
AMO - Advanced Modeling and Optimization, Volume 11, Number 3, 2009

Interval Tree and its Applications1

Anita Pal∗ and Madhumangal Pal†

∗Department of Mathematics,
National Institute of Technology Durgapur,

Durgapur-713209, India.
e-mail: anita.buie@gmail.com

†Department of Applied Mathematics with Oceanology and Computer Programming,
Vidyasagar University, Midnapore – 721 102, India.

e-mail: mmpalvu@gmail.com

Abstract. Interval graph is a very important subclass of intersection graphs and perfect graphs.
It has many applications in different real life situations. The problems on interval graph are
solved by using different data structures among them interval tree is very useful. During last
decade this data structure is used to solve many problems on interval graphs due to its nice
properties. Some of its important properties are presented here. Here we introduced some
problems on interval graphs which are solved by using the data structure interval tree. A brief
review of interval graph is also given here.

Keywords: Design and analysis of algorithms, interval graph, interval tree, diameter, all-pairs
shortest paths, tree 3-spanner, k-covering problem.

AMS Subject Classifications: 68Q22, 68Q25, 68R10.

1 Introduction

An undirected graph G = (V, E) is said to be an interval graph if the vertex set V can be put
into one-to-one correspondence with a set I of intervals on the real line such that two vertices
are adjacent in G iff their corresponding intervals have non-empty intersection. i.e., there is a
bijective mapping f : V → I.

The set I is called an interval representation of G and G is referred to as the interval graph
of I [9].

Interval graphs arise in the process of modelling many real life situations, specially involving
time dependencies or other restrictions that are linear in nature. This graph and various subclass
thereof arise in diverse areas such as archeology, molecular biology, sociology, genetics, traffic
planning, VLSI design, circuit routing, psychology, scheduling, transportation etc. Recently,
interval graphs have found applications in protein sequencing [13], macro substitution [15],

1AMO-Advanced Modelling and Optimization, ISSN 1841-4311

211

circuit routine [19], file organization [4], job scheduling [4], routing of two points nets [11] and
so on. An extensive discussion of interval graphs is available in [9]. In addition to these, interval
graphs have been studied intensely from both the theoretical and algorithmic point of view.

In the following an application of interval graph to scheduling is presented.
Let C = {C1, C2, . . . , Cn} be a collection of courses offered by a University. Let Ti be the

time interval during which course Ci is to take place. We would like to assign courses to class
rooms so that no two courses meet in the same room at the same time [9].

This problem can be solved by properly colouring the vertices of the graph G = (C, E) where

(Ci, Cj) ∈ E ⇔ Ti ∩ Tj �= φ.

Each colour corresponds to a different classroom. The graph G is obviously an interval graph,
since it is represented by time intervals. This problem can be solved using only O(n) time [27].

2 Interval Graphs

Interval graphs satisfy a lot of interesting properties. The first one is the hereditary property.

Lemma 2.1 An induced subgraph of an interval graph is an interval graph [9].

The next property of interval graphs is also a hereditary property, called triangulated graph
property, which is stated below.

Every simple cycle of length strictly greater than 3 possesses a chord.
The graphs which satisfy this property are called triangulated graph. So we have the following

lemma.

Lemma 2.2 An interval graph satisfies the triangulated graph property [10].

But, the converse of this lemma is not true as the graphs of Figure 1 (b), (c), (d) and (e) are
all triangulated but they are not interval graphs.

Another important property on graphs is transitive orientation property stated below:
Each edge can be assigned a one-way direction in such a way that the resulting oriented graph

(V, E) satisfies the following condition:

(u, v) ∈ E and (v, w) ∈ E ⇒ (u, w) ∈ E, u, v, w ∈ V.

The following result is due to Ghouila-Houri [6].

Lemma 2.3 The complement of an interval graph satisfies the transitive orientation property.

The following theorem posed by Gilmore and Hoffman [7] establishes the position of the
interval graphs in the world of perfect graphs.

Theorem 2.1 Let G be an undirected graph. The following statements are equivalent.
(i) G is an interval graph
(ii) G contains no chordless cycle of length 4 and its complement G is a comparability graph.
(iii) The maximal cliques of G can be linearly ordered such that, for every vertex u of G, the
maximal cliques containing u occur consecutively.

212

Statement (iii) of this theorem has an interesting matrix formulation. A matrix whose entries
are zeros and ones, is said to have the consecutive 1’s property for columns if its rows can be
permuted in such way that the 1’s in each column occur consecutively.

The maximal cliques versus vertices incidence matrix of a graph G is called clique matrix.
The following theorem given by Fulkerson and Gross [5], is useful to recognize an interval

graph.

Theorem 2.2 An undirected graph G is an interval graph if and only if its clique matrix M
has the consecutive 1’s property for columns.

Another important characterization of interval graph proposed by Lekkerkerker and Boland
[14], is given below.

Theorem 2.3 An undirected graph G is an interval graph if and only if the following two
conditions are satisfied:
(i) G is a triangulated graph, and
(ii) any three vertices of G can be ordered in such a way that every path from the first vertex to
the third vertex passes through a neighbour of the second vertex.

The necessary and sufficient condition that a graph is an interval graph is stated below:

Theorem 2.4 [14] A graph is an interval graph if and only if it contains none of the graphs
shown in Figure 1 as an induced subgraph.

