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Abstract

We describe here the problem of enumerating graphs, in particular, Di-
rected Acyclic Graphs (DAGs, in acronym), or Bayesian Networks (BNs).
All them will be analyzed by the elegant and useful Ihara Zeta Function.
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1. Introduction
The Ihara zeta function was �rstly de�ned by Ihara studying discrete sub-

groups of the two-by-two special linear groups. Zeta functions of graphs were
studied not only by Ihara [34] [35], but many other works on it, as may be
Sunada, Hashimoto, Bartholdi, and Bass. So, Jean Pierre Serre [47] sug-
gested can be reinterpreted graph-theoretically, in his book Trees. And it was
Toshikazu Sunada, in 1985, who put this suggestion into practice.

Storm [54] de�ned the Ihara-Selberg zeta function for Hypergraphs.

The Ihara zeta function is denoted by &
G
, and it will be de�ned by

&
G
(s) �

"Q
p

�
1� s

L(p)
�#�1

or equivalently,

Q
p

�
1� s

L(p)
�
� 1

&
G
(s)

Such formula is analogous to the Euler product for the Riemann zeta func-
tion.
In fact, we have an in�nite product to work with.
The product is taken over all prime walks, p, on the graph G, being L(p)

the length of the prime p.
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Bass [3] [4] [5] proved, among other results, that this product is in fact a
rational function.
Let G be a graph, and

A �
�
aij
�

its adjacency matrix, which as we known, will be a

(c fV (G)g x c fV (G)g)�matrix

with entries

a
ij
�
(
cardinal of undirected edges connecting n

i
to n

j
; being i 6= j

double of the cardinal of loops at the node n
i
; if i = j

As our graphs have no loops neither multiple edges, such entries will be
either zero or one, according to the adjacency or not adjacency of its respective
pairs of nodes.

Suppose that we take now D; as the diagonal matrix such that its entry d
i

is the degree of the i-th node minus one, and let

r � 1 = c fE (G)g � c fV (G)g

Then,The Ihara zeta function will be expressed as

�
G
(s)

�1
�
�
1� s2

�r�1
det
�
I �As+Du2

�
It is very interesting to look at the logarithmic derivative of the Ihara zeta

function,

s dds ln
�
�
G
(s)
�

We have

ln
�
�
G
(s)
�
= ln

"Q
p

�
1� s

L(p)
�#�1

=

= ln

"Q
p

�
1� s

L(p)
��1#

= �
P
p
ln

�
1� s

L(p)
�

and taking the derivative,
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d
ds

�
�
G
(s)
�
= d

ds

"
�
P
p
ln

�
1� s

L(p)
�#

= �
P
p

1

1�s
L(p)

d
ds

�
1� s

L(p)
�
=

= �
P
p

1

1�s
L(p) [�L (p)] L (p) =

P
p

L(p) s

L(p)�1

1�s
L(p)

and now multiplying by s;

s dds
�
�
G
(s)
�
= s

P
p

L(p) s

L(p)�1

1�s
L(p) =

P
p

L(p) s

L(p)

1�s
L(p)

But such expression may be improved by the geometric series identity,P
n2N�

sn = 1
1�s

giving

s dds
�
�
G
(s)
�
=
P
p
L (p) s

L(p)
�
1 + s

L(p)

+ s
2L(p)

+ s
3L(p)

+ :::

�
=

=
P
p
L (p)

�
s
L(p)

+ s
2L(p)

+ s
3L(p)

+ s
4L(p)

+ :::

�
If we denote

Nk =
P

p: L(p)jk

L (p)

it holds

s dds
�
�
G
(s)
�
=
P
k2N

Nk s
k

Where the coe¢ cient Nk; being associated with the term sk; will report us
the number of prime paths with a number of nodes which divides k:

We may translate the results from closed geodesics to cycles, considering the
elements of a group, or instead, working on graphs.

We say that a cycle is primitive, if it is not the r-multiple of some other
cycles, being r � 2:
A closed geodesic which is not the power of another is called a prime geodesic:
It is possible to establish an equivalence relation on the set of prime paths

in the graph. According such relation, two closed paths are equivalent, if they
are the same path with a di¤erent starting point.

Mathematically expressed, let E and F two cycles,
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E = (e
i
)
n

i=1

and

F = (fi)
n

i=1

Both will be equivalent, if there is a �xed k 2 Z=nZ, such that

e
i
= f

i+k

8i 2 Z=nZ

This says that all indices are considered module n (mod n). So, we are
reducing to the �rst cycle. And we are imposing the aforementioned equivalence
relation via cyclic permutation.

Therefore, two prime geodesics are said to be equivalent, if one is obtained
from another by a cyclic permutation of edges.

