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Abstract

Our paper analyzes some aspects of the evolving concepts of a very
important Uncertainty Measure, the so-called Entropy. We need to obtain
new ways to model adequate conditions or restrictions, constructed from
vague pieces of information. For this, it will be very necessary to classify
the di¤erent types of measures; in particular, to consider certain fuzzy
measures. And previously, �xing well the emplacement of such ideas. For
such reason, we attempt to advance now some historical notes, perhaps
interesting in the analysis of Entropy.
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1. Introduction to Entropy
As you have surely heard, according to the story Tribus tells us [11], Shannon

didn�t know what to call his measure, so he asked Von Neumann,
�- My greatest concern was what to call it. I thought of calling it �informa-

tion�, but the word was overly used, so I decided to call it �uncertainty�When
I discussed it with John, he had a better idea.
John told me:
�- You should call it entropy, for two reasons. In the �rst place, your uncer-

tainty function has been used in Statistical Mechanics under that name, so it
already has a name. In the second place, and more important, nobody knows
what entropy really is, so in a debate you will always have the advantage ´�.

2. Some historical quotations
�I propose to name the quantity S the entropy of the system after the Greek

word trope, transformation. I have deliberately chosen the word entropy to be
as similar as possible to the word energy: the two quantities to be named by
these words are so closely related in physical signi�cance that a certain similarity
in their names appears to be appropriate�. Rudolph Clausius (1865).

�The fundamental problem of communication is that of reproducing at one
point, either exactly or approximately, a message selected at another point.�
Claude E. Shannon (1916-2001), "A Mathematical Theory of Communication",
famous paper of 1948.
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Because the basic problem is to reconstruct, as closely as possible, the input
signal after observing the received signal at the output.
The development of the idea of entropy of random variables and processes by

Shannon, provided the foundations of IT (Information Theory), and also of Er-
godic Theory. Recall that it is a branch of Mathematics that studies Dynamical
Systems with an invariant measure.

3. Developing Entropy theories
Entropy and related information measures provide descriptions of the long

term behavior of random processes, and that this behavior is a key factor in
developing the

Coding Theorems of IT

The contributions of Andrei N. Kolmogorov (1903-1987) to the mathemati-
cal I T produces great advances to the Shannon formulations, proposing a new
complexity theory, now translated to Computer Sciences. According such the-
ory, the complexity of a message is given by the size of the program necessary
to be possible the reception of such message.
From these ideas, Kolmogorov also analyzes the entropy of literary texts.

More concretely, on Pushkin poetry. Such entropy appears as a function of the
semantic capacity of the texts, depending of factors as their extension and also
the �exibility of the corresponding language.

And we need mentionate to Prof. Solomon Marcus, tireless researcher in
Computational Linguistics, and Information Theory. Because he has studied
the Entropy in the poetical work of Mihai Eminescu, national Romanian poet.

Also may be mentioned Norbert Wiener (1894-1964), considered the founder
of Cybernetics, who in 1948 also propose a similar vision of such problem.
But the approach used by Shannon di¤ers from that of Wiener in the nature

of the transmitted signal and in the type of decision made at the receiver.
In the Shannon model messages are �rst encoded and then transmitted,

whereas in the Wiener model the signal is communicated directly through the
channel without being encoded.

Another measure would be due to R. A. Fischer (1890-1962), the so called
Fisher Information (FI), which is another di¤erent concept, used applying sta-
tistics to estimation. It will be thought of as the amount of information that a
message carries about an unobservable parameter.

The initial studies on IT were undertaken by Harry Nyquist (1889-1976)
in 1924. And later by Ralph Hartley (1888-1970), who in 1928 recognized the
logarithmic nature of the measure of information.
Later, it appears the key, with the essential Shannon and Wiener papers.

It is also very interesting the contribution of the Romanian mathematician
and economist Nicholas Georgescu-Roegen (1906-1994), which studied in Lon-
don with Karl Pearson.
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Its great work was The Entropy Law and the Economical Process [4]. In such
memorable book, he propose that the second law of thermodynamics governs
economic processes. Such ideas permits the development of some new �elds, as
can be Bioeconomics, or Ecological Economics.

But also some others, asKerrige (1961), studying a di¤erent kind of measure,
the so called inaccuracy measure, involving two probability distributions.
Sibson (1969) studied another divergence measure, also involving two prob-

ability distributions, by using the concavity property of Shannon�s entropy, call-
ing information radius.
More later, Burbea and Rao (1982) studied extensively the information ra-

dius and its parametric generalization.

Yager (1979), and Higashi and Klir (1983), showed the entropy measure as
the di¤erence between two fuzzy sets. More concretely, it will be the di¤erence
between a fuzzy set and its complement, which is also a fuzzy set.

Pal and Pal (1989) introduce a de�nition for probabilistic entropy based on
an exponential gain function, and used it as basis for de�ning this measure of
fuzziness.

