. 
 

1 Introduction 

 
Controllers of low complexity are often desirable in practice. Unfortunately, modern controller design techniques frequently 
lead to high complexity controllers, so there is a real need for reliable model reduction methods which allow a low-order 
controller to be extracted from high-order controller without incurring too much error.  Simple linear controllers are normally 
preferred over complex linear controllers for linear time-in-variant plants. Such methods can be classified in to two classes: 
direct, in which the parameter defining a low order controller are computed by some optimization or other procedure and 
indirect, in which a high-order controller is first found, and a procedure used to simplify it. One well established way of 
obtaining a low order plant is the so called balanced truncation method reported by Moore B.C. [29]. The method has some 
appealing properties: it generally leads to a stable reduced order model and an error bound exists in terms of the truncated 
Hankel singular values. As suggested by Anderson and Liu [2], that approximations early in the design process may lead to the 
undesirable propagation of errors as the design progresses. LQG and ∞H   controllers are of high order and are impractical to 

implement. Open-loop balanced truncation suffers from these criticisms and if the plant happens to be unstable, compensation 
may be needed any way.  One closed loop model reduction procedure was introduced to obtain reduced-order model by 
Jonkheere and Silverman [7]. The open loop system (which may be unstable) is first compensated with standard linear 
quadratic Gaussian controller (the so called normalized LQG controller).  Mustafa and Glover [11] reported that  ∞H  balanced 

truncation may be used to obtain reduced order plants or controllers. The plant (possibly unstable) is compensated using a 
particular robustly stabilizing controller. Computationally the ∞H balanced truncation method is very simple, since ∞H  

characteristic values are easily calculated from the solutions to the design Ricatti equations in advance of doing any model 
reduction. The strategy to determine a set of algebraic equations which constitute necessary (but not sufficient) condition on 
the controller parameter to achieve a minimum value for the performance index was assessed by Bernstein and Hyland [3]. 
Model reduction by balanced realization proposed by Moore B.C. [29]  eliminates a small part of the system and requires 
transformation of the system in to a special form. Yousuff and Skelton [26] reported methods based on q-variance equivalent 

realization. In usual form, these realizations replace on stable high-order model by a second order stable low order model that 
usually is not an optimal. Reduced-order controllers have been developed using optimal projection in the literature by 
Bernstein and Hyland [3]  and co-prime factorization by Anderson and Liu [2]. A new conceptual approach to controller                 
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reduction is proposed, that is based upon closed loop considerations by Villemange and Skelton [22]. This method assesses the 
interactions between the plant and high order controller as described by canonical correlation coefficients.  Kreisselmeier and 
Mevenkamp [8]  proposed reduced-order controller for single-input single-output (SISO) plants by first calculating a controller 
for some, not necessary accurate, reduced order-model of the plant,  and then defining the controller so as to account for the 
full plant.  

 In the following, the indirect strategy is used to design a low order controller. The plant is first approximated by low order 
model using the concept of Pareto-optimality. Pareto-optimal curve is the solution of Multi-objective Optimization problem. 
Evolutionary Algorithm such as Vector Evaluated Genetic Algorithm [5] is used to get Pareto-optimal curve and a controller is 
designed for this low-order plant. The controller is then attached to the original plant. The applicability of proposed method is 
shown by means of numerical example. The search area for GA is very wide and it usually converges to a point near global 
optima [5]. Though  Pareto-optimality, which is a key step in the present technique, is well known to the best of author’s 
knowledge, this is the first instance of explicitly showing its usefulness for obtaining reduced-order models.    

This paper is organized as follows. In Sec. 2 we briefly review the results of [26,27,28]. The improvement is presented in Sec. 
3 and numerical example is given in Sec. 4. Finally paper is concluded in Sec. 5. 

 

2 Brief Review of Existing Results 
 

 Consider a single-input-single-output system described by the transfer function: 
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The problem is to determine its stable reduced-order (rth-order) approximant 
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          A.  Formulation of the objective function 
 

The formulation of the multiobjective optimization problem will be explained for r being even. Formulation for r being 
odd can be done in a similar way. It is easy to verify that for r even, the following equations hold true:  
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There exist an infinite number of stable models for which (10) is satisfied [18]. This arbitrariness in stability 
preservation is exploited in [33] by minimizing the sum of the weighted squares of errors. 
   To find the improved model, VEGA [16] is used to generate Pareto-optimal solutions by minimizing 
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         Using (8) subject to (9), (11) can be expressed as 
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B. Formulation of the stability constraints                   

