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Abstract: A computer-aided technique to obtain a reduced-order approximant of a given 

(stable) single-input single-output discrete time system based on the minimization of a 

integral squared error (ISE) pertaining to a unit step input is presented. Both the 

numerator and denominator coefficients of the model are treated as free parameters in the 

process of optimization. The method has a built-in 

stability-preserving feature. 
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1  Introduction 

 

The techniques for model reduction of discrete-time systems are limited and may be 

classified into two groups. The first group contains the methods [1-12] which derive 

approximant ( )rG z  from a given high-order transfer function ( )G z  exploiting the already 

existing continuous-time algorithms [1-5]. Some of the methods of this group are very 

attractive, because a stable reduced model is obtained if the original system is stable [5-

12]. The second group contains the so called direct methods that derive ( )rG z  directly 

from ( )G z  without using the transformation but they do not usually ensure stability of 

the reduced model even though the original system is stable [13-15]. Farasi et al. [16] 

have proposed a method in which the Routh stability criterion is employed to reduce the 

order of discrete system transfer functions. It is shown that the Routh approximation is 

well suited to reduce both denominator and the numerator polynomials, although 

alternative methods such as Padé approximation can also be used to fit the model 

numerator coefficients. In [17], a Routh type approximation for discrete system is 

presented. The denominator of the reduced model is directly obtained from a Routh type 

table and the numerator of the reduced model is obtained either by matching the discrete 
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time moments or by minimizing the step response error in z domain. A common feature 

in above methods [1-17] is that the values of the denominator coefficients of the reduced-

order transfer function are chosen arbitrarily. This feature appears to be largely motivated 

by the consideration of achieving computational simplicity. If the denominator 

coefficients are numerically specified, the resulting equations for optimization become a 

set of linear equations in terms of the numerator coefficients and then these coefficients 

are easily determined. However, selecting the denominator coefficients arbitrarily may 

generally mean a loss of a considerable degree of freedom for optimization. It is 

sometimes suggested [18] that the denominator coefficients may be chosen so as to retain 

the dominant poles of the system. However, it may not usually be straight forward to say 

that the poles of the optimal reduced-order model may have some definite relationship 

with those of the original system. 

 

   Thus, the problem is to derive, subject to preserving stability, a model via the 

minimization of a objective function (such as ISE) while allowing both the numerator and 

the denominator coefficients as free parameters in the optimization.  An algorithm is 

presented by Puri and Lin [19]. The proposed algorithm [19] minimizes a weighted mean 

squared impulse (or step) response error between the original system and reduced-order 

model. The procedure guarantees a stable model and can be extended to MIMO systems. 

 

   An alternative method is presented in this paper. In the proposed work, a stable 

reduced-order approximant is derived for a given (stable) single-input single-output 

(SISO) system via minimization of ISE pertaining to a unit-step input. In this approach, 

which allows both the numerator and denominator coefficients of the model as free 

parameters in the process of optimization, the problem of construction of objective 

function is circumvented by tacitly introducing, using an early idea due to Astrom  [20], a 

set of equality constraints. By way of utilizing the ideas due to Astrom [20], the approach 

has the built-in stability-preserving feature for any value of r. The minimization of ISE is 

carried out by applying the algorithm due to Luss and Jaakola [21].  Two examples are 

included that bring out the systematic nature of the algorithm.  

 

   In this context, it is worth mentioning that a similar attempt is made in [22] for 

continuous-time SISO systems.  

 

2  Background 

 

Consider a higher order stable system 

1 2

1 2 1

1

1 1

...( )
( )

( ) ...

n n

n n

n n

n n

a z a z a z aY z
G z

R z z b z b z b

− −
−

−
−

+ + + +
= =

+ + + +
                      (1) 

The problem is to determine its stable reduced-order ( r th-order) approximant of the form 

1 2

1 2 1

1

1 1

ˆ ˆ ˆ ˆ( ) ...
( )

ˆ ˆ ˆ( ) ...

r r

r r r
r r r

r r r

Y z a z a z a z a
G z

R z z b z b z b

− −
−

−
−

+ + + +
= =

+ + + +
                    (2) 

such that the ISE of unit-step response given by  



Stable Optimal Model Reduction Of Linear Discrete  Time Systems 

533 

2

0

( )
k

J e k
∞

=

= ∑                                                  (3) 

is minimum where 

                       ( ) ( ) ( )re k y k y k= −     (4) 

( )y k  and ( )ry k  denote the unit-step responses of the system and model, respectively. 

