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Abstract

It will be very interesting to analyze the invariants and properties of
graphs by their di¤erent associate matrices. So, we describe now such
powerful tools, showing its advantages and disadvantages, and the way to
obtain information starting from such mathematical expresions.
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1. Adjacency Matrix
The adjacency matrix of a �nite directed or undirected n-graph (DG or UG)

is the (nxn)�matrix where the non-diagonal entry, aij ; is the number of edges
that connect from the node i to the node j: And the diagonal entry a

ii
is either

twice the number of loops at i; or just such number of loops, depending on our
mathematical requirements.
As there exists a unique adjacency matrix for each graph, up to permutation

rows and columns, and it is not the adjacency matrix of any other graph, we
dispose by this tool of an algebraic characterization of graphs.
In the special case of a �nite simple graph, the adjacency matrix is composed

only by ones and zeroes, that is, it will be a (0, 1)-matrix. Its zeroes are present
in all the main diagonal.
If the graph is undirected (UG), then its adjacency matrix will be symmetric.
In the case of a complete graph, its adjacency matrix is composed by all

ones, except in the diagonal, of zeroes.
The correspondence between a graph and the corresponding eigenvectors

and eigenvalues obtained from its adjacency matrix, is analyzed in a relatively
new �eld, named Spectral Graph Theory.
The adjacency matrix of a complete bipartite graph, Kr;s ; has the form�

0 J

J
t

0

�
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where J will be a (rxs)-matrix, and J
t

its transposed matrix.
Therefore, as we mentioned above, it is a very important fact, from the

mathematical viewpoint. These (adjacency matrices) can serve as isomorphism
invariants by graphs. So, it permits classify coherently the di¤erent types of
graphs, and into each class, its di¤erent elements.
Let A be the adjacency matrix of a DG, or a UG. Then, the matrix A

n

is
produced from n copies of A; more exactly, it is obtained multiplying the matrix
A by itself, i.e. iteratively, n times.
It admits a subsequent combinatorial interpretation, according which the

entry in row i and column j gives us the number of (directed or undirected)
walks of length n; from the node i until the node j:
We consider now the usual matrix I �A; or its opposite, A� I; being I the

identity matrix. The possibility of invertible character of the matrix I � A is
related with the non existence of directed cycles in the graph G.
So, it is the actual situation when we are working with DAGs. In this case,

the interpretation would be that the entry in row i and column j give us the
number of directed paths from i to j: Such cardinality is always �nite, if there
are no directed cycles.
This can be explained by geometric series applied to matrices,

(I �A)
�1
= I +A+A

2

+A
3

+ ::: =

+1P
i=0

Ai

In our case, it can be interpreted in this way: the cardinal of DAGs from
i to j equals the number of DAGs of length zero, plus the number of DAGs
of length one, plus the the number of DAGs of length two, plus the number of
DAGs of length three, and so on.

The main diagonal of every adjacency matric corresponding to a graph with-
out loops has all zero entries.

For n�regular graphs, n is also an eigenvalue ofA, for the vector v = (1 ; 1 ; 1 ; :::):
G is connected if and only if the multiplicity order of the eigenvalue n is

equal to one. If G is a connected bipartite graph, then also � n would be an
eigenvalue of A: It is a consequence of the Perron-Fröbenius Theorem.

2. Distance Matrix
A distance matrix is like a high-level adjacency matrix. But it provide more

information. Not only about whether or not two nodes are connected, but also
tell us about the distances between them. We assume, for this reason, an unitary
distance for each edge.
So, this matrix contains the mutual distances, taken pairwise, of a collection

of points-nodes.
Hence, generating a (nxn)-matrix. Its elements are non-negative real num-

bers, given n nodes, or equivalently, given n points in the Euclidean space.
The cardinality of such set of pair of points will be
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n(n�1)
2

It will be the number of independent elements in the distance matrix.

Note some comparative di¤erences between adjacency and distance matrices.

Firstly, showing only information about connected character, either about
metric measure.

Secondly, an entry of a distance matrix will be smaller, if two elements
are closer. Nevertheless, close connected edges may yield larger entries in an
adjacency matrix.

Distance matrices have many applications. For instance, in Bioinformatics,
where they are used to represent protein structures, in a coordinate-independent
manner.
They are also used in sequential and structural alignment, and for the de-

termination of protein structures for Nuclear Magnetic Resonance (NMR) or
X-ray chrystallography.

3. Similarity Matrix
But sometimes it is more adequate to express data as a Similarity Matrix. It

will be a matrix of scores which shown the similarity between two data points.
Such matrices are strongly interrelated with both, substitution matrices and

the aforementioned distance matrices.

