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SOLVING LINEAR PROGRAMMING PROBLEM VIA A
REDUCED DIMENSION METHOD

ZHENSHENG YU JING SUN

Abstract: Motivated by the alternating direction method for variational in-
equalities, we consider a reduced dimension method in this paper for the solution
of linear programming problems. Its main idea is to reformulate the complemen-
tary conditions in the primal-dual optimality conditions as a linear projection
equation. By using this reformulation, we only need to make one projection
and solve a linear system with reduced dimension at each iterate. Under weak
conditions, the global convergence is established.

Keywords: Linear programming, Optimality condition, Projection equation,
Global convergence.

AMS(2000) Subject Classification 65K05, 49D37

1. Introduction

In this paper, we consider an algorithm for the solution of linear programming
problem in the primal form

min cT x
s.t. Ax = b, x ≥ 0.

(1)

or in the dual form
max bT y
s.t. AT y + z = c, z ≥ 0.

(2)

where A ∈ Rm×n, c ∈ Rn, b ∈ Rm are the given data.
Both the primal and the dual linear programming have the same optimality

conditions, namely AT y + z = c,
Ax = b,
xi ≥ 0, zi ≥ 0, xizi = 0, i = 1, 2, · · · , n.

(3)
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Consequently, the primal problem (1) has a optimality solution x? ∈ Rn if and
only if the dual problem (2) has a optimality solution. Moreover, any of these
two conditions is equivalent to the solvability of the optimality conditions (3).
Hence solving the optimality conditions (3) is completely equivalent to solve the
original line programming problem (1).

Primal-dual interior point methods are a class of efficient methods for solving
linear programming problems. The basic idea of these algorithms is based on the
optimality conditions (3) and introduces a certain perturbation of (3) depending
on a parameter τ > 0 : AT y + z = c,

Ax = b,
xi > 0, zi > 0, xizi = τ, i = 1, 2, · · · , n.

(4)

The system (4) is usually called the central path conditions, under certain as-
sumptions, there is a unique solution ωτ = (xτ , yτ , zτ ) of (4) for each τ > 0. The
corresponding mapping

τ ↪→ ωτ

is called the central path, and the main idea of interior point methods is to
follow this central path numerically. This is typically done by applying New-
ton method to the equations within the central path conditions (4), whereas a
suitable stepsize takes care of the strict inequality constraints.

Smoothing -type methods follow a different approach. The general idea of
these methods is to reformulate the optimality conditions (3) as a system of
equation (not involving any inequalities):

Φ(x, y, z) = 0 (5)

Since system (5) is nonsmooth in general, it then gets approximated by a smooth
system of equations to which Newton’s method can be applied, see [Chen and
Chen, 1999], [Chen and Xiu, 1999], [Hotta and Yoshise, 1999], [Tseng, 1998] and
references therein for a couple of examples following this pattern.

Recently, by borrowing some idea from interior point methods and smoothing-
type methods, [Engelke and Kanzow, 1999] proposed a predictor-corrector method
for the solution of linear programming. Its main idea is to reformulate the op-
timal conditions (3) as the following nonlinear and nonsmooth equation:

Φτ (ω) = Φ(x, y, z) =

 c−AT y − z
Ax− b
φτ (x, z)

 = 0

where
φτ (x, z) = (ϕτ (x1, z1), ϕτ (x2, z2), · · · , ϕτ (xn, zn))

and ϕτ : R2 → R denotes the smoothed minimum function:

ϕτ (a, b) = a + b−
√

(a− b)2 + 4τ2
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The method enjoy some merit of smoothing-type methods and interior point
methods and has stronger convergence properties under weak assumption. How-
ever, it has to solve two full dimension linear systems at each iterate. Moreover,
it requires the matrix A have full rank and the starting point ω0 = (x0, y0, z0)
satisfy the linear equations AT y + z = c and Ax = b. Although the authors
stressed that the components x0 and z0 do not have to be positive (like in inte-
rior point methods) and it is relatively easy to find such a starting point, it still
needs solving two linear system or two simple programs to obtain such a solution,
and therefore increase the computation of the algorithm. In fact, these condi-
tions are often used in many smoothing-type algorithm [Engelke and Kanzow,
2001, 2002].

To overcome these drawbacks, we propose a reduced dimension method for
the solution of linear programming. The method is motivated by the alter-
nating direction methods for variational inequalities[Wang, Yang and He, 2000]
and semidefinite programming problem [Yu, 2004]. Its main difference from in-
terior point methods and smoothing-type methods is that we reformulate the
complementarity condition in (3) to a linear projection equation. By using this
reformulation, we only have to make one projection and solve a linear system
with reduced dimension at each iterate. This can be a significant advantage for
large-scale problems since reduced dimension problems can be solved much more
efficiently than full dimension ones. Moreover, without requiring full rank of the
matrix A, we establish the global convergence from any starting point.

