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Combinatorial analysis by the Ihara zeta
function of graphs
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Abstract

We analyze here some new results about the asymptotic behaviour of
the ratio which compares the cardinal of labeled Directed Acyclic Graphs
and the corresponding cardinal of its equivalence classes in the sense of
Markov. And also the parallel and comparative study for the unlabeled
case. All them by Zeta Functions; more concretely, the Ihara-Selberg Zeta
Function of a Graph.
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1. Riemann zeta function
A Zeta Function (denoted by �) will be given by a sum of in�nite powers.
See, for instance, about its foundations [3] [4] [5] [12] [13] [24].
More concretely, it can be expressable by a Dirichlet series of this type

� (s) �
P
n2N

[f (n)]
s

There exists di¤erent functions, in Mathematics, known as Zeta functions,
all them included into the slot of "special functions".
The more known is due to Riemann, but the more useful, in our case, is the

so called Ihara-Selberg function of a graph. So, among the Dirichlet Series, we
found a very useful tool, in �elds as Number Theory, Probability or Cryptog-
raphy. See, for emerging applications [33]. Because in Number Theory we are
interested in the properties of the primes. With this purpose, Euler was perhaps
the �rst to consider the so called Riemann Zeta Function,

& (s) =
P
n2N

1

n
s =

Q
p prime

�
1� p

�s��1
with s 2 C
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Where it appears as product of Euler.
In fact, Euler consider the case when s 2 R; later generalization to s 2 C is

due to Riemann.

And because it has a bounded sequence of coe¢ cients, these series converge
absolutely to an analytical function, on the complex open half-plane of s such
that

Re(s) > 1

It diverges on the symmetrical open half-plane of s, in the complex plane

Re(s) < 1

About the de�ned function on the �rst region, it admits analytic continuation
to all C, except when s = 1.
For s = 1, this series is formally identical to the Harmonic series, which

diverges.
As a consequence, it is a meromorphic function of s, being in particular,

holomorphic in a region of the complex plane, showing one pole in s = 1 ; with
residue equal to 1.

Recall that a function is holomorphic when it is complex di¤erentiable, and
will be meromorphic when it is holomorphic on almost all C, except in a set of
isolated points, which are called the poles of the function.

Euler found a closed formula for � (2k) ; when k 2 N:
It will be expressed by

� (2k) =
(�1)

k�1
(2�)

2k

B
2k

2 (2k)!

denoting by B
2k
the Bernoulli numbers.

Such numbers can be de�ned of di¤erent modes.

So, for instance,

- as independent terms of Bernoulli polynomials, Bn (x) ;

- by a generating function,

G (x) = x
ex�1 =

P
i2N�

Bn

xi

i!

with

jxj < 2�

and where each coe¢ cient of the Taylor Series is the n-th Bernoulli number.

- by the recursive formula
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B0 = 1

B
m
= �

m�1P
j=0

C
m;j

B
j

m � j + 1

As the Bernoulli numbers can be expressed in terms of the Riemann Zeta
function, they are indeed values of such function to negative arguments.

The connection between the Zeta function and the set of prime numbers is
given by the Euler product,

& (s) =
Q
p2P

1

1�p�s �
Q
p2P

1
1� 1

p
s

which also converges for all s > 1:
If we write the precedent expression for the generalized product as

Q
p2P

�
1 + p

�s
+
�
p
2
��s

+
�
p
3
��s

+ :::

�
�
Q
p2P

�
1 + 1

ps
+ 1

p2s
+ 1

p3s
+ :::

�
it is easy to observe that this product is precisely the analytical expression of
the FTA (acronym of the Fundamental Theorem of Arithmetic).
And taking into account the behaviour of the limit approaching to one from

the right,

lim
s!1+

� (s) = +1

we see that there must be in�nitely many factors in such product. Therefore,
there are in�nitely many prime numbers.
But the zeta function is not only useful to proof this important fact, because

it permits many other applications, as for instance, to study and attempt to
describe their distribution.

