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Abstract

Pattern discovery or motif finding is one of the most challenging problems in both

molecular biology and computer science. In this paper we present an exact exhaus-

tive method, for finding motifs of length ℓ in a set of t sequences of length n with a

limited number of mutations d. The algorithm is based on the Depth First Search

on a suffix trie with maximum nodes O(tn) and is performed in O(t2n2ℓ2) time

complexity. The proposed algorithm is tested on yeast and human transcription

factor binding site data sets and the obtained results are compared to the other

well-known algorithms. The experimental results demonstrate that the proposed

method is working analogous to them algorithms.
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1 Introduction

Problem of pattern discovery appears in different areas of biology. Patterns that we want
to find usually correspond to functionally or structurally important elements in proteins or
DNA sequences. There is an assumption that the important regions are better conserved
in the evolution and therefore they occur more frequently than expected [Pavesi et al.,
2001]. These regions are called patterns or motifs and problem of finding them is called
motif (or pattern) finding problem. Pattern finding can be used in multiple sequence
alignment, protein structure and function prediction, categorization of protein families,
promoter signal detection and family DNA sequences.

In a simple form, the motif finding problem can be formulated as follows [Eskin and
Pevzner, 2002]. Given the sample sequence S, find all ℓ-mers occurring with up to d

mismatches (each ℓ-mer have at most d mismatches with another ℓ-mer), at least k times in
the sample S. Such ℓ-mers are called (ℓ, d)-k patterns or motifs. A variant of this problem
assumes that the sample S is split into several sequences i.e. consider S = {s1, s2, . . . , st},
we want to find all ℓ-mers that occur with up to d mismatches in at least k sequences
in the sample set S [Eskin and Pevzner, 2002]. In this problem a sequence is a string
on a given alphabet Σ; thus Σ = {A, C, G, T} for DNA sequences, Σ = {A, C, G, U}
for RNA sequences, and Σ is the set of all 20 amino acids for a protein. Most of the
algorithms can be easily adapted to work with any finite alphabet, and can be used also
outside bioinformatics, or an other type of biological data. There are two common models
for motif representation: String (or consensus) representation and Position Frequency
Matrix (PFM) (or profile) representation [Stormo, 2000]. String representation uses an
ℓ-mer sequence of symbols (or nucleotides) A, C, G and T to describe a motif. PFM
representation contains the probability for each nucleotide at each position.

Despite many studies, motif finding in unaligned DNA sequences is far from being
solved, most motifs in DNA sequences are so complicated that we do not have good
models or reliable algorithms for their recognitions. The first motif in DNA was found
in 1970 by Hamilton Smith after the discovery of HindII restriction enzyme [Eskin and
Pevzner, 2000]. Finding the palindromic site of this motif was not a simple problem in
1970. Since then, many algorithms are presented for solving motif or pattern finding
problem in general case [Rigoutsos and Floratos, 1998; Stormo, 2000; van Helden et al.,
2000; GuhaThakurta and Stormo, 2001; Fogel et al., 2004; Wei, and Jensen, 2006; Sandve
and Drabløs, 2006; Das and Dai, 2007; Ausiello et al., 2008; Klepper et al., 2008 ].