Among its applications, we have

- Case Based Reasoning

- Intelligent Information Retrieval

- Content Based Image Retrieval

- Sequence Alignment, where higher scores are given to more similar charac-
ters.
Also by lower, or besides negative scores, for dissimilar characters.

And other interesting case is that of so called Seidel Adjacency Matrices.
They are symmetric matrices, with a row and column for each node. It pos-
sess all zeroes on the main diagonal (i.e. when i = j), and in the positions
corresponding to distinct nodes, i and j; the values�

� 1 ; if the nodes are adjacent
+ 1 ; if they are not

Such matrices are introduced by (Lint and Seidel, 1966).
They are the adjacency matrices of the Signed Complete Graph, where the

edges of G are negative, being positives the edges which are not in G.
Its eigenvalues properties are very useful in the study of Strongly Regular

Graphs (SRG).
Recall that the graph G is said to be Strongly Regular, if there are two

integers, � and �, such that
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- every two adjacent nodes have � common neighbours,

and

- every two non-adjacent nodes have � common neighbours.

For this reason, a strongly d-regular n-graph will be denoted as

srg (n; d; �; �)

being obviously n the number of its nodes, and d the number of edges that
incides in each node.

4. Incidence Matrix
The Incidence Matrix of a digraph is a (pxq)-matrix, which will be denoted

by �
b
ij

�
i2f1;2;:::;pg
j2f1;2;:::;qg

where p denotes the number of its nodes, whereas q denotes the number of its
edges.

Its entries will be such that

b
ij
=

8>><>>:
�1; if the edge e

j
leaves node n

i
(outgoing)

+1; if the edge ej it enters node ni (ingoing)

0; otherwise

So, an incidence matrix is a matrix that shows the relationship between two
classes of mathematical objects.
If the �rst class is C and the second class is C�, then the matrix has one row

for each element of C; and one column for each element of C �:
By this way, the corresponding entry in row i and column j will be equal

to one, if i and j are related, in the sense of being incident, and zero otherwise
(i.e. if they are not incident).

In Graph theory we can �nd two kinds of Incidence Matrices,

- unoriented

and

- oriented

Generalizing these concepts, we may to de�ne the Incidence Matrix of an
Incidence Structure as a (pxq)-matrix, where p and q are the number of points
and the number of lines, respectively, in such a way that
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bij =

(
+1; if the point pi and the line Lj are incident

0; otherwise

In this case, the Incidence Matrix will be also a biadjacency matrix of the
Levi graph of the structure.
And because there is a Hypergraph for every Levi graph, and a Levi graph

for every Hypergraph (or vice versa), it is possible to conclude that

the incidence matrix of an incidence structure describes a hypergraph

5. Degree Matrix
Wemay introduce the matrix of valencies, also called degrees (abridged, deg),

of the nodes in the graph.
Such degree matrix will be denoted by D(G) �

�
d
ij

�
, and it is de�ned as

dij �
(
deg (ni) � �i ; if i = j

0; otherwise

Do, the Laplacian matrix may be de�ned by

L = D:Dt

Hence, it is possible to shown that

D:Dt = ��A

where

� = (�1 ; �2 ; :::; �n)

As consequence, the Laplacian matrix does not depend of what orientation
is chosen for the graph G:

And so, there you are some fundamental matrices, which may appears asso-
ciated with a graph,

- the Incidence Matrix encapsulates node-edge relationships.

- the Adjacency Matrix encapsulates node-node relationships.

- the Degree Matrix encapsulates information about the degrees.

6. Laplacian Matrix
But also there is one last and many times interesting matrix, which will be

called the Laplacian Matrix.
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In Graph Theory, the Laplacian Matrix is a matrix representation which
may be associated to every graph. And, as we will see more later, it can be used
to calculate the number of spanning trees, for a given graph.
This will be one of the properties which can be observed from the Laplacian

matrix and its eigenvalues, with support at the Kirchho¤ ´s theorem. But it
will be applied to �nd many other properties into the graph.

Let G be a graph.
We can de�ne the Laplacian Matrix of G, denoted as

L (G) =
�
lij
�
1�i�n
1�j�n

by

L (G) � D (G)�A (G)

where D (G) is the degree matrix of G, and A (G) is the adjacency matrix of G:
That is, by an equivalent expression,

lij =

8>>>><>>>>:
deg (ni) ; if i = j

�1; if i 6= j and ni is adjacent to nj
0; otherwise; i:e:if being also i 6= j;
ni is not adjacent to nj

So, it will be the di¤erence among the degree matrix, D (G) ; and the adja-
cency matrix, A (G) :
If we consider this on digraphs, either the outdegree or the indegree might

be used. It depends on the application.