Some of the Zeta Function special values are

& (0) = �1=2

& (2) = 1 + 1

2
2 +

1

3
2 + :::

) & (2) = �
2

6

& (4) = 1 + 1

2
4 +

1

3
4 + :::

) & (4) = �
4

90

& (6) = 1 + 1

2
6 +

1

3
6 + :::

) & (6) = �
6

945
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& (8) = 1 + 1

2
8 +

1

3
8 + :::

& (8) = �
8

9450

:::

Note that we take here s even.
Because for odd values of s, it appears troubles and also irrational numbers;

for instance,

& (1) = 1 + 1
2 +

1
3 + :::!1 (harmonic series)

& (3) = 1 + 1
23
+ 1

33
+ ::: ' 1:2 (Ap�ery constant)

and also

& (1=2) ' �1:46

& (3=2) ' 2:6

& (5=2) ' 0:134

& (7=2) ' 1:127; :::

The logarithm of the Zeta Function will be

log & (s) =
P

n � 2

�
�(n)
log n

� �
1
ns
�

being

Re (s) > 1

Here, � (n) denote the Lambda Function, also sometimes called Von Man-
goldt function, de�ned by

� (n) = log p; if n = p
k

; for n 2 N
and some prime number, p;

and 0, otherwise

It is an arithmetic function that is neither additive nor multiplicative,

� (n+ n�) 6= �(n) + � (n�)

� (n � n�) 6= �(n) � � (n�)

Such Lambda function satis�es

log n =
P

djn
� (d)
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where the summation will be extended to all integers, d, dividing to n.

Related with the above series, we have the popular Riemann Hypothesis, still
an important open problem in current Mathematics. It is about the distribution
of zeroes of such Zeta Function.

This Zeta Function admits many variations, with di¤erent names, Selberg,
Ihara, etc. So, for instance, we may consider its multiplicative inverse, express-
ible as a series by the Möbius Function. It can be reached, from the known
series, by tools as the Möbius Inversion and the Dirichlet Convolution.
The values produced by such function from integer arguments are called

�zeta constants�.

We can observe their convergence to one from the right, & (s)! 1
+

:

Also, this functional equation is satis�ed

& (s) = 2
s

�
s�1

sin
�
�s
2

�
� (1� s) & (1� s)

which is true in all the complex �eld, relating its values in s and 1� s:
This equation has a pole simple at s = 1, with residuum equal to one.
It was proved by Bernhard Riemannn (1859).

Euler conjectured an equivalent relation to the function

P
n2N�

(�1)
n+1

n
s

Also there exists a symmetric version of the precedent functional equation,
reachable by the change

s 7�! 1� s

This gives

& (s) �
�
s
2

�
�
� s
2

= 2
s

�
� 1�s

2

�
�
1�s
2

�
& (1� s)

Sometimes, we de�ne the very related Eta Function, denoted by �; as

� (s) � �
� s
2

�
�
s
2

�
� (s)

It holds

� (s) = � (1� s)

The value of the Zeta function for negative even real values is zero,
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& (�2) = & (�4) = & (�6) = ::: = & (�2k) = 0

with k 2 N

They are called trivial zeroes of �:
Furthermore, it will be cancelled on values of s that belongs to the critic

rang

fs 2 C : 0 < Re (s) < 1g

In this case, we call of non-trivial zeroes. It is because the di¢ culties to �nd
its position into the critical rang.

To obtain zeta function values for negative and non integer arguments, we
proceed by

& (�1=2) = 2

�3=2

�

�1=2

�(�1=2)
sin(�s2 ) &(1�s)

) & (�1=2) ' �4 �
2:6 ' � 0:2069

� represents the Gamma Function of Euler, de�ned by an integral expres-
sion,

� (s) =
R1
0
e
�t
t
s�1
dt

If n 2 N; then

� (n+ 1) = n!

