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Abstract 

This paper presents a technique for solving a special class of non-linear 

fractional programs where the numerator and denominator both are separable 

functions. Using the concept of piecewise linear approximation, the numerator 

and denominator both are linearized to form a linear fractional program. The 

problem is then solved using Charnes and Cooper transformation method. It is 

proved that the optimal solution of this problem is also the solution of the given 

problem. It is illustrated by a numerical example.  
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1. INTRODUCTION 

 Consider the single ratio fractional program 
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where f(x) and h(x) are separable nonlinear functions of x, either both kj and mj 

are zero or non-zero, gij 's are linear (1 ≤ i ≤ m; 1 ≤ j ≤ n), bi
m∈� , h(x) is 

assumed to be non-negative on { }n
ij j iX x : g (x ) b ,   1 i m,   1 j n= ∈ ≤ ≤ ≤ ≤ ≤�  

x = (x1, x2, ...., xn) ∈ �n. 

It is assumed that S is a non-empty bounded convex polyhedron.  

These problems are interesting from both theoretical and practical points 

of view as they arise in some mathematical programming problems and in 

various practical problems. 

 Fractional programming problems have been a subject of wide interest 

since they arise in many fields like agricultural planning, financial analysis of a 

firm, location theory, capital budgeting problem, portfolio selection problem, 

cutting stock problem, stochastic processes problem. From time to time survey 

papers on applications and algorithms on fractional programming have been 

presented by various authors.  

 Systematic studies and applications of single-ratio fractional programs 

generally began to appear in the literature in the early 1960s. Since then a rich 
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body of work has been accomplished on the classification, theory, applications 

and solutions of these problems. An overview of this work is contained in the 

articles by Schaible [13], the monographs by Craven [6]. Chang [4] proposed a 

model which required auxilliary constraints to linearize the mixed 0−1 

fractional programming problem.  Practical examples of Quadratic Fractional 

Programs occur in many decision problems, where the criteria is expressed as 

the ratio of two quadratics. Although the problem (P) can be solved in its 

present form, but we use the approximation technique to solve it as the 

approximated problems are easy to handle as compared to the non-linear 

problems. In fact the approximation technique is more efficient  for solving 

large scale problems.  

 Single ratio fractional programs appeared in the literature systematically 

in the early 1960s. The problem (P) presented in this paper is a non-concave 

fractional program. There are a number of approaches available for globally 

solving concave fractional programs. In fact, by transforming a non-concave 

fractional program into a concave program, a great number of the methods of 

concave programming become available for solution of the problem. 

Nonconcave fractional programs arise in certain important applications, like 

portfolio selection problems [9, 11] and stochastic decision making problems 

[15]. Nonconcave fractional programs fall into the domain of global 

optimization since a local minimum need not be a global minimum. 

 In this article we are concerned with a special class of nonconcave 

fractional programs (P). The article is organized as follows:  

 Section 2 presents theoretical properties of the problem and  reduction of 

the given problem into a linear fractional program. Section 3 presents a 

numerical example as an illustration.  

2. DEFINITIONS AND THEORETICAL DEVELOPMENT 

 In the process of theoretical development, we make use of the following 

definitions: 
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Definition 1. Let f be a real valued function defined on a convex set X in �n. 

The function f is said to be separable if it can be expressed as the sum of single 

variable functions. 

i.e. 
n

1 2 n j j
j 1

f (x) f (x , x ,...., x ) f (x ) x X
=

= = ∀ ∈∑  

Definition 2. Let f be a real valued function defined on a convex set X in �n. 

The function f is said to be strictly convex on S if 

1 2 1 2 1 2f ( x (1 )x ) f (x ) (1 )f (x ) x ,x Sλ + − λ < λ + − λ ∀ ∈ , 

x1 ≠ x2 and for each λ ∈ (0, 1). 

 During the process, we have made use of a property of linear functions 

that a linear function is both convex and concave in nature. 

Reduction to Linear Programming Problem (LPP) 

Given problem (P) is 
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where either both kj and mj are zero or non-zero. 

Let L = {j : f j and hj are linear} 
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 Suppose that for j ∉ L, fj and hj are strictly convex and that gij is linear 

for i = 1, ...m. 

