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Abstract

This paper studies a stochastic inventory model for deteriorating items
where the selling price is assumed to be a decreasing function of time. The
rate of deterioration of the items are assumed to be constant over time.
The selling price decreases monotonically at a constant rate with the de-
terioration of the items also. The demand and the lead-time both are
random. A profit-maximization model has been formulated and solved
here for optimum order quantity. Numerical examples are provided to
illustrate the model and the results, and sensitivity analyses have been
performed to examine how sensitive the solution is to the system parame-
ter values, lead-time distributions, and the form of selling price function.
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1 Introduction

Managing inventory for deteriorating items is of great concern to the retailers,
wholesalers, even to the production managers, who are in the business of perish-
able items, the items that can deteriorate or lose value under normal conditions,
such as meat, fish, sea-food, poultry, dairy products, fruit and vegetables, some
special type of medicines etc., often transportation of which also needs spe-
cial care, for example, some items need refrigeration or gel-type ice packing,
some needs styrofoam as outer packaging, or thermoplastic bags, and in most
of the cases it should be used within a short period of time after delivery, as it
may not be possible to preserve them in the same manner after delivery. This
type of items, if delivered prior to the time-point when demand arrives, starts
deteriorating, and hence loses value.

In this paper we investigate a special type of a stochastic inventory model
for deteriorating items where the selling price is assumed to be a decreasing
function of time. Price also decreases with the deterioration of the items. The
rate of deterioration are assumed to be constant over time. The selling price
decreases at a constant rate with the deterioration of the items. The demand
and the lead-time both are random. A profit-maximization model has been
formulated and solved for optimum order quantity.

Here, in this model the point of time when the demand arrives is assumed
to be known in advance. If the supply arrives at that point of time, the items
will be sold at the maximum price. Because of the randomness of lead-time,
it is not certain exactly when the supply will arrive. If it arrives at some later
point, then it has to be sold at some reduced price. On the other hand, if supply
reaches prior to the arrival of demand, a carrying cost incurs for holding the
items until the demand arrives. Moreover, the items will start deteriorating.
Note that here the selling price decreases for two reasons – one, for the delay in
supply, and two, for deterioration of the items. Here the items are deteriorating
with time, and hence, after delivery of the items, the selling price will decrease
at a constant rate with passage of time, due to deterioration of the items, until
it is sold. During Christmas season, or other festive seasons, like Easter or
Thanksgiving days or so, a large demand comes for various items including
perishable items too. Then the inventory policy for such items should be such
that the expected profit from them is maximized, keeping in view the facts that
the items are perishable, holding costs are there to hold the inventory for early
arrival of supply, selling price decreases for late supply, shortages and excesses
also lead to a certain amount of loss. Taking all these into account the optimum
quantity to be ordered should be obtained in order to maximize the expected
profit.

Benhadid et al.(2008) solved a production inventory problem with deterio-
rating items and dynamic costs, in a deterministic environment. Nahmias(1974)
and Fries(1975) considered the problem of determining optimal policies for items
with fixed lifetime. Bar-Lev et al.(2005) discussed the control policies for per-
ishable inventory systems with random input, where the shelf-lives of the items
are considered to be finite and deterministic. Deng et al.(2007) studied the
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inventory models for deteriorating items with ramp type demand rate. Dave
(1986) developed a probabilistic scheduling period inventory model for continu-
ously decaying items where lead-time was assumed to be deterministic. Wee et
al.(2008) studied an inventory model with deteriorating items to develop an op-
timal replenishment inventory strategy. Hon (2006) derived an inventory model
for deteriorating items with stock-dependent consumption rate and shortages
under inflation and time-discounting over a finite planning horizon, where the
solution is obtained by minimizing the total cost function. In this connection
mention may be made of the work of Kabak and Weinberg (1972), which is an
extension of classical newsboy problem considering supply as a random vari-
able, but newsboy suffers no decrease in expected revenue. In classical newsboy
problem the products do not carry any value at all other than the salvage af-
ter the time-point at which the demand arrives [Hadley and Whitin (1963),
Naddor (1966)]. In these models the items are not considered to be deterio-
rating. Mukherjee and Roychowdhury (1997) also discussed this type of model
where the items were non-perishable, and hence no question of selling price de-
creasing with deterioration of the items did arise. Hsu et al. (2006) developed
and analyzed an inventory model with uncertain demand and with the price
depending on the lead-time, and solved the model to determine the optimal
stocking quantities. Variable selling price is considered in Hsu et al. (2008).
Wang (2008) developed an inventory model with continuous price decrease and
variable lead-time.