For this reason, it is considered as an extension of the factorial.

It holds

� (s+ 1) = s � (s)

and as

� (1) = 1

we have

� (n+ 1) = n � (n) = ::: = n! � (1) = n!

Such functional equation also gives an asymptotic limit, proposed by (Nemes,
2007),
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& (1� s) =
�
s
2�l

�sq
8�
s cos

�
�s
2

� �
1 +O

�
1
s

��
Among its applications, they are useful to search compact formulas for a

sequence given by a recurrence equation; to �nd relations among sequences, be-
cause the form of a generating function may suggest us a recurrence formula; to
explore the asymptotic behaviour of sequences, as in our case; to prove identities
involving sequences; or to solve enumeration problems in Combinatorics.

It will be very useful in di¤erent problems, as to accelerate the convergence
of sums of this form P

n2A�Z

f
�
1
n

�
where f would be an analytic function. Because many mathematical constants
are slowly convergent series of these form.
To accelerate such convergence, it mabe very easy once known the values at

the integers of the Zeta Function, �
A
(s) :

For this purpose, it is su¢ ce to takeP
m

f
m
�
A
(m)

being

�
A
(m) =

P
n2A�Z

�
1
m

�s
It is possible once values at integers of such zeta function are known.

In such expression,

f (s) =
P
m

f
m
z
m

represent the Taylor Series, or its expansion, of f at 0:
This schema may very particularly useful, and e¤ective, when we works in

the high precision evaluation of mathematical constants.

Note.
The famous Riemann Hypothesis says that for every non-trivial zero, s, of

�; it holds

Re (s) = 1
2

That is, all non-trivial zeroes are situated on the critical line, i.e.

x = 1
2
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2. Ihara zeta function of a graph
The Zeta Function is generalizable to graphs, according to the theory elabo-

rated by (Ihara, 1966), and some others [3] [4] [5] [12] [13] [24] [30] [31] [32] [37]
[40] [46] [54].
Indeed, it is a Zeta function associated with a �nite graph. But also gener-

alizable to in�nite graphs. Such function was �rst de�ned in terms of discrete
subgroups. It closely resembles the so called Selberg zeta function, being used
to relate closed paths to the spectrum of the adjacency matrix.
The Ihara zeta function was �rstly de�ned by the aforementioned Ihara

studying discrete subgroups of the two-by-two special linear groups.
Zeta functions of graphs were studied not only by Ihara [34] [35], but many

other works on it, as may be Sunada, Hashimoto, Bartholdi, and Bass.
So, Jean Pierre Serre [47] suggested can be reinterpreted graph-theoretically,

in his book Trees.
And it was Toshikazu Sunada, in 1985, who put this suggestion into practice.
Storm de�ned the Ihara-Selberg zeta function of a Hypergraph.

Recall that a hypergraph

H � (V (H) ; E (H))

is a pair of a set of hyper-nodes, V (H) ; and a set of hyper-edges, E (H) ; which
the union of all hyper-edges is V (H) :

Note that a regular graph is a Ramanujan Graph if and only if the Ihara zeta
function of such graph satis�es an analogue of Riemann Hypothesis, translated
to Graph Theory.

The Ihara zeta function is denoted by &
G
, and it will be de�ned by

&
G
(s) �

"Q
p

�
1� s

L(p)
�#�1

or equivalently,

Q
p

�
1� s

L(p)
�
� 1

&
G
(s)

Such formula is analogous to the Euler product for the Riemann zeta func-
tion.
This product is taken over all prime walks, p, on the graph G, being L(p)

the length of the prime p.

Recall that a closed geodesic is a closed path such there is no backtracking,
if we around twice, i. e. it is a closed proper walk with the initial and �nal
edges di¤erent.
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If  is a closed geodesic, we denote by 
r

the obtained by repeating  r
times.

A closed geodesic which is not the power of another is called a prime geodesic:

An equivalence class of prime geodesics is called a prime geodesic class, or
simply a prime, }.