� � � � � � �
�
��

1 2 n

(d)

� � � � � � �
1 2 n

� �

�

(e)

�
�
�

��
��

�

��

�

1 2

n
(n > 3)

G∗
��� � �
�

�

· · ·

· · · · · ·

(a)
(b) (c)

(n > 1) (n > 0)

Figure 1: Forbidden structures for interval graphs.

Corollary 2.1 A tree is an interval graph if and only if it does not contain G∗ (see Figure 1)
as an induced subgraph.

213

Proof. Among the five forbidden structures of Theorem 2.4, only one of them can be an induced
subgraph of a tree G∗. �

Corollary 2.2 A tree is a circular-arc graph if and only if it is an interval graph.

Proof. Let G be a circular-arc graph which is a tree and suppose that it is not an interval graph.
Therefore, by Theorem 2.4, G contain some of the graphs shown in Figure 1. Since G is a tree,
this induced subgraph can only be G∗. But this graph is not a circular-arc graph, which is a
contradiction. The converse is true because interval graphs are a subclass of circular-arc graphs.

�

3 Interval Tree

Let G = (V, E), where |V | = n, |E| = m be a simple (i.e., there is no self loop or parallel edges)
connected graph, where vertices are numbered as 1, 2, . . . , n. Let I = {I1, I2, . . . , In} be the
interval representation of an interval graph G, where ar is the left end point and the br is the
right endpoint of the interval Ir, i.e., Ir = [ar, br] for all r = 1, 2, . . . , n. Without any loss of
generality we assume the following:

1. The intervals in I are indexed by increasing right endpoints i.e., b1 < b2 < · · · < bn.

2. The intervals are closed, i.e., contains both of its endpoints and that no two intervals share
a common endpoint.

3. Vertices of the interval graph and the intervals on the real line are one and the same thing.

4. The interval graph G is connected and the list of sorted endpoints is given.

Considering the location of 2n endpoints of the n intervals on the real line in increasing order
an array e = {e1, e2, . . . , e2n} is formed. For each element ei of e, three fields, ei.val, ei.int and
ei.type are defined as follows.

ei.val = the value on the real line of the ith endpoint ei,

ei.int = k, if ei is the endpoint of the interval Ik,

ei.type =
{

a, if the endpoint ei is left endpoint
b, if the endpoint ei is right endpoint.

It is shown, in [33], that the set intervals of every interval graph can be ordered in a non-
decreasing order of their right endpoints and this ordering is referred as IG ordering. In this
section, the vertices are labelled as IG ordering. The IG ordering is obviously unique when a
representation by a set of intervals is provided and fixed.

The following lemma is a powerful result on interval graph. The most of the algorithms
developed on interval graphs are based on this result.

Lemma 3.1 If the vertices u, v, w ∈ V are such that u < v < w in the IG ordering and
(u, w) ∈ E, then (v, w) ∈ E.

214

��
��
1 ��

��
2

��
��
4 ��

��
3

��
��
6

��
��

��
��

��
��

��
��
7

9

85

��
��

��
��
10

12 ��
���13

��
��
11

��
��
14

��
��
15

��
��
16

��
��
17

1 3 5 10 14

2 6 8 11 15

4 7 12 16

9 13 17

1 5 10 15 20 25 30 35

Figure 2: An interval graph and its interval representation.

v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
H(v) 4 4 6 6 7 9 9 12 12 13 14 14 16 17 17 17 17

Table 1: The array H of the graph of Figure 2.

An interval graph and its interval representation are illustrated in Figure 2.
Now, we introduce a very important data structure of interval graph called interval tree (IT)

which is used to solve several problems on interval graphs. In the next section the definition of
IT and its properties are presented.

3.1 Definition of interval tree

For each vertex v ∈ V let H(v) and L(v) represent respectively the highest and the lowest
numbered adjacent vertices of v. It is assumed that (v, v) ∈ V is always true. So, if no adjacent
vertex of v exist with higher (or lower) IG order than v then H(v) (or L(v)) is assumed to be
v. In other words,

H(v) = max{u : (u, v) ∈ E, u ≥ v}, and
L(v) = min{u : (u, v) ∈ E, u ≤ v}.

The array H(1 : n) of the graph of Figure 2 is shown in Table 1.
The array H is monotonic non-decreasing, which is proved in the following lemma.

215

Lemma 3.2 If u, v ∈ V and u < v then H(u) ≤ H(v).

Proof. If possible let H(u) > H(v) for u < v. From definition of H(v) it follows that v < H(v).
Thus we have u < v ≤ H(v) < H(u) which implies u < v < H(u). This implies (v, H(u)) ∈ E
(by Lemma 3.1). Therefore, H(v) = H(u), which contradicts H(u) > H(v). Hence H(u) ≤
H(v). �

For a given interval graph G let a spanning subgraph G′ = (V, E′) be defined as

E′ = {(u, v) : u ∈ V and v = H(u), u �= n}.

The following lemma establishes that this subgraph G′ is a tree and it is unique for a given
interval representation.

Lemma 3.3 The subgraph G′ for a connected interval graph G is a tree.