In order to obtain a list of candidate motifs, one can apply the classical pattern finding
algorithms based on approaches such as the Pattern Driven Approach (PDA) or Sample
Driven Approach (SDA) [Eskin and Pevzner, 2002; Pavesi et al., 2001]]. Probably the
best method for finding short ℓ-mer motifs is the PDA [Brazma et al., 1998] that tests all
4ℓ ℓ-mer patterns of fixed length ℓ in lexical order, compares each pattern to every ℓ-mer
in the sample, and scores each pattern by the number of approximate occurrences in the
sample (or by a more involved function) and finds the high scoring patterns and returns
all (ℓ, d)-k patterns [Eskin and Pevzner, 2002; Staden, 1989; Wolferstetter et al., 1996;
van Helden et al., 1998]. However, an exhaustive search through all 4ℓ ℓ-mer patterns
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becomes impractical for ℓ > 10. To bypass the problem of excessive time requirements
in PDA, Waterman et al. [1984] suggested an algorithm that significantly reduces the
time requirements of the pattern driven approach, called SDA. They noticed the most of
4ℓ patterns examined in the PDA are not worth examining, since neither these patterns
nor their neighbors appear in the sample, and a significant speed up can be achieved by
eliminating these patterns from the search. This approach is used in different heuristic
methods to prune the search space, either by searching only for a subset of possible
patterns, for example, those that occur exactly in the sequences at least once as in [Gelfand
et al., 2000] or by imposing restrictions on the location of mismatches along the pattern,
as in [Brazma et al., 1998; Califano, 2000] where mismatches can occur only at fixed
positions [Eskin and Pevzner, 2002].

Thus, in order to discover longer and subtler motifs, in the most widely used algorithms
the PDA has been abandoned, and the motif is extracted by analyzing and comparing
the patterns occurring in the sequences, i.e. the SDA is used [Lawrence et al., 1993; Baily
and Elkan, 1995; Hertz and stormo, 1999; Pavesi et al., 2001; Buhler and Topma 2002;
Stine et al., 2003; Gertz et al., 2007].

In this paper we present a simple and efficient algorithm MotifST (Motif finding using
Suffix Trie) for pattern discovery in DNA sequences or more generally any sequences with
an arbitrary alphabet. The algorithm MotifST uses a tree similar to suffix trie with a
fixed depth ℓ (the length of the motif) and by a Depth First Search (DFS) on this tree,
patterns with d mismatches are detected. Previously, suffix tree is used for motif finding
in [Marsan and Sagot, 2000; Pavesi et al. 2001]. In our algorithm we use suffix trie
instead suffix tree for motif finding. The time complexity of our algorithm is O(t2n2ℓ2)
and the space complexity of the algorithm is O(tn). We performed our algorithm on the
real data sets and the obtained results are compared with the result of well-known motif
finding tools Weeder [Pavesi et al., 2001], MotifSampler [Thijs et al., 2001], MEME [Bai-
ley and Elkan, 1995], YMF [Sinha and Tompa, 2003], oligodyad-analysis [van Helden
et al., 1998], ANN-Spec [Workman and Stormo, 2000], Consensus [Hertz and Stormo,
1999], MITRA [Eskin and Pevzner, 2002], Improbizer [Ao et al., 2004], SeSiMCMC [Fa-
vorov et al., 2005], GLAM [Frith et al., 2004], QuickScore [Egnier and Denise 2004], and
AlignACE [Hughes et al., 2000] to demonstrate the effectiveness of our proposed method.
Note that the reason for choosing these tools for comparison is due to their availability
and the accuracy of their results in comparison with the other existing tools so far.

2 Pattern Finding Algorithm

Giving a set of t sequences S = {s1, s2, . . . , st} on the alphabet Σ = {A, C, G, T} such
that each si = si[1], . . . , si[n] for 1 ≤ i ≤ t, and n denotes the length of sequence si, it is
desired to find all (ℓ, d)-k patterns (or motifs), that are patterns of length ℓ ∈ [ℓmin, ℓmax]
with at most d mismatches in at least k sequences of the set S, where d = ε × ℓ and
ε ∈ [0, 1] is a mismatch rate.

As mentioned, in PDA for finding motif in the set S we should search all the search
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space which is equal to |Σ|ℓ (ℓ ∈ [ℓmin, ℓmax]) in the set S which is an exponential space.
For this reason we should reduce the search space, and therefore we assume that motif
is exactly occurred in at least one sequence of S (without mismatch), i.e. we use SDA
and the search space |Σ|ℓ for ℓ ∈ [ℓmin, ℓmax] is reduced to all the subsequences of length
ℓ where at least one of them is exactly appeared in one sequence.