 Suppose that for each j ∉ L, fj, hj and gij, for i = 1, ..., m are replaced by 

their piecewise linear approximations via the grid points xνj for ν = 1, ...pj, 

yielding the linear fractional program below 

(P1) 
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 λνj ≥ 0, for ν = 1, ...pj; j ∉ L 

 xj ≥ 0  for j ∈ L 

where atmost two adjacent λνj's are positive for j ∉ L 

 With the exception of the constraint that, atmost, two adjacent λνj's are 

positive for j ∉ L, the above problem is a linear fractional program 

Using the well known Charnes and Cooper transformation [5] 
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 yj = txj,   j ∈ L, 

this fractional program can be reduced to the linear program 
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Let jx̂  for j ∈ L and j
ˆ

νλ  for ν = 1, ..., pj  and j ∉ L solve the above problem. Then 

we prove the following two theorems:  

Theorem 2.1: For each j ∉ L, atmost two j 'sνλ  are positive then they must be 

adjacent. 

Proof: To prove this, it suffices to show that for each j ∉ L, if ijλ̂  and j
ˆ

ρλ  are 

positive, then the grid points xij and jxρ  must be adjacent.  

Let, if possible, there exist ijλ̂  > 0 where xij and jxρ  be not adjacent. 

Then there exists a grid point j ij jx (x , x )γ ρ∈  that can be expressed as 

 j 1 ij 2 jx x xγ ρ= α + α  
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where α1, α2 > 0 s.t. α1 + α2 = 1 

Now, consider the optimal solution to the problem defined above, 

Let ui ≥ 0 for i = 1, ...m be the optimum Lagrangian multipliers associated with 

the first m constraints, vj (for each j ∉ L) be the optimum Lagrangian multiplier 

associated with the constraint 
jp

j
1

1ν
ν=

′λ =∑  and wj be the optimum Lagrangian 

multiplier associated with the constraint 
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Claim: Condition (c) is violated for v = γ since fj and hj are strictly convex and 

gij 's are convex, and using (a) and (b), we have 
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which contradicts (c) for ν = γ and hence xij and xρj must be adjacent. 
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 This completes the proof of the theorem.  

Theorem 2.2: Let 
jp

j j j
1
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= λ∑  for j ∉ L. Then the vector ̂x  whose jth 

component is jx̂  for j ∉ L and yj for j ∈ L is feasible to problem (P). 

Proof: For proving this theorem, making use of the facts that gij is convex for j ∉ 

L and for each i = 1, ...,m and jŷ  for j ∈ L and j
ˆ

νλ  for ν = 1, ..., pj and j ∉ L 

satisfy the constraints in (1), we have 
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Further yj ≥ 0 for j ∈ L and 
jp

j j j
1

x̂ x 0ν ν
ν=

= λ ≥∑  for j ∉ L, since j
ˆ

νλ , jxν  are non-

negative. For ν = 1, ..., pj and j ∉ L.  

 Hence ̂x  is a feasible solution of problem (P). This completes the proof 

of the theorem. 

Note: Since it is assumed that for each j ∉ L, fj and hj are strictly convex and 

that gij is linear for i = 1, …, m, we arrive at an optimal solution to the original 

problem (P). 

3. SOLUTION TECHNIQUE 
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 In the course of theoretical development, a single ratio fractional 

program is considered with a special structure. At first, the numerator and 

denominator both, which are separable non-linear functions are replaced by 

their piecewise linear approximations via grid points [2], thereby reducing the 

problem (P) to a linear fractional program with the exception of the constraint 

that, atmost, two adjacent j 'sνλ  are positive for j ∉ L. By using Charnes and 

Cooper transformation, the linear fractional program is further reduced to a 

linear program and an optimal solution to the problem is obtained. 

4. TECHNICAL REPRESENTATION OF THE ALGORITHM 

The procedure proposed above is summarized in the following algorithm: 

Step 0: Initialization 

 Consider the problem 

(P) 

n
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j 1
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 s.t.   gij(xj) ≤ bi    i = 1, ...,m;   j = 1, ...,n 

      xj ≥ 0  for j = 1, 2, ..., n  

 satisfying the assumptions of the problem 

Step 1:  Define the set L. 

Step 2:  Replace fj, hj and gij by their piecewise linear approximations for 

j∉L, i = 1,...,m thereby reducing the given problem to a linear 

fractional program (P1). 
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Step 3:  Reduce the linear fractional program (P1) to an equivalent linear 

program (P2) using Charnes and Cooper transformation. 

Step 4:  Solve the problem (P2) which determines the optimal solution of 

problem (P)  

5. NUMERICAL EXAMPLE 

Consider the following separable quadratic fractional programming 

problem. 