Proof. By the definition of G′, G′ has n vertices and n − 1 edges. Also, H(v) ≥ v, by the
definition of H. For the sake of contradiction, we assume that H(v) = v, for some v �= n. Let
u ∈ V be a vertex such that u < v. Since H(v) = v by hypothesis and H(u) ≤ H(v), by
Lemma 3.2, it follows that H(u) ≤ v. In other words, the vertex u is not adjacent to a vertex
which is greater than v. Also, since H(v) = v the vertex v is not adjacent to a vertex which is
greater than v. Thus the subgraphs induced by the vertices {1, 2, . . . , v} and {v + 1, . . . , n} are
disconnected in G. Hence, G is disconnected. Therefore, the assumption H(v) = v is not true,
i.e., H(v) > v for all v ∈ V , (v �= n). Thus, G′ has no self loop and consequently G′ is a tree. �

Since the subgraph G′ is built from the vertex set V and the edge set E′, where E′ ⊆ E, G′

is a spanning tree of G. In what follows the subgraph G′ is referred to as interval tree and it
is denoted by TI(G). The existence and uniqueness of interval tree are proved in the following
lemma.

Lemma 3.4 The interval tree TI(G) of a connected interval graph G exists and is unique for a
given interval representation.

Proof. The existence of TI(G) follows from the definition of interval tree and proof of Lemma
3.3.

Since the given IG order of a vertex v ∈ V is unique, H(v) is also unique. Thus the tree
TI(G) is unique for any interval graph G. �

The interval tree TI(G) of the interval graph of Figure 2 is shown in Figure 3.
The level of a tree is defined recursively as follows:

We take the root of the tree as n and the level of the root as 0. The level of each child of the
root is 1. If the level of a vertex is l then the level of each of its child is l + 1. The level of a
vertex u in the interval tree is denoted by levelI(u). Let Ni be the set of vertices which are at a
distance i from the vertex n, i.e., Ni is the set of vertices at level i. Thus Ni = {u : δG(u, n) = i}
and N0 is the singleton set {n}. It may be noted that if u ∈ Ni then levelI(u) = i. Let k be the
maximum length of a shortest path from the vertex n to any other vertex in G. It is easy to see
that Nk is non-empty while Nk+1 is empty.

216

��
��

��
��

��
��

1 2

4

��
��

��
��

��
��

��
��

��
��

3 5

76

9��
��

��
��

��
��

8

12

14 ��
��

��
��

��
��

15 16

17

��
��

��
��

13

10

��
��
11��
��
11
�

�
��

Figure 3: The interval tree of the graph of Figure 2.

3.2 Properties of the interval tree

Let min(Ni) and max(Ni) represent the minimum and maximum numbered vertices of the set
Ni. That is, min(Ni) = min{u : u ∈ Ni} and max(Ni) = max{u : u ∈ Ni}. The vertices of Ni

satisfy the following result.

Lemma 3.5 The vertices of Ni are consecutive integers and max(Ni+1) = min(Ni) − 1 for all
i.

Proof. From the definition of interval tree it follows that the vertices in N1 are L(n), L(n) +
1, . . . , n − 1. Therefore, the lemma is true for i = 1.

Let the lemma be true for i = k. Therefore the vertices in Nk are consecutive integers and
max(Nk+1) = min(Nk) − 1. By definition of interval tree, it follows that if u ∈ Nk+1 then
H(u) ∈ Nk. If v is equal to min(Nk+1) then by Lemma 3.1, v, v + 1, . . . ,max(Nk+1) and also
max(Nk+1) + 1, max(Nk+1) + 2, . . . , H(v) − 1 are all adjacent to H(v). Since, max(Nk+1) is
the maximum vertex in Nk+1 so, v, v + 1, . . . ,max(Nk+1) ∈ Nk+1. Thus the vertices in Nk+1

are consecutive integers. Since v is the minimum vertex in Nk+1 therefore v − 1 �∈ Nk+1, but
v − 1 ∈ Nk+2. That is, the lemma is true for i = k + 1 if the lemma is true for i = k. Hence the
lemma follows by induction. �

From the above lemma it follows that if u is a vertex of interval tree at level i with L(u) =
min(Ni) then the vertices at level (i + 1) of the interval tree are L(u), L(u) + 1, . . . , v− 1, where
v is the minimum vertex at level i. From this observation we have the following lemma.

Lemma 3.6 If levelI(u) < levelI(v) then u > v.

217

The height of a tree, T , is defined as

h(T) = max{levelI(v) : v ∈ V }.

The maximum value of levelI(v) is h(TI(G)) and the minimum value of levelI(v) is 0. This
minimum occurs when v = n. But, if v = n then d(u, n) = levelI(u) ≤ h(TI(G)). Thus,
δG(u, v) is maximum when levelI(v) = 1 and levelI(u) = h(TI(G)) and the maximum distance
is h(TI(G)) + 1.

The following lemma is obvious.

Lemma 3.7 levelI(1) = h(TI(G)) and levelI(n) = 0.

From Lemma 3.7, it is easy to note that the path from the vertex 1 to the vertex n in the
interval tree TI(G) is the longest path among the paths ending at n. This path is referred as
main path. The main path of the graph of Figure 2 is shown by thick (red) lines.

