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Abstract

We analyze here the most useful tools working with Enumeration,
Combinatorics, Cycle Index, Generating Functions, Formal Series, Zeta
functions and so on.

Our objective is to reach a consistent mathematical framework, with
provide su¢ cient power to handle adequatly such type of problems.
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1. Enumerative Combinatorics
It is possible to obtain a good, but necessarily classical vision on this subject

in the surveys-books of authors as (Harary, 1969, 1973), or (Stanley, 1986). Nev-
ertheless, we introduce some mathematical tools of Enumerative Combinatorics,
more oriented to study the cardinality of graphs.
It is an area of Mathematics on the number of ways that certain patterns

can be formed. In general, given an in�nite collection of �nite sets, it seeks
to describe a counting function, f, for the number of objects in every set. The
simplest such functions are closed formulas, which can be expressed as a com-
position of elementary functions, such as powers or factorials. Often no closed
form is available. Then, we �rst derive a recurrence relation, then solve the
recurrence, and by this, we arrive at the desired closed form.
Given a set, S, the most inclusive de�nition of an Enumeration is any sur-

jective application which goes from an arbitrary index set, I, onto S.
So, every set can be trivially enumerated by the identity function, from S

onto itself.
Such general de�nition lends to a Counting notion. We are interested, obvi-

ously, in "how many things", instead of "in which order". For this reason, it is
not necessary initially, but convenient, a well-ordering into the set S.
We note some interesting ideas.
- First, that all �nite sets are enumerable.
- Second, the real numbers, or real line, are not countable enumeration. It

may be proved by Cantor diagonalization argument.
- Third, there exists an enumeration for a set if and only if the set is count-

able.
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There are many mathematical sub�elds in quick expansion, concerning with
enumeration. So, for instance, in Graph Enumeration, where the objective is to
count graphs that meet certain structural conditions. This connect directly with
an important area, called Extremal Graph Theory, which studies the graphs
which are "extremal" in some sense. That is, among graphs with a certain
property. So, with the largest number of edges, the smallest diameter, the
largest minimum degree, and so on.

It will be convenient now to allude to the Formal Power Series, from which
we de�ne Generating Functions.
Also we need some very powerful results of Combinatorics, as may be the

Inclusion-Exclusion Principle.

A Formal Series, or Formal Power Series, of a �eld F , is an in�nite se-
quence, [a

0
; a

1
; a

2
; : : :]; de�ned on F . Usually, it will be denoted with brackets.

Equivalently, it is a function from the set of non-negative integers, N� = N[f0g ;
onto the �eld F . We write these series asP

i2N�
a
i
x
i

These mathematical tools are very useful to obtain compact representations
or to de�ne recursively sequences.

A generating function, G, is a formal power series expressible as

G(x) =
P
i2N

a
i
x
i

Roughly, it transforms problems about sequences into problems about func-
tions. So, we may use generating functions to solve many types of �counting�
problems.
The more usual of such functions are included into two types, OGF (Ordinary

Generating Function), as

G(x) =
P
i2N

f (i) x
i

and EGF (Exponential Generating Function), as

G(x) =
P
i2N

f (i) x
i

i!

As an example, of generating functions giving the �rst powers of the non-
negative integers, we have

x
1�x $ x+ x

2

+ x
3

+ :::$ [1; 1; 1; :::]

x

(1�x)
2 $ x+ 2x

2

+ 3x
3

+ :::$ [1; 2; 3; :::]

x(x+1)

(1�x)
3 $ x+ 4x

2

+ 9x
3

+ :::$ [1; 4; 9; :::]
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and so on.

And it also appears in Number Theory, as in the case of

f (x) = x

1�x�x
2 =

P
i2N�

F
i
x
i

= x+ x
2

+ 2x
3

+ 3x
4

:::$ [1; 1; 2; 3; :::]

Where F
i
denotes de i-th Fibonacci Number.