The main objective of the present study is to determine the optimal order
quantity that is expected to be most profitable, based on system parameters of
shortage and holding costs, lead-time and demand distributions and other re-
lated costs, where the items are deteriorating with time. A closed form solution
to maximize the total expected profit is obtained when the demand and lead-
time both are random. Numerical examples are provided to illustrate the model
and the results. Sensitivity analyses have been done to see how sensitive the
optimal solution is to the change in parameter values, lead-time distributions,
and the form of selling price function.

2 Assumptions and Notation

A stochastic inventory model is considered here in which the selling price is time-
dependent. It decreases with time after the point-of-demand, the time-point
when the demand arrives. If the supply arrives late, after the point-of-demand,
the selling price will continuously decrease as the time passes. Eventually the
items will lose all of its worth and will possess only salvage value or scrap value.
The excess items, if any, can be sold at salvage value only. The selling price also
depends on the then condition of the item. It decreases with the deterioration
of the item. The condition of the item deteriorates with the passage of time.
It starts deteriorating at a constant rate from the point-of-supply, the point of
time when the supply arrives. The selling price is assumed to be decreasing
linearly with time at a constant rate, due to the deterioration of the items,
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until the items are sold. The items remain in a sellable condition at least up
to t0-time after delivery. The order quantity is our decision variable here. An
optimal solution is derived under the following set of assumptions:

1. The demand (X) is a continuous random variable, the distribution
of which is characterized by the c.d.f. F (x), f(x) being the probability density
function.

2. The demand arrives at a particular point of time that is fixed and
known in advance.

3. The lead-time (l) is a continuous random variable, the distribution
of which is characterized by the c.d.f. G(l), g(l) being its probability density
function. The lead-time distribution is independent of the demand distribution.

4. The order is placed t0-time prior to the point-of-demand.
5. C1 is the holding cost per unit per unit of time. C1 > 0.
6. C2 is the shortage cost per unit short. C2 > 0.
7. C is the cost per unit. C > 0.
8. S is the maximum selling price per unit.
9. R is the salvage value per unit. R > 0.
10. β is the rate of decrease in selling price per unit per unit time due to

the deterioration of the item.
11. S(l), the selling price per unit, is a non-increasing function of l, the

lead-time.
Here S(l) is assumed to be of one of the following forms. The selling price

decreases due to deterioration of the items at the rate of β per unit time up to
the point-of-demand. The linlin (linear-linear) form of S(l) is as follows, where
it is assumed to be a non-increasing linear function of l with a known decrease,
b (> 0), in per unit selling price per unit of time when lead-time exceeds t0
(up to time t0 + S−R

b ), where t0 is the known preponement time, the time-gap
between placing the order and the time-point at which the demand arrives. The
functional form of a linlin S(l) is given by

S(l) = S − β (t0 − l) if 0 ≤ l ≤ t0

= S − b(l − t0) if t0 < l ≤ t0 +
S −R

b

= R if l > t0 +
S −R

b
. (1)

The linex (linear-exponential) form of the selling price function is given by

S(l) = S − β (t0 − l) if 0 ≤ l ≤ t0

= S exp{−r(l − t0)} if t0 < l ≤ t0 +
1
r

loge
S

R

= R if l > t0 +
1
r

loge
S

R
. (2)

The excess items are also sold at a salvage value, the functional form of which
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is as follows:

R(l) = R − β (t0 − l) if 0 ≤ l ≤ t0

= R if l > t0. (3)

Clearly, 0 < R− βt0 ≤ R ≤ S(l) ≤ S and
∫∞
0
R(l)dG(l) ≤ R.

It is justified to assume that the average selling price per unit must exceed
the per unit cost price and the average carrying cost together, which should be
greater than the salvage value per unit, i.e.,

R < C + C1

∫ t0

0

(t0 − l)dG(l) <
∫ ∞

0

S(l)dG(l).