We denote the shortest distance between the vertices u and v in G by δG(u, v). If two vertices
have same level then the distance in G between them is either 1 or 2. This result is given in the
following lemma.

Lemma 3.8 [29] For u, v ∈ V if levelI(u) = levelI(v) then

δG(u, v) =
{

1, if (u, v) ∈ E(G)
2, otherwise.

But, if levelI(u) = levelI(v), u, v ∈ V then δTI(G)(u, v) is not necessarily 1 or 2, it may even
be more than 3 units. For example, for the interval graph of Figure 3, levelI(8) = levelI(10) = 3
and δTI(G)(8, 10) = 6.

If level of the vertex v is j then it should be adjacent in G only to the vertices at level j − 1,
j and j + 1. This observation is proved in the following lemma.

Lemma 3.9 [29] If u, v ∈ V and |levelI(v) − levelI(u)| > 1 then (u, v) �∈ E(G).

We denote ul as a vertex of level l and u∗
l a vertex of the same level on the main path. Let

Xl be the set of vertices at level l of IT which are greater than u∗
l , i.e.,

Xl = {v : v > u∗
l and v ∈ Nl}.

Similarly, Yl be the set of vertices at level l of IT which are less than u∗
l , i.e.,

Yl = {v : v < u∗
l and v ∈ Nl}.

It may be noted that Xl ∩ Yl = φ and Nl = Xl ∪ Yl ∪ {u∗
l }. Since the vertices of Nl are

consecutive integers, the vertices of Xl and Yl are also consecutive integers.

Lemma 3.10 If v be any member of
2⋃

i=0
Xl+i then δG(v, u∗

l) ≤ 2.

218

Proof. From definition of Xl it follows that u∗
l < v for all v ∈ Xl, and for all l.

Let v1 be any vertex of Xl+2. Then u∗
l+2 < v1 < u∗

l+1. Since (u∗
l+2, u

∗
l+1) ∈ E, by Lemma 3.1

(v1, u
∗
l+1) ∈ E. Therefore, δG(v1, u

∗
l) = 2 (as u∗

l → u∗
l+1 → v1). If v1

′′ be any vertex of Xl+1 then
u∗

l+1 < v1
′′ < u∗

l . Since (u∗
l+1, u

∗
l) ∈ E, (v1

′′, u∗
l) ∈ E (by Lemma 3.1) and hence δG(u∗

l , v
′′
1) = 1.

Again, if v ∈ Xl then δG(v, u∗
l) ≤ 2 (by lemma 3.8). Thus δG(u∗

l , v) ≤ 2 for all v ∈
2⋃

i=0
Xl+i.

�

Lemma 3.11 If v be any member of
2⋃

i=0
Yl+i then either δG(v, u∗

l) ≤ 2 or δG(v, u∗
l+3) ≤ 2.

Proof. Let t1 and t′1 be any two vertices of Yl+2 and Yl+1 respectively. Let u′
l be any vertex

at level l. There are two cases. Case I. u′
l = u∗

l and Case 2. u′
l �= u∗

l .
Case I. u′

l = u∗
l . In this case δG(u∗

l , t
′
1) = 1 and δG(u∗

l , t1) = 2. Also, δG(u∗
l , v) ≤ 2 (by Lemma

3.8) for all v ∈ Yl. Therefore, δG(u∗
l , v) ≤ 2 for all v ∈

2⋃
i=0

Yl+i.

Case II. u′
l �= u∗

l . Without loss of generality we assume that parent(t1) = t′1 and parent(t′1) = u′
l.

Since parent(t1) = t′1, i.e., H(t1) = t′1 < u∗
l+1, (t1, u

∗
l+1) �∈ E. Similarly, H(t′1) = u′

l < u∗
l implies

(t′1, u∗
l) �∈ E. Thus, δG(u∗

l , t
′
1) = 2 and δG(u∗

l , t1) = 3 (as u∗
l → u′

l → t′1 or u∗
l → u∗

l+1 → t′1 → t1).
Now, u∗

l+3 < t1 < u∗
l+2 < t′1, (u∗

l+3, u
∗
l+2) ∈ E and (t1, t′1) ∈ E implies (t1, u∗

l+2) ∈ E and
(u∗

l+2, t
′
1) ∈ E. Thus, δG(u∗

l+3, t1) ≤ 2 and δG(u∗
l+3, t

′
1) = 2. Hence, either δG(u∗

l , v) ≤ 2 or

δG(u∗
l+3, v) ≤ 2 for all v ∈

2⋃
i=0

Yl+i. �

4 Applications of Interval Tree

4.1 Construction of tree 3-spanner

A t-spanner of a graph G is a spanning subgraph H(G) in which the distance between every
pair of vertices is at most t times their distance in G, i.e., δH(u, v) ≤ t δG(u, v), for all u, v ∈ V .
The parameter t is called the stretch factor.

The minimum t-spanner problem is to find a t-spanner H with the fewest possible edges for
fixed t. The spanning subgraph H is called a minimum t-spanner of G and it is denoted by
Ht(G). A spanning tree of a connected graph G is an acyclic (cycle free) connected spanning
subgraph of G. A tree spanner of a graph is a spanning tree that approximates the distance
between the vertices in the original graph. In particular, a spanning tree T is said to be a tree
t-spanner of a graph G if the distance between any two vertices in T is at most t times their
distance in G, i.e., δT (u, v) ≤ t δG(u, v) for all u, v ∈ V . It is obvious that if G is connected then
|E(Ht(G))| ≥ n − 1, equality holds iff G admits a tree t-spanner.