We use the term motif instance as a subsequence of length ℓ in each sequence of the set
S with at most d mismatches with original motif. The number of matches between two
sequences x and y of length ℓ is defined as:

H(x, y) =

ℓ
∑

i=1

h(x[i], y[i]),

where

h(a, b) =

{

1 if a = b,

0 otherwise.

For example, for the given original motif e = AGATT of length ℓ = 5, if we have the
following sequences

s1 =gggagtcccgtAGCTTaggcctcgg

s2 =aACAATaccaacgcaactctagggc

s3 =aaaccccaaACATAaaacgccgcta

s4 =cttaccatcGCATAcgaggacagaa

then the motif instance for e in s1 with 1 mismatch is AGCTT , in s2 with 2 mismatches
is ACAAT , in s3 with 2 mismatches is ACATA, and in s4 with 3 mismatches is GCATA.

The set U = {u1, . . . , ut} is called motif instance set where each ui is a motif instance
in si for the original motif. The pattern shared by the subsequences ui (1 ≤ i ≤ t)
of the motif instance set U = {u1, . . . , ut} is dubbed a consensus or a consensus motif
and shown by δ. Obviously, for the sequences and motif instances of the mentioned
example the motif instance set is equal to U = {u1, u2, u3, u4} where u1 = AGCTT ,
u2 = ACAAT , u3 = ACATA, and u4 = GCATA and their corresponding consensus is
equal to δ = ACATA. For a given motif instance set easily we can obtain the Position
Frequency Matrix (PFM) representation. As mentioned, PFM representation contains
the probability for each nucleotid at each position i.e. the value of j-th column in each
row gives us the probability of occupying the j-th position of the motif by symbols A,
C, G or T. For example, the PFM corresponding to the above motif instance set U =
{u1, u2, u3, u4} is given below.

1 2 3 4 5

A 3/4 0 3/4 1/4 2/4

C 0 3/4 1/4 0 0

G 1/4 1/4 0 0 0

T 0 0 0 3/4 2/4
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Note that in motif finding problem the original motif is unknown and we desire to find.
For this reason, we use potential motif. A potential motif is a subsequence of length ℓ in
a sequence si of S such that at least k subsequence in sj (1 ≤ j ≤ t, i 6= j) have at most d

mismatches with it. In fact, these subsequences are motif instances of this potential motif.
For these motif instances we can obtain motif instance set. Therefore for finding motifs,
first we find all potential motifs in S and all motif instance sets of these potential motifs
are created. Later between all motif instance sets the best motif instance set is selected.
The selection criteria can be different in various motif finding algorithms. Eventually the
consensus motif of the selected motif instance set is considered as an original motif.

In order to get a simple and efficient way of sequence comparison, our algorithm explores
these type of patterns by employing suffix trie. This algorithm is composed of four steps:

1. Constructing the suffix trie.

2. Searching for the pattern.

3. Enumeration of pattern.

4. Scoring and motif selection.

The detail descriptions of these steps are given below.

2.1 Constructing the suffix trie

In the first step, a tree similar to the suffix trie for all the given subsequences of S is
constructed.