3 Optimal Ordering Policy

Let the order of quantity q be placed t0-time prior to the point-of-demand, the
point of time at which the demand arrives. To handle the uncertainty in demand
due to its randomness, we have to make an optimal decision about the order
quantity q. Because of the randomness of lead-time l, the supply may arrive
before the arrival of demand, or after. In case it arrives before the point-of-
demand, i.e., if l < t0, then there will incur a holding cost of C1q(t0 − l) for
holding the items up to the time-point of demand, and the items will also start
deteriorating until they are sold. On the other hand, if the supply arrives after
the arrival of demand, the items have to be sold at some reduced price, as given
in (1) or (2) above, that too up to a certain point of time, after which the items
possess only the salvage value, R. It is to be noted that the excess items, if any,
will also be sold at the salvage value, as given in (3). Let ψ(q) be the expected
profit function, maximizing which we can determine the optimal solution. Now
we make an attempt to derive the expression for ψ(q), which comes out to be
as follows:

ψ(q) = −Cq − C1q

∫ t0

0

(t0 − l)dG(l)− C2

∫ ∞

q

(x− q)dF (x)

+
∫ ∞

q

[
∫ t0

0

S(l)qdG(l) +
∫ t

′

t0

S(l)qdG(l) +
∫ ∞

t′
RqdG(l)]dF (x)

+
∫ q

0

[
∫ t0

0

S(l)xdG(l) +
∫ t

′

t0

S(l)xdG(l) +
∫ ∞

t′
RxdG(l)

+
∫ t0

0

{R− β(t0 − l)}(q − x)dG(l) +
∫ t

′

t0

R(q − x)dG(l)

+
∫ ∞

t′
R(q − x)dG(l)]dF (x),
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where

t
′

= t0 +
S −R

b
for linlin S(l)

= t0 +
1
b

loge
S

R
for linex S(l).

The expression for ψ(q) reduces to

ψ(q) = −Cq − C1q

∫ t0

0

(t0 − l)dG(l)− C2

∫ ∞

q

(x− q)dF (x)

+
∫ ∞

q

q{
∫ ∞

0

S(l)dG(l)}dF (x) +
∫ q

0

x{
∫ ∞

0

S(l)dG(l)}dF (x)

+
∫ q

0

(q − x){
∫ ∞

0

R(l)dG(l)}dF (x).

Finally we have

ψ(q) = −C2E(X) + [{
∫ q

0

xdF (x)}{
∫ ∞

0

S(l)dG(l) + C2 −
∫ ∞

0

R(l)dG(l)}]

− [qF (q){
∫ ∞

0

S(l)dG(l) + C2 −
∫ ∞

0

R(l)dG(l)}] + [q{
∫ ∞

0

S(l)dG(l) + C2 − C

− C1

∫ t0

0

(t0 − l)dG(l)}]. (4)

Now we prove the following result which helps us determine the optimal order

quantity:

Result 3.1. The expected profit function, ψ(q), is a concave function of q.
Proof. Here,

dψ(q)
dq

= −F (q){
∫ ∞

0

S(l)dG(l) + C2 −
∫ ∞

0

R(l)dG(l)}+ {
∫ ∞

0

S(l)dG(l) + C2 − C

−C1

∫ t0

0

(t0 − l)dG(l)}.

d2ψ(q)
dq2

= −{
∫ ∞

0

S(l)dG(l)+C2−
∫ ∞

0

R(l)dG(l)}f(q),

which is negative.
Hence the result [Roberts and Varberg (1973)]. �

By virtue of the above result we can get the optimal order quantity, q0, of q
by solving dψ(q)

dq = 0, which implies,

F (q) = 1−
C + C1

∫ t0
0

(t0 − l)dG(l)−
∫∞
0
R(l)dG(l)∫∞

0
S(l)dG(l) + C2 −

∫∞
0
R(l)dG(l)

. (5)
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and hence the maximum expected profit, ψ(q0), is given by

Max ψ(q) = ψ(q0) = −C2E(X)+[{
∫ q0

0

xdF (x)}{
∫ ∞

0

S(l)dG(l)+C2−
∫ ∞

0

R(l)dG(l)}].

