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Abstract
In this note we prove a monotonicity result related to clamped triangular membranes.

Using the continuous Steiner symmetrization we show that the average displacement
increases as the design of the membrane becomes symmetric about a line.
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1. Introduction

Consider a thin flat elastic membrane, fixed around the edge, subject to a vertical load distribution.
Naturally, the load forces the membrane to displace from the rest position. We are interested in
the average displacement across the membrane. This problem can be mathematically described as
follows. Let Ω ⊂ R2 stand for the region occupied by the elastic membrane and f : Ω → R+ := [0,∞)
denote the load distribution. Suppose u : Ω → R denotes the displacement function; it is well known
that: {

−∆u = f(x), in Ω
u = 0, on ∂Ω,

(0.1)

where the boundary condition in (0.1) corresponds to our assumption that the membrane is fixed
around the edge. We assume henceforth that Ω is a bounded domain in R2 with Lipschitz boundary.
The average displacement, denoted A(Ω), is defined by the integral of u over Ω; that is, A(Ω) =∫
Ω

u(x) dx.
Our interest in this note is a design problem which is described as follows. For 0 ≤ t ≤ 1, consider

the triangle ∆t (design) with vertices (−1, 0), (1, 0), and (t − 1, 1), see figure 1. Let ut ∈ H1
0 (∆t)

denote the unique solution of the following boundary value problem:

(BV P )
{
−∆u = 1, in ∆t

u = 0, on ∂∆t.

Remark 1. Note that in (BVP), the load distribution f(x) is constant across the membrane.

Our main result is the following monotonicity result.

Theorem. The function ξ(t) := A(∆t) for t ∈ [0, 1] is an increasing function.
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Remark 2. Note that as t changes from 0 to 1, the designs ∆t become more and more sym-
metric about the y-axis. In fact, the final design, ∆1, is symmetric about the y-axis. Therefore, the
physical implication of the theorem is that the average displacement of an elastic membrane with
initial design ∆0, subject to a constant load distribution, increases as the design gradually becomes
symmetric.

2. Proof of the Theorem

In this section we prove the Theorem. The main tool in the proof is the continuous Steiner sym-
metrization (CSS). We only need to use the CSS as introduced in [Polya & Szego, 1951], since ∆0

is convex. For general measurable sets there is a generalization of the CSS, see for example [Broc,
1995; Broc, 2000].

Before proving the theorem we give some preliminaries. For any (x, y) ∈ R2, let V (x, y) = y~i,
where ~i stands for the standard unit vector along the x-axis. We define Φt(x, y) = (I + tV )(x, y),
t ∈ [0, 1], where I is the identity map on R2. Where no confusion arises we write Φt(Ω) to denote
Φt(x, y), where (x, y) ∈ Ω ⊆ R2. Since Φ0(∆0) = ∆0, Φ1(∆0) = ∆1, and ∆1 is Steiner symmetric
about the y-axis, the map [0, 1] 3 t → Φt(∆0) ∈ D, defines a continuous Steiner symmetrization of
∆0 with respect to the y-axis. Recall that u0 satisfies{

−∆u0 = 1, in ∆0

u0 = 0, on ∂∆0.

The continuous Steiner symmetrization of u0 with respect to the y-axis is the (essentially) unique
function ut

0 ∈ H1
0 (∆t) such that

{ut
0 > α} = Φt({u0 > α}), t ∈ [0, 1],

where {u0 > α} is used in place of {x ∈ ∆0 : u0(x) > α}, for simplicity. The following properties
of ut

0 are well known for every t ∈ [0, 1]:

a)
∫
∆0

u0 dx =
∫
∆t

ut
0 dx.

b)
∫
∆0
|∇u0|2 dx ≥

∫
∆t
|∇ut

0|2 dx.

Proof of the Theorem. Let us begin with the following observation:

−1
2
A(∆0) =

1
2

∫
∆0

|∇u0|2 dx−
∫

∆0

u0 dx.

Hence, by applying properties (a) and (b), we deduce

−1
2
A(∆0) ≥

1
2

∫
∆t

|∇ut
0|2 dx−

∫
∆t

ut
0 dx ≥ 1

2

∫
∆t

|∇ut|2 dx−
∫

∆t

ut dx,

where the last inequality is a consequence of the fact that ut ∈ H1
0 (∆t) is the unique minimizer of

the functional
F (u) =

1
2

∫
∆t

|∇u|2 dx−
∫

∆t

u dx,
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relative to u ∈ H1
0 (∆t). Therefore,

−1
2
A(∆0) ≥

1
2

∫
∆t

|∇ut|2 dx−
∫

∆t

ut dx = −1
2

∫
∆t

ut dx = −1
2
A(∆t).

Thus A(∆0) ≤ A(∆t), for every t ∈ [0, 1]. Since the above argument can be repeated with the initial
design, ∆0, replaced by any intermediate design, ∆t′ , we infer that A(∆t) is increasing as a function
of t, as desired. �

3. Numerical Results

In this section we demonstrate numerically the increasing nature of A(∆t) on [0, 1]. To this end, for
increasing values of t ∈ [0, 1] we first use a standard finite element Galerkin method with triangular
basis functions to obtain an approximate global solution of (BVP). Then the integration is performed
exactly by integrating the basis functions to obtain an approximate value for A(∆t).

For our computation we choose t = 0, 0.2, 0.4, 0.6, 0.8 and 1. In each case, we use a mesh with
grid spacing 0.2 along the x−axis and 0.1 along the y−axis. The mesh points are used to generate a
sequence of sub-triangles that cover the region with only edges as overlap and with no sub-triangle
having all its vertices on the boundary. We point out that a basis for the finite element space
is a function of the vertices of the sub-triangles (see for example, (11) in [Alberty et al., 1999]).
Thus, on integration of the approximate global solution we ensure that no sub-triangle yields a zero
contribution. It should be noted that a zero contribution from any sub-triangle amounts to it not
being present in the region.

Figure 2 shows the graphs of the approximate solutions ut of (BVP) for the different values of t
selected.

Figure 2
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t A(∆t)
0 0.212–01

0.2 0.227–01
0.4 0.235–01
0.6 0.242–01
0.8 0.245–01
1.0 0.245–01

Table 1: A(∆t) for different values of t

On integration, we obtain the values shown in Table 1. From the table, it is clear that A(∆t)
increases as t increases from 0 to 0.8. The values when t = 0.8 and t = 1 appear to be equal. In
order to see the increase in A(∆t) in this case, a refinement of the mesh in both x- and y-directions
is necessary.
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