An equivalence class of prime geodesics is called a prime geodesic class, or
simply a prime, }. Given a path, ; we denote by L () its length. The length

of a prime, }; is the length of any of its representatives. A prime cycle is the
equivalence class of primitive cycles which have no backtracking or tails.

Given a graph, G; with a symmetric digraph, D
G
; we may associate to each

of its edges (e) an invariant, s
e
; and so, de�ne the function

g (C) �
Q

e edge in C

s
e

for a prime cycle. Such function g inform about the edges involved in a particular
prime cycle, and also about how many times they are used.

The edge zeta function of G is a function of s
e
2 C; given by

"
G
(s) �

Q
prime cycles

[1� g (C)]
�1

And specializing each se to s; we obtain the Ihara function of G, by

�
G
(s) �

Q
prime cycles

�
1� sL(C)

��1
being denoted as L (C) the length of a representative of the prime cycle, [C ]:
For a �nite graph where every node has at least degree two, the zeta function

give us the cardinal of edges in the graph.

And what happens in the case of degree one? When the edges are incident
to a degree one node, they are ignored by the zeta function. It is because in this
situation, only admits two possibilities, either have a backtracking or a tail.

If we consider as I the identity matrix, it holds
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�
G
(s) = (1� s)

�(G)

det
h
I � sA+ s2 (D � I)

i
where � (G) will be the Euler characteristics, or Euler number (a notable topo-
logical invariant), of the graph G:

Recall that this number is reachable by

� (G) = c [V (G)]� c [E (G)]

The Ihara zeta function, &
G
; will be always representable as the reciprocal

of a polynomial

&
G
(s) � 1

det (I � T s)

that is,

&
G
(s)

�1 � det (I � T s) = det (I � s T )

where T is the edge adjacency operator (Hashimoto, 1990).

Therefore, the edge zeta function is the reciprocal of a multivariate polyno-
mial in, at most, 2 c (E (G)) variables.
An important fact indeed, because it implies the possibility of to be com-

puted in polynomial time.

Observe that the maximum degree of the reciprocal of the Zeta function is
the double of the number of edges in the graph, its size, i. e. 2 c (E (G)) :

Recall that the adjacency operator, A, is acting on the space of functions
de�ned on the set of nodes of G = (V; E).
Being o(e) and t(e) the origin and terminus of e, respectively, it is de�ned

by

(Af) (x) =
P
e2Ex

f [t (e)] ; where Ex � fe 2 E : o (e) = xg

We may de�ne the directed edge matrix, T; of a graph, G: For this, �rstly
we need a labeling of the directed edges (in the associated digraph).
Then, such matrix, T; has as its (i, j)-entry,

tij =

�
1; if t (ei) = o (ej) ; and ei 6= ej

0; otherwise

(Bass, 1992) also gave a determinant formula involving the adjacency oper-
ator.

Recall that the set of eigenvalues of a matrix, A, is called its Spectrum,
usualy denoted either by Spec (A) ; or � (A),
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� (A) � f�
i
g
n

i=1

being �
i
its eigenvalues, for every index i 2 I:

Then, we have as determinant of A,

det (A) =
nQ
i=1

�
i
=

0BB@
�
1

0 ::: 0
0 �

2
::: 0

0 0 ::: 0
0 0 ::: �n

1CCA
And the set of graph eigenvalues of the adjacency matrix is known as the

Spectrum of the Graph.
If we have a graph, G; with ni � fold degenerate eigenvalues, �i; the usual

expression for its spectrum will be

Spec (G) =
mQ
i=1

(�i)
ni

Sometimes it will be denoted by�
�1 �2 ::: �m
n1 n2 ::: nm

�
Let G and H be two graphs. They are called cospectral; if its adjacency

matrices have the same spectra.
An important result of the theory of Ihara zeta function, characterizing this

question on k-regular graphs, is the following

Theorem (Mellein).
Suppose G and H are both k-regular graphs.
Then, G and H are cospectral if and only if

&
G
(s) = &

H
(s) ; 8s

So, whenever a k-regular graph is uniquely determined by its spectrum, it is
possible to conclude that its Ihara zeta function is also uniquely determined.

For any Graph, G, the function &
G
can be expressed in terms of the Riemann

zeta function, &, for di¤erent dimension values, n.

So,

If n = 1, then &
G
(s) = 2& (s) :

If n = 2, then &
G
(s) = 4& (s� 1) :

If n = 3, then &
G
(s) = 4& (s� 2) + 2& (s) :

If n =1, then &
G
(s) = 8

3 & (s� 3) +
16
3 & (s� 1) :

Recall that &
G
(s) is a decreasing function of s.

That is,
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&
G
(s1) > &G (s2) ; if s1 < s2

And in the limit, if n!1; when s is next to the transition point, it holds

&
G
(s) = 2

n
&(s � n + 1)
�(n)

If the average degree of nodes, also called mean coordination number of the
graph, is �nite, then there exists exactly a value of s, denoted stransition; where
the zeta function changes from in�nite to �nite, or vice versa.
It is also called dimension of the Graph.