This paper is organized as follows: In Section 2, we develop our algorithm and
give some preliminaries. In Section 3, we analyze the convergence properties of
the algorithm. We conclude the paper with some remarks in the final section.

The notation used in this paper is standard: Rn denotes the n-dimension
real vector space. All vectors used in this paper are column vectors, T denotes
transpose, if ω = (xT , yT , zT )T , we often simply our notation and write ω =
(x, y, z), ‖ · ‖ denotes 2-norm. I represents the identity matrix with a consistent
dimension.

2. Algorithm

In this section, we develop our algorithm for the solution of linear programming
problem.

For a given vector z ∈ Rn, define the projection from z onto Rn
+ by

P (z) = argmin{‖z − z+‖ | z+ ≥ 0}.

The following result is well known about the projection operator P (·), (see [Cala-
mai and More, 1987])

Lemma1 For any vector x
′
, y

′ ∈ Rn, z
′ ≥ 0,we have

(P (x
′
)− x

′
)T (z

′
− P (x

′
)) ≥ 0. (a)
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‖P (x
′
)− P (y

′
)‖ ≤ ‖x

′
− y

′
‖. (b)

Using the equivalent relationship between complementarity problems and pro-
jection equation, the complementarity conditions in (3) is equivalent to the fol-
lowing projection equation:

z = P (z − x) (6)

By the above equivalent relationship, let ω = (x, y, z), the conditions (3) can be
rewritten as

Φ(ω) = Φ(x, y, z) =

 c−AT y − z
Ax− b

z − P (z − x)

 = 0 (7)

Noting that for a given vector (xk, yk), if zk ≥ 0 satisfying the equality

zk = P (c−AT yk − xk) (8)

at the same time, (xk, yk, zk) satisfies c − AT yk − zk, Axk − b = 0, then ωk =
(xk, yk, zk) is a solution of equation (7), and therefore xk is a solution of (1).
Hence our main work is how to obtain xk+1, yk+1 for the obtained (xk, yk, zk).
Before describe the algorithm model, we first give the following Lemma.

Lemma 2 Assume ω? = (x?, y?, z?) ∈ Ω?, then we have(
xk − x?

yk − y?

)T (
In AT

−A Im

) (
c−AT yk − zk

Axk − b

)
≥ ‖c−AT yk − zk‖2 + ‖Axk − b‖2.

Proof. Since ω? ∈ Ω?, we have{
c−AT y? − z? = 0
Ax? − b = 0 (9)

and z? ≥ 0, x? ≥ 0, xT
? z? = 0.

Since zk ≥ 0, it follows that

(zk − z?)T x? ≥ 0

and therefore (
zk − z?

0m

)T (
x?

y?

)
≥ 0 (10)

On the other hand, from (8) and Lemma 1(a), we get

(z? − zk)T (xk − (c−AT yk − zk)) ≥ 0

and therefore (
z? − zk

0m

)T (
xk − (c−AT yk − zk)

yk − (Axk − b)

)
≥ 0 (11)

From inequalities (10) and (11), we obtain that(
z? − zk

0m

)T (
xk − x? − (c−AT yk − zk)

yk − y? − (Axk − b)

)
≥ 0 (12)
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According to (9), (12) can be rewritten as(
c−AT y? − zk

Ax? − b

)T (
xk − x? − (c−AT yk − zk)

yk − y? − (Axk − b)

)
≥ 0

Rearranging the above inequality, we get the desired result.

This result shows that

−
(

c−AT yk − zk

Axk − b

)
provides a descent direction for the function

1
2

∥∥∥(
In AT

−A Im

) (
xk − x?

yk − y?

) ∥∥∥2

Thus we can establish the algorithm as follows:
Algorithm 1 (A Reduced Dimension Algorithm for LP)

Step 0 Choose (x0, y0) ∈ Rn ×Rm, γ ∈ (0, 2), ε > 0, k := 0
Step 1 Compute zk = P (c−AT yk − xk), if ‖c−AT yk − zk‖2 + ‖Axk − b‖2 ≤ ε,
stop. Otherwise, go to Step 2.
Step 2 Compute dk = (dx

k, dy
k) ∈ Rn×Rm by solving the following linear equation(

In −AT

A Im

) (
dx

k

dy
k

)
= −γ

(
c−AT yk − zk

Axk − b

)
(13)

Set (xk+1, yk+1) = (xk, yk) + (dx
k, dy

k), k = k + 1, go to Step 1.

3. Global Convergence

In this section, we discuss the global convergence property of our algorithm. In
what follows, we assume that the solution set Ω? of (3) is nonempty.

The next result accounts for the terminate rule used in Step1.

Lemma 3 Let ωk = (xk, yk, zk) be generated by Algorithm 1. Then we have

‖Φ(ωk)‖2 ≤ 2(‖c−AT yk − zk‖2 + ‖Axk − b‖2).