Given a path, ; we denote by L () its length.
Therefore, two prime geodesics are said to be equivalent, if one is obtained

from another by a cyclic permutation of edges.
The length of a prime, }; is the length of any of its representatives.

Also &
G
is always representable as the reciprocal of a polynomial

&
G
(s) � 1

det (I � T s)

where T is the edge adjacency operator (Hashimoto, 1990).

Recall that the adjacency operator, A, is acting on the space of functions
de�ned on the set of nodes of G = (V; E).
Being o(e) and t(e) the origin and terminus of e, respectively, it is de�ned

by

(Af) (x) =
P
e2Ex

f [t (e)] ;

where Ex � fe 2 E : o (e) = xg

(Bass, 1992) also gave a determinant formula involving the adjacency oper-
ator.

For any Complex Network (CN), or any Graph, G, the function &
G
can be

expressed in terms of &, for di¤erent dimension values, n.

So,

If n = 1, then &
G
(s) = 2& (s) :

If n = 2, then &
G
(s) = 4& (s� 1) :

If n = 3, then &
G
(s) = 4& (s� 2) + 2& (s) :

If n =1, then &
G
(s) = 8

3 & (s� 3) +
16
3 & (s� 1) :

Recall that &
G
(s) is a decreasing function of s.

That is,

&
G
(s

1
) > &

G
(s

2
) ;

if s1 < s2

And in the limit, if n!1; when s is next to the transition point, it holds
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&
G
(s) = 2

n
&(s � n + 1)
�(n)

If the average degree of nodes, also called mean coordination number of the
graph, is �nite, then there exists exactly a value of s, denoted stransition; where
the Zeta Function changes from in�nite to �nite, or vice versa.
It is also called dimension of the Graph,or the Complex Network (CN).

Also, the &
G
function possesses three properties;

- monotonicity,

- stability,

and

- Lipschitz Invariance.

According to monotonicity, a subset has dimension less than or equal to a
superset.
According to stability, the dimension of the union of a family of sets is equal

to the maximum cardinal among its members,

dim ([n

s=1
A
s
) = max

s=1;2;:::;n
(dim A

s
)

And according to Lipschitz Invariance, the operations must intervene in the
change of distances between nodes only by �nite magnitudes, when the size, n;
of the graph tends to in�nity.

The Ihara zeta function plays an important role in many applications, such
as in the study of

- spectral graph theory

- dynamical systems

- free groups

- combinatorial enumeration; for instance, of graphs,

and so on.

3. Enumerating Bayesian Networks
About the foundations of Graph Theory, there exists many adequate surveys,

as [9] [10] [23] [27] [29].

Bayesian Networks are the most sucessful class of models to represent un-
certain knowledge.
See, for instance, [1] [15] [16] [19] [20] [22] [49] [50] [51] [52].
But the representation of conditional independencies (CIs, in acronym) does

not have uniqueness. The reason is that probabilistically equivalent models may
have di¤erent representations.
And this problem is overcome by the introduction of the concept of Essential

Graph, as unique representant of each equivalence class. They represent CI
models by graphs.
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For such mathematical graphical tools, see [23] [38] [39].
It may be containing both types, directed or/and undirected edges; hence,

producing respectively Directed Graphs (DGs), Undirected Graphs (UGs), or
Chain Graphs (CGs), in the mixed case.
So, DAG models are generally represented as Essential Graphs (EGs).
Knowing the ratio of EGs to DAGs is a valuable tool, because through this

information we may decide in which space to search.
If the ratio is low, we may prefer to search the space of DAG models, rather

than the space of DAGs directly, as it was usual until now.
The most common approach to learning DAG models is that of performing

a search into the space of either DAGS or DAG models (EGs).
It is preferable, from a mathematical point of view, to obtain the more exact

solution possible, studying its asymptotic behaviour.