(6)
Special cases of different demand and lead-time distributions are discussed

here.
In particular, for uniform demand and uniform lead time the optimal order

quantity will be determined as follows:
If X is uniform between m and m + D and l is uniform between a and

a + T (0 < q < D, 0 < t0 < T ), with S(l) having linlin form as given in (1),
the optimal order quantity q0 is obtained as follows:

Case 1. If t0 + S−R
b < T + a,

q0 = m+D[1−
C −R+ (C1 + β){ (t0−a)2

2T }
C2 + 1

T {(t0 + S−R
b )(S −R)− aS}

]. (7)

and the maximum expected profit is

Max ψ(q) = ψ(q0) = −C2(m+
D

2
) +

q20 −m2

2D
{C2 +

S −R

T
(t0 +

S −R

2b
)− as}.

(8)
Case 2. If t0 + S−R

b > T + a,

q0 = m+D[1−
C −R+ (C1 + β){ (t0−a)2

2T }
(S −R+ C2)− b

2T (a+ T − t0)2
]. (9)

and the maximum expected profit is

Max ψ(q) = ψ(q0) = −C2(m+
D

2
)+

q20 −m2

2D
{(S−R+C2)−

b

2T
(a+T − t0)2}.

(10)
The following numerical example is provided to illustrate the result:

Example 1: Suppose that the demand is uniform over (700,1700) and the
lead-time is uniform over (2,12). Let the selling price function be linlin with
S = 1000, β = 50, b = 200, R = 400 and the cost parameters be C1 = 10, C2 =
10, C = 500. Let t0 = 6. The optimal order quantity is q0 = 1277.14. The
maximum expected profit is 187691.43 (all values in appropriate units).

A sensitivity analysis is performed in the next section by changing the values
of β and b. Table 1 shows how the optimal values of order quantity and the
expected profit change with the change in the values of b for some fixed β-
values, and Table 2 shows how the optimal values change with the change in
β-values for some fixed values of b.
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For linex selling price S(l), as given in (2), the optimal order quantity q0
will be as follows:

Case 1. If t0 + 1
r loge

S
R < T + a,

q0 = m+D[1−
C −R+ (C1 + β){ (t0−a)2

2T }
C2 + S−R

T (t0 − a+ 1
r )−

R
rT loge

S
R

]. (11)

and the maximum expected profit is

Max ψ(q) = ψ(q0) = −C2(m+
D

2
)+
q20 −m2

2D
{C2+

S −R

T
(t0−a+

1
r
)− R

rT
loge

S

R
}.

(12)
Case 2 . If t0 + 1

r loge
S
R > T + a,

q0 = m+D[1−
C −R+ (C1 + β){ (t0−a)2

2T }
C2 −R+ S

T {t0 − a+ 1
r (1− e−r(T+a−t0))}

]. (13)

and the maximum expected profit is

Max ψ(q) = ψ(q0) = −C2(m+
D

2
)+
q20 −m2

2D
{C2−R+

S

T
{t0−a+

1
r
(1−e−r(T+a−t0))}}.

(14)
The following numerical example illustrates the results:

Example 2: Suppose that the demand is uniform over (700,1700) and the
lead-time is uniform over (2,12). Let the selling price function be linex with
S = 1000, β = 50, r = 0.305, R = 400 and the cost parameters be C1 = 10, C2 =
10, C = 500. Let t0 = 6. The optimal order quantity is q0 = 1246.78 and the
maximum expected profit is 161800.74 (all values in appropriate units).

Tables 3 and 4 show how the optimal order quantity and the expected profit
change with the change in the values of β and r.

Now we obtain the optimal solution for uniform demand, exponential lead-
time with linlin selling price function.

If X ∼ U(m,m + D), l ∼ exp(λ), then the optimal order quantity, q0, is
obtained as

q0 = m+D[1−
C −R+ (C1 + β){t0 − 1

λ + 1
λe
−λt0}

S −R+ C2 − b
λe
−λt0{1− e−λ( S−R

b )}
]. (15)

and the maximum expected profit is

Max ψ(q) = ψ(q0) = −C2(m+
D

2
)+
q20 −m2

2D
{S−R+C2−

b

λ
e−λt0(1−e−λ( S−R

b ))}.
(16)

A numerical example is provided to illustrate the solution as follows:
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Example 3: Suppose that the demand is uniform over (700,1700) and the
lead-time is exponential with mean 7. Let the selling price function be linlin
with S = 1000, β = 50, b = 200, R = 400 and the cost parameters be C1 = 10,
C2 = 10, C = 500. Let t0 = 6. The optimal order quantity is q0 = 1158.35. The
maximum expected profit is 159596.22 (all values in appropriate units).