The normalized Laplacian matrix may be expressed by

l
N

ij
=

8>>>><>>>>:
1; if i = j and deg (ni) 6= 0

�1p
deg(ni) deg(nj)

; if i 6= j and ni is adjacent to nj

0; otherwise; i:e:if it also being also i 6= j;
ni is not adjacent to nj

Among the properties of the eigenvalues, f�ig
n�1

i=0
; of a Laplacian matrix,

L (G) ; we can select

1) L (G) will be always positive-semide�nite; that is,

�
i
� 0; 8i 2 f0; 1; 2; :::; n� 1g
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2) The number of times that zero appears as an of its eigenvalues gives us
the number of connected components in the graph.

3) �0 = 0:

4) �1 re�ects its algebraic connectivity.

5) The smallest non-trivial eigenvalue is called its spectral gap.

Recall that a positive-semide�nite (nxn)-matrix means that for any non-zero
vector, X, we have

Xt A X � 0

That is,

(x
1
x
2
:::x

n
)

0BB@
a
11

a
12

::: a
1n

a
21

a
22

::: a
2n

::: ::: ::: :::
an1 an2 ::: ann

1CCA
0BB@
x
1

x
2

:::
xn

1CCA � 0

This �nal result, after multiplying their respective matrices of dimension
(1xn); (nxn) and (nx1); will be a scalar, or (1x1) � matrix. More concretely,
in this case it will be a non-negative real number.

An important result is the named Kirchho¤´ s Theorem, according which we
can said that:
Let G be a labeled and connected n-graph, and suppose that f�

i
g
n�1

i=1
are

the non-zero eigenvalues of its Laplacian matrix.
Then, the number of its spanning trees will be given by

t (G) =

n�1Q
i=1

�
i

n

Note that �0 must be excluded of this formula, because it is always null.

It is possible to generalize the Laplacian matrix to the in�nite case, when
the cardinality of the set of edges and nodes is unbounded.
Such generalization is usually known as the discrete Laplace operator.

7. Graph and its Genus
An automorphism of a graph, G = (V; E), will be an isomorphism from G

onto itself.
So, a graph-automorphism of a simple graph is simply a bijection of its nodes,

f : G! G
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such that the image of any edge of G is always an edge in G:
That is, if

e = fi; jg 2 E

then

f (e) = ff (i) ; f (j)g 2 E

About another interesting concept in Mathematics, the word "genus" has
di¤erent, but very related, meanings.
So, in Topology, it depends on to consider orientable or non-orientable sur-

faces.

In the case of connected and orientable surfaces, it is an integer that rep-
resents the maximum number of cuttings, along closed simple curves, without
rendering the resultant manifold disconnected.
For this reason, we said many times that it is the number of "handles" on

it.
Usually, it is denoted by the letter g.
It will be also de�nable through the Euler number, or Euler Characteristic,

denoted by �:

Such relationship will be expressed, for closed surfaces, by

� = 2� 2g

When the surface has b boundary components, this equation transforms to

� = 2� 2g � b

which obviously generalizes the above equation.
For example, a sphere, or a disc, both have genus g = 0:
Instead of this, a torus has g = 1:

In the case of non-orientable surfaces, the genus of a closed and connected
surface is a positive integer, representing the number of cross-caps attached to
a sphere.
Recall that a cross-cap is a two-dimensional surface that is topologically

equivalent to a Möbius string.
As in the precedent analysis, it can be expressed in terms of the Euler char-

acteristic, by

� = 2� 2k
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being k the non-orientable genus.

For example, a projective plane has non-orientable genus k = 1:

And a Klein bottle has a non-orientable genus k = 2:

Turning to graphs, its corresponding genus will be the minimal integer, n,
such that the graph can be drawn without crossing itself on a sphere with n
handles.
So, a planar graph has genus n = 0 ; because it can be drawn on a sphere

without self-crossing.
In the non-orientable case, the genus will be also the minimal integer, n,

such that the graph can be drawn without crossing itself on a sphere with n
cross-caps.

If we pass now to topological graph theory, we will de�ne as genus of a group,
G, the minimum genus of any of the undirected and connected Cayley graphs
for G.

From the viewpoint of the Computational Complexity, the problem of "graph
genus" is NP-complete [Thomassen, 1989].

8. Graph Invariants and Graph Properties
We will says either graph invariant or graph property, when it depends only of

the abstract structure, not on graph representations, such as particular labelings
or drawings of the graph.
So, we may de�ne a graph property as every property that is preserved under

all its possible isomorphisms of the graph. Therefore, it will be a property of
the graph itself, not depending on the representation of the graph.

The semantic di¤erence also consists in its character

- qualitative

or

- quantitative

For instance, when we said

"this graph does not a perfect graph"

this will be a property, because it is a qualitative statement.

While when we says

"the number of nodes with degree two in such graph"
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this would be an invariant, because it is a quantitative statement.