For Graphical Enumeration, it may be convenient to see for instance [6] [11]
[14] [21] [28] [41] [42] [48], among others.
But also it is feasible to propose a Monte Carlo Chain Method (MCMC) to

approach the ratio, avoiding the straightforward enumeration of EGs.
And a many more elegant construct, if very di¢ cult, through the Ihara Zeta

function for counting graphs.
The labeled or unlabeled character of the graph means whether its nodes or

edges are distinguishable or not.
The labeling will be a mathematical function, referred to a value or name

assigned to its elements, either nodes, edges, or both, which makes them distin-
guishable.
It is possible to use Generating Functions to count labeled DAGs.
See, for instance, these references on the foundations of Combinatorics, [6]

[11] [14] [21] [28] [41] [42] [48].
For this mathematical construct, it is necessary to make intervene the Inclusion-

Exclusion Principle (IEP).
So, if we take the set of n-essential graphs, and denote its cardinal by a

n
;

applying the aforementioned IEP, we may obtain

a
n
=

P
s=1;:::;p

(�1)
s+1 P

ij
j2f1;:::;sg

c
�
A

i1
\A

i2
\ ::: \ A

is

�
where

A
k
= fG 2 E : k is a terminal node of Gg ;

with k = 1, 2, . . . , n [*]

4. New Research
Let a

n
be the number of essential labeled n-DAGs.

And let a
n�
be the number of labeled n-DAGs.

Then, an is given by the recurrence equation
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a
n
=

nP
s=1

(�1)
s+1

C
n;s

 
2

n�s

� n+ s
!s

a
n�s

with a
0
= 1

Whereas

a
n
�=

nP
s=1

(�1)
s+1

C
n;s

�
2
n�s�s

a
n�s
�

with a
0
�= 1

The basic idea (see for this [44] [45] [49] [50] [51] [52]) is to count the number
of n-DAGs considering each digraph as created by adding terminal nodes to a
DAG with lesser number of nodes. After this addition, we obtain a new DAG.
So, the new formula would be recursive, and it is a direct application of the

IEP. From which, we can reach directly the equation.

We may rewrite the equation as

nP
s = 0

(�1)
n�s

C
n;s

�
2
s

� s
�n�s

a
s
= 0

with n � 1

Another case of application of IEP is to �nd the cardinal of the set of essential
DAGs, E, with a set of labeled nodes, with labelings that belongs to f1; 2; : : : ; ng.
For this, we start with a family of sets, as the aforementioned fA

k
gnk=1 : See

the precedent formula [*], where A
k
represents the subclass of graphs concluding

at the node labeled by k.

Therefore, to know the cardinal of E, �rst we compute the intersection that
appears in the last summatory, for j = 1, 2, . . . , n, being theseP

ij
j2f1;:::;sg

c
�
A

i1
\A

i2
\ ::: \ A

is

�

related with the aforementioned principle (IEP).
With the total allowed connection numbers, from a given node being

2
n�s

� n+ s

So, the number of possible ways of adding directed edges from the essential
graph until all the s terminal nodes will be

[2
n�s

� n+ s]
s
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If we denote e
n
the number of essential n-graphs, also labeled, it holds

a
n
� e

n
� a

n
�

I.e. both precedent values, an and a�n ; are the lower and upper bounds of
e
n
; for each selected order, n: So, it holds

1
13:6 �

an
a�n

hence

an
a�n
� 13:6

or equivalently,

a�n
an
� 0:07

And also

1
13:6an�� en � a�n

i.e.

a
n
�� 13:6 e

n
� 13:6 a�

n

or

a
n
�� 0:07 e

n
� 0:07 a�

n

where we obtain the lower and the upper bounds for the cardinal of essential
graphs, by this expression

e
n
2
��

1
13:6 ; 1

�
a
n
�
�
� ([0:07; 1] a

n
�)

Analyzing the asymptotic behaviour of the ratio, i.e. studying the conver-
gence of ratios among the number of equivalence classes, or essential graphs,
and the number of DAGs, we may develop this so

A (n) � an
an�
)

) limn!1 A (n) = limn!1

nP
s=1

(�1)
s+1

C
n;s

 
2

n�s

�(n � s)

!s

a
n�s

nP
s=1

(�1)
s+1

Cn;s

�
2
n�s �s

a
n�s�
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Observe that in each step is augmented/disminished the summatory with
the apparition of a new term, ever positive and increasing , but with alternating
sign. For this reason, we need promptly to introduce results on Alternating
Series.