The t-spanner problems

The minimum t-spanner problem is of two types - decision version and optimization version.
The decision version of the problem is stated below:

219

Input: A graph G = (V, E) and k ≥ 0 are given.
Question: Whether G has a t-spanner with k or fewer edges,

i.e., |E(Ht(G))| ≤ k.
The optimization version of the problem is defined in the following:

Input: A graph G = (V, E).
Problem: Find a t-spanner with the fewest possible edges for a fixed t.

In this section, the optimization version of the problem is considered.
It can be shown by examples that the interval tree may or may not be a tree 3-spanner of the

corresponding interval graph.

Lemma 4.1 The interval tree may or may not be a tree 3-spanner.

But, the tree 3-spanner can be constructed by modification of the interval tree. The modifi-
cation process and details of construction of tree 3-spanner is discussed in the next section.

The tree 3-spanner, T3S(G), of G can be constructed from the interval tree by rearranging
the parent vertex of some vertices.

The method is described below:
Let w∗

l and w∗
l+1 be two vertices on the main path at levels l and l+1 respectively. Then we assign

parent of each vertex u, satisfying w∗
l+1 < u < w∗

l as u∗
l i.e., parentI(u) = w∗

l , where parentI(u)
is the parent of the vertex u in the interval tree TI(G). This process is repeated for all vertices of
all levels l, l = 1, 2, . . . , h(TI(G))− 1. In other words, if Nl = {x1, x2, . . . , xi−1, w

∗
l , xi+1, . . . , xp}

and Nl+1 = {y1, y2, . . ., yj−1, w
∗
l+1, yj+1, . . . , yq}, where p = |Nl| and q = |Nl+1| then parent of

yj+1, . . . , yq and x1, x2, . . . , xi−1 are w∗
l .

If Nl = {x1, x2, . . . , xi−1, w
∗
l , xi+1, . . . , xp}, where p = |Nl|, then let N ′

l = {x1, x2, . . . , xi−1}
and N ′′

l = {xi+1, . . . , xp}. That is, N ′
l (respectively, N ′′

l) is the subset of Nl whose vertices are
less than w∗

l (respectively, greater than w∗
l). We denote the set of vertices at level l of the tree

T3S(G) by N∗
l . Then from the construction of T3S(G) we have N∗

l+1 = {w∗
l+1} ∪ N ′′

l+1 ∪ N ′
l , l =

0, 1, . . . , h(TI(G)) − 1.
The tree T3S(G), for the interval graph of Figure 2 is shown in Figure 4.

Lemma 4.2 If w∗
l and w∗

l+1 be two vertices on the main path at level l and l + 1 respectively
and u be any vertex such that w∗

l+1 < u < w∗
l then (u, w∗

l) is an edge in G as well as in T3S(G).

From the construction of tree 3-spanner and also from the Figure 4, it is easy to observe that
a vertex not in the main path is adjacent to exactly one vertex in the main path.

Lemma 4.3 Let u, v ∈ V and levelS(u) = levelS(v) then δT3S(G)(u, v) = 2.

Proof. Let levelS(u) = levelS(v) = l. Then by Lemma 4.2, (u, w∗
l−1) and (v, w∗

l−1) are two
distinct edges in T3S(G). Hence there exists only one path u → w∗

l−1 → v of length 2, and
consequently δT3S(G)(u, v) = 2. �

Let u be a vertex of T3S(G) at level l then there may be an edge (u, v) ∈ E(G) if v is at level
l − 1, l or l + 1. This fact is justified in the following.

Lemma 4.4 If |levelS(u)−levelS(v)| > 1 for the vertices u and v of T3S(G) then (u, v) �∈ E(G).

220

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 2 3

4 5

6 7 8

9 10 11

12 13

14 15 16

17

Figure 4: The tree 3-spanner, T3S(G), for the graph of Figure 2.

Proof. Let Nl = {x1, x2, . . . , xi−1, w
∗
l , xi+1, . . . , xp} where p = |Nl|.

Then N ′
l = {x1, x2, . . . , xi−1} and N ′′

l = {xi+1, . . . , xp}.
By the definition of TI(G), H(xj) ≤ w∗

l−1, xj ∈ N ′
l and (xj , v) �∈ E(G) for xj ∈ N ′

l and
v ∈ N ′′

l−1. But, there may be an edge in G between the vertices of N ′
l and N ′

l−1 (by Lemma
3.9). The parents of the vertices of N ′

l are changed to w∗
l in T3S(G). Similarly, the parents of

the vertices of N ′
l−1 become w∗

l−1 in T3S(G).
Hence levelI(u) = levelS(u) + 1 for all u ∈ N ′

l and for all l. But, the level of the vertices in
T3S(G) of N ′′

l remain same as in TI(G), i.e., levelI(u) = levelS(u) for all u ∈ N ′′
l and for all l.

Thus, by Lemma 3.9, if |levelS(u) − levelS(v)| > 1 then (u, v) �∈ E(G). �
The following lemma gives distance between two vertices in T3S(G) at two consecutive levels.