From a mathematically strict viewpoint, a graph property can be interpreted
as a class of graphs, composed by the graphs that have in common the accom-
plishment of the same conditions.
Hence, also can be de�ned a graph property as a function whose domain

would be the set of graphs, and its range will be the bivalued set composed by
two options, true and false, fT; Fg ; according which a determinate condition
is either veri�ed or violated for the graph.

A graph property is called hereditary, if it is inherited by its induced sub-
graphs.

And it is additive, if it is closed under disjoint union.

For example, the property of a graph to be planar is both additive and
hereditary.
Instead of this, the property of being connected is neither.

The computation of certain graph invariants may be very useful, with the
purpose to discriminate whether two graphs are isomorphic, or instead of this,
they will be non-isomorphic.
The support of these criteria will be that for any invariant at all, two graphs

with di¤erent values cannot be isomorphic between them.
But however, two graphs with the same invariants either may, or may not,

to be isomorphic between them.

So, we will arrive to the notion of completeness.

Let I (G) and I (H) be invariants of two graphs, G and H:
It will be considered complete; if the identity of the invariants ever implies

the isomorphism of the corresponding graphs, i. e.

I (G) = I (H)) G � H

9. Enumerating DAGs
It will be also interesting to give some previous concepts, as that of line

graph, vertex-transitivity, edge-transitivity, and so on.
Let G be a graph. Suppose that we denote by V(G) its set of nodes, and by

E(G) its set of edges.
The so-called line graph of G will be the graph whose set of nodes is E

(therefore, it coincides with the set of edges of G), and whose edges connect
all pairs of E which have one common end (or extremity) in G. Usually, it is
abridged by L(G).
Hence, the Line Graph of G is another graph that represents the adjacencies

between edges of G.
The Line Graph is sometimes called

- Adjoint Graph,

- Interchange Graph,
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- Edge Graph

- Derived Graph of G,

and so on.

A graph, G, is said to be node-transitive (or vertex-transitive), if for any two
of its nodes, ni and nj ; there is an automorphism which maps ni to nj :

A simple graph, G, is said to be edge-transitive (or link-transitive), if for any
two of its edges, e and e�; there is an automorphism which maps e into e�:

A simple graph, G, is said to be symmetric, when it is both, node-transitive
and edge-transitive graph.

But a simple graph, G, which is edge-transitive, but not node-transitive, will
be said semi-symmetric.
Obviously, such a graph will be necessarily a bipartite graph.

10. Enumerating Bayesian Networks
Bayesian Networks are the most sucessful class of models to represent un-

certain knowledge. But the representation of conditional independencies (CIs,
in acronym) does not have uniqueness. The reason is that probabilistically
equivalent models may have di¤erent representations.
And this problem is overcome by the introduction of the concept of Essential

Graph, as unique representant of each equivalence class. They represent CI
models by graphs. Such mathematical and graphical tools containing both,
directed or/and undirected edges; hence, producing respectively Directed Graphs
(DGs), in particular acyclic elements, or Directed Acyclic Graphs (DAGs), either
Undirected Graphs (UGs), or Chain Graphs (CGs), in the mixed case. So, DAG
models are generally represented as Essential Graphs (EGs).
Knowing the ratio of EGs to DAGs is a valuable tool, because through this

information we may decide in which space to search. If the ratio is low, we
may prefer to search the space of DAG models, rather than the space of DAGs
directly, as it was usual until now.
The most common approach to learning DAG models is that of performing

a search into the space of either DAGS or DAG models (EGs).
It is preferable, from a mathematical point of view, to obtain the more exact

solution possible, studying its asymptotic behaviour. But also it is feasible to
propose a Monte Carlo Chain Method (MCMC) to approach the ratio, avoiding
the straightforward enumeration of EGs. And a many more elegant construct,
if very di¢ cult, through the Ihara Zeta function for counting graphs.

Recall that a DAG, G, is essential, if every directed edge of G is protected.
So, an Essential Graph (EG) is a graphical representation of a Markovian equiv-
alence class.
In relation with the Essential Graph, each directed edge would have the same

direction in all the graphs that belongs to its equivalence class.
There is a bijective correspondence (one-to-one) among the set of Markovian

equivalence classes and the set of essential graphs, its representatives.
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The labeled or unlabeled character of the graph means whether its nodes or
edges are distinguishable or not. For this, we will say that it is vertex-labeled,
vertex-unlabeled, edge-labeled, or edge-unlabeled.

The labeling will be considered as a mathematical function, referred to a
value or name (label), assigned to its elements, either nodes, edges, or both,
which makes them distinguishable.

Conclusion
In this way, it is reached a general vision of the situation, re�ecting the degree

of �tness to the adequated modelings, and we may to re�ect the properties and
invariants through its corresponding matrices.
So, we will establish a more powerful analytical framework, improving some

more our theoretical basis.
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