Now following [29], the denominator polynomial of (4) can be expressed as  

    3
431

2
32

1
1 )ˆ...ˆˆ(ˆ)ˆ...ˆˆ(ˆ −−− +++++++++ r

r
r

r
rr sddddsdddsds  

                    +[ ...)ˆ...ˆˆ(ˆ)ˆ...ˆˆ(ˆ)ˆ...ˆˆ(ˆ
764653542 ++++++++++++ rrr dddddddddddd  

                    + rr dd ˆˆ
2− ] rrqq

r dddds ˆˆ...ˆˆ... 231
4

−++
− ++                                     (13) 

which is constructed by taking the coefficients of the first two rows of the Routh array with the elements of its first 
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(13) is matched with the denominator polynomial of the model in (4), namely, with  
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and the necessary and the sufficient condition that all the roots of (14) be strictly in the left half plane is: 
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which, of course, implies  
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21 >>> rbbb .                                        (18) 
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Note that, for a given r, ib̂ , ri ,...,1= , can easily be expressed in terms of $d i , ri ,...,1= , by constructing an inverse 

Routh array (i.e., with the element of its first column given by (14)). Thus, pertaining to r = 4, (15) becomes  

 11
ˆˆ db = , 4332

ˆˆˆˆ dddb ++= , )ˆˆ(ˆˆ
4313 dddb += , 424

ˆˆˆ ddb = .                                     (19)                   

 

 C. Background 

The problem is to derive the transfer function of the controller )(sC   for control system proposed by Aguirre 

[1], which yields the desired response of the closed loop system. A classical approach to the design of the controller )(sC   is 

to specify the desired (also called reference) closed loop transfer function )(sT , equate it to the closed loop transfer function, 

equate to the closed loop transfer function and solve for the controller proposed by Aguirre [1]. Thus, 

 

 

 

 

 

                     
                
                     Fig. 1  :  Control Configuration 
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)(⋅XN  and  )(⋅XD   indicate numerator and denominator respectively. 

Consider the closed loop system shown in Fig. 1. By approximating  )(1 sG by a reduced-order  transfer function 

)(sR   Fig. 2 is obtained. In other words, the system of Fig. 2 is approximated by that of Fig. 3, where )( sH  is assumed to be 

same in both these figures. Pertaining to these two systems, the following result was previously arrived at the results reported 
by Shamash [30].   

 

 

 

 

 

 
 

 

 

                       Fig.2  :  A Closed-loop System                                      Fig. 3:  A reduced-order approximant of the system  

                

 
   D.  Theorem    

Shamash [30] addressed that the first α of the Markov-parameters and the first β time-moments are identical for  

)(1 sG and )(sR  Then, under any stable dynamic feedback law initial  Markov-parameters and initial time-moments of the 

corresponding closed loop transfer functions in Fig. 2 and 3 will be identical. 

An illustration of the above theorem, consider the following high order  transfer function reported by Shamash 
[30]: 
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The time-moments and the Markov-parameters of (24) are given by 
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Overall closed-loop transfer function in Fig 3 is:   
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The   time-moments and the Markov-parameters of (25) are given by 

           087804878.01 =t   581439622 −=t     11 =M     72 −=M  

         
This therefore, illustrates the above theorem. 

The procedure to obtain a reduced order controller )(sC , for the system shown in Fig. 1 is explained in the 

following example. The results of Theorem  which relate to matching of the initial time-moments and the Markov-parameters 
of the corresponding closed-loop transfer function in Fig. 2 and 3, is exploited in this procedure. 

         3.  Application of VEGA   
               Now, the problem is to minimize (12), satisfying (17a). The vector evaluated genetic algorithm (VEGA) [5] is 

proposed herein for solving the above stated problem. VEGA is the simplest possible multi-objective GA [5] and is 
straightforward extension of a single-objective extension of multi-objective optimization. Since a number of objectives 
(say Q) have to be handled, GA population is divided at every generation into Q equal subpopulations randomly. Each 
subpopulation is assigned a fitness value based on different objective function. 

     After each solution is assigned a fitness value, the selection operator restricted among solutions of each subpopulation, is 
applied until the complete subpopulation is filled [5]. The following VEGA procedure is used [5]. 

      Step    1:      Set, for population size N, an objective function counter i = 1 and define  QNx /=  

        Step 2: For all solution, xijxij ∗=∗−+=   to)1(1 , assign fitness as:   )ˆ()ˆ( )()( j
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        Step     4:   If Qi = , go to Step 5. Otherwise, increment i by one and go to Step 2. 