Recall that it obeys to the recursive formula

F
i
= F

i � 1
+ F

i + 1
; 8i 2 N�

We can introduce operations among generating functions by procedures as

Scaling Rule

If

[f0 ; f1 ; f2 ; :::]$ F (x) ;

then

[cf
0
; cf

1
; cf

2
; :::]$ c F (x) :

Addition Rule

If

[f
0
; f

1
; f

2
; :::]$ F (x) ;

and

[g
0
; g

1
; g

2
; :::]$ G (x) ;

then

[f0 + g0 ; f1 + g1 ; f2 + g2 ; :::]$ F (x) +G (x) :

Right-shift Rule

If

[f
0
; f

1
; f

2
; :::]$ F (x) ;

then �z }| {
0; 0; :::; 0; f

0
; f

1
; f

2
; :::

�
$ x

k

F (x)

Derivative Rule

If
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[f0 ; f1 ; f2 ; :::]$ F (x) ;

then

[f
1
; 2f

2
; 3 f

3
; :::]$ F �(x)

Therefore, di¤erentiating a generating function has two e¤ects, on the given
sequence. Firstly, each term appear multiplied by its index. And secondly, the
entire sequence is shifted left one place.
So, for instance, if we take

x
1�x $ x+ x

2

+ x
3

+ :::$ [1; 1; 1; :::]

it holds

d
dx

�
x
1�x

�
$ 1�

1�x
2
� $ [1; 2; 3; 4; :::]

2. Inclusion-Exclusion Principle and Sieve Formula
Let X = f1; 2; :::;mg and Y = f1; 2; :::; ng be two sets, where m;n 2 N.
Then,
- The number of applications between X and Y is given by nm :

- The number of injective applications between such sets would be

n!
(n�m)! = n (n� 1) (n� 2) ::: (n�m+ 1)

- The number of surjective applications, Snm; among such sets, will be

S
nm
= m

n � C
m;1
(m� 1)

n

+ C
m;2
(m� 2)

n

+ :::+ (�1)
m�1

C
m;m�1 =

= m
n �

Pm�1

k=1
(�1)

k�1
C
m;k
(m� k)

n

=
Pm�1

k=0
(�1)

k�1
C
m;k
(m� k)

n

The Inclusion-Exclusion Principle (IEP ) is a known result in Combina-
torics, being essential in some proofs. Let c(A) be the cardinal of A. We know
that given two sets, A and B, the cardinal of their union is equal to the sum of
their corresponding cardinals, minus the cardinal of the intersection,

c(A [ B) = c(A) + c(B)� c(A \ B)

And so,

c([ A
i
) �

P
c (A

i
)

The inequality is based in that considering the sum of cardinals, when the
sets are not mutually disjoint, we surpass the value, and for this it will be
corrected.
In general, given a family of sets, fA

i
g
n

i=1
, it holds
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c([n

i=1
Ai) =

P
c(Ai)�

P
1�j<k�n

c (Aj \ Ak
)+

+
P

1�j<k<l�n

c (A
j
\ A

k
\ A

l
) � : : :+ (�1)n c (\n

i=1
A

i
)

where the summations are extended on �k-subsets�, as subsets of k elements
into a superset with cardinal n.

Recall that the number of k-subsets on n elements is given by the binomial
coe¢ cient

C
n;k
= n!

k! (n�k)!

And the total number of di¤erent k-subsets taken from a set of n elements,P
C
n;k
=
P

n!
k! (n�k)! = 2

n

The IEP was used by Nicholas Bernoulli, to solve the problem of computing
the number of �derangements�, i.e. of permutations where the elements do not
remain never �xed.
We formalize now this IEP.
For every �nite sequence, fA

i
g
n

i=1
, of at least two subsets (n � 2); all of

them included into a �nite set, S, it holds

c
�
[n

k=1
A
k

�
=

P
; 6= I � f1;2;::;ng

(�1)
[c(I)�1]

c (\
i2IAi

)

Generalizing these ideas, given any measure,m : S ! R
+
, for every sequence, fAig

n

i=1
,

of at least two subsets from a �nite set S; the measure of the set of elements
that do not belong to any A

i
is given by

m
�
\n

k=1
A
c

k

�
= m (S) +

P
;6=I�f1;2;::;ng

(�1)
[c(I)]

m (\
i2IAi

)