Now we obtain the optimal order quantity if the demand follows a beta
distribution. The beta distribution is a more flexible probability distribution
compared to the other demand distributions we have already discussed, because
it can accommodate different ranges of the variate value and different shapes
of the distribution. Its shape depends on the values of its parameters. Thus,
in practice, from the knowledge of the shape of actual demand distribution, we
can choose the appropriate values of m and n and proceed.

For a beta demand and an exponential lead-time with a linlin selling price
function, the optimal order quantity is obtained as follows:

If X ∼ B(m,n) with α < x < γ (then α < q < γ), l ∼ exp(λ), the optimal
order quantity q0 is given by

I q0−α
γ−α

(m,n) = 1−
C −R+ (C1 + β){t0 − 1

λ + 1
λe
−λt0}

S −R+ C2 − b
λe
−λt0{1− e−λ( S−R

b )}
, (17)

where I q−α
β−α

(m,n) can be obtained from Karl Pearson’s ‘Tables of the Incomplete
Beta Function’(1934).

The maximum expected profit is

Max ψ(q) = ψ(q0) = −C2{α+ (γ − α)
m

m+ n
}+

1
B(m,n)

{αI q0−α
γ−α

(m,n)

+ (γ − α)I q0−α
γ−α

(m+ 1, n)}{S −R+ C2 −
b

λ
e−λt0(1− e−λ( S−R

b ))}.
(18)

Example 4: Suppose that the demand follows a beta distribution with m =1
and n =2 (positively skewed), with a minimum demand of 700 units and
maximum demand of 1700 units, i.e., α = 700, γ = 1700, and the lead-
time is exponential with mean 7. Let the selling price function be linlin with
S = 1000, β = 50, b = 200, R = 400 and the cost parameters be C1 = 10,
C2 = 10, C = 500. Let t0 = 6. Then the optimal order quantity comes out to be
q0 = 964. The maximum expected profit is 387017.56 (all values in appropriate
units).

4 Sensitivity Analysis

To study the effect of variations in the values of the parameters or the form
of selling price function or the lead-time distributions on the optimal order
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quantity and the expected profit, sensitivity analyses are carried out. Here, in
this section, Table 1 and Table 2 show how the optimal values of order quantity
and the expected profit change with the change in the values of b and β, when

the demand and the lead-time both are considered to be uniform with linlin
selling price function. Let m = 700, D = 1000, a = 2, t0 = 6, T = 10, C = 500,
C1 = 10, C2 = 10, S = 1000, R = 400. Here the expected profit is found to
be more sensitive to the change in b-value compared to the change in β-value.
In Table 1 and Table 2 we observe that the increase in b-value results in a
significant percentage decrease in expected profit, whereas an increase (even a
large increase) in β-value results in a small percentage decrease in the expected
profit. The optimal order quantity is also more sensitive to the change in b-value,
compared to the change in β-value.

Table 3 and Table 4, show how the optimal values of order quantity and
expected profit change with the change in values of β and r, when the demand

and lead-time both are assumed to be uniform, with linex selling price. Let
m = 700, D = 1000, a = 2, T = 10, t0 = 6, C = 500, C1 = 10, C2 = 10, S =
1000, R = 400.

Table 5 shows the effect of the form of the selling price function on the opti-
mal values of the order quantity and expected profit. Here in the course of our
study we assume linlin and linex form of the selling price function S(l). Consid-
ering uniform demand and uniform lead-time we examine how the optimal order
quantity and the expected profit vary for various values of the other parameters,
As before, we consider m = 700, D = 1000, a = 2, T = 10, t0 = 6, C = 500,
C1 = 10, C2 = 10, S = 1000, R = 400. Note that the time t

′
is such that after

(t
′ − t0)-time since the arrival of demand, the items possess only salvage value,

i.e., the items can be sold at R, the salvage value, if the lead-time exceeds the
time t

′
. In Table 5 we observe that the profits are more sensitive than the order

quantities to the change in form of the selling price function. Optimal values

of the order quantity and the expected profit are higher for linlin selling price
function.