2. Enumerating Graphs
About the foundations of Graph Theory, there exists many adequate surveys,

as [9] [10] [27].
For Graphical Enumeration, it may be convenient to see for instance [6] [11]

[14] [21] [28], among others.
A very elegant construct, if certainly di¢ cult, may be through the Ihara

Zeta function.
It is also possible to use Generating Functions to count labeled DAGs. For

this mathematical construct, it is necessary to make intervene the Inclusion-
Exclusion Principle (IEP).
So, if we take the set of n-essential graphs, and denote its cardinal by a

n
;

applying the aforementioned IEP, we may obtain

an =
P

s=1;:::;p

(�1)
s+1 P

ij
j2f1;:::;sg

c
�
Ai1

\Ai2
\ ::: \ Ais

�

where

A
k
= fG 2 E : k is a terminal node of Gg ; with k = 1, 2, . . . , n [*]

Let a
n
and a

n�
be the number of essential labeled n �DAGs, and the number of labeled n�

DAGs; respectively. Then, a
n
is given by the recurrence equation

a
n
=

nP
s=1

(�1)
s+1

C
n;s

 
2

n�s

� n+ s
!s

a
n�s
; with a

0
= 1

Whereas

a
n
�=

nP
s=1

(�1)
s+1

C
n;s

�
2
n�s�s

a
n�s
�; with a

0
�= 1

311



The new formula would be recursive, and it is a direct application of the
IEP. From which, we can reach directly the equation.

We may rewrite the equation as

nP
s = 0

(�1)
n�s

C
n;s

�
2
s

� s
�n�s

a
s
= 0; with n � 1

Another case of application of IEP is to �nd the cardinal of the set of essential
DAGs, E, with a set of labeled nodes, with labelings that belongs to f1; 2; : : : ; ng.
For this, we start with a family of sets, as the aforementioned fA

k
gnk=1 : See the

precedent formula [*], where A
k
represents the subclass of graphs concluding at

the node labeled by k.

Therefore, to know the cardinal of E, �rst we compute the intersection that
appears in the last summatory, for j = 1, 2, . . . , n, being theseP

ij
j2f1;:::;sg

c
�
A

i1
\A

i2
\ ::: \ A

is

�

related with the aforementioned principle (IEP).
With the total allowed connection numbers, from a given node being

2
n�s

� n+ s

So, the number of possible ways of adding directed edges from the essential
graph until all the s terminal nodes will be

[2
n�s

� n+ s]
s

3. Asymptotical behaviour
Analyzing the asymptotic behaviour of its ratios, i.e. studying the conver-

gence of the quotient of cardinals, among the number of essential graphs, and
the number of DAGs (acronym of Directed Acyclic Graphs), we may develop
this so

A (n) � an
an�
)

) limn!1 A (n) = limn!1

nP
s=1

(�1)
s+1

C
n;s

 
2

n�s

�(n � s)

!s

a
n�s

nP
s=1

(�1)
s+1

Cn;s

�
2
n�s �s

a
n�s�

being

312



A (n� s) � a
n�s
a
n�s�

and

&
G
(n� s) � lim

n!1

nP
s=1

�
(n � s)

2
n�s

�s

and turning to our initial step,

lim
n!1 A (n) =

h
1� lim

n!1 &
G
(n� s)

i
[lim

n!1 A (n� s)]

we can consider the series

nP
s=1

n�s
2
n�s )

nP
s=1

�
1� n � s

2
n�s

�
= n�

nP
s=1

n � s

2
n�s

and its asymptotical behaviour, when n!1. These may establish an analytical
correspondence with a version of the Riemann zeta function, the so called Ihara
zeta function of the n-graph, Gn:
But operating here on the increasing value of n � s, i.e. with �

G
(n �

s): Nevertheless, this proof would be very complex. Instead, we may apply here
an interesting result, which permits to �nalize our demonstration.

So, we obtain the ratio among terms of the series (by applying the precedent
Lemma),

limn!1

8>><>>:
nP
s=1

(�1)
s+1

C
n;s

 
2

n�s

�(n � s)

!s

a
n�s

9>>=>>;8<:
nP
s=1

(�1)
s+1

C
n;s

�
2
n�s �s

a
n�s

�

9=;
=

= lim
n!1

8><>:(�1)
s+1

C
n;s

 
2

n�s

�(n � s)

!s

a
n�s

9>=>;(
(�1)

s+1

C
n;s

�
2
n�s �s

a
n�s�

) =

= limn!1

 
2

n�s

�(n � s)