Note that if we use the convention of emptiness for the indices, i.e. I = ;; the
previous term m(S) may be included in the summatory. It su¢ ces eliminating
such condition of I not empty.
By this, we obtain a version of the Sylvester Formula,

m
�
\n

k=1
A
c

k

�
=
P

I �f1;2;::;ng
(�1)

k P
I�f1;2;::;ng

m (\
i2IAi

)

It is often convenient to aggregate terms relative to subsets with the same
cardinality,

m
�
\n

k=1
A
c

k

�
=
Pn

k=0
(�1)

kP
I�f1;2;::;ng
c(I)=k

m (\
i2IAi)
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Still, it is possible to generalize the equation, to the usually known as �Sieve
Formula�.
Given any measure, m : S ! R

+
, for every �nite sequence, fA

i
g
i=1;2;:::;n

,
with at least two subsets of S, the measure of the set of elements of S that
exactly belong to m of such A

i
; with 0 � m � n, will bePn

k=m
(�1)

k�m
C
k;m

P
I�f1;2;::;ng
c(I)=k

m (\i2IAi
)

Note that the Sylvester Formula is a special case of the Sieve Formula, when
m = 0.

3. Zeta functions
Among the Dirichlet Series, we found a very useful tool, in �elds as Number

Theory, Probability or Cryptography. It is the so called Riemann Zeta Function,

& (s) =
P
n2N

1
ns
=

Q
p prime

�
1� p

�s��1
; with s 2 C

Where it appears as product of Euler. And because it has a bounded se-
quence of coe¢ cients, these series converge absolutely to an analytical function,
on the complex open half-plane of s such that

Re(s) > 1

It diverges on the symmetrical open half-plane of s, in the complex plane,
Re(s) < 1. The de�ned function on the �rst region admits analytic continuation
to all C, except when s = 1. For s = 1, this series is formally identical to the
Harmonic series, which diverges.
As a consequence, it is a meromorphic function of s, being in particular,

holomorphic in a region of the complex plane, showing one pole in s = 1 ; with
residue equal to 1. Recall that a function is holomorphic when it is complex
di¤erentiable, and will be meromorphic when it is holomorphic on almost all C,
except in a set of isolated points, which are called the poles of the function.

Euler found a closed formula for � (2k) ; when k 2 N:
It will be expressed by

� (2k) = (�1)k�1(2�)2kB2k

2 (2k)!

denoting by B2k the Bernoulli numbers.
Such numbers can be de�ned of di¤erent modes.
So,
- as independent terms of Bernoulli polynomials, Bn (x) ;

- by a generating function,

G (x) = x
ex�1 =

P
i2N�

Bn
xi

i!
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with

jxj < 2�

where each coe¢ cient of the Taylor Series is the n-th Bernoulli number.

- by the recursive formula

B0 = 1

Bm = �
m�1P
j=0

C
m;j

Bj

m�j+1

As the Bernoulli numbers can be expressed in terms of the Riemann Zeta
function, they are indeed values of such function to negative arguments.

Some of the Zeta Function special values are

& (0) = �1=2

& (2) = 1 + 1

2
2 +

1

3
2 + ::: =

�
2

6

& (4) = 1 + 1

2
4 +

1

3
4 + ::: =

�
4

90

& (6) = 1 + 1

2
6 +

1

3
6 + ::: =

�
6

945

& (8) = 1 + 1

2
8 +

1

3
8 + ::: =

�
8

9450

:::

Note that we take here s even.
Because for odd values of s, it appears troubles and also irrational numbers;

for instance,

& (1) = 1 + 1
2 +

1
3 + :::!1 (harmonic series) ;

& (3) = 1 + 1
23
+ 1

33
+ ::: ' 1:2 (Apéry constant)
and also

& (1=2) ' �1:46; & (3=2) ' 2:6;
& (5=2) ' 0:134; & (7=2) ' 1:127; :::

The Logarithm of the Zeta Function will be

log & (s) =
P
n�2

�
�(n)
log n

� �
1
ns
�

being

Re (s) > 1

Here, � (n) denote the Lambda Function, also called sometimes Von Man-
goldt function, de�ned by
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� (n) = log p; if n = p
k

; for n 2 N
and some prime number, p;

and 0, otherwise

It is an arithmetic function that is neither additive nor multiplicative,

� (n+ n�) 6= �(n) + � (n�)
� (n � n�) 6= �(n) � � (n�)

Such Lambda function satis�es

log n =
P

djn � (d)

where the summation will be extended to all integers, d, dividing to n.