Using Parseval’s theorem the ISE can alternatively be expressed in the z  domain [23-24] 

as 

1 11
( ) ( ) ,

2
unit
circle

J E z E z z dz
jπ

− −= ∫�       1j = −         (5) 

where ( )E z  is the z − transform of ( )e k . It is assumed that the steady-state error is zero, 

i.e. ( ) ( )ry y∞ = ∞ . This assumption requires that 

 

            0 0α β=  

         where 0

1

( )
( 1)

z

Y z
z

z
α

=

= −        and     0

1

( )
( 1) r

z

Y z
z

z
β

=

= −  

 

( )Y z  and ( )rY z  denote the unit-step responses of the system and model, respectively in 

z  domain. 

 

      Alternatively, 0α  and 0β  can be calculated as follows 

      Putting 1z p= +  in polynomial (1) and expanding about 0p = , (1) becomes 

 

      
1 2

1 2 1
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( 1) ( 1) ... ( 1)
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p B p B p B

− −
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−
−
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               2

0 1 2= ...p pα α α+ + +  

 

               2

0 1 2= ( 1) ( 1) ...z zα α α+ − + − +                                                (7) 

 

                 where 0α  is given by 

 

                                  0
n

n

A

B
α =                                                                (8) 
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Again on putting 1z p= +  in (2) and expanding about 0p = , (2) becomes 

 

          
1 2

1 2 1

1

1 1

ˆ ˆ ˆ ˆ( 1) ( 1) ... ( 1)
( )

ˆ ˆ ˆ( 1) ( 1) ... ( 1)

r r

r r
r r r

r r

a p a p a p a
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p b p b p b

− −
−

−
−

+ + + + + + +
=

+ + + + + + +
             (9) 

 

                     
1 2

1 2 1

1

1 1

ˆ ˆ ˆ ˆ...

ˆ ˆ ˆ...

r r

r r

r r

r r

A p A p A p A

p B p B p B

− −
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−
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+ + + +
 

 

                     2

0 1 2= ...p pβ β β+ + +  

 

                     2

0 1 2= ( 1) ( 1) ...z zβ β β+ − + − +                                       (10) 

 

             where 0β  is given by  

 

                              0

ˆ

ˆ
r

r

A

B
β =                                                                   (11) 

   

For steady state matching 

 

                                0 0α β=  

 

        i.e.                  
ˆ

ˆ
n r

n r

A A

B B
=                                                                      (12) 

 

Let ( )N z  and ( )D z  denote, respectively, the numerator and denominator polynomials of 

(1) and ( )rN z  and ( )rD z  the respective polynomials of (2). The error function ( )E z  

takes the form [19] 

               
( ) ( ) ( ) ( )

( )
1 ( ) ( )

r r

r

D z N z D z N zz
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z D z D z
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     where p n r= + . The coefficients ig  are given by 
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             and ic  and hi are given by                                                                                 
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 Now integral (5) will always exist if all the poles of polynomial ( )E z  are inside the unit 

circle. This assumption requires that 
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                  1 2 1 0

0 0 0 0 0, , ,..., ,p ph h h h h− −
  >0,                             (17) 

                  where  1 2 1 0

0 0 0 0 0, , ,..., ,p ph h h h h− −
 are determined by following tables [20] 

 

                         H-table                                                                            G-table 

0 1 1 0 1 1

1 1 0 1 1 0

1 1 1 1 1 1

0 1 1 0 1 1

1 1 1 1 1 1

1 2 0 1 2 0

1 1 1 1

0 1 0 1

1 1 1 1

1 0 1 0

0 0

0 0

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. .

. .

