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Abstract

Our paper analyzes some aspects of of a very important Uncertainty
Measure, one that belongs to the so-called Entropy; more concretely, the
Kullback-Leibler divergence measure. We need to obtain new ways to
model adequate conditions or restrictions, constructed from vague pieces
of information. For this, it will be very necessary to analyze di¤erent type
of measures; in particular, to consider these fuzzy measures.
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1. Introduction to Entropy and Information
Entropy and related information measures provide descriptions of the long

term behavior of random processes, and that this behavior is a key factor in
developing the Coding Theorems of Information Theory (IT, in acronym).
The contributions of Andrei N. Kolmogorov (1903-1987) to the mathemati-

cal IT produces great advances to the Shannon formulations, proposing a new
complexity theory, now translated to Computer Sciences. According such the-
ory, the complexity of a message is given by the size of the program necessary
to be possible the reception of such message.
From these ideas, Kolmogorov also analyzes the entropy of literary texts.

More concretely, on Pushkin poetry. Such entropy appears as a function of the
semantic capacity of the texts, depending of factors as their extension and also
the �exibility of the corresponding language.

Also may be mentioned Norbert Wiener (1894-1964), considered the founder
of Cybernetics, who in 1948 also propose a similar vision of such problem.
But the approach used by Shannon di¤ers from that of Wiener in the nature

of the transmitted signal and in the type of decision made at the receiver.
In the Shannon model messages are �rst encoded and then transmitted,

whereas in the Wiener model the signal is communicated directly through the
channel without being encoded.

The initial studies on IT were undertaken by Harry Nyquist (1889-1976)
in 1924. And later by Ralph Hartley (1888-1970), who in 1928 recognized the
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logarithmic nature of the measure of information. Later, it appears the key,
with the essential Shannon and Wiener papers.
About some apparent �evidences�prescribing that the Shannon information

measure is the only possible one, it must be clear that it will be only valid within
the more restricted scope of coding problems which the own C. E. Shannon
had see in his time. As pointed out by Alfred Rényi (1961), in his essential
paper on generalized information measures, in other sort of problems other
quantities may serve just as well, or even better, as measures of information.
This should be supported either by their operational signi�cance or by a set of
natural postulates characterizing them, or, preferably, by both. Thus, the idea
of generalized entropies arises in the scienti�c literature.

The name of Entropy proceeds indeed from the resemblance between Shan-
non´s formula and some similar formulae which are usual in Thermodynam-
ics. So, in Statistical Thermodynamics we will take the Gibbs Entropy. The
standard Boltzmann-Gibbs entropy may be generalized to the so-called Tsallis
Entropy (1988). It is also possible to translate the Gibss Entropy to Quantum
Physics, giving us the Von Neumann Entropy (1927).

2. Kullback-Leibler divergence
We will de�ne the Relative or Di¤erential Entropy. It will be also called

with many other di¤erent names, as Kullback-Leibler (1951) �distance�(pseudo-
distance, indeed), or divergence K-L, either relative entropy, or information
gain. It is denoted by D

KL
.

Given two probability distributions, p and q, it will be de�ned by

D
KL
(p q q) =

P
x2X

p (x) log2

�
p(x)
q(x)

�
= Ep(x)

h
log2

p(x)
q(x)

i
A very essential property of D will be that the K-L divergence is always

non-negative, i.e.

D
KL
(p q q) � 0

The equality is reached when both distribution coincides, i.e. p (x) = q (x) ; 8x:
But note that in general,

D (p q q) 6= D (q q p)

Therefore, it does not symmetrical. Neither veri�es the triangular inequality.
So, it is not really a metric, but a premetric. Hence, it speci�es a topology.
Furthermore, such topology strictly dominates the topology of total variation,
due to the well-known inequality of Pinsker.
It report us the measure of ine¢ ciency when supposing q as the "true", or

correct, distribution, being so indeed p.
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3. Mutual Information
The mutual info of X on Y is the measure of the info which X has on Y.
Usually, it is denoted by

I (X ;Y )

If we write instead I (Y; X), we have the info which Y posess on X. But
they give us the same value; so, it is a symmetrical measure.

The relationship between mutual info and entropy is

I (X;Y ) = H (X)�H (X=Y ) = H (Y )�H (Y=X) = I (Y ;X)

And also

I (X;Y ) = H (X) +H (Y )�H (X;Y )

Therefore,

I (X;X) = H (X)

I (Y ;Y ) = H (Y )

In general, conditioning a random variable on another, we reduce the uncer-
tainty of the last variable

H (Y=X) � H (X)

H (X=Y ) � H (Y )

It is possible to generalise the Chain Rule for n variables

H (X1;H2; :::; Xn) =
nP
i=1

H (Xi=Xi�1; Xi�2; :::; X1)

And therefore, in the conditional case

H (X1;H2; :::; Xn=Y ) =
nP
i=1

H (Xi=Xi�1; Xi�2; :::; X1; Y )

4. Generalizing the Kullback-Leibler divergence
It is possible to generalize the K-L divergence.
In the discrete case, we have

D
KL
(P q Q) =

P
i

p (i) log2

�
P (i)
Q(i)

�
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Whereas in the continuum case

D
KL
(P q Q) =

+1R
�1

p (x) log2

�
p(x)
q(x)

�
dx

Being p and q the density functions corresponding to both, P and Q distri-
butions.