Table 6 shows the sensitivity of the optimal order quantity and the expected
profit to the change in lead-time distribution with a linlin form of the selling
price function S(l). We examine the change for uniform and exponential form of
lead-time distribution having mean lead-time 7, consideringm = 700, D = 1000,
a = 2, T = 10, t0 = 6, C = 500, C1 = 10, C2 = 10, S = 1000, R = 400. In Table
6 we see that the profit is more sensitive than order quantity to the change in
the distribution of lead-time.
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Table 1 . Optimal order quantity and maximum expected profit
for different values of b for some fixed values of β

β b % change in b q0 % change in q0 Max.expected profit % change in profit
25 120 - 1427.66 - 351829.79 -

150 25 1387.80 -2.79 282380.49 -19.74
200 33.33 1334.29 -3.86 213805.71 -24.28

50 120 - 1385.11 - 323702.13 -
150 25 1339.02 -3.33 255112.20 -21.19
200 33.33 1277.14 -4.62 187691.43 -26.43

60 120 - 1368.09 - 312689.36 -
150 25 1319.51 -3.55 244478.05 -21.81
200 33.33 1254.29 -4.94 177565.71 -27.37

65 120 - 1359.57 - 307234.04 -
150 25 1309.76 -3.66 239219.51 -22.14
200 33.33 1242.86 -5.11 172571.43 -27.86

Table 2 . Optimal order quantity and maximum expected profit
for different values of β for some fixed values of b

b β % change in β q0 % change in q0 Max.expected profit % change in profit
120 25 - 1427.63 - 351829.79 -

50 100 1385.11 -2.98 323702.13 -7.99
60 20 1368.09 -1.23 312689.36 -3.40
65 8.33 1359.57 -0.62 307234.04 -1.74

150 25 - 1387.80 - 282380.49 -
50 100 1339.02 -3.51 255112.20 -9.66
60 20 1319.51 -1.46 244478.05 -4.17
65 833 1309.76 -0.74 239219.51 -2.15

200 25 - 1334.29 - 213805.71 -
50 100 1277.14 -4.28 187691.43 -12.21
60 20 1254.29 -1.79 177565.71 -5.39
65 8.33 1242.86 -0.91 172571.43 -2.81
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Table 3 . Optimal order quantity and maximum expected profit
for different values of r for some fixed values of β

β r % change in r q0 % change in q0 Max.expected profit % change in profit
25 0.183 - 1361.01 - 245199.75 -

0.229 25.14 1336.32 -1.81 216025.05 -11.90
0.305 33.19 1308.03 -2.12 187348.80 -13.27

50 0.183 - 1308.04 - 218509.33 -
0.229 25.14 1279.50 -2.18 189866.89 -13.11
0.305 33.19 1246.78 -2.56 161800.74 -14.78

60 0.183 - 1286.85 - 208129.78 -
0.229 25.14 1256.77 -2.34 179721.85 -13.65
0.305 33.19 1222.28 -2.74 151924.50 -15.47

65 0.183 - 1276.26 - 203003.57 -
0.229 25.14 1245.40 -2.42 174717.52 -13.93
0.305 33.19 1210.03 -2.84 147059.87 -15.83

Table 4 . Optimal order quantity and maximum expected profit
for different values of β for some fixed values of r

r β % change in β q0 % change in q0 Max.expected profit % change in profit
0.183 25 - 1361.01 - 245199.75 -

50 100 1308.04 -3.89 218509.33 -10.89
60 20 1286.85 -1.62 208129.78 -4.75
65 8.33 1276.26 -0.82 203003.57 -2.46

0.229 25 - 1336.32 - 216025.05 -
50 100 1279.50 -4.25 189866.89 -12.11
60 20 1256.77 -1.78 179721.85 -5.34
65 833 1245.40 -0.90 174717.52 -2.78

0.305 25 - 1308.03 - 187348.80 -
50 100 1246.78 -4.68 161800.74 -13.64
60 20 1222.28 -1.96 151924.50 -6.10
65 8.33 1210.03 -1.00 147059.87 -3.20
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Table 5 . Sensitivity of optimal order quantity and maximum expected profit to the change in the
nature of the selling price function