. .

p p p p

p p p p

p p p p p p

p p

p p p p p p

p p p p

h h h h g g g g

h h h h h h h h

h h h g g g

h h h h h h

h h g g

h h h h

h g

− −

− −
− − − − − −

− −
− − − − − −
− − − −

 

The first row of H- table and G- table is obtained by coefficients of denominator and 

numerator of (13) respectively. Each even row in the H- table is obtained by writing the 

coefficients of the proceeding row in reverse order. The even rows of the H- and B-tables 

are the same. The coefficients of the odd rows of both tables are obtained from the two as 

follows 

 

1k k k

i i k k ig g hβ−
−= − ,      0/k k

k kh hα =                                    (18)   

1k k k

i i k k ih h hα−
−= − ,         0/k k

k kg hβ =                                 (19) 

where  , 1, 2,..., 2,1k p p p= − −  

           with the initial conditions 

                                         p

i ih h=  

                                        p

i ig g=                                                                                (20) 

It is found that the integral in (5), using above tables can be evaluated [20] as 

           
2

00 0

( )1
ip

i
p p i

i

g
J

h h=

= ∑                                                             (21) 

The necessary and sufficient conditions for all the roots of denominator polynomial of the 

model (2) to be strictly inside the unite circle are preserved in (17). 
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Therefore the problem is to minimize pJ  given by (21) subject to (12), (14), (15), (16) 

and (17). The algorithm due to Luss and Jaakola [21] suits this situation. Two examples 

are chosen to illustrate the steps involved in arriving at the solution.       

 

3 Examples  

        Example 1  
 

Consider a fourth-order system [25] given by (22).  

 

           
3 2

4 3 2

0.3124 0.5743 0.3879 0.0889
( )

3.233 3.9869 2.2209 0.4723

z z z
G z

z z z z

− + −
=

− + − −
                  (22) 

 

Suppose a second-order approximant given of the form 

 

           1 2

2

1 2

ˆ ˆ
( )

ˆ ˆr

a z a
G z

z b z b

+
=

+ +
        (23) 

is desired. 

 

For this example, (12), (14), (15), (16) and (17) are identified to be, respectively, (24), 

(25), (26), (27) and (30) 

 

2 1 2 1
ˆ ˆˆ ˆ7(1 )a b b a= + + −                                                                                  (24) 
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0

1 1

2 1 2

3 1 2

4 1 2

5 1 2

6 2

1

ˆ 3.233

ˆ ˆ3.233 3.9869

ˆ ˆ3.9869 3.233 2.2209

ˆ ˆ2.2209 3.9869 0.4723

ˆ ˆ0.4723 2.2209

ˆ0.4723

h

h b

h b b

h b b

h b b

h b b

h b

= 

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

= − + + 


= − − 


= − + + 
= − 
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                                                                  (27) 

 

 

H-table and G-table are formed as:  

 

 

 

 H-table                                                     G-table 

0 1 2 3 4 5 6 0 1 2 3 4 5 6

6 5 4 3 2 1 0 6 5 4 3 2 1 0

5 5 5 5 5 5 5 5 5 5 5 5

0 1 2 3 4 5 0 1 2 3 4 5

5 5 5 5 5 5 5 5 5 5 5 5

5 4 3 2 1 0 5 4 3 2 1 0

4 4 4 4 4 4 4 4 4 4

0 1 2 3 4 0 1 2 3 4

4 4 4 4 4 4 4 4 4 4

4 3 2 1 0 4 3 2 1 0

3 3 3 3

0 1 2 3

h h h h h h h g g g g g g g

h h h h h h h h h h h h h h

h h h h h h g g g g g g

h h h h h h h h h h h h

h h h h h g g g g g

h h h h h h h h h h

h h h h 3 3 3 3

0 1 2 3

3 3 3 3 3 3 3 3

3 2 1 0 3 2 1 0

2 2 2 2 2 2

0 1 2 0 1 2

2 2 2 2 2 2

2 1 0 2 1 0

1 1 1 1

0 1 0 1

1 1 1 1

1 0 1 0

0 0

0 0

g g g g

h h h h h h h h

h h h g g g

h h h h h h

h h g g

h h h h

h g

 

 

where 
1k k k

i i k k ih h hα−
−= − ,     and     0/k k

k kh hα = ,  6,5, 4,3,2,1k =                           (28) 

 
1k k k

i i k k ig g hβ−
−= − ,    and      0/k k

k kg hβ = , 6,5, 4,3,2,1k =                           (29) 

 

and the initial conditions 

                                         6

i ih h= ,   0,1, 2,3, 4,5,6i =  

                                         6

i ig g= ,   0,1, 2,3, 4,5,6i =  

 

while (17) and (21) take the following forms respectively 
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6 5 4 3 2 1