A suffix trie is a data structure that exposes the interval structure of a string in a very
deep meaningful way. A suffix trie τ for a string x = x1, . . . , xn is a rooted directed
tree with exactly n leaves numbered from 1 to n. This tree is a special case of a suffix
tree [Ukkonen, 1995, Pavesi et al., 2001]. In suffix trie, each edge is labeled with non
empty character of x. Two edges leaving the same node can not have labels beginning
with the same character. For any leaf i, the concatenation of the edge labels on the path
from the root to leaf i exactly spells the suffix of x starting at position i, that is, it spells
out xi, . . . , xn. The same structure can be built also for the set of t sequences. The easiest
way is to append an array of length t, to each leaf, so to distinguish which sequence of
a suffix belong to, and to add the sequences to the tree one by one. In other word, it is
possible to annotate each leaf j of tree with an array of length t, where i-th entry of this
array is set to r if the word spelled by the path from root ending at the leave j occurs
in position r in i-th sequence. Clearly, if more than one entry is set, the subsequence is
occurred in more than one sequence. Also, if the subsequence is occurred more than one
position, the corresponding entry should be an array of positions. The construction of the
structure requires O(N) time and O(N) space [Ukkonen, 1995], where N is the overall
length of the sequences, while annotating it with the array takes additional O(tN) time
and O(tN) space.
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Conventionally the depth of a suffix trie corresponding to a sequence is equal to the
length of the corresponding sequence but here the depth of constructed suffix trie is equal
to the maximum length of the pattern (ℓmax) which we intend to find. We call this,
pseudo suffix trie. In this pseudo suffix trie each node is labeled with a character of
input sequences, and each node is connected to its children and shows a subsequence
of the input sequences, by concatenation the characters in the path beginning from the
root through to the corresponding node. Also the position of each subsequence in given
sequence is denoted in each node. The maximum number of leaves in this tree is equal
to t(n − ℓmax + 1). For example a suffix trie for the sequences ACCA and CCAAG with
length ℓmax = 3 is shown in Figure 1; the subsequence AAG is occurred in position 3 of
the second, therefore the second entry of the array corresponding to the first leave is set
to 3.

Given the annotated pseudo suffix trie of depth ℓmax, our algorithm searches for the
potential motif p of length ℓ ∈ [ℓmin, ℓmax] using DFS on this tree. The motif instances
of potential motif p is considered in two cases: exact motif instances and approximate
motif instances. In the first case, u is a motif instance of p such that H(p, u) = 0
and u is a subsequence in some position j in some sequence si, and in the second case,
H(p, u) ≤ 0. For this reason two different lists called self-postvector and mis-postvector
are considered for each node; self-postvector keeps the positions of exact potential motifs
and mis-postvector keeps the positions of both approximate and exact potential motifs.
Since we find subsequences of length ℓ, therefore for all the nodes these two arrays do not
need to exist, and just for nodes in depth ℓ ∈ [ℓmin, ℓmax] should be considered i.e., the
nodes in depth less than ℓmin do not need such arrays. The algorithm given in Algorithm 1
illustrates the construction of this tree. It should be noted that initially we should create
a dummy node as a root of tree and the algorithm is called with parameters root, S, ℓmin,
and ℓmax. In this step, simultaneously with construction of pseudo suffix trie, the position
of exact potential motifs are also calculated and added to the arrays self-postvector and

A

A

G

C

C

C

C

A

A

A

(0,3)
(1,0)

(2,1) (0,2)

Figure 1: Suffix trie for sequences ACCA and CCAAG with length 3.

182



Algorithm 1 Constructing the pseudo suffix trie algorithm.

1: Procedure ConsTree (root, S, ℓmin, ℓmax)
2: Var ℓ, i, j, r : Integer ; b : Character ; v : TreeNode ;
3: Begin

4: For ℓ := ℓmin To ℓmax Do Begin

5: For i := 1 To t Do Begin

6: For j := 1 To |si| − ℓ Do Begin

7: v = root ;
8: For r := j To j + ℓ − 1 Do Begin

9: c = si[r] ;
10: If One of children of v has label b Then

11: v = child v with label b ;
12: Else Begin

13: create a child for v and label it with b ;
14: v = child v with label b;
15: End ;
16: End ;
17: self-postvector[v][i] =self-postvector[v][i] ∪ j ;
18: mis-postvector[v][i] =mis-postvector[v][i] ∪ j ;
19: End ;
20: End ;
21: End ;
22: End ;

mis-postvector. In the next step (Step 2), the position of approximate potential motifs
are set.