β t
′

Order quantity Max.expected profit
Linlin S(l) Linex S(l) Linlin S(l) Linex S(l)

qL qE
qE

qL
pL pE

pE

pL

25 9 1334.29 1308.03 0.98 213805.71 187348.80 0.88
10 1387.80 1336.32 0.96 282380.49 216025.05 0.77
11 1427.66 1361.01 0.95 351829.79 245199.75 0.70

50 9 1277.14 1246.78 0.98 187691.43 161800.74 0.86
10 1339.02 1279.50 0.96 255112.20 189866.89 0.74
11 1385.11 1308.04 0.94 323702.13 218509.33 0.68

60 9 1254.29 1222.28 0.97 177565.71 151924.50 0.86
10 1319.51 1256.77 0.95 244478.05 179721.85 0.74
11 1368.09 1286.85 0.94 312689.36 208129.78 0.67

65 9 1242.86 1210.03 0.97 172571.43 147059.87 0.85
10 1309.76 1245.40 0.95 239219.51 174717.52 0.73
11 1359.57 1276.26 0.94 307234.04 203003.57 0.66

Table 6 . Sensitivity of optimal order quantity and maximum expected profit
to the change in lead-time distribution

β b Order quantity Max.expected profit
exponential uniform exponential uniform
lead-time lead-time lead-time lead-time

q0e q0u
q0e

q0u
p0e p0u

p0e

p0u

25 200 1280.62 1334.29 0.96 219674.63 213805.71 1.03
150 1293.86 1387.80 0.93 234312.24 282380.49 0.83
120 1305.24 1427.66 0.91 247742.65 351829.79 0.70

50 200 1158.35 1277.14 0.91 159596.22 187691.43 0.85
150 1175.45 1339.02 0.88 173486.76 255112.20 0.68
120 1190.14 1385.11 0.86 186274.81 323702.13 0.58

60 200 1109.44 1254.29 0.88 137251.53 177565.71 0.77
150 1128.08 1319.51 0.85 150790.00 244478.05 0.62
120 1144.10 1368.09 0.84 163275.35 312689.36 0.52

65 200 1084.99 1242.86 0.87 126440.61 172571.43 0.73
150 1104.40 1309.76 0.84 139791.65 239219.51 0.58
120 1121.09 1359.57 0.82 152115.83 307234.04 0.50
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5 Summary and Conclusion

The model considered in this paper incorporates some realistic features that are
likely to be associated with an inventory of any deteriorating material. Deterio-
ration over time is a natural feature, maybe in terms of its quality or maybe in
terms of its usability. Naturally the selling price decreases with the deterioration
of the items. The problem of finding optimal ordering policies for deteriorating
items is addressed in this paper, where selling price decreases with time, as well
as with the deterioration of the item. A special nature of selling price function
has been considered here, which accommodates deterioration aspect of the items
and delay in delivery time in its functional form. A random demand comes for
a specific time-point when the items possess the maximum value. They are
sold at a reduced price if the supply arrives late. This can happen due to the
uncertainty of lead-time. The stochastic variability of demand as well as of lead
time can have a great impact on the optimal order quantity. A closed form
solution has been obtained here. The sensitivity of the solution to the change
in the values of different parameters, and also the change in the form of selling
price function or lead-time distribution has been studied. We have seen that
the optimal order quantity and the expected profit are more sensitive to the
change in b-value compared to the change in β-value, i.e., the rate of decrease
in selling price per unit per unit time due to deterioration of the items is less
than the rate of its decrease per unit time due to delay in delivery (when lead-
time exceeds t0). We have observed that the profits are more sensitive than the
order quantity to the change in the form of the selling price function, also to

the change in the distribution of lead-time.
While the focus of this paper has been on the order quantity of deteriorating

items, there are other issues that have not been considered in the present paper,
for example, it could be interesting to extend the results to the multi-product
inventory models, where some of the items are perishable, some are not, or, the
rate of deterioration is not same for all items. An extension of this problem to
a multi-period model can also be of interest for further investigation. Demand
can be considered to be selling price-dependent. This remains a challenging
problem for future research.
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