Bhandari and Pal (1993) use Renyi´s entropy to de�ne a non-probabilistic
entropy, or measure of fuzziness, for fuzzy sets.

Jumaire (1990) propose a de�nition, now for di¤erentiable membership func-
tions.

The Shannon Entropy is a measure of the average information content one
is missing when one does not know the value of the random variable.
This concept proceeds from the Shannon´s 1948 aforementioned famous pa-

per.
So, it represents an absolute limit on the best possible lossless compression

of any communication, under constraints, treating messages to be encoded as a
sequence of independent and identically distributed (i.i.d.) random variables.
The information that we receive from an observation is equal to the degree

to which uncertainty is reduced.
So,

I = H (before) �H (after)

Among their main properties, we have

Continuity

The measure H should be continuous, in the sense that changing the values
of the probabilities by a very small amount, should only change the H value by
a small amount.

Maximality

527



The measure H will be maximal, if all the outcomes are equally likely. That
is, the Uncertainty is highest when all possible events are equiprobable.
Mathematically,

H n (p1, p2, . . . , pn) � H n (1/n, 1/n, . . . , 1/n)

For equiprobable events, H will increase with the number of outcomes,

H n (1/n, 1/n, . . . , 1/n) < H n+1 (1/n+1, 1/n+1, . . . , 1/n+1)

Additivity

The amount of entropy should be independent of how the process is consid-
ered, as being divided into parts.
Such functional relationship characterizes the entropy of a system respect

to their sub-systems. It demands that the entropy of every system can be
identi�ed, and then, computed from the entropies of their sub-systems.

So, we can see now some classical de�nitions of Entropy, according to the
di¤erent perspectives and applications:

1) Entropy is a measure of the probability of a particular event.

2) Entropy is a measure of the disorder of a system.

3) Entropy measures heat divided by absolute temperature
of a body, i.e.

S = Q / T

4) The known vision of Entropy as loss of information.

Entropy is related to the 2nd Law of Thermodynamics, which provides a
de�nition of time�s arrow. Such 2nd Law of Thermodynamics states that in a
closed system, the entropy function (S) increases, and this increase occurs in
time.

The physical notation of S for Entropy is a tribute to Sadi Carnot (1796-
1832), which is very often described as �the father of Thermodynamics�.
Whereas it is usually denoted as H, in Computation and Information Theory.

About some apparent �evidences�prescribing that the Shannon information
measure is the only possible one, it must be clear that it will be only valid within
the more restricted scope of coding problems which the own C. E. Shannon [10]
had see in his time.

As pointed out by Alfred Rényi (1961), in his essential paper on generalized
information measures [9], in other sort of problems other quantities may serve
just as well, or even better, as measures of information.
This should be supported either by their operational signi�cance or by a set

of natural postulates characterizing them, or, preferably, by both.
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Thus, the idea of generalized entropies arises in the scienti�c literature.

Also we may mencionate to the physicist John Archibald Wheeler (1911-
2008), saying that:

�I think of my lifetime . . . as divided into three periods. In the �rst, I was
in the grip of the idea that

Everything is Particles

I call my second period

Everything is Fields

Now, I am in the grip of a new vision, that

Everything is Information�.

4. Some previous ideas
R. Clausius (1865) gives the aforementioned well-known formula

S = Q / T

L. Boltzman (1862): Kinetic Theory. S as disorder in the energy space.

J. W. Gibbs (1880s): thermodinamical equilibrium corresponds to a maxi-
mum of entropy.

C. E. Shannon (1948): Information Theory. Entropy (denoted by H ) mea-
sures the lack of information of a system [10].

Relationship with Thermodynamics

The name of Entropy proceeds indeed from the resemblance between Shan-
non´s formula and some similar formulae which are usual in Thermodynamics.
So, in Statistical Thermodynamics we will take the Gibbs Entropy.

The standard Boltzmann-Gibbs entropy may be generalized to the so-called
Tsallis Entropy (1988).

It is also possible to translate the Gibss Entropy to Quantum Physics, giving
us the

Von Neumann Entropy (1927)
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5. Conclusions
Statistical entropy is a probabilistic measure of uncertainty, or ignorance

about data.
Whereas Information is a measure of a reduction in that uncertainty.
But must be avoided, according to Frank Lambert (1918-), the interpretation

of entropy as disorder. So, instead proposing [8] the notion as �dispersal of
energy�.

We need to develop a usable measure of the information we get from observ-
ing that occurs an event with probability p.
For this purpose, we must to ignore particular features of such event, only

observing whether or not it happened. So, we can consider the event as the
observance of a symbol whose probability of occurring is p.

Whereas the Entropy of a probability distribution is just the expected value
of the information of such distribution.

All these ideas induces improved tools to advance in Optimization Theory,
with tireless researchers as for instance, Neculai Andrei and its group, at CAMO.
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