Related with the above series, we have the popular Riemann Hypothesis, still
an important open problem in current Mathematics. It is about the distribution
of zeroes of such Zeta Function.
It admits many variations, with di¤erent names, Selberg, Ihara, etc.
So, for instance, we may consider its multiplicative inverse, expressible as a

series by the Möbius Function. It can be reached, from the known series, by
tools as the Möbius Inversion and the Dirichlet Convolution.
The values produced by such function from integer arguments are called

�zeta constants�.
We can observe their convergence to one from the right,

& (s)! 1
+

Also, this functional equation is satis�ed

& (s) = 2
s

�
s�1

sin
�
�s
2

�
� (1� s) & (1� s)

which is true in all the complex �eld, relating its values in s and 1 � s: This
equation has a pole simple at s = 1, with residuum equal to one. It was proved
by Riemannn (1859).
Euler conjecured an equivalent relation to the functionP

n2N�

(�1)
n+1

ns

Also there exists a symmetric version of the precedent functional equation,
reachable by the change

s 7�! 1� s

This gives

& (s) �
�
s
2

�
�
� s
2 = 2

s

�
� 1�s

2

�
�
1�s
2

�
& (1� s)
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Sometimes, we de�ne the Eta Function, denoted by �; as

� (s) � ��
s
2 �

�
s
2

�
� (s)

It holds

� (s) = � (1� s)

The value of the Zeta function for negative even real values is zero.

& (�2) = & (�4) = & (�6) = ::: = & (�2k) = 0
with k 2 N

They are called trivial zeroes of �:
Furthermore, it will be cancelled on values of s that belongs to the critic

rang

fs 2 C : 0 < Re (s) < 1g

In this case, we call of non-trivial zeroes. It is because the di¢ culties to �nd
its position into the critical rang.

To obtain zeta function values for negative and non integer arguments, we
proceed by

& (�1=2) = 2
�3=2

�
�1=2

�(�1=2)
sin(�s2 )&(1�s)

' �4�
2:6 ' �0:2069

� represents the Gamma Function of Euler, de�ned by an integral expres-
sion,

� (s) =
R1

0
e
�t
t
s�1
dt

If n 2 N; then

� (n+ 1) = n!

For this reason, it is considered as an extension of the factorial. It holds

� (s+ 1) = s � (s)

and as

� (1) = 1

we have

� (n+ 1) = n � (n) = ::: = n! � (1) = n!
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Such functional equation also gives an asymptotic limit, proposed by (Nemes,
2007),

& (1� s) =
�
s
2�l

�sq
8�
s cos

�
�s
2

� �
1 +O

�
1
s

��
Among its applications, they are useful to search compact formulas for a

sequence given by a recurrence equation; to �nd relations among sequences, be-
cause the form of a generating function may suggest us a recurrence formula; to
explore the asymptotic behaviour of sequences, as in our case; to prove identities
involving sequences; or to solve enumeration problems in Combinatorics.

The famous Riemann Hypothesis says that for every non-trivial zero, s, of
�; it holds

Re (s) = 1
2

That is, all non-trivial zeroes are situated on the critical line, x = 1
2 :

The Zeta Function is generalizable to graphs, according to the theory elab-
orated by (Ihara, 1966). This function was �rst de�ned in terms of discrete
subgroups.
J. P. Serre suggested can be reinterpreted graph-theoretically. And it was

(Sunada, 1985) who put this into practice. In this version, it is denoted by &
G
,

and de�ned by

&
G
(s) �

"Q
p

�
1� s

L(p)�#�1

This product is taken over all prime walks, p, on the graph G, being L(p)
the length of the prime p.