0 0 0 0 0 00, 0, 0, 0, 0, 0h h h h h h> > > > > >  and 0

0 0h >                    (30) 

 

     
26

6 6
00 0

( )1
i

i

i
i

g
J

h h=

= ∑                                                                                  

 

 

          
0 2 3 2 5 2 6 21 2 2 2 4 2

0 3 5 61 2 4

6 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

( ) ( ) ( ) ( )( ) ( ) ( )1 g g g gg g g

h h h h h h h h

 
= + + + + + + 

 
     (31) 

     

The minimization of (31) subject to (24) - (30) using Luss-Jaakola’s 

algorithm [21], yields the optimal solution 

*

1â = 0.129732, 
*

2â = 0.182190, 
*

1b̂ = -1.743148, 
*

2b̂ = 0.787708 

 

Following are some typical results 

 

•  Initial conditions:  1â =1.0, 2â = 1.0, 1b̂ = 1.0, 2b̂ = 1.0 

    Range                 :   1.0, 1.0, 1.0, 1.0  

    Optimal solution:   
*

1â = 0.129732, 
*

2â = 0.182190, 
*

1b̂ = -1.743148, 
*

2b̂ = 0.787708 

    Objective function: 
*J = 0.303030 

 

•  Initial conditions:  1â =0.5, 2â = 0.5, 1b̂ = 0.5, 2b̂ = 0.5 

    Range                 :   10.0, 10.0, 10.0, 10.0 

    Optimal solution:   
*

1â = 0.129499, 
*

2â = 0.182591, 
*

1b̂ = -1.743076, 
*

2b̂ = 0.787661 

 Objective function: 
*J = 0.303048 

 

•  Initial conditions:  1â =1.0, 2â = -1.0, 1b̂ = -0.5, 2b̂ = -0.5 

    Range                 :   0.5, 0.5, 0.5, 0.5 

    Optimal solution:   
*

1â = 0.129728, 
*

2â = 0.182071, 
*

1b̂ = -1.743230, 
*

2b̂ = 0.787773 

 Objective function: 
*J = 0.303037 

 

•  Initial conditions:  1â = -1.0, 2â = 0.5, 1b̂ = 1.0, 2b̂ = -0.5 

    Range                 :   3.0, 3.0, 3.0, 3.0  

    Optimal solution:   
*

1â = 0.129150, 
*

2â = 0.182989, 
*

1b̂ = -1.743002, 
*

2b̂ = 0.787593 

    Objective function: 
*J = 0.303050 

 

•  Initial conditions:  1â =0.2, 2â = 0.4, 1b̂ = 0.6, 2b̂ = 0.8 
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    Range                 :   5.0, 5.0, 5.0, 5.0  

    Optimal solution:   
*

1â = 0.130692, 
*

2â = 0.181049, 
*

1b̂ = -1.743225, 
*

2b̂ = 0.787759 

    Objective function: 
*J = 0.303067 

 

Therefore the model takes the form  

 

2 2

0.129732 0.18219
( )

1.743148 0.787708

z
G z

z z

+
=

− +
                                                     (32) 

 

On the other hand, the model obtained by the technique of [25]  

 

2 2

0.3124 0.0298
( )

1.7369 0.7773

z
G z

z z

−
=

− +
                                                           (33) 
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Model (33) ...

time, s

s
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e
s
p
o
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s
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Fig. 1 Step responses of the systems given by (22) and its reduced order models 

given by (32) and (33) 

Table1. Comparison of integral-squared error (ISE) 

 

Model ISE of unit-step 

response 

(32) 0.303030 

(33) 1.481662 
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The step responses of the system (22) and the models (32) when plotted (Fig.1) were seen 

to be close to each other but model (33) when plotted was seen to be very poor against 

model (32). This is also confirmed by examining the ISE corresponding to (32) and (33) 

given in Table1. 

 

Example 2 

 

Consider a fifth-order system [26] given by (34).  

 

4 3 2

5 4 3 2

1.0616 0.7545 0.0015 0.0349
( )

0.3 0.87 0.307 0.082 0.022

z z z z
G z

z z z z z

− + + −
=

− − + + −
                  (34) 

Suppose a second order approximant of the form 

1 2

2

1 2

ˆ ˆ
( )

ˆ ˆr

a z a
G z

z b z b

+
=

+ +
                                                                (35) 

is desired. 

