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Abstract

Our paper analyzes here, and now in a more detailed way, some new
lines to introduce the evolving concept of a very important Uncertainty
Measure, the so-called Entropy. We need to obtain these new ways to
model adequate conditions, departing from vague pieces of information.
For this, it will be very necessary to classify these different type of mea-
sure, with very profound theoretical implications, and many interesting
applications, as for instance, in Economics.
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1. Some initial quotations about Entropy

We must initiate this analysis by a perhaps well-known historical quotations
about the idea of Entropy. At least, from my precedent paper in this same
journal. But they are very appropiate, in my personal opinion.

According to the story Tribus tells us, Shannon didn’t know what to call his
measure, so he asked Von Neumann,

“- My greatest concern was what to call it. I thought of calling it ‘informa-
tion’, but the word was overly used, so I decided to call it ‘uncertainty’. When
I discussed it with John, he had a better idea.

John told me:

‘- You should call it entropy, for two reasons. In the first place, your uncer-
tainty function has been used in Statistical Mechanics under that name, so it
already has a name. In the second place, and more important, nobody knows
what entropy really is, so in a debate you will always have the advantage”.

And a final quotation. “The fundamental problem of communication is that
of reproducing at one point, either exactly or approximately, a message selected
at another point.” It is said by Claude E. Shannon (1916-2001), in his "A
Mathematical Theory of Communication", the now very famous paper of 1948.

Because the basic problem is to reconstruct, as closely as possible, the input
signal after observing the received signal at the output.
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The development of the idea of entropy of random variables and processes by
Shannon, provided the foundations of IT (Information Theory), and also of Er-
godic Theory. Recall that it is a branch of Mathematics that studies Dynamical
Systems with an invariant measure.

Entropy and related information measures provide descriptions of the long
term behavior of random processes, and that this behavior is a key factor in
developing aspects as the Coding Theorems of Information Theory.

About that the Shannon information measure is the only possible one, it
must be clear that it will be only valid within the more restricted scope of
coding problems which the own C. E. Shannon had see in his time.

As pointed out by Alfred Rényi (1961), in his essential paper on generalized
information measures, in other sort of problems other quantities may serve just
as well, or even better, as measures of information.

This should be supported either by their operational significance or by a set
of natural postulates characterizing them, or, preferably, by both.

Thus, the idea of generalized entropies arises in the scientific literature.

2. The maximum entropy principle

The maximum entropy principle (expressed as MEP, in acronym) is a pos-
tulate about a universal feature of any probability assignment on a given set of
propositions: events, hypotheses, etc.

Let some testable information about a probability distribution function be
given. Consider the set of all trial probability distributions that encode this
information.

Then, the probability distribution that mazximizes the information entropy is
the true probability distribution with respect to the testable information pre-
scribed.

This principle was first expounded by E. T. Jaynes in his seminal papers
of 1957, where he emphasized some natural correspondence between Statistical
Mechanics and Information Theory.

In particular, E. T. Jaynes offered a new and more general rationale why the
known as “Gibbsian” method of Statistical Mechanics works.

He suggested that the Entropy (denoted by S) in Statistical Mechanics, and
H (Information Entropy, in Information Theory), are basically the same thing.

Consequently, Statistical mechanics should be seen just as a particular ap-
plication of a general tool of Logical Inference and Information Theory.

Given testable information, the maximum entropy procedure consists of seek-
ing the probability distribution which maximizes the information entropy, sub-
ject to the constraints of the information.

This constrained optimization problem will be typically solved using the
analytical method known as Lagrange Multipliers.

Entropy maximization (max H) with no testable information takes place
under a single constraint: the sum of the probabilities must be one. Under this
constraint, the maximum entropy probability distribution is the well-known U
(uniform distribution).
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The MEP can, thus, be considered as a generalization of the classical Princi-
ple of Indifference (due to Laplace), also known as the Principle of Insufficient
Reason.

And it is very interesting the way open by the Romanian Mathematician
Nicolae Georgescu-Roegen, suggesting the application of the 2nd Law of Ther-
modynamics to Economics. This and subsequent developments give rise to
essential fields as Bioeconomics, Ecological Entropy. Also to the essential study,
in Economics, of Equilibrium Theory, and so on.

We may also consider the Metric Entropy, also called Kolmogorov Entropy,
or Kolmogorov-Sinai Entropy, in acronym K-S Entropy.

In a dynamical system, the metric entropy is equal to zero, for nonchaotic
motion, and is strictly greater than zero, for chaotic motion.

In Thermodynamics, Prigogine entropy is a very often used term referring to
the splitting of Entropy into two variables, one being that which is "exchanged"
with the surroundings, and the other being a result of "internal“ processes.

It holds

dS =d.S + d;8

This expression is sometimes referred to as the Prigogine entropy equation.
Such equation was formulated by Ilya Prigogine in his Study of the Thermody-
namics of Irreversible Phenomenon (1945).

This new function results, according to Prigogine, because

a) The Entropy of a System is an Extensive Property, i. e., if the system
consists of several parts, the total entropy is equal to the sum of the entropies
of each part,

and

(b) The change in entropy can be split into two parts, being these d.S and
d;S.

Denoting as d.S the flow of entropy, due to interactions with the exterior,
and denoting as d;S the contributions due to changes inside the system.

3. Topological Entropy

Let (X, d) be a compact metric space, and let f: X — X be a continuous
map.
For each n > 0, we define a new metric, d,,, by

dn(@,y) = maz{d(f'(z), f'(y)) : 0 < i <n}
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Two points, z and y, are close with respect to (w. r. t.) this metric, if their
first n iterates (given by f*, i=1,2,...) are close.