But we have the known results

fixed s; n � s

2
n � s ! 0

+ )

) 1�
�

n � s

2
n � s

�s

! 1
�

Hence,

lim
n!1

8<:
nP
s=1

 
2

n�s

�(n � s)

2
n�s

!s

A (n� s)

9=; =

=

(
1� lim

n!1

nP
s=1

�
(n�s)
2
n�s

�s)
flimn!1 A (n� s)g

being

A (n� s) � a
n�s
a
n�s�

&
G
(n� s) � lim

n!1

nP
s=1

�
(n � s)

2
n�s

�s

So, returning to our initial step,

lim
n!1 A (n) = limn!1

nh
1� &

G
(n� s)

i
A (n� s)

o
=

=
h
1� limn!1 &

G
(n� s)

i
[limn!1 A (n� s)]

Considering that the series

nP
s=1

n�s
2
n�s )

nP
s=1

�
1� n � s

2
n�s

�
= n�

nP
s=1

n � s

2
n�s )

)
nP
s=1

�
1� n � s

2
n�s

�s
� n�

nP
s=1

�
n � s

2
n�s

�s
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and its asymptotical behaviour, when n ! 1, these may establish a corre-
spondence with a version of the Zeta Function of Riemann, �

G
, the so called

Ihara-Selberg of the n-graph Gn:
But operating here on the increasing value of n �s, i.e. with �

G
(n� s):

Nevertheless, this proof would be very complex.
Instead, we may apply here an interesting result, which permits to �nalize

our demonstration.

Lemma.

Let

f�
n
g
n2N

and�
�
n

	
n2N

be two sequences, and suppose that

8n >> 0; �
n
> 0;

lim
n!1

�n
�
n

= c;

and

limn!1

mP
n=1

�
n
=1:

Then,

lim
n!1

mP
n=1

�n

mP
n=1

�n

= c

In our case, all the requirements hold.

So, we obtain the ratio among terms of the series (by applying the precedent
Lemma);

limn!1

8>><>>:
nP
s=1

(�1)
s+1

C
n;s

 
2

n�s

�(n � s)

!s

a
n�s

9>>=>>;8<:
nP
s=1

(�1)
s+1

C
n;s

�
2
n�s �s

a
n�s

�

9=;
=

= limn!1

8><>:(�1)
s+1

C
n;s

 
2

n�s

�(n � s)

!s

a
n�s

9>=>;(
(�1)

s+1

C
n;s

�
2
n�s �s

a
n�s�

) =
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= lim
n!1

 
2

n�s

�(n � s)

!s

a
n�s�

2
n�s �s

a
n�s�

=

=

24lim
n!1

�
2
n�s

�(n�s)
�s

�
2
n�s �s

35hlim
n!1

a
n�s
a
n�s�

i
=

=

"
lim

n!1

�
2
n�s

�(n�s)
2
n�s

�s# h
lim

n!1

a
n�s
a
n�s�

i
=

=

�
lim

n!1

�
1� n�s

2
n�s

�s�
[lim

n!1 A (n� s)] =

=

�
1� limn!1

�
n�s
2
n�s

�s�
[limn!1 A (n� s)] =

=
h
lim

n!1

n
1� &

G
(n� s)

oi
[lim

n!1 A (n� s)]

We can assert that the convergence of these series by the

Comparison Test.

Let

0 � �
n
� �

n

with n � k

from some k onwards.