 

For this example (12), (14), (15), (16) and (17) are identified to be, respectively, (36), 

(37), (38), (39) and (42) 

2 1 2 1
ˆ ˆˆ ˆ3.347(1 )a b b a= + + −                                                                                 (36) 

0

1 1

2 2

3 3

4 4

5 5

6 6

7

0

0

g

g c

g c

g c

g c

g c

g c

g

= 
= 
=


= 


= 
=


= 
= 

          (37) 

1 1

2 1 2 1 1

3 1 2 1 2 2

4 1 2 1 2 3

5 1 2 1 2 4

6 1 2

ˆ 1

ˆˆ ˆ0.3 1.0616

ˆ ˆˆ ˆ0.87 0.3 1.0616 0.7545

ˆ ˆˆ ˆ0.307 0.87 0.7545 1.0616 0.0015

ˆ ˆˆ ˆ0.082 0.307 0.0015 0.7545 0.0349

ˆ ˆ0.022 0.082 0

c a

c a a b c

c a a b b c

c a a b b c

c a a b b c

c a a

= −

= − − − + +

= − − + − − +

= − − + − +

= + − − + +

= − + + 1 2 5
ˆ ˆ.0349 0.0015b b c










− + 

                                  (38) 



S. K. Mittal, D. Chandra 

542 

0

1 1

2 1 2

3 1 2

4 1 2

5 1 2

6 1 2

7 2

1

ˆ 0.3

ˆ ˆ0.3 0.87

ˆ ˆ0.87 0.3 0.307

ˆ ˆ0.307 0.87 0.082

ˆ ˆ0.082 0.307 0.022

ˆ ˆ0.022 0.082

ˆ0.022

h

h b

h b b

h b b

h b b

h b b

h b b

h b

= 


= − 


= − + − 
= − − + 


= − + 
= + − 
= − + 
= − 

                                                                   (39) 

 

For this example H-table and G-table is formed as:  

 

                     H-table                                                     G-table 

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

6 6 6 6 6 6 6 6 6 6 6 6 6 6

0 1 2 3 4 5 6 0 1 2 3 4 5 6

6 6 6 6 6 6 6 6 6 6 6 6 6 6

6 5 4 3 2 1 0 6 5 4 3 2 1 0

5 5 5 5 5 5 5 5 5 5 5 5

0 1 2 3 4 5 0 1 2 3 4 5

5 5 5 5 5

5 4 3 2 1

h h h h h h h h g g g g g g g g

h h h h h h h h h h h h h h h h

h h h h h h h g g g g g g g

h h h h h h h h h h h h h h

h h h h h h g g g g g g

h h h h h h
5 5 5 5 5 5 5

0 5 4 3 2 1 0

4 4 4 4 4 4 4 4 4 4

0 1 2 3 4 0 1 2 3 4

4 4 4 4 4 4 4 4 4 4

4 3 2 1 0 4 3 2 1 0

3 3 3 3 3 3 3 3

0 1 2 3 0 1 2 3

3 3 3 3 3 3 3 3

3 2 1 0 3 2 1 0

2 2 2 2 2 2

0 1 2 0 1 2

2 2 2 2 2 2

2 1 0 2 1 0

1 1 1 1

0 1 0 1

1 1 1 1

1 0 1 0

0 0

0 0

h h h h h h

h h h h h g g g g g

h h h h h h h h h h

h h h h g g g g

h h h h h h h h

h h h g g g

h h h h h h

h h g g

h h h h

h g  

 

 

where 

1k k k

i i k k ih h hα−
−= − ,     and       0/k k

k kh hα = ,  7,6,5,4,3, 2,1k =                          (40) 

1k k k

i i k k ig g hβ−
−= − ,    and      0/k k

k kg hβ = ,    7,6,5,4,3, 2,1k =                          (41) 

 

with the initial conditions 

                                         7

i ih h= ,   0,1, 2,3,4,5,6,7i =  
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                                         7

i ig g= ,   0,1, 2,3,4,5,6,7i =  

The constraints (17) for this example are identified as 

7 6 5 4 3 2 1

0 0 0 0 0 0 00, 0, 0, 0, 0, 0, 0h h h h h h h> > > > > > >  and 0

0 0h >                    (42) 

and (21) takes the form 

   
27

7 7
00 0

( )1
i

i

i
i

g
J

h h=

= ∑                                                                                  

0 2 3 2 5 2 6 2 7 21 2 2 2 4 2

0 3 5 6 71 2 4

7 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 g g g g gg g g

h h h h h h h h h

 
= + + + + + + + 

 
     (43) 

