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In this paper the entropy function of the matrix game has been considered as an

objective function to the matrix game and formulate a new game model namely

Entropy Matrix Game Model. For each player we have generated multi-objective
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presented to illustrate the methodology.
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1 Introduction

Game Theory has a remarkable importance in both Operations Research and Systems

Engineering due to its great applicability. Many real conflict problems can be modeled as

games. However, the encountered conflict problems in economical, military and political

fields become more and more complex and uncertain due to the existence of diversified

factors. This situation will bring some difficulties in application of classical game theory.

To remove this difficulties, we have employed the entropy on two-person zero-sum game.

Most of the real conflict problem are not enough to express in linear model of classical

game theory.

Every probability distribution has some “uncertainty” associated with it. The concept of

“entropy” is introduced to provide a quantitative measure of uncertainty. According to

the maximum-entropy principle, given some partial information about a random variate,

scalar or vector, we should choose that probability distribution for it, which is consistent

with given information, but has otherwise maximum uncertainty associated with it.

In this paper, few references are presented including their work. [Fernandez, Puerto and

Monroy (1998A)] considered to solve the two-person multicriteria zero-sum games. As

they have considered a multicriteria game, the solution concept is based on Pareto opti-

mality and finally they obtained the Pareto efficient solution for their proposed games.

[Fernandez and Puerto (1996)], developed a methodology to get the whole set of Pareto-

optimal security strategies based on solving a multiple criteria linear program. This ap-

proach shows the parallelism between these strategies in multicriteria games and minimax

strategies in scalar zero-sum matrix games. This notion of security is based on expected

payoffs. For this reason, only when the game is played many times, these strategies can

provide us with a real sense of security. On the contrary, if the game is played only once;

as in one shot game, a better analysis should consider not only the payoffs but also the

probability to get them. [Roy, Biswal and Tiwari (2000)], presented a new solution pro-

cedure to solve fuzzy matrix game and the elements of the pay-off matrix are trapezoidal

fuzzy number. And then the linear programming models using the pay-off matrix by in-

troducing the imprecise tolerances for the soft inequalities have been formulated. [Ghose

and Prasad (1989)] have proposed a solution concept based on Pareto-optimal security
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strategies for these games. They also introduced the concept based on the similarity with

security levels determined by the saddle points in scalar matrix games. This concept is

independent of the notion of equilibrium so that the opponent is only taken into account

to establish the security levels for one’s own payoffs. When it is used to select strategies,

the concept of security levels has important property that the payoff obtained by these

strategies cannot be diminished by the opponent’s deviation in strategy. [Das and Roy

(2008A)] have proposed a new solution concept by considering the entropy function to

the objectives of the players. This model is known as entropy optimization model on

two-person zero-sum game. Solution concept is based on the Kuhn-Tucker conditions,

Maximum Entropy Principle, and Minimum Cross-Entropy Principle. Without consider-

ing the pay-offs of the players, we have shown that the optimal strategy and the value

of the game for each player are equivalent to the results of classical game model. [Das

and Roy] have proposed a new solution concept by considering the entropy function as an

objectives of the players to the multicriteria game and formulated some models, Known as

multicriteria entropy game model. Solutions are obtained by determining Pareto-optimal

Security Strategies(POSS) and it is shown that said models may have risk factor in pay-

offs for each players with their measure of uncertainties in strategies. [Das and Roy] have

proposed a game model by considering entropy functions into the objectives of the play-

ers to the multicriteria goal game and named as multicriteria entropy goal game model.

Solutions are obtained by determining G-goal security strategies(GGSS) which includes

as a part of solution with the probabilities of obtaining presanctified values of the pay-off

functions when the players are wanted to maximize the information about their strategies.

Several methodologies have been proposed to solve two-person matrix (zero-sum) game.

Most of these methods are based on concept of Pareto-optimal security strategies and

equilibrium solution. Here, we mainly concentrated on matrix game under entropy envi-

ronment.
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2 Mathematical Model

A payoff matrix of the player I and II are defined as follows:

A =



a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 (1)

Let the mixed strategies for player I and II are

y = {y1, y2, . . . ym}T (2)

and

z = {z1, z2, . . . zn}T (3)

Then from our classical game theory, we can determine an optimal strategy y of player I

which is the solution of the following linear programming model.

Model 1

max : v

subject to

m∑
i=1

aijyi ≥ v, j = 1, 2, . . . , n (4)

m∑
i=1

yi = 1; yi ≥ 0, i = 1, 2, . . . ,m (5)

Similarly, an optimal strategy z for the player II is the solution of the following program-

ming model.