Then, the convergence of
P
n2N

�
n
implies the convergence of

P
n2N

�n :

Symmetrically, the divergence of
P
n2N

�
n
implies the divergence of

P
n2N

�
n
:

In our case, once �xed s, for each natural n,

a
n�s � an�s�)

)
�
2
n�s

� (n� s)
�s
an�s �

�
2
n�s�s

an�s�)

being C
n;s
�
�
n
s

�
2 N;

C
n;s

�
2
n�s

� (n� s)
�s
an�s � Cn;s

�
2
n�s�s

an�s�)

) if s+ 1 is even; therefore if s is odd; then

(�1)
s+1

C
n;s

�
2
n�s

� (n� s)
�s
an�s � (�1)

s+1

C
n;s

�
2
n�s�s

an�s�
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and if s+ 1 is odd; therefore if s is even; then

(�1)
s+1

C
n;s

�
2
n�s

� (n� s)
�s
a
n�s � (�1)

s+1

C
n;s

�
2
n�s�s

a
n�s�

This permits to reach the proof of the convergence of the series, and as a
consequence, by the Comparison Test, the convergence of the ratio among both.
As

(n� s) � 0

then

2
n�s � (n� s) � 2n�s

So, being n 2 N;

h
2
n�s � (n� s)

is
�
�
2
n�s
�s
)

) C
n;s

�
2
n�s � (n� s)

�s
� C

n;s

�
2
n�s
�s
)

)
nP
i=1

(�1)
s+1

C
n;s

�
2
n�s

� (n� s)
�s
an�s �

nP
i=1

(�1)
s+1

C
n;s

�
2
n�s�s

an�s�

Hence, from the convergence of the second series we induce the convergence
of the �rst.
And also, in case of divergence of the �rst series, we obtain the divergence

of the second.

Observe that it appears alternating series.
For this reason, we can see the corresponding Alternating Series Test.

Suppose that we have a series P
n

dn

and either

d
n
= (�1)

n

c
n

or

d
n
= (�1)

n+1

c
n

being
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cn � 0; 8n 2 N

If

1) lim
n!1 cn = 0

and

2) fc
n
g
n2N

is a decreasing sequence

then the series P
n

d
n

is convergent.

In our case, as the sequences,

fangn2N
and

fan�gn2N

are both increasing, it will be su¢ cient to take

c
n
= 1

an

and

c
n
�= 1

an�

to obtain

c
n
! 0

+

and

c
n
�! 0

+

and then, the sequences

fc
n
g
n2N

and

fcn�gn2N
are both decreasing.

And so,
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P
n

cn

and P
n

cn�

both are converging series.

Recall some more details about the convergence of alternating series.

A series

S =
P
n2N

(�1)
n�1

a
n
= a

1
� a

2
+ a

3
� a

4
+ :::+ (�1)

k�1

a
k
+ :::

where a
k
� 0; 8k 2 N; is named an alternating series.

We have the subsequent two results,

Theorem I.
Suppose that for any k 2 N; the inequality

a
k
� a

k+1

holds.
Then,

the alternating series converges if and only if lim
k!1 ak = 0

And also

Theorem II.

Suppose that an alternating seriesP
k2N

a
k

converges.
Then,

lim
k!1 ak = 0

We establish from now these auxiliary and useful notation

f (n� s) = 1� n � s

2
n � s

f (n) = 1� n

2
n

271



that is,

1� f (n� s) = n � s

2
n � s

1� f (n) = n

2
n

and so, once �xed s,

lim
n!1 f (n� s) = limn!1 f (n)

But as we known

lim
n!1

n�s
2n�s

= lim
n!1

n
2n
= 0

+

and by this procedure,
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s
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�
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2
n � s

�s
Hence

lim
n!1 [1� ff (n� s)g]

s

= lim
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(
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�
(n � s)

2
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2
n

�s)
= 1� 0+ � 1�
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nP
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�
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2
n � s

�s

=

= n� lim
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nP
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�
(n � s)

2
n � s

�s
= n� lim
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nP
i=1

[1� f (n� s)]
s

=

= n�
�
n� �

G
(n� s)

�
= �

G
(n� s)

These last terms must regulate the asymptotical bahaviour, by its limit
values.