 

The minimization of (43) subject to constraints (36) - (43) using Luss-Jaakola’s algorithm 

[21], yield the optimal solution 

 

*

1â = 1.138388, 
*

2â = -0.194374, 
*

1b̂ =0.085556, 
*

2b̂ = -0.803568 

 

Following are some typical results 

•  Initial conditions:  1â =1.0, 2â = 1.0, 1b̂ = 1.0, 2b̂ = 1.0 

    Range                 :   1.0, 1.0, 1.0, 1.0  

    Optimal solution:   
*

1â = 1.138388, 
*

2â = -0.194374, 
*

1b̂ =0.085556, 
*

2b̂ = -0.803568 

    Objective function: 
*J = 0.781373 

 

•  Initial conditions:  1â =0.5, 2â = 0.5, 1b̂ = 0.5, 2b̂ = 0.5 

    Range                 :   10.0, 10.0, 10.0, 10.0 

    Optimal solution:   
*

1â = 1.138074, 
*

2â = -0.193991, 
*

1b̂ =0.085576, 
*

2b̂ = -0.803568 

    Objective function: 
*J = 0.781373 

 

•  Initial conditions:  1â =1.0, 2â = -1.0, 1b̂ = -0.5, 2b̂ = -0.5 

    Range                 :   0.5, 0.5, 0.5, 0.5 

    Optimal solution:   
*

1â = 1.138189, 
*

2â = -0.194133, 
*

1b̂ =0.085570, 
*

2b̂ = -0.803570 

    Objective function: 
*J = 0.781373 

 

•  Initial conditions:  1â = -1.0, 2â = 0.5, 1b̂ = 1.0, 2b̂ = -0.5 

    Range                 :   3.0, 3.0, 3.0, 3.0  

    Optimal solution:   
*

1â = 1.138188, 
*

2â = -0.194107, 
*

1b̂ =0.085573, 
*

2b̂ = -0.803566 
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    Objective function: 
*J = 0.781373 

 

•  Initial conditions:  1â =0.2, 2â = 0.4, 1b̂ = 0.6, 2b̂ = 0.8 

    Range                 :   5.0, 5.0, 5.0, 5.0  

    Optimal solution:   
*

1â = 1.138135, 
*

2â = -0.194122, 
*

1b̂ =0.085561, 
*

2b̂ = -0.803573 

    Objective function: 
*J = 0.781373 

     

Therefore the model takes the form  

2 2

1.138388 0.194374
( )

0.085556 0.803568

z
G z

z z

−
=

+ −
                                                     (44) 

On the other hand, the models obtained by the techniques of [25], [26] and [27] are, 

respectively 

2 2

0.1481
( )

0.0687 0.8142

z
G z

z z

−
=

+ −
                                                           (45) 

2 2

0.5611 0.2842
( )

1.3132 1.9586 0.7281

z
G z

z z

−
=

− +
                                (46) 

and 

2 2

0.052
( )

0.1027 0.8195

z
G z

z z

−
=

+ −
                                                             (47) 
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Fig. 2 Step responses of the system given by (34) and its reduced order 

models  given by (44), (45) and (46) 

                                                            

                              Table2. Comparison of integral-squared error (ISE) 

Model ISE of unit-step 

response 

(44) 0.7814 

(45) 1.0844 

(46) 1.9176 

(47) 0.8554 

The step responses of the system (34) and the models (44), (45) when plotted (Fig.2) 

were seen to be close to each other but model (46) when plotted was seen to be very poor 

against models  (44) and (45). The ISE corresponding to (44)-(47) are shown in Table2. 

This shows some improvement realized from the methods [8], [24] and [25]. 

 

4  Conclusions 
A novel method for obtaining a reduced-order model of a given (stable) SISO discrete 

time system based on minimization of ISE has been developed. The method allows both 

the numerator and denominator coefficients of the models as free parameters in the 

process of optimization, and guarantees that a stable system is reduced to a stable model. 
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The problem of formulating the objective function is circumvented by introducing a set 

of equality constraints. 
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