Recall that a closed geodesic is a closed path such there is no backtracking, if
we around twice, i. e. it is a closed proper walk with the initial and �nal edges
di¤erent. If  is a closed geodesic, we denote by 

r

the obtained by repeating 
r times.
A closed geodesic which is not the power of another is called a prime geodesic:
An equivalence class of prime geodesics is called a prime geodesic class, or

prime, }.
Given a path, ; we denote by L () its length.
Therefore, two prime geodesics are said to be equivalent, if one is obtained

from another by a cyclic permutation of edges. The length of a prime, }; is the
length of any of its representatives.

Also &
G
is always representable as the reciprocal of a polynomial

&
G
(s) � 1

det (I � T s)
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where T is the edge adjacency operator (Hashimoto, 1990).

Recall that the adjacency operator, A, is acting on the space of functions
de�ned on the set of nodes of G = (V; E).
Being o(e) and t(e) the origin and terminus of e, respectively, it is de�ned

by

(Af) (x) =
P

e2Ex

f [t (e)] ;

where

Ex � fe 2 E : o (e) = xg

(Bass, 1992) also gave a determinant formula involving the adjacency oper-
ator.
For any Complex Network (CN), or Graph, G, the function &

G
can be ex-

pressed in terms of &, for di¤erent dimension values, n.

So,

If n = 1, then &
G
(s) = 2& (s) :

If n = 2, then &
G
(s) = 4& (s� 1) :

If n = 3, then &
G
(s) = 4& (s� 2) + 2& (s) :

If n =1, then &
G
(s) = 8

3 & (s� 3) +
16
3 & (s� 1) :

Recall that &
G
(s) is a decreasing function of s.

That is,

&
G
(s

1
) > &

G
(s

2
) ; if s

1
< s

2

And in the limit, if n!1; when s is next to the transition point, it holds

&
G
(s) = 2

n
&(s � n + 1)
�(n)

If the average degree of nodes, also called mean coordination number of the
graph, is �nite, then there exists exactly a value of s, denoted stransition; where
the Zeta Function changes from in�nite to �nite, or vice versa.
It is also called dimension of the Graph,or the Complex Network (CN).

Also, the &
G
function possesses three properties,

- monotonicity,

- stability,

and

- Lipschitz Invariance.

According to monotonicity, a subset has dimension less than or equal to a
superset.

According to stability, the dimension of the union of a family of sets is equal
to the maximum cardinal among its members,
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dim (
nS
s=1

A
s
) = max

s=1;2;:::;n
(dim A

s
)

And according to Lipschitz Invariance, the operations must intervene in the
change of distances between nodes only by �nite magnitudes, when the size, n;
of the graph tends to in�nity.

4. Adjacency Matrices
The adjacency matrix of a �nite directed or undirected n-graph (DG or UG)

is the (nxn)�matrix where the non-diagonal entry, aij ; is the number of edges
that connect from the node i to the node j: And the diagonal entry a

ii
is either

twice the number of loops at i; or just such number of loops, depending on our
mathematical needs.
As there exists a unique adjacency matrix for each graph, up to permutation

rows and columns, and it is not the adjacency matrix of any other graph, we
dispose by this tool of an algebraic characterization of graphs.
In the special case of a �nite simple graph, the adjacency matrix is composed

only by ones and zeroes, that is, a (0, 1)-matrix. Its zeroes are present in all
the main diagonal.
If the graph is undirected (UG), then its adjacency matrix is symmetric.
In the case of a complete graph, its adjacency matrix is composed by all

ones, except in the diagonal, of zeroes.
The relation between a graph and the eigenvectors and eigenvalues of its

adjacency matrix is analyzed in a relatively new �eld, named Spectral Graph
Theory.
The adjacency matrix of a complete bipartite graph, Kr;s; has the form�

0 J
J t 0

�
where J will be a (rxs)-matrix, and J t its transposed matrix.
Therefore, as we mentioned above, it is a very important fact, from the

mathematical viewpoint: these (adjacency matrices) can serve as isomorphism
invariants by graphs. So, it permits classify coherently the di¤erent types of
graphs, and into each class, its di¤erent elements.