Model 2

min : w
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subject to

n∑
j=1

aijzj ≤ w, i = 1, 2, . . . ,m (6)

n∑
j=1

zj = 1; zj ≥ 0, j = 1, 2, . . . , n (7)

By the duality theorem of the linear programming, the maximum value of v will be equal

to the minimum value of w. This value represents the value of the matrix game.

Again [15] each player is interested in making moves which will be as surprising and as

uncertain to the other player as possible. For this reason, the two players are involved in

maximizing their entropies. The mathematical form of entropies are as follows:

H1 = −
m∑

i=1

yi ln(yi) (8)

H2 = −
n∑

j=1

zj ln(zj) (9)

i.e. they are interested in making their strategies as spread out as possible. However they

are primarily interested in maximizing their expected payoffs.

2.1 Entropy Matrix Game Models

Every probability distribution has some “uncertainty” associated with it. The concept of

“entropy” is introduced to provide a quantitative measure of uncertainty. According to

the maximum-entropy principle, given some partial information about a random variate,

scalar or vector, we should choose that probability distribution for it, which is consistent

with given information, but has maximum uncertainty associated with it.

We first established the entropy optimization model for maximization type by considering

following principle.

“ Out of all possible distributions that are consistent with moment constraint, choose one

that has the maximum entropy”. This principle was proposed by [Janes(1957)] and has

been known as Maximum Entropy principle or Janes’ Maximum Entropy principle. From

353



this point of view, we formulated a new mathematical model namely Entropy Optimiza-

tion Model on matrix game in which the entropy function of the matrix game has been

considered to an objective function. Therefore we have defined the entropy optimization

model for player I named as Model 3, as follows.

Model 3

max : H1

subject to

m∑
i=1

aijyi ≥ v, j = 1, 2, . . . , n (10)

H1 = −
m∑

i=1

yi ln(yi) (11)

m∑
i=1

yi = 1; yi ≥ 0, i = 1, 2, . . . ,m (12)

With out loss of generality, let us combine the Model 1 and Model 3, we formulated a

new mathematical model namely Entropy Matrix Game Model which is a multi-objective

non-linear programming model. This model is defined for player I as follows:

Model 4

max : v

max : H1

subject to

m∑
i=1

aijyi ≥ v, j = 1, 2, . . . , n (13)

H1 = −
m∑

i=1

yi ln(yi) (14)

m∑
i=1

yi = 1; yi ≥ 0, i = 1, 2, . . . ,m (15)
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Similarly the Entropy Matrix Game Model for player II is as follows:

Model 5

min : w

max : H2

subject to

n∑
j=1

aijzj ≤ w, i = 1, 2, . . . ,m (16)

H2 = −
n∑

j=1

zj ln(zj) (17)

n∑
j=1

zj = 1; zj ≥ 0, j = 1, 2, . . . , n (18)

3 Solution Procedures

In previous section, we have seen that, Model 3 and Model 4 are both multi-objective

non-linear programming (MONLP) problem. To get a satisfactory solution of the above

models we have introduced the fuzzy programming which is defined as follows.

3.1 Basic concepts of Fuzzy Set and Membership Function

Fuzzy sets first introduced by [Zadeh(1965)] in 1965 as a mathematical way to representing

impreciseness or vagueness in everyday life.

Fuzzy set: A fuzzy set A in a discourse X is defined as the following set of pairs

A = (x, µA) : x ∈ X, where µA : X −→ [0, 1] is a mapping, called membership function

of the fuzzy set A and µA(x) is called the membership value or degree of membership of

x ∈ X in the fuzzy set A. The larger µA(x) is the stronger grade of membership form in

A.

Fuzzy number: A fuzzy number is a fuzzy set in the universe of discourse X that is both

convex and normal. A fuzzy number A is a fuzzy set of real line R whose membership
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function µA(x) has following characteristic with a < b.

µA(x) =


0 if x ≤ a
x−a
b−a

if a ≤ x ≤ b

1 if x ≥ b

(19)

In fuzzy programming technique, first we construct the membership function for each

objective function in Model 4. Let µ11(v), µ12(H1) be the membership function for both

objectives respectively and they are defined as follows:

µ11(v) =


0 if v ≤ v−

v−v−

v+−v−
if v− ≤ v ≤ v+

1 if v ≥ v+

(20)

and

µ12(H1) =


0 if H1 ≤ H−

1

H1−H−
1

H+
1 −H−

1

if H−
1 ≤ H1 ≤ H+

1

1 if H1 ≥ H+
1

(21)

where v+, v− represents maximum and minimum value of v and H+
1 , H−

1 represents max-

imum and minimum value of H1 for player I.