And respect to its reciprocal function
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n � s
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2
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!s35
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2
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whith this may appears �
�1

1
from �

1
; as they are described in the subsequent

step.

Note that we can take

f (n� s) = 2

n � s

� (n � s)

2
n � s

for each n 2 N; once fixed s;

So, by

�
G
(n� s) = lim

n!1

nP
i=1

[f (n� s)]
s

it holds

a
n�s � a�n�s ;8n; once �xed s)

) 9�
A
=

�
n� lim

n!1

nP
i=1

[f (n� s)]
s
�
[lim

n!1 A (n� s)] =

=
h
n� lim

n!1 &
G
(n� s)

i
[lim

n!1 A (n� s)] ;

�xed s, when n increases to 1)

) �
A
= 1

10 &(5=2) =
1

5&
G
(5=2) ' 0:07

essential graphs for each equivalence class, or equivalently,

�
�1

A
= 10 & (5=2)

hence

�
�1

A
= 5=2 &

G
(7=2) ' 13:6
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equivalence classes for each essential graph.
So far, we have supposed dimension one.

Because in case of dimension two, where the new functions are denoted �
B

and �
�1

B
; respectively, it holds

�
B
= 1

10 &(5=2) =
1

5=2 &
G
(7=2) ;

and

�
�1

B
= 4 & (7=2� 1) = 4 & (5=2)

And translating this from Riemann to Ihara Zeta Function, we obtain

�
�1

B
= 5=2 &

G
(7=2)

Note that the �labeled�or �unlabeled� character of the considered graphs
is relevant, because they are very distinct situations, giving so di¤erent ratios.

It is obvious that the enumeration of unlabeled essential graphs results more
complex that in the labeled case. Also, its symmetries can be used.

Recall that permutating between the positions of two symmetric nodes is a
operation that when acting on graphs, leaves the shape una¤ected.

For the case of unlabeled graphs (Sunada, 1985), denoted here by the letter
"c", we have

c
n
� cardinal of the set of unlabeled n-graphs

and

c
n
�� cardinal of the set of unlabeled essential n-graphs

And so, we can �nd (applying our previous Lemma) that

c
n�s � c�n�s ;8n; once fixed s)

) 9�
C
= lim

n!1 (&G(n) [C (n� s)]) ;

fixed s; when n!1;

being C (n� s) � limn!1

nP
s=1

cn�s
cn�s�

)

) �
C
� flim

n!1 &G (n)g flimn!1 C (n� s)g )

) �
C
= 1

10 & (3=2) =
1
20 &G (3=2) ' 0:26

essential graphs for each unlabeled DAG, in the case of dimension one.

And symmetrically,
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9 (�
C
)
�1
� flimn!1 [&G (n)]g

�1
flimn!1 [C (n� s)]g

�1
)

) (�
C
)
�1
= 10

&(3=2) =
20

&
G
(3=2) ' 3:73

unlabeled DAGs for each essential graph, which coincides with our precedent
analythical results.

In case of dimension two, it holds

9��
C
� limn!1

�n
&
G
(n)
o �
C

�
(n� s)

��
)

) ��
C
= 1

10 & (3=2) =
1
40 &G (5=2) ' 0:26

and dually,

9
�
��
C

��1
� limn!1

�n
&
G
(n)
o �
C

�
(n� s)

���1
)

)
�
��
C

��1
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&(3=2) =
4

&
G
(5=2) ' 3:73

5. Conclusion
And also in the limit situation, which re�ects the degree of �tness of the

proposed model, based in analytical framework, to the precedent computational
results, as the shown by [1], or [20].
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