2.2 Searching for the pattern

As mentioned, in this step the position of approximate potential motifs with desirable
mismatches are investigated and assigned to mis-posvector. The process is done by the
DFS traversal on the pseudo suffix trie. By getting to a node v in the depth ℓ ∈ [ℓmin, ℓmax]
in DFS traversal, the subsequence in the path from root to v is considered and checked
as a candidate for a potential motifs. This step is shown in Algorithm 2. At first call of
this algorithm, parameter v is equal to the root of tree (a global pointer to the root of
tree) and depth is equal to zero and ℓ is equal to ℓmax. In this algorithm, the algorithm
CheckPattern is called for finding motif instances of each candidate potential motif p.
This algorithm is given in Algorithm 3. The algorithm CheckPattern finds the position
of all subsequences of length ℓ that can be constructed from root to each node in level ℓ

with d mismatches from p, and theses positions are interested into the mis-posvector. In
this algorithm a potential motif p is matched along with the different subsequences on the
tree, starting from the root, and keeps track of the number of mismatches between p and
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Algorithm 2 Potential motif searching algorithm.

1: Procedure FindPotentialMotif(v, depth, ℓ)
2: Var p : String ; y : TreeNode ;
3: Begin

4: if (depth < ℓ) Then Begin

5: For each child y of node v Do

6: FindPotentialMotif(y, depth + 1, ℓ) ;
7: End ;
8: p = A subsequence from root to v ;
9: CheckPattern(v, root, 0, ε, 0, ℓ, p);

10: CheckPattern(v, root, 0, ε, 0, ℓ, prc);
11: End ;

Algorithm 3 The checking pattern algorithm.

1: Procedure CheckPattern(v, u, d, ε, depth, ℓ, p)
2: Var i, j, r : Integer ; b : Character ; y : TreeNode ;
3: Begin

4: If (u 6= v) Then Begin

5: If (d < ε × depth) or (d = 0) Then Begin

6: If depth < ℓ Then Begin

7: b = p[depth] ;
8: For each child y of node u Do Begin

9: If (label(y) = b) Then

10: CheckPattern(v, y, d, ε, depth + 1, ℓ, p); ;
11: Else

12: CheckPattern(v, y, d + 1, ε, depth + 1, ℓ, p); ;
13: End ;
14: End

15: Else Begin

16: mis-postvector[v] = mis-postvector[v] ∪ self-postvector[u] ;
17: mis-postvector[u] = mis-postvector[u] ∪ self-postvector[v] ;
18: End ;
19: End ;
20: End ;
21: End ;

each subsequences encountered at each path. Whenever the number of mismatches on a
path is greater than d, the subsequence is discarded. If our search completes the whole
sequence p, the surviving paths represent all the motif instances of p in the sequence with
at most d mismatches. The subsequence p appears in this method are given by the union
of the entry corresponding to different paths. As shown in Algorithm 2, in order to find
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the reverse complement of p in tree, CheckPattern is recalled for reverse complement of
p (prc).

2.3 Enumeration of pattern

At the end of Step 2, mis-postvector keeps the position of the exact and approximate motif
instances. In fact the array mis-postvector corresponding to each leaf of a pseudo suffix
trie shows the start position of motif instances and the sequence in which motif instances
is occurred. Now, the number of sequences including the occurred subsequences are
enumerated. If this number was equal or greater than k, a motif instance set is created
from these subsequences (motif instances) and is added to the set of candidate motif
instance sets M . Finally, M = {U1, . . . , Um} contains m motif instance sets, such that each
Ui is a motif instance set and contains at least k motif instances, i.e. Ui = {ui,1, . . . , ui,q}
where each ui,j is a motif instance with length ℓ ∈ [ℓmin, ℓmax], and k ≤ q ≤ t.