Let A be the adjacency matrix of a DG or a UG. Then, the matrix An

is produced from n copies of A; more exactly, it is obtained multiplying A
iteratively n times. It admits the subsequent interpretation: the entry in row
i and column j gives the number of (directed or undirected) walks of length
n; from the node i until the node j:
We consider now the usual matrix I �A; or its opposite, A� I; being I the

identity matrix. The possibility of invertible caharacter of the matrix I � A is
related with the non existence of directed cycles in the graph G. So, it is the
case when we are working with DAGs. In this case, the interpretation would
be: the entry in row i and column j give the number of directed paths from i to
j: Such cardinality is always �nite, if there are no directed cycles.
This can be explained by geometric series applied to matrices,
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(I �A)�1 = I +A+A2 +A3 + :::

In our case, it can be interpreted in this way: the cardinal of DAGs from
i to j equals the number of DAGs of length zero, plus the number of DAGs
of length one, plus the the number of DAGs of length two, plus the number of
DAGs of length three, and so on.

The main diagonal of every adjacency matric corresponding to a graph with-
out loops has all zero entries.

For n�regular graphs, n is also an eigenvalue of A, for the vector v = (1 ; 1 ; 1 ; :::):
G is connected if and only if the multiplicity order of the eigenvalue n is

equal to one.

If G is a connected bipartite graph, then also � n would be an eigenvalue of
A: It is a consequence of the Perron-Fröbenius Theorem.

A distance matrix is like a high-level adjacency matrix. But it provide
more information. Not only about whether or not two nodes are connected, but
alsotells about the distances between them. We assume for this unitary distance
for each edge.
So, this matrix contains the mutual distances, taken pairwise, of a collec-

tion of points-nodes. Hence, generating a (nxn)-matrix. Its elements are non-
negative real numbers, given n nodes, or equivalently, n points in the Euclidean
space.
The cardinality of such set of pair of points will be

n(n�1)
2

It is the number of independent elements in the distance matrix.

We may observe some di¤erences between adjacency and distance matrices.
Firstly, showing only information about connected characted, either about

metric measure.
Secondly, an entry of a distance matrix will be smaller, if two elements

are closer. Nevertheless, close connected edges may yield larger entries, in an
adjacency matrix.

Distance matrices have many applications. For instance, in Bioinformatics,
where they are used to represent protein structures, in a coordinate-independent
manner.
They are also used in sequential and structural alignment, and for the de-

termination of protein structures for Nuclear Magnetic Resonance (NMR) or
X-ray chrystallography.

But sometimes it is more adequate to express data as a Similarity Matrix. It
is a matrix of scores which shown the similarity between two data points. Such
matrices are strongly inter-related with substitution matrices and the aforemen-
tioned distance matrices.

Among its applications, we have

- Case Based Reasoning
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- Intelligent Information Retrieval

- Content Based Image Retrieval

- Sequence Alignment, where higher scores are given to more similar charac-
ters. And lower, or besides negative scores, for dissimilar characters.

And other interesting case is that of Seidel Adjacency Matrices. They are
symmetric matrices, with a row and column for each node.
It possess all zeroes on the main diagonal, and in the positions corresponding

to nodes i and j; the values�
� 1 ; if the nodes are adjacent

+ 1 ; if they are not

Such matrices are introduced by (Lint and Seidel, 1966).
They are the adjacency matrices of the Signed Complete Graph, where the

edges of G are negative, and positives the edges which are not in G.
Its eigenvalues properties are very useful in the study of Strongly Regular

Graphs (SRG).

Recall that the graph G is said to be Strongly Regular, if there are two
integers, � and �, such that

- every two adjacent nodes have � common neighbours,

and

- every two non-adjacent nodes have � common neighbours.

For this reason, a strongly d-regular n-graph will be denoted as

srg (n; d; �; �)

being obviously n the number of its nodes, and d the number of edges that
incides in each node.