Lemma 4.5 If u and v be two vertices such that |levelS(u)− levelS(v)| ≤ 1 then δT3S(G)(u, v) =
2 or 3.

Proof. Case I. |levelS(u) − levelS(v)| = 0.
Without loss of generality we assume that levelS(u) = l = levelS(v). Then there is a path
u → w∗

l−1 → v between u and v of length 2. Thus δT3S(G)(u, v) = 2.

Case II. |levelS(u) − levelS(v)| = 1.
Let levelS(v) = l and levelS(u) = l +1. Then the path between u and v in T3S(G) is u → w∗

l →
w∗

l−1 → v which is of length 3. Thus, δT3S(G)(u, v) = 3. �
The following lemma is the combination of the lemmas 4.4 and 4.5.

Lemma 4.6 The tree T3S(G) is a tree 3-spanner of the interval graph G.

The interval tree exits and is unique for a given interval representation of an interval graph
(Lemma 3.4). The tree 3-spanner T3S(G) is obtained by rearranging the parents of the vertices
of interval tree TI(G). So one may conclude the following result.

221

Theorem 4.1 Every connected interval graph has a tree 3-spanner and it is unique for a given
interval representation.

Theorem 4.2 A tree 3-spanner of an interval graph with n vertices can be constructed, in
sequential, in O(n) time, if the sorted intervals are given.

Theorem 4.3 The tree 3-spanner of an interval graph can be constructed in parallel using
O(log n) time and O(n/ log n) processors on an EREW PRAM, where n represents the number
of vertices of the interval graph.

4.2 Computation of diameter

Let G = (V, E) be a graph and δG(u, v) be the shortest distance between the vertices u and v.
The eccentricity of the vertex u is denoted by ecen(u) and is defined as

ecen(u) = min
v∈V

{δG(u, v)}.

The radius (ρ(G)) and diameter (diam(G)) of a graph G are defined as

ρ(G) = min
u∈V

{ecen(u)}
diam(G) = max

u∈V
{ecen(u)}.

The diameter of an interval graph G and the height of the corresponding interval tree TI(G)
of G are related by the following relation.

Lemma 4.7 [28] Let v∗1 ∈ N1 be the vertex on the main path. If all v1 ∈ N1 are adjacent to v∗1
in G then diam(G) = h(TI(G)), otherwise diam(G) = h(TI(G)) + 1.

The level of the vertices on the main path of the both trees TI(G) and T3S(G) remain un-
changed, the heights of T3S(G) and TI(G) are also same. Thus the following lemma directly
follows from Lemma 4.7.

Lemma 4.8 The height of the tree 3-spanner is either diam(G) or diam(G)−1, i.e., diam(G) =
h(T3S(G)) or h(T3S(G)) + 1.

4.3 All-pairs shortest distances

According to the lemma 3.8, the shortest distance between the vertices u and v, when levelI(u) =
levelI(v), is either 1 or 2. But, if their levels are different then the distance between two vertices
may be 1 or 2 or more. In this case the distance between any two vertices can also be computed
easily with the help of interval tree. The technique is described below.

By Lemma 3.9, to compute the distance between u and v, u < v, we check the adjacency of
the vertex v with the vertices at levels level(v)+1, level(v) and level(v)−1. Hence the distance
δG(u, v) between any two vertices u, v ∈ V can be computed using the following lemma.

222

Lemma 4.9 [29] Given u, v ∈ V , let z1 be the vertex at level level(v) + 1 on the path marked
min(u) and z2 = H(z1). If level(u) > level(v), then

δG(u, v) =

level(u) − level(v), if (z1, v) ∈ E
level(u) − level(v) + 1, if (z1, v) �∈ E, and (z2, v) ∈ E
level(u) − level(v) + 2, otherwise.

Using the above lemma the all-pairs shortest distances can be computed for an interval graph.
The time complexity is presented below.

Theorem 4.4 [29] The all-pairs shortest distances of an interval graph with n vertices can be
computed in O(n2/p + log n) time using p processors on an EREW PRAM.

4.4 The 2-neighbourhood-covering problem

The k-neighbourhood-covering (k-NC) problem is a variant of the domination problem. Domi-
nation is a natural model for location problems in operations research, networking, etc.

A vertex x k-dominates another vertex y if δG(x, y) ≤ k. A vertex z k-neighbourhood-covers
an edge (x, y) if δG(x, z) ≤ k and δG(y, z) ≤ k, i.e., the vertex z k-dominates both x and y.
Conversely, if δG(x, z) ≤ k and δG(y, z) ≤ k then the edge (x, y) is said to be k-neighbourhood-
covered by the vertex z. A set of vertices C ⊆ V is a k-NC set if every edge in E is k-NC by
some vertex in C. The k-NC number ρ(G, k) of G is the minimum cardinality of all k-NC set.