2.4 Scoring and motif selection

All the patterns obtained in the previous step are scored in this step. Assume the set
M = {U1, U2, . . . , Um} includes all motif instance sets and is obtained in Step 2. The
scoring schema for scoring these motif instance sets are based on information content (IC),
this means that each motif instance set is scored separately with regard to the background
(sequence set S). Thus, for the motif instance set Ui = {ui,1, . . . , ui,q}, the corresponding
position frequency matrix Wi is constructed. Later the IC value corresponding to Wi is
computed as follows:

IC(Wi) =
∑

α∈{A,C,G,T}

ℓ
∑

j=1

Wi[α, j] log(
Wi[α, j]

ω[α]
).

where Wi[α, j] is equal to the occurrence probability of character α ∈ {A, C, G, T} in j-th
position of the motif instance set Ui, and ω[α] is the occurrence probability of character
α in the set S.

All the obtained motif instance sets are sorted based on this score. Finally the top 10
consensus motifs between the obtained motif instance sets are investigated for reporting
as motifs.

2.5 Final Algorithm

Regarding the above steps, the final algorithm MotifST is shown in Algorithm 4. In
this algorithm the variables mis-postvector and self-postvector are global variables, as
mentioned, and keep the position of potential motifs.

The procedure ConsTree is performed in O(tnℓ) and the procedure FindPattern using
a DFS traversal on suffix trie for finding pattern is performed in O(tnℓ) and since this
process is performed for each word of length ℓ, therefore the total time complexity of
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Algorithm 4 The final MotifST algorithm.

1: Procedure MotifST(S, ℓmin, ℓmax)
2: Var ℓ : Integer ; mis-postvector, self-postvector: Array of Integer ;
3: root : TreeNode ;
4: Begin

5: Create a dummy node root ;
6: ConsTree(root, S, ℓmin, ℓmax) ;
7: For ℓ := ℓmin To ℓmax Do

8: FindPattern(root, 0, ℓ) ;
9: Create a set of motif instance sets M = {U1, . . . , Um} from mis-postvector ;

10: Sort the set M = {U1, . . . , Um} based on IC ;
11: Select top 10 consensus motif of motif instance set M as motifs ;
12: End ;

the algorithm is O(t2n2ℓ2). Finally, the total time complexity of Algorithm MotifST
is O(t2n2ℓ2). For space complexity, the tree is constructed in O(tn) space, and integer
array corresponding to each leave consumes O(tn) space, therefore the total space of this
algorithm is O(tn).

3 Experimental results

Our algorithm is tested in similar method used in [Tompa et al., 2005], we employ the
data sets addressed in [Tompa et al., 2005] to test our algorithm. These data sets contain
a well-known promoter database of 10 yeast, 8 fly, 12 mouse, and 12 human and their
corresponding their motifs. From these data sets, 10 of yeast and 6 of human data sets
are selected for test. This selection is done because of the reported results in [Tompa
et al., 2005] on these data sets, show that the most algorithms get better results on
these data sets. The obtained results by MotifST are compared with the well-known
programs Weeder [Pavesi et al., 2001], MotifSampler [Thijs et al., 2001], MEME [Bai-
ley and Elkan, 1995], YMF [Sinha and Tompa, 2003b], oligodyad-analysis [van Helden
et al., 1998], ANN-Spec [Workman and Stormo, 2000], Consensus [Hertz and Stormo,
1999], MITRA [Eskin and Pevzner, 2002], Improbizer [Ao et al., 2004], SeSiMCMC [Fa-
vorov et al., 2005], GLAM [Frith et al., 2004], QuickScore [Egnier and Denise 2004], and
AlignACE [Hughes et al., 2000]. As mentioned, the reason for choosing these tools for
comparison is because of their availability and the accuracy of their results in comparison
with the other existing tools so far.

The comparison of these algorithms are performed based on the following comparison
measurements: nucleotide Performance Coefficient (nPC), Site Sensitivity (sSn), Site Pos-
itive Prediction (sPP), and Site Average Performance (sAP) [Tompa et al., 2005]. The
definition of these measurements are given in Table 1. In this table, the variables nTP de-
notes the number of nucleotide positions in both known sites and the predicted sites, nFP

shows the number of nucleotide positions not in known sites but in the predicted sites,
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Table 1: Comparison measurement formulas.