        Step   5: Combine all mating pools together: i

Q

i PP 1== U . Perform crossover and mutation on P to create a new 
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solution in the vicinity of parent solution with a uniform probability distribution is chosen: ii

t

i
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i rby ∆−+=+ )5.0(ˆ ),1()1,1(
 

where ir  is a random number in [0,1]. 

 

4 Reduction Procedure Example 

Suppose )(sG   and   )(sH    considered by Aguirre L.A. [1]:                        
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The problem is to find a reduced-order controller   

System function 1)( =sG  has following Time-moments and Markov-parameters: 

Time-moments: 

                     ,376567.11 =t   ,7324.72 −=t     3739.773 =t     72 −=M  

Markov-parameters: 

                     ,5146.01 =M            17826.02 −=M   053248.03 =M     

Step 1:   

Select a reference model which satisfies the control specifications. In this example, a standard second order 
transfer function is selected with damping ratio:  

ξ =0.7 and natural frequency  5.1=nω   rad/s. Thus, 

                 
25.21.2

25.2
)(

2 ++
=

ss
sT  

 
Step 2:  

Derive a reduced-order model using Pareto-Optimality and V.E.G.A. 

Equations of Time-moments and Markov-parameters of the model are the following: 
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Applying Pareto-Optimality and V.E.G.A., algorithm converges to the following optimal 
solution (numerator and denominator polynomial coefficients): 

                   ,629862.0ˆ.ˆ,5146.0ˆ 21211 ==== btaMa  

                   045756.0ˆ,628256.0ˆ
21 == bb  

For the following population of initial conditions, the population after crossover and 
mutation operators are shown in following table: 
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Table 1 

 
Sl. No. Initial Population 

 

 

b1                   b2 

Population  after 

Selection Operator 

 

b1                         b2 

Population after Crossover 

& Mutation Operator 

 

b1                              b2 

Assigned 

Fitness 

Value 

1. 0.6815        0.0999 0.6815          0.0999 0.642556       0.050556 0.002885 

2. 0.6915        0.0995 0.6915          0.0995 0.642556       0.050556 0.002885 

3. 0.6885        0.0998 0.6885          0.0998 0.628056       0.045756 0.000118 

4.     0.7115        0.1100 0.7115          0.1100 0.662556       0.061556 0.194634 

5. 0.7250        0.1110 0.7250          0.1110 0.690306       0.068556 0.238191 

6. 0.7300        0.1115 0.7300          0.1115 0.681056       0.066056 0.194634 

 
 

Therefore, model takes the form after applying Pareto-optimality and VEGA: 
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Step 3:  

Derive the reduced-order controller. From (20): 
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                        which is of fifth-order. 
The transfer function, )(sO of the system  with reduced-order controller   )(2 sC   takes the form:  
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And if the original plant )(sG   along with full order controller  )(sC then overall closed loop transfer function 

takes the form  
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                    The step responses of (27), (32) and (39), (40) are shown in Fig. 4 and Fig. 5. It can be observed that the response 
of the system with reduced-order controller is satisfactory.  
 

 

 
Fig. 4  Step responses of original system (27) and its reduced order model 
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       (41) 
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Fig. 5  Step responses of system O(s) and F(s)  reduced order models 

 

5 Conclusions 

The emphasis of this note  has been to present, in the context of reduced-order control, the idea of controller 
design as a model approximation problem in the feedback loop. It is clear that proposed reduced order modelling technique is 
more sophisticated, optimization based, computer-aided controller design. In this note, the problem of finding Routh-
Padé approximants has been viewed as a multi-objective optimization problem. It is shown that, using Pareto-Optimality and 

V.E.G.A., the denominator of the model  can  be  chosen  so  as  to minimize errors between the (r+1)th and the subsequent 
time-moments and Markov-parameters of  the model and the corresponding time-moments  and  Markov-parameters of the 
system while  preserving  stability.  Having obtained the denominator in this manner, the numerator parameters can be 
determined in the usual manner, namely, by fully retaining the first r time-moments/Markov-parameters   of  the  system.  The 
present approach, therefore, leads to an improved approximant for continuous-time systems controller design and result is then 
successfully applied to discrete-time systems, 2-D systems and many electrical systems. The effectiveness and superiority of 
proposed method has been illustrated with the help of a numerical example. The method guarantees that a stable system is 
reduced to stable model only.  .  
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