5. Cycle Index
And now we arrive to some beautiful tools that belongs to Group Theory.
In Combinatorics, Cycle Indices are useful in combinatorial enumeration,

when symmetries are taken into account. Because knowing the cycle index of
a permutation group, it is possible to enumerate equivalence classes that ap-
pears when the group acts on a collection of elements described by a generating
function.

In such case, we use the PET (Pólya Enumeration Theorem).

The cycle index, Z(P ); of a permutation group, P; is the average of

nQ
k=1

a
jk

k
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over all permutations in the group.

Let P be a permutation group of degree n and order m.

Each element of P has a unique decomposition into disjoint cycles; for in-
stance, fcig

i2I
:

Let the length of a cycle ci be denoted by jci j :
Now, let j

k
(g) be the number of cycles of length k in the permutation g;

being

0 � j
k
(g) �

�
n
k

�
and

nP
k=1

k j
k
(g) = n

Then, we may associate to g a monomial in the variables fa
i
g
f1;2;:::;ngQ

c2g

ajcj =
nQ
k=1

a
j
k
(g)

k

From here, the Cycle Index of P; denoted Z (P ) ; is de�ned by

Z (P ) � 1
jP j

P
g2P

nQ
k=1

a
j
k
(g)

k

A typical example may be the Cyclic Group C
3
; which contains the permu-

tations

[1; 2; 3] � (1) (2) (3)
[2; 3; 1] � (123)
[312] � (132)

and so, its cycle index will be

Z
�
C
3

�
� 1

3

�
a
3

1
+ 2a

3

�
The interpretation of the �rst permutation would be that it consists of three

cycles of length one, also named 1-cycles, or equivalently �xed points.
For this reason, it is represented by a

3

1
:

We apply now all this framework to analyze the edge permutation group of
3-graphs, i.e. graphs whith order three, or composed by three nodes.
Every permutation in the symmetric group of order three, denoted S

3
; of

permutations of nodes induces an edge permutation.
To compute the cycle index, we observe its permutations.
They are
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- the identity. Neither nodes nor edges are permuted. Its contribution is a
3

1
:

- three re�ections, in an axis which pass through a node and the midpoint
of the opposite edge. These �x one edge and exchange the remaining two.
Therefore, its contribution will be 3a

1
a
2
:

- two rotations, each one in reverse orientation, clockwise and counter-
clockwise, respectively. So, it creates a cycle of three edges, being its contibution
2a

3
:

Therefore, the Cycle Index of this group, E
3
; of edge permutations, will be

Z (E) = 1
6

�
a
3

1
+ 3a1a2 + 2a3

�
But the case of the edge permutation group for n-graphs is very di¤erent

when n > 3, because in such case

n (n � 1)
2 > n

Then the permutations are induced by
- the identity. It maps all nodes to themselves. Therefore, itlaso maps all

edges to themselves. As consequence, its contribution will be a
6

1
:

- six permutations that exchange two nodes, preserving the edge that con-
nects such two nodes, and also the edge that connects the two nodes not exc-
ahnged. Its contribution to cycle index is 6a

2

1
a
2

2
:

- eigth permutations that �x one node, and produce a 3-cycle for the remain-
ing three nodes not �xed. Its contribution will be 8a

2

3
:

- three permutations that exchange, simultaneously, two node pairs, preserv-
ing the two pairs that connect the two pairs. The remaining edges constitutes
two 2-cycles. So, its contribute by 3a

2

1
a
2

2
:

- six permutations that produce rotations of nodes along a 4-cycle. So, it
creates a 4-cycle of edges, and exchange the remaining two edges. Its contribute
by 6a

2
a
4
:

Hence, the Cycle Index of such edge permutation group of 4-graphs, which
may be denoted by E