Measurement Formula

nPC nTP
(nTP+nFP+nFN)

sSn sTP
sTP+sFN

sPP sTP
sTP+sFP

sAP sSn+sPP
2

nFN defines the number of nucleotide positions in known sites but not in the predicted
sites, nTN denotes the number of nucleotide positions in neither known sites nor the
predicted sites, sTP defines the number of known sites overlapped by the predicted sites,
sFP shows the number of predicted sites not overlapped by known sites, and sFN denotes
the number of known sites not overlapped by the predicted sites [Benitez-Bellon et al.,
2002]. By regarding the nPC formula in Table 1, we have nPC ≤ 1 and the higher value
of nPC shows that the known sites and the predicted sites are more similar. Obviously,
if the predicted sites were equal to the known sites then nPC is equal to one. Also, sAP
shows the accuracy of the algorithm in site level, and is equal or less than 1. All of these
measurements are previously defined in [Tompa et al., 2005] as suitable measurements for
comparison of motif finding tools.

For comparing the obtained results by our algorithm with other well-known algorithm,
we have employed the Assessment of Computational Motif Discovery Tools also introduced
by Tompa et al. [2005] and addressed in [http://bio.cs.washington.edu/assessment]. This
tool gets the results of each algorithm as input and produces the values of the above
measurements for comparison. We need a way for summarizing the performance of a
given motif finding program over all data sets. Recall from [Tompa et al., 2005], one
method for summarizing is Combined method. In this method, first we calculate nTP,
nFP, nFN, nTN, sTP, sFP and sFN over all data sets, then we add up these values, and
finally all data sets are considered as a large data set and the nPC and sAP measures are
computed from these values.

As mentioned before, the algorithm for finding (ℓ, d)-k pattern (or motif) gets the pa-
rameters ℓmin, ℓmax, d, and k as input parameters. For comparing the algorithm MotifST
with other pattern finding tools we let ℓmin = 6, ℓmax = 15, ε = 0.25 and k = 3. The
algorithm achieved best results with these parameters.

Because of the repeated subsequences in the DNA sequences, motifs might not be se-
lected correctly. For this reason, prior to the execution of the program, the repeated sub-
sequences are deleted in the DNA sequences. The Tandom Repeats Finder software is used
for deleting the repetitive subsequences [Benson, 1999]. This software employs masking
method for deleting repeated subsequences. After deleting the repeated subsequences in
16 data sets (10 from yeast and 6 from human data sets), MotifST algorithm is performed
on them, with the above mentioned parameters. All the obtained motifs by this algo-
rithm, are sorted based on the information content. Finally, all motifs which are similar
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or nearly similar to actual motifs reported in [http://bio.cs.washington.edu/assessment]
are selected as a motifs. Therefore, in these 16 data sets, in 7 cases the first motif, in
4 cases the second motif, in 3 cases the third motif and in two cases the sixth motif are
selected as the final motifs.

As mentioned, for comparing the obtained results by MotifST algorithm with other
algorithms, the Assessment of Computational Motif Discovery Tools (ACMD) introduced
by Tompa et al. [2005], addressed in [http://bio.cs.washington.edu/assessment] are used,
i.e. the motifs obtained in the above 16 data sets by our algorithm and the other well-
known algorithms are provided as input parameters for this tool. This tool computes
statistical measures introduced in Table 1 for these motifs.

In Table2 the results of ACMD tool for the motifs of 6 human data sets obtained by
Weeder, MotifST, MotifSampler, MEME, YMF and oligodyad-analysis are denoted. The
other programs achieved not good results on this data set and their results are not shown.
Based on the Combined method, the nPC measurement of the obtained results and sAP
measurement of the obtained results are shown in Figure 2 and Figure 3 respectively.