!s

a
n�s�

2
n�s �s

a
n�s�

=

=

"
lim

n!1

�
2
n�s

�(n�s)
2
n�s

�s# h
lim

n!1

a
n�s
a
n�s�

i
=

=
h
lim

n!1

n
1� &

G
(n� s)

oi
[lim

n!1 A (n� s)]
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4. Applying the Ihara zeta function
We establish from now these auxiliary and useful notation

f (n� s) = 1� n � s

2
n � s ) f (n) = 1� n

2
n

that is,

1� f (n� s) = n � s

2
n � s ) 1� f (n) = n

2
n

But as we known

lim
n!1

n�s
2n�s

= lim
n!1

n
2n
= 0

+

and by this procedure,

[1� ff (n� s)g]
s

= 1�
�
(n � s)

2
n � s

�s
Hence

lim
n!1 [1� ff (n� s)g]

s

= lim
n!1

(
1�

�
(n � s)

2
n � s

�s)
= 1

�

and

lim
n!1

nP
i=1

 
2

n � s

� (n � s)

2
n � s

!s

= n� lim
n!1

nP
i=1

�
(n � s)

2
n � s

�s
=

= n� lim
n!1

nP
i=1

[1� f (n� s)]
s

= n�
�
n� �

G
(n� s)

�
= �

G
(n� s)

These last terms must regulate the asymptotical behaviour, by its limit val-
ues.

And respect to its reciprocal function

�
�1

G
(n� s) = lim

n!1

"
nP
i=1

�
1� (n � s)

2
n � s

��s#

whith this may appears �
�1

1
from �

1
; as they are described in the subsequent

step.

Note that we can take

f (n� s) = 2

n � s

� (n � s)

2
n � s ; for each n 2 N; once fixed s
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So, by

�
G
(n� s) = lim

n!1

nP
i=1

[f (n� s)]
s

it holds

9�
A
=

�
n� lim

n!1

nP
i=1

[f (n� s)]
s
�
[lim

n!1 A (n� s)] =

=
h
n� limn!1 &

G
(n� s)

i
[limn!1 A (n� s)] ;

�xed s, when n increases to 1)

) �
A
= 1

10 &(5=2) =
1

5&
G
(5=2) ' 0:07

DAGs for each equivalence class, or equivalently,

�
�1

A
= 10 & (5=2)

hence, passing from Riemann to Ihara zeta function,

�
�1

A
= 5=2 &

G
(7=2) ' 13:6

This will be the number of equivalence classes for each DAG.

So far, we have supposed dimension one.

Because in case of dimension two, where the new functions are denoted �
B

and �
�1

B
; respectively, it holds

�
B
= 1

10 &(5=2) =
1

5=2 &
G
(7=2) ; and �

�1

B
= 4 & (7=2� 1) = 4 & (5=2)

And translating this from Riemann to Ihara Zeta Function, we obtain

�
�1

B
= 5=2 &

G
(7=2)

Note that the �labeled�or �unlabeled� character of the considered graphs
is relevant, because they are very distinct situations, giving so di¤erent ratios.

It is obvious that the enumeration of unlabeled essential graphs results more
complex that in the labeled case. Also, its symmetries can be used.

Recall that permutating between the positions of two symmetric nodes is an
operation that when acting on graphs, leaves the shape una¤ected.

For the case of unlabeled graphs (Sunada, 1985), denoted here by the letter
"c", we have
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cn � cardinal of the set of unlabeled n-DAGs

and

c
n
�� cardinal of the set of unlabeled essential n-DAGs

And so, we can �nd (applying our previous Lemma) that

c
n�s � c�n�s ;8n; once fixed s)

) 9�
C
= lim

n!1 (&G(n) [C (n� s)]) ;

fixed s; and when n!1;

with C (n� s) � limn!1

nP
s=1

cn�s
cn�s�

)

�
C
� flim

n!1 &G (n)g flimn!1 C (n� s)g = 1
10 & (3=2) =

1
20 &G (3=2) ' 0:26

essential graphs for each unlabeled DAG, in the case of dimension one.

And symmetrically,

9 (�
C
)
�1
� flimn!1 [&G (n)]g

�1
flimn!1 [C (n� s)]g

�1
= 10

&(3=2) =
20

&
G
(3=2) '

3:73

unlabeled DAGs for each essential graph, which coincides with our precedent
analythical results.

In case of dimension two, it holds

9��
C
� lim

n!1

�n
&
G
(n)
o �
C

�
(n� s)

��
= 1

10 & (3=2) =
1
40 &G (5=2) ' 0:26

and dually,

9
�
��
C

��1
� lim

n!1

�n
&
G
(n)
o �
C

�
(n� s)

���1
= 10

&(3=2) =
4

&
G
(5=2) ' 3:73

5. Conclusion
And it is so in the limit situation, re�ecting the degree of �tness of the

proposed model, based in analytical framework, to the precedent computational
results, as the shown by [1], or [20].
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