For € > 0, and ne N*, we say that S C X is an (n, €¢) - separated set, if for
each pair, z, y, of points of S, we have

dn(x,y) > €

Denote by N(n,€) the mazimum cardinality of a (n, €)-separated set.

It must be finite, because X is compact. In general, this limit may exists,
but it could be infinite.

A possible interpretation of this number is as a measure the average expo-
nential growth of the number of distinguishable orbit segments

So, we could say that

the higher the topological entropy is, the more essentially different orbits we
have

Topological entropy was introduced, in 1965, by Adler, Konheim and McAn-
drew.

Hence, N(n,e) shows the number of “distinguishable” orbit segments of
length n, assuming we cannot distinguish points that are less than e apart.

The topological entropy of f is then defined by

Hiop = limc_,olim sup,,_, o [%ng(nvf)]

4. Entropy on Intuitionistic Fuzzy Sets

The notion of Intuitionistic Fuzzy Set (in acronym, IFS) was introduced
by Atanassov (1983), and then developed by authors as Hung & Yang, among
others.

Recall that an Intuitionistic Set is an incompletely known set.

An IFS must represent the degrees of their membership and non-membership,
with a certain degree of hesitancy, or doubt.

For this reason, they have widely used in many applied areas.

Therefore, the apparition here of IFS, instead of F'S, permits the introduction
of another degree of freedom into a set description.

Such a generalization of F'S gives us a new possibility to represent imperfect
knowledge. Thus, we can access to describing many more real problems in a
more adequate way.

IFS-based models may be very useful in situations with distinct opinions, or
human testimonies, involving answers as

- Yes,

- No,

- Doesn “t apply.

As for instance, in voting.
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A very frequent measure of fuzziness is the entropy of Fuzzy Sets, which
were first mentioned by Zadeh (1965). But recently two new definitions have
been proposed

by Szmidt & Kacprzyk (2001),
and
by Burillo & Bustince (1996).

The first one is a non-probabilistic entropy measure, which departs on a
geometric interpretation of an IFS.

And by the second, it would be possible to measure the degree of intuitionism
of an IFS.

Also we can to generalize from IFS to a Neutrosophic Set, abridgedly N-Set,
a concept due to Smarandache (1995).

It is a set which generalizes many existing classes of sets. In particular, FS,
and its first generalization, IF'S.

Let U be a universe of discourse, and let M be a set included in U.

An element z from U is denoted, with respect to the set M, as

z (T, I, F)

And it belongs to M in the following way:
It is T % in the set (membership degree),

I % indeterminate (unknown if it is in the set),

and F % not in the set (non-membership degree).

Here T, I, F components are real standard/non-standard subsets, included
in the non-standard unit interval, representing truth, indeterminacy and falsity
percentages, repectively.

It is possible to define a measure of Neutrosophic H, or N-Entropy, as the
summation of the respective entropies of three subsets, T, I and F.

5. Negentropy

The Second Law of Thermodynamics makes no distinction between living
and non-living things. But living things are characterized by a very high degree
of asembly and structure.

Every isolated system (as may be the Universe) moves towards a state of
maximum entropy. Its entropy can never decrease.

Hence, the decrease in entropy that accompanies growth of living structures
must be accompanied by an increase in entropy in the physical environment.

In his famous book What is life?, Erwin Schrédinger analyse the life as a
state of very low probability, because the necessary energy to create and sustain
it.
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The “vital force” that maintains life is energy. Living things preserve their
low levels of entropy throughout time, because they receive energy from the sur-
roundings in the form of food. They gain its order at the expense of disordering
the nutrients they consume.

The entropy of a system represent the amount of uncertainty one observer
has about the state of the system.

The simplest example of a system will be a random variable.

Information measures the amount of correlation between two systems, and
it reduces to a mere difference in entropies.

As islands of order in a sea of chaos, organisms are far superior to human-
built machines. And unlike Watt “s steam engine, the body concentrates order.
It continuously self-repairs, being the metabolism a sure sign of life.

Brillouin says that a living system imports negentropy and stores it.

So, the J (negentropy) function is the entropy that it exports to keep its own
entropy low.

The Negentropy is used as a measure of distance to Normality.

It is always non-negative: J > 0.

And linear by any linear invertible change of coordinates.

It vanishes iff the signal is Gaussian.

Some biologists speaks in terms of the entropy of an organism, or about its
antonym, negentropy, as a measure of the structural order within such organism.
Being entropy defined as a measure of how close a system is to equilibrium, i.
e., to perfect internal disorder.

Living things and ordered structures, as crystals for instance, appears be-
cause locally entropy can be lowered by external action. It may be reduced in
different systems, as the cold chamber of a refrigator, being in such case possible
by an increase of S in their surroundings.

6. Graph Entropy

It is a functional on a graph, G = (V, E), with P a probability distribution
on its node (or vertex) set, V. It will be denoted by GE.

A concept introduced by Korner, as solution of a coding problem formulated
inIT.

Because its sub-additivity, has become a useful tool in proving some lower
bounds results in Computational Complexity Theory.

The search for exact additivity has produced certain interesting combinato-
rial structures. One of such results is the characterization of perfect graphs by
the additivity of GE.

It will be defined as

H (G, P) = min }_pi log p;

Observe that such function is convex. It tends to oo on the boundary of the
non-negative orthant of R™ , and monotonically to — oo along rays from the
origin.
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So, such minimum is always achieved and it will be finite.

Final conclusions

Statistical entropy is a probabilistic measure of uncertainty, or ignorance
about data.

Whereas Information is a measure of a reduction in that uncertainty.

The Entropy of a probability distribution is just the expected value of the
information of such distribution.

All these ideas induces improved tools to advance in Optimization Theory,
Generalized Fuzzy Measures, Economics, modeling in Biology, and so on.
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