4
; will be

Z (E4) =
1
24

�
a
6

1
+ 6a

2

1
a
2

2
+ 8a

2

3
+ 3a

2

1
a
2

2
+ 6a2a4

�
=

= 1
24

�
a
6

1
+ 9a

2

1
a
2

2
+ 8a

2

3
+ 6a2a4

�

6. Enumerating Bayesian Networks
Bayesian Networks are the most sucessful class of models to represent un-

certain knowledge. But the representation of conditional independencies (CIs,
in acronym) does not have uniqueness. The reason is that probabilistically
equivalent models may have di¤erent representations.
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And this problem is overcome by the introduction of the concept of Essential
Graph, as unique representant of each equivalence class. They represent CI
models by graphs. Such mathematical graphical tools containing both, directed
or/and undirected edges; hence, producing respectively Directed Graphs (DGs),
Undirected Graphs (UGs), or Chain Graphs (CGs), in the mixed case.
So, DAGmodels are generally represented as Essential Graphs (EGs). Know-

ing the ratio of EGs to DAGs is a valuable tool, because through this information
we may decide in which space to search. If the ratio is low, we may prefer to
search the space of DAG models, rather than the space of DAGs directly, as it
was usual until now.
The most common approach to learning DAG models is that of performing

a search into the space of either DAGS or DAG models (EGs).
It is preferable, from a mathematical point of view, to obtain the more exact

solution possible, studying its asymptotic behaviour.
But also it is feasible to propose a Monte Carlo Chain Method (in acronym,

MCMC ) to approach the ratio, avoiding the straightforward enumeration of
EGs.
And a many more elegant construct, if very di¢ cult, through the Ihara Zeta

function for counting graphs.

Recall that a DAG, G, is essential, if every directed edge of G is protected.
So, an Essential Graph (EG) is a graphical representation of a Markov equiv-

alence class. In the EG, each directed edge would have the same direction, in all
the graphs that form its equivalence class. There is a bijective correspondence
(one-to-one) among the set of Markov equivalence classes and the set of essential
graphs.
The labeled or unlabeled character of the graph means whether its nodes or

edges are distinguishable or not.
For this, we say it is

- vertex-labeled,

- vertex-unlabeled,

- edge-labeled,

or

- edge-unlabeled.

The labeling is a mathematical function, referred to a value or name assigned
to its elements, either nodes, edges, or both, which makes them distinguishable.
DAGs are studied by Stanley and Robinson, among other authors. And

also its necessary mathematical framework, not only by classical combinatorial
methods, but by new tools, as can be the Ihara-Selberg function for graphs.
Because it would be a long sequence of mathematicians, as Erdös, Rényi,

Harary, Steinsky, Gillispie, Perlman, Andersson, Madigan, Studený, Volf, Hashimoto,
Sunada, and so on.

Let
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F (s) �
P
i2N�

ci s
i

i!

(Robinson; 1973) denotes as � the linear operation on exponential generat-
ing functions which divides by exp2 Ci;2; i.e.

�F (s) �
P
i2N�

ci s
i

i! exp
2
Ci;2

Then, we can use the function �F (s) to count labeled DAGs. It will be
called as the Special Generating Function for F:

If we denote by a
n
the number of labeled n-DAGs, Grabner and Steinsky

have analyzed the zeroes of the function

�exp (�s) =
P
i2N�

(�s)i
i! exp

2
Ci;2

by Mathematical Analysis, more exactly by Theory of Residua.

It is possible to use generating functions to count labeled DAGs. For these,
it is necessary to make intervene the Inclusion-Exclusion Principle (IEP).
So, if we take the set of n-essential graphs, and denote its cardinal by a

n
;

applying the IEP, we obtain

a
n
=

P
s=1;:::;p

(�1)
s+1 P

ij
j2f1;:::;sg

c
�
A

i1
\A

i2
\ ::: \A

is

�

where

A
k
= fG 2 E : k is a terminal node of Gg ;

with k = 1, 2, . . . , n [*]

7. Conclusion
So, we are analyzed here the most useful tools to work with problems of
- Enumeration,

- Combinatorics,

- Cycle Index,

- Generating Functions,

- Formal Series,

and

- Zeta functions,

basically related with di¤erent graphs, as

- UGs (Undirected Graphs),

- DAGs (Directed Acyclic Graphs),
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- CGs (Chain Graphs),

a set which subsumes the precedent subclasses, and so on.

Our objective, to obtain a consistent mathematical framework, with provide
su¢ cient power to handle adequatly such type of problems, is (possibly) now
reached.
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