This problem is NP-complete for general graph and also for chordal graph.
A linear time algorithm has been developed to solve 2-neighbourhood covering problem [16].
Let C be the minimum 2-neighbourhood-covering set of the given interval graph.
The main basic idea to compute C is described below. If there exists at least one vertex of

N1 which is not adjacent to u∗
l , we take u∗

1 as a member of C otherwise we select the vertex u∗
2

as a member of C. Let the first selected vertex (either u∗
1 or u∗

2) be at level l. After selection
of first member of C, we are to consider two vertices u∗

l+3 or u∗
1+4 (not both) will be a member

of C. This selection is to be made according to some results, discussed in the following. After
selection of second member of C, we set l + 3 or l, if u∗

l+3 is selected, otherwise we set l + 4 to l.
This selection is to be continued till new l + 3 becomes greater than the height of the tree IT.

The condition to select u∗
1 as a first member of C is obtained in the following lemma.

Lemma 4.10 If there exists at least one vertex of N1 which is not connected with u∗
1 then u∗

1 is
a possible member of C.

Proof. From the construction of IT it is clear that n is the parent of u∗
1. By hypothesis there

exist at least one vertex at level 1, i.e., in N1 which is not connected with u∗
1. Let v′1 be any

such vertex. Then δG(u∗
1, v

′
1) = 2 (as u∗

1 → n → v′1) and δG(u∗
1, n) = 1, i.e., the vertex u∗

1 is
a 2-NC of the edge (v′1, n). If v

′′
1 be any vertex of N1 connected with u∗

1 then δG(v
′′
1 , u∗

1) = 1.
As δG(n, u∗

1) = 1, u∗
1 is also a 2-NC of the edge (v

′′
1 , n). Hence u∗

1 is a 2-NC of (v1, n) for each
v1 ∈ N1. �

If u∗
1 is connected with all vertices of N1 then the vertex u∗

1 may also be a member of C.
But, in this case, the vertex u∗

2 is to be selected as a member of C. This result is proved in the
following lemma.

223

Lemma 4.11 If u∗
1 is connected with all vertices of N1 then u∗

2 is a possible member of C.

Proof. Let u∗
1 be connected with all vertices of N1. Therefore, δG(u∗

1, v1) = 1 = δG(u∗
1, n) for

all v1 ∈ N1. Hence the path from u∗
2 to any v1, v1 ∈ N1 is u∗

2 → u∗
1 → v1 (since u∗

1 is adjacent
with all vertices of N1), so δG(u∗

2, v1) = 2. But, u∗
2 may be adjacent to some vertices of N1. In

this case, δG(u∗
2, v1) = 1. Hence δG(u∗

2, v1) ≤ 2, for all v1 ∈ N1. Also, δG(u∗
2, n) = 2. Thus, the

edges (n, v1), v1 ∈ N1 are 2-NC by u∗
2.

Again, if v2 ∈ N2 then δG(u∗
2, v2) ≤ 2. Therefore, δG(u∗

2, v1) ≤ 2 and δG(u∗
2, v2) ≤ 2 for

v1 ∈ N1 and v2 ∈ N2. Thus, each edge (v1, v2) ∈ E is 2-NC by u∗
2 may be selected as a member

of C. �
The other members of the set C can be determined by using the lemmas 3.10 and 3.11.

Theorem 4.5 The 2-neighbourhood covering set of an interval graph can be computed in O(n)
time.

References

[1] Bera, D., Pal, M. and Pal, T.K., An efficient algorithm to generate all maximal cliques on
trapezoid graphs, International Journal of Computer Mathematics, 79 (10)((2002) 1057-
1065.

[2] Bera, D., Pal, M. and Pal, T.K., An efficient algorithm for finding all hinge vertices on
trapezoid graphs, Theory of Computing Systems, 36 (1) (2003) 17-27.

[3] Bera, D., Pal, M. and Pal, T.K., An optimal PRAM algorithmfor a spanning tree on
trapezoid graphs, Journal of Applied Mathematics and Computing, 12 (1-2) (2003) 21-29.

[4] Carlisle. M. C., Loyd. E. L., On the k-coloring of intervals, LNCS, 497, ICCI’91, (1991)
90-101.

[5] Fulkerson, D. R. and Gross, O. A., Incidence matrices and interval graphs, Pacific J. Math.,
15 (1965) 835-855.

[6] Ghouilo-Houri, A., Characterisation des graphs non orientes dont on peut orienter les arretes
de maniere a obtenir le graphe d’une relation d’ordre. C. R. Acad. Sci., Paris, 254 (1962)
1370-1371.

[7] Gilmore, P. C. and Hoffman, A. J., A characterization of comparability graphs and of
interval graphs, Canad. J. Math., 16 (1964) 539-548.

[8] Ghosh, P.K. and Pal, M. An optimal algorithm to solve 2-neighbourhood covering problem
on trapezoid graphs, Advanced Modeling and Optimization, 9(1) (2007) 15-36.

[9] Golumbic, M. C., Algorithmic Graph Theory and Perfect Graphs, (Academic Press, New
York, 1980).

[10] Hajös, G., Uber eine Art von Graphen, Fifst posed the problem of characterizing interval
graphs. Intern. Math. Nachr., 11 (1957) problem 65.

224

[11] Hashimoto, A. and Stevens, J., Wire routing by optimizing channel assignment within large
apertures, in Proc., 8th IEEE Design Automation Workshop, (1971) 155-169.

[12] Hota, M., Pal, M. and Pal, T.K., An efficient algorithm for finding a maximum weight
k-independent set on trapezoid graphs, Computational Optimization & Applications, 18
(2001) 49-62.