Similarly we can construct the membership function for each objective function in Model

5. Let µ21(w), µ22(H2) be the membership function for both objectives respectively and

they are defined as follows:

µ21(w) =


1 if w ≤ w−

w+−w
w+−w− if w− ≤ w ≤ w+

0 if w ≥ w+

(22)

and

µ22(H2) =


0 if H2 ≤ H−

2

H2−H−
2

H+
2 −H−

2

if H−
2 ≤ H2 ≤ H+

2

1 if H2 ≥ H+
2

(23)

where w+, w− represents maximum and minimum value of w and H+
2 , H−

2 represents max-

imum and minimum value of H2 for player II.
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3.2 Fuzzy Programming

To conversion in a single objective non-linear model from multi-objective non-linear model,

we have introduced the concept of fuzzy programming with the help of (20), (21) and the

Model 4, then we formulated the following single objective non-linear model and this

model is denoted by Model 6.

Model 6

max : λ

subject to

λ ≤ v − v−

v+ − v−
(24)

λ ≤ H1 −H−
1

H+
1 −H−

1

(25)

m∑
i=1

aijyi ≥ v, j = 1, 2, . . . , n (26)

H1 = −
m∑

i=1

yi ln(yi) (27)

m∑
i=1

yi = 1; yi ≥ 0, i = 1, 2, . . . ,m (28)

and for player II, the similar model may be formulated by the help of Model 5 and (22)

and (23) and this model is denoted by Model 7.

Model 7

max : δ

subject to

δ ≤ w+ − w

w+ − w− (29)

δ ≤ H2 −H−
2

H+
2 −H−

2

(30)

n∑
j=1

aijzj ≤ w, i = 1, 2, . . . ,m (31)
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H2 = −
n∑

j=1

zj ln(zj) (32)

n∑
j=1

zj = 1; zj ≥ 0, j = 1, 2, . . . , n (33)

Now to solve the above two models, Model 6 and Model 7, we apply the Genetic

Algorithm which is depicted in the next section.

3.3 Genetic Algorithm

My revised genetic algorithm is illustrated as follows:

Gene Type

The gene is defined as (ya
1 , y

a
2 , y

a
3 , . . . , y

a
m) in this study: ya

1 , ya
2 , . . . , y

a
m−1 are randomly

given values. Please notice a gene must satisfy that ya
1 + ya

2 + ya
3 + . . . + ya

m = 1.

Generating genes

This process is randomly generating each element in (ya
1 , y

a
2 , y

a
3 , . . . , y

a
m) and ya

1 +ya
2 +ya

3 +

. . . + ya
m = 1; Moreover the number of gene is limited to 25 when each new run begins.

Crossover

Since it is not easy to design a crossover between genes for satisfying that ya
1 + ya

2 + ya
3 +

. . . + ya
m = 1, there fore no cross over is applied in this study.

Mutation

Mutation is designed as a order of elements in (ya
1 , y

a
2 , y

a
3 , . . . , y

a
m) by randomly determined

cut-point. Consider an example: if the original gene is (ya
1 , y

a
2 , y

a
3 , . . . , y

a
m) and cut-point

is randomly determined between the string: ya
1 and ya

2 , ya
3 , . . . , y

a
m, then moreover newly

mutated gene (y
′
1, y

′
2, y

′
3, . . . , y

′
m) is (ya

2 , y
a
3 , y

a
m, . . . , ya

1).

Reproduction

The reproduction is also omitted to prevent the early- matured solution, which will limit

the variety of solution.

Evaluation

Once (ya
1 , y

a
2 , y

a
3 , . . . , y

a
m) is determined, the corresponding va and Ha

1 can be computed by

(4) and (8).
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Iteration

The number of iteration is set to 30 runs, each of which begins with the different random

seed.

Similar technique apply for player II.