In Table 3 the results of ACMD tool for motifs of 10 yeast data sets obtained by Mo-
tifST, Weeder, MotifSampler, MEME, YMF, AlignACE, oligodyad-analysis, ANN-Spec,
Consensus MITRA, Improbizer, SeSiMCMC, GLAM, and QuickScore are denoted. Based
on Combined method, the nPC measurement of obtained results and sAP measurement
of obtained results are shown in Figure 4 and Figure 5 respectively.

By the definition of nPC value, higher value of nPC shows the more number of TP

and less number of FN and FP . Actually, the algorithm with higher nPC value shows a
better performance. Also, by the definition of sAP value, higher value of sAP shows more
number of TP and less number of FN and FP in site level. Therefore, the algorithm with
higher sAP value shows a better accuracy. By analyzing the results shown in Figures 2
and 3, we can see for Human data sets, Weeder has obtained best results and the second
best algorithm is our algorithm that provides the second best results. For Yeast data set,
as shown in Figures 4 and 5, MotifSampler and Weeder show better results than our algo-
rithm but our algorithm performs better than the other tools. Therefore, experimentally
we see that for yeast and human data sets, MotifST is as good as the other tools and can

Table 2: The evaluated measurement values for Human data sets.

Tools nPC nCC sSn sPP sAP

Weeder 0.319809 0.489695 0.596154 0.659575 0.627864

MotiST 0.212581 0.346444 0.365385 0.51514 0.439449

Oligidyad-analysis 0.203008 0.365561 0.307692 0.470588 0.38914

YMF 0.190998 0.340687 0.307692 0.390244 0.348968

MEME 0.112646 0.197526 0.153846 0.3037692 0.230769

MotifSampler 0.012546 -0.003912 0.038462 0.025317 0.031889
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Figure 2: The nPC measure evaluated by combined method for the results obtained from
the different algorithms on Human data sets.
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Figure 3: The sAP measure evaluated by combined method for the results obtained from
the different algorithms on Human data sets.
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Table 3: The evaluated measurement values for yeast data sets.

Tools nPC nCC sSn sPP sAP

Weeder 0.2330536 0.3863337 0.52 0.549258 0.5346479

MotifSampler 0.2045307 0.3501753 0.3866667 0.4915254 0.439096

UTMotif 0.1554878 0.2693545 0.3648649 0.3913043 0.3780846

MEME 0.140914 0.2381559 0.32 0.3037975 0.3118987

YMF 0.1115288 0.2076962 0.28 0.3387097 0.3093548

AlignACE 0.1020954 0.1684257 0.28 0.2019231 0.2409615

ANN-Spec 0.0820595 0.1331542 0.3066667 0.1411043 0.2238855

Oligidyad-analysis 0.0760795 0.1639418 0.1866667 0.3043478 0.2455072

MITRA 0.0686717 0.1148955 0.16 0.1538462 0.1569231

Improbizer 0.0629461 0.0988463 0.2666667 0.1333333 0.2

Consensus 0.0602706 0.1149074 0.1466667 0.2391304 0.1928986

SeSiMCMC 0.0378673 0.0504601 0.0933333 0.0721649 0.0827491

GLAM 0.0332075 0.0442325 0.1466667 0.0789475 0.1022807

QuickScore 0.0294249 0.0391636 0.12 0.0434783 0.0817391
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Figure 4: The nPC measure evaluated by combined method for the results obtained from
the different algorithms on Yeast data sets.
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Figure 5: The sAP measure evaluated by combined method for the results obtained from
the different algorithms on Yeast data sets.

be used as an standard tool for motif finding.

4 Conclusion

In this article, we have proposed a new approach for finding motifs in biological data or
other data. We developed a novel motif-finding algorithm MotifST that detects motifs
based on the suffix trie. The method is implemented and tested on real data sets. The
obtained results are compared with other well-known motif finding algorithms. For com-
parison two measurements nPC and sAP are considered. In experiments on real biological
data sets, Tompa’s motif assessment benchmarks, we observed that MotifST performs as
well as the other existing motif finding tools and therefore it can be used as a standard
motif finding tool.
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