Let P and Q be two probability measures over a set X, and Q is absolutely
continuous w.r.t. P, then the K-L div from P to Q is given by

DKL (P q Q) = �
R
X

log
�
dQ
dP

�
dP

Analogously, if P is absolutely continuous w.r.t. Q, then it holds

DKL (P q Q) =
R
X

log
�
dQ
dP

�
dP =

R
X

dP
dQ log

�
dP
dQ

�
dQ

Let

dP = pd�

dQ = qd�

be two probability measures, on the set X, such that they are absolutely con-
tinuous with respect to the measure.
Then, we de�ne the divergence of Kullback-Leibler, or K-L (if such integral

exist) as

D
KL
(P q Q) =

R
X

p log
�
p
q

�
d�

where

p
q =

dP
dQ

is the Radon-Nikodym derivative of P with respect to Q. Then, the �nal expres-
sion should be independent of measure �.
Given two joint probability mass unctions, p(x/y) and q(x/y), the Condi-

tional Relative Entropy between them may be denoted by

D
KL
(p (y=x) k q (y=x))
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It will be the average on the relative entropiesbetween the conditional prob-
ability mass functions, p(x/y) and q(x/y), averaged over the probability mass
function, p(x).
I.e.

D
KL
(p (y=x) k q (y=x)) =

P
x
p (x)

P
y
p (y=x) log p(y=x)q(y=x) = Ep(x;y)

h
log2

p(Y=X)
q(Y=X)

i
So, the Chain Rule for Relative Entropy can be expressed as

D
KL
(p (y=x) k q (y=x)) = D

KL
(p (y=x) k q (y=x)) +D

KL
(p (x) k q (x))

Some other interesting measures of divergence.
For instance, we have the symmetrized distance

D (P q Q) +D (Q q P )

It will be very useful, for instance, in Feature Selection, into Classi�cation
Problems.

An alternative distance is the �� div (lambda divergence),

D� (P q Q) = �D [P q �P + (1� �)Q] + (1� �)D [Q q �P + (1� �)Q]

This signi�es the gaining expectation of info about that X is obtained from
P or Q, with respective probabilities p and q.

In particular, when � = 1=2, we found the Jensen-Shannon divergence

DJS (P q Q) = 1
2D (P qM) +

1
2D (Q qM)

Where M is the promediate value of probability distributions P and Q.

This divergence of Jensen-Shannon can be interpreted as the capability of
a noisy channel of info with two entries and giving as output the probability
distributions P and Q.

5. Concavity and Convexity. On Jensen Inequality
A very important ineqation shows interesting consequences. It is the so-

called Jensen inequality.

But previously, we may recall the de�nitions of convex/concave function.
A function, f(x), is convex, over an interval (a; b);if for every u; v 2 (a; b),

and � 2 [0; 1], we have

f [�u+ (1� �) v] � � f (u) + (1� �) f (v)
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And it is said to be strictly convex, if the equality holds only if � = 0 or
� = 1:

A function, f(x), is concave, over an interval (a; b);if for every u; v 2 (a; b),
and � 2 [0; 1], we have

f [�u+ (1� �) v] � � f (u) + (1� �) f (v)

I.e. f is concave, if �f is convex.
Therefore, f is convex, if it always lies below any chord. And f is concave, if

it always lies above any chord.

Passing to the Jensen Inequality, we can say that if f is a convex function,
and X a random variable, then

E [f (X)] � f (E [X])

And in the particular case of a strictly convex function f; from the equality
in the Jensen Inequality we may deduce that

X = E [X]

with probability equal to one. Therefore, X will be a constant.

D
KL

(p k q) is convex in the pair (p k q) ;i.e. if (p1 ; q1) and (p2 ; q2) both are
pairs of probability mass functions, then

D
KL
(�p1 + (1� �) p2 k �q1 + (1� �) q2) � �DKL

(p1 k q1)+(1� �)DKL
(p2 k q2)

for each � 2 [0; 1] :
But in the case of entropy the situation is reversed, because

H (p) is a concave function of the probability distribution, p

We have a result connected with them, but now about the Mutual Informa-
tion (denoted by MI, in acronym).
Let (X, Y) be a joint probability distribution with

p (x; y) = p (x) p (y=x)

Then, the Mutual Information on X on Y,

I (X;Y ) is a concave function of p(x), for �xed p(y/x)

and

I (X;Y ) is a convex function of p(y/x), for �xed p(x).
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6. Generalizing the Entropy
And generalizing, from the Shannon Entropy measure, we can found the

Rényi Entropy, or Entropy due to Alfred Rényi.

Let be a random sample, fxigni=1, with probabilities fpig
n
i=1.

We will de�ne the Rényi´ s Entropy as

H� (X) =
1

1�� log

�
nP
i=1

p�i

�
If they are equal all the above probabilities, then

H� (X) = log n; 8�

The entropies, as functions of �, are weakly decreasing.

So, for instance,

H0 (X) � H1 (X) � H2 (X) � ::: � H1 (X)

A particular case should be the Hartley´ s entropy,

If � = 0; then H0 (X) = log n (log [card (X)])

There exists these relation between entropies

H1 < H2 < 2H1

Furthermore, the Generalyzed Divergence of Rényi, of order �; of a distrib-
ution Q, relative to P, the �authentic�, will be

D� (P q Q) = 1
��1 log

�
nP
i=1

p�i
qi�1i

�
= 1

��1 log

�
nP
i=1

p�i q
1�i
i

�
So, we have

D� (P q Q) � 0;8P;Q

Conclusions
Statistical entropy is a probabilistic measure of uncertainty, or ignorance

about; whereas, Information is a measure of a reduction in that uncertainty.
For this, we must to ignore particular features of such event, only observing
whether or not it happened. So, we can consider the event as the observance
of a symbol whose probability of occurring is p. Whereas the Entropy of a
probability distribution is just the expected value of the information of such
distribution.
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