4 Numerical Examples

Example 1:

Let us consider a matrix game as follows:

A =



1 2 1 2

2 1 2 1

1 1 2 2

2 2 1 1

 (34)

The following results are summarized in Table-1 which computed Genetic Algorithm.

maximum value minimum value

v v+ = 1.7158 v− = 1.1373

w w+ = 1.9336 w− = 1.7158

H1 H+
1 = 1.386295 H−

1 = 0.0

H2 H+
2 = 1.386295 H−

2 = 0.0

Table - 1

With the help of above values in Table-1 the mathematical Model 5 and Model 6 for

the player I and II respectively are redefined as follows:

Model 7

max : λ

subject to

λ ≤ v − 1.1373

1.7158− 1.1373
(35)
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λ ≤ H1 − 0.0

1.386295− 0.0
(36)

m∑
i=1

aijyi ≥ v, j = 1, 2, . . . , n (37)

H1 = −
m∑

i=1

yi ln(yi) (38)

m∑
i=1

yi = 1; yi ≥ 0, i = 1, 2, . . . ,m (39)

and

Model 8

max : δ

subject to

δ ≤ 1.9336− w

1.9336− 1.7158
(40)

δ ≤ H2 − 0.0

1.386295− 0.0
(41)

n∑
j=1

aijzj ≤ w, i = 1, 2, . . . ,m (42)

H2 = −
n∑

j=1

zj ln(zj) (43)

n∑
j=1

zj = 1; zj ≥ 0, j = 1, 2, . . . , n (44)

Example 2:

Let us consider a matrix game as follows:

A =



4 5 7 3

2 7 6 2

4 3 2 5

3 2 1 4

 (45)

The following results are summarized in Table-2 which computed Genetic Algorithm.
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maximum value minimum value

v v+ = 3.428572 v− = 2.152600

w w+ = 4.851533 w− = 3.428572

H1 H+
1 = 1.374611 H−

1 = 0.234374

H2 H+
2 = 1.374611 H−

2 = 0.234374

Table - 2

With the help of above values in Table-2 the mathematical Model 5 and Model 6 for

the player I and II respectively are redefined as follows:

Model 9

max : λ

subject to

λ ≤ v − 2.152600

3.428572− 2.152600
(46)

λ ≤ H1 − 0.234374

1.374611− 0.234374
(47)

m∑
i=1

aijyi ≥ v, j = 1, 2, . . . , n (48)

H1 = −
m∑

i=1

yi ln(yi) (49)

m∑
i=1

yi = 1; yi ≥ 0, i = 1, 2, . . . ,m (50)

and

Model 10

max : δ

subject to

δ ≤ 4.851533− w

4.851533− 3.428572
(51)
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δ ≤ H2 − 0.234374

1.374611− 0.234374
(52)

n∑
j=1

aijzj ≤ w, i = 1, 2, . . . ,m (53)

H2 = −
n∑

j=1

zj ln(zj) (54)

n∑
j=1

zj = 1; zj ≥ 0, j = 1, 2, . . . , n (55)

4.1 Results

Results of Example 1:

The aspiration level with two objective for a given solution, λa and δa are obtained from

above models (Model 7 and Model 8) by the help of Lingo package. The optimal

solutions for player I and player II are represented in the following Table-3.

aspiration optimal optimal strategy

level value entropy

λ∗ = 0.6269663 v∗ = 1.5 H∗
1 = 1.386294 y∗ = (0.25, 0.25, 0.25, 0.25)

δ∗ = 1.0 w∗ = 1.7158 H∗
2 = 1.386295 z∗ = (0.25, 0.25, 0.25, 0.25)

Table - 3

Results of Example 2:

The optimal solutions for player I and player II are represented in the following Table-4.

aspiration optimal optimal strategy

level value entropy

λ∗ = 0.72852 v∗ = 3.3980 H∗
1 = 0.7605657 y∗ = (0.035, 0.275, 0.005, 0.685)

δ∗ = 0.72852 w∗ = 3.497184 H∗
2 = 1.065064 z∗ = (0.0, 0.285, 0.0, 0.715)

Table - 4
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5 Conclusions

Two-person matrix (zero-sum) game is analyzed in entropy environment with the help of

fuzzy programming and genetic algorithm approach. In fuzzy programming technique we

first fixed the bounds of the objective values and uncertainties of players. Then define

a triangular membership function for the both objectives and entropies. Using fuzzy

programming, we convert multi-objective non-linear model to single objective non-linear

model and then we determine the value of the game and optimal strategies of the players.

To study the numerical results, we have seen that each player may be looser(in pay-offs)

than their classical game model due to the diversity factor ‘entropy’, in the entropy game

model i.e., if the players are more interested for surprising movement of their strategies

then their expected pay-off may be decrease. In some other words, if it is seen that

expected pay-off be less than their classical game model, then it may be happen that they

were interested for movement of opponent’s strategies. The uncertainty function ‘entropy’

may be a cause for not achieving the value of the game.
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