[13] Jungck, J. R., Dick, O. and Dick, A. G., Computer assisted sequencing, interval graphs and
molecular evolution, Biosystem, 15 (1982) 259-273.

[14] Lekkerkerker, C. G. and Boland, J. C., Representation of a finite graph by a set of intervals
on the real line, Fund. Math. 51 (1962) 45-64.

[15] Fabri, J., Automatic Storage Optimization, (UMI Press Ann Arbor, MI, 1982).

[16] Mondal, S., Pal, M. and Pal, T.K., An optimal algorithm to solve 2-neighbourhood covering
problem on interval graphs, International Journal of Computer Mathematics, 79 (2) (2002)
189-204.

[17] Mondal, S., Pal, M. and Pal, T.K., An optimal algorithm to solve the all-pairs shortest paths
problem on permutation graph, Journal of Mathematical Modelling and Applications, 2(1)
(2003) 57-65.

[18] Nayeem, Sk. Md. Abu and Pal, M., Shortest path problem on a network with imprecise
edge weight, Fuzzy Optimization and Decision Making, 4 (2005) 293-312.

[19] Ohtsuki. T., Mori. H., Khu. E. S., Kashiwabara. T., Fujisawa. T., One dimensional logic
gate assignment and interval graph, IEEE Trans. Circuits and Systems, 26 (1979) 675-684.

[20] Pal, M. and Bhattacharjee, G. P., An optimal parallel algorithm for computing all maximal
cliques of an interval graph and its applications, J. of Institution of Engineers (India), 76
(1995) 29-33.

[21] Pal, M., Some sequential and parallel algorithms on interval graphs, Ph.D Thesis, Indian
Institute of Technology, Kharagpur, India, 1995.

[22] Pal, M. and Bhattacharjee, G. P., Optimal sequential and parallel algorithms for computing
the diameter and the centre of an interval graph, Intern. J. Computer Maths., 59 (1995)
1-13.

[23] Pal, M. and Bhattacharjee, G. P., An improved algorithm for finding the maximum weight
k−independent set on an interval graph, in Proc.: 5th National Seminar on Theoretical
Computer Science, Bombay, India, Aug. 1-4, (1995) 95-104.

[24] Pal, M. and Bhattacharjee, G. P., The parallel algorithms for determining edge-packing
and efficient edge dominating sets in interval graphs, Parallel Algorithms and Applications,
7 (1995) 193-207.

[25] Pal, M. and Bhattacharjee, G. P., A sequential algorithm for finding a maximum weight
k-independent set on interval graphs, Intern. J. Computer Maths., 60 (1996) 439-449.

225

[26] Pal, M., An efficient parallel algorithm for computing a maximum-weight independent set
of a permutation graph, in Proc.: 6th National Seminar on Theoretical Computer Science,
Banasthali Vidyapith, Rajasthan, India, Aug. 5-8 (1996) 276-285.

[27] Pal, M. and Bhattacharjee, G. P., An optimal parallel algorithm to color an interval graph,
Parallel Processing Letters, 6(4) (1996) 439-449.

[28] Pal, M. and Bhattacharjee, G. P., A data structure on interval graphs and its applications,
J. Circuits, Systems, and Computer, 7 (1997) 165-175.

[29] Pal, M. and Bhattacharjee, G. P., An optimal parallel algorithm for all-pairs shortest paths
on unweighted interval graphs, Nordic J. Computing, 4 (1997) 342-356.

[30] Pal, M., Efficient algorithms to compute all articulation points of a permutation graph,
Korean J. of Computational and Applied Mathematics, 5 (1998) 141-152.

[31] Pal, M., A parallel algorithm to generate all maximal independent sets on permutation
graphs, Intern. J. Computer Maths., 67 (1998) 261-274.

[32] Pal, M., Mondal, S., Bera, D. and Pal, T. K., An optimal parallel algorithm for computing
cutvertices and blocks on interval graphs, Intern. J. Computer Math., 75 (2000) 59-70.

[33] Ramalingam, G. and Pandu Rangan, C., A unified approach to domination problem in
interval graphs, Information Processing Letters, 27 (1988) 271-274.

[34] Saha, Anita, Pal, M. and Pal, T.K., An optimal parallel algorithm to construct a tree
3-spanner on interval graphs, International J. Computer Mathethics, 82 (3) (2005) 259-274.

[35] Saha, Anita, Pal, M. and Pal, T.K., An optimal parallel algorithm for solving all-pairs short-
est paths problem on circular-arc graph, Journal of Applied Mathematics and COmputing,
17 (1-2) (2005) 1-23.

[36] Saha, Anita and Pal, M. An algorithm to find a minimum feedback vertex set of an interval
graph, Advanced Modeling and Optimization (An Electronic International Journal), 7(1)
(2005) 99–116.

[37] Saha, Anita, Pal, M. and Pal, T.K., An efficient PRAM algorithm for maximum weight
independent set on permutation graphs, Journal of Applied Mathematics and Computing,
19 (1-2) (2005) 77-92.

[38] Saha, Anita, Pal, M. and Pal, T.K., Selection of programme slots of television channels
for giving advertisement: A graph theoretic approach, Information Sciences, 177(2) (2007)
2480-2492.

226