The following result plays an important role in the convergence analysis.

Lemma 4 Let {ωk} be generated by Algorithm 1. Then for any ω? ∈ Ω?, we
have

‖
(

In −AT

A Im

) (
xk+1 − x?

yk+1 − y?

)
‖2 ≤ ‖

(
In −AT

A Im

) (
xk − x?

yk − y?

)
‖2

− γ(2− γ)(‖c−AT yk − zk‖2 + ‖Axk − b‖2)

Proof. From equation (13), we have(
In −AT

A Im

) (
xk+1

yk+1

)
=

(
In −AT

A Im

) (
xk

yk

)
− γ

(
c−AT yk − zk

Axk − b

)
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Adding
(

In −AT

A Im

) (
−x?

−y?

)
from both sides in the above equality, we have(

In −AT

A Im

) (
xk+1 − x?

yk+1 − y?

)
=

(
In −AT

A Im

) (
xk − x?

yk − x?

)
− γ

(
c−AT yk − zk

Axk − b

)
Hence by means of lemma 2, we obtain

‖
(

In −AT

A Im

) (
xk+1 − x?

yk+1 − y?

)
‖2 = ‖

(
In −AT

A Im

) (
xk − x?

yk − x?

)
− γ

(
c−AT yk − zk

Axk − b

)
‖2

= ‖
(

In −AT

A Im

) (
xk − x?

yk − y?

)
‖2

−2γ

(
xk − x?

yk − y?

)T (
In AT

−A Im

) (
c−AT yk − zk

Axk − b

)
+γ2‖

(
c−AT yk − zk

Axk − b

)
‖2

≤ ‖
(

In AT

−A Im

) (
xk − x?

yk − y?

)
‖2

−γ(2− γ)(‖Axk − b‖2 + ‖c−AT yk − zk‖2)

This completes the proof.
Lemma 5 Let {ωk} be generated by Algorithm 1. Then we have

lim
k→∞

[‖Axk − b‖2 + ‖c−AT yk − zk‖2] = 0

and
lim

k→∞
‖Φ(ωk)‖ = 0.

Proof. From lemma 3 and lemma 4 ,the result is easily obtained.
The following result is our main convergence result of algorithm 1.

Theorem 1 Suppose that {ωk} is generated by Algorithm 1. Then the whole
sequence {ωk} converges to a solution of problem (3).
Proof. Suppose that ω = (x, y, z) is a solution of (3), since

‖
(

In AT

−A Im

) (
xk − x
yk − y

)
‖2 = ‖

(
xk − x
yk − y

)
+

(
0n AT

−A 0m

) (
xk − x
yk − y

)
‖2

= ‖
(

xk − x
yk − y

)
‖2 + ‖

(
0n AT

−A 0m

) (
xk − x
yk − y

)
‖2

hence from lemma 4, we have

‖
(

xk − x
yk − y

)
‖2 ≤ ‖

(
In AT

−A Im

) (
xk − x
yk − y

)
‖2 ≤ ‖

(
In AT

−A Im

) (
x0 − x
y0 − y

)
‖2

(14)
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On the other hand

‖zk − z‖ = ‖zk − (c−AT y)‖
= ‖c−AT yk − zk + AT (yk − y)‖
≤ ‖c−AT yk − zk‖+ ‖AT (yk − y)‖ (15)

Hence the sequence {(xk, yk, zk)} is bounded, as a result, it has at least one
accumulation point.
Let (x?, y?, z?) be an accumulation of {(xk, yk, zk)} and {(xki, yki, zki)} converges
to (x?, y?, z?). From Lemma 5, we have

Φ(x?, y?, z?) = lim
i→∞

Φ(xki, yki, zki) = 0.

Hence (x?, y?, z?) is a solution of problem (3). Substituting (x, y, z) in (14)(15)
by (x?, y?, z?) we have

‖
(

xk − x?

yk − y?

)
‖2 ≤ ‖

(
In AT

−A Im

) (
xk − x?

yk − y?

)
‖2 (16)

and
‖zk − z?‖ ≤ ‖c−AT yk − zk‖+ ‖AT (yk − y?)‖ (17)

Since {(xki, yki)} is a subsequence of {(xk, yk)}, the limitation of sequence

{‖
(

In AT

−A Im

) (
xk − x?

yk − y?

)
‖} exists, hence

lim
k→∞

‖
(

In AT

−A Im

) (
xk − x?

yk − y?

)
‖ = 0.

So it follows from (16)(17) that

lim
k→∞

(xk, yk, zk) = (x?, y?, z?).

This completes the proof.

4. Conclusion

In this paper, we develop a reduced dimension algorithm for linear program-
ming, compared with the interior point algorithm and smoothing algorithm, our
algorithm enjoys some better properties and convergence result. How to obtain
the fast convergence property of the algorithm deservers further studying.
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