2 2 2
1 2 3 1 3 4

2 2 2
1 2 3 2 3

2x x 2x 6x 5x x 11
min

x 2x x 2x x 35

+ + − − + +
+ + + + +

 

subject to  

 x1 + x2 + x3 + x4  ≤ 4 

 x1 +       x3  ≤ 6 

 x1 + x2   ≤ 6 

 x1 − 2x2  ≤ 0 

             −2x3 + x4 ≤ 0 

x1, x2, x3, x4 ≥ 0 

This problem satisfies the assumptions of the problem considered in this paper. 

Note that L = {4}, since there are no non-linear terms involving x4 and hence 

we will not take any grid points for x4. 

It is clear from the constraint that x1, x2 and x3 must lie in the interval  

[0, 6]. Although we are making use of equally spaced grid points, but it need 

not always be so. 

 For the variables x1, x2 and x3, we use the grid points 0, 2, 4 and 6, so that 
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 x11 = 0, x21 = 2, x31 = 4, x41 = 6; 

 x12 = 0, x22 = 2, x32 = 4, x42 = 6; 

 x13 = 0, x23 = 2, x33 = 4, x43 = 6. 

Therefore,       x1 = 0λ11 + 2λ21 + 4λ31 + 6λ41 

       = 2λ21 + 4λ31 + 6λ41 

  x2 = 0λ12 + 2λ22 + 4λ32 + 6λ42 

      = 2λ22 + 4λ32 + 6λ42 

  x3 = 0λ13 + 2λ23 + 4λ33 + 6λ43 

       = 2λ23 + 4λ33 + 6λ43 

  λ11 + λ21 + λ31 + λ41 = 1 

  λ12 + λ22 + λ32 + λ42 = 1 

  λ13 + λ23 + λ33 + λ43 = 1 

  1 2 3,  ,  0ν ν νλ λ λ ≥     for ν = 1, 2, 3, 4 

The piecewise linear approximation of  

 f(x) = (−4λ21 + 8λ31 + 36λ41) + (4λ22 + 16λ32 + 36λ42) 

  + (−2λ23 + 12λ33 + 42λ43) + x4 + 11 

and the piecewise linear approximation of 

h(x) = (4λ21 + 16λ31 + 36λ41) + (4λ22 + 24λ32 + 60λ42) 

 +(6λ23 + 20λ33 + 42λ43) + 3x4 + 35 

Hence, the problem reduces to the following linear fractional programming 

problem 



 164

21 31 41 22 32 42 23 33 43 4

21 31 41 22 32 42 23 33 43 4

( 4 8 36 ) (4 16 36 ) ( 2 12 42 ) x 11
min

(4 16 36 ) (4 24 60 ) (6 20 42 ) 3x 35

− λ + λ + λ + λ + λ + λ + − λ + λ + λ + +
λ + λ + λ + λ + λ + λ + λ + λ + λ + +

 

subject to  

 (2λ21 + 4λ31 + 6λ41) + (2λ22 + 4λ32 + 6λ42) + (2λ23 + 4λ33 + 6λ43) + x4≤4 

 (2λ21 + 4λ31 + 6λ41) + (2λ23 + 4λ33 + 6λ43) ≤ 6 

 (2λ21 + 4λ31 + 6λ41) + (2λ22 + 4λ32 + 6λ42) ≤ 6 

 2λ21 + 4λ31 + 6λ41 − 4λ22 − 8λ32 − 12λ42 ≤ 0 

 −4λ23 − 8λ33 − 12λ43 + x4 ≤ 0 

 λ11 + λ21 + λ31 + λ41 = 1 

 λ12 + λ22 + λ32 + λ42 = 1 

 λ13 + λ23 + λ33 + λ43 = 1 

 λνj ≥ 0  for ν = 1, 2, 3, 4; j = 1, 2, 3 

 x4 ≥ 0 

Atmost, two j 'sνλ  are positive for j ∉ L. 

Relaxing the condition that, atmost two j 'sνλ  are positive for j ∉ L, the above 

problem is a linear fractional program which is reduced to the following linear 

programming problem by using Charnes and Cooper transformation  

21 31 41 22 32 42 23 33 43 4

1
t

(4 16 36 ) (4 24 60 ) (6 20 42 ) 3x 35
=

λ + λ + λ + λ + λ + λ + λ + λ + λ + +
 

subject to 
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21 31 41 22 32 42 23 33 43 4min( 4 8 36 ) (4 16 36 ) ( 2 12 42 ) y 11′ ′ ′ ′ ′ ′ ′ ′ ′− λ + λ + λ + λ + λ + λ + − λ + λ + λ + +
 
subject to   

21 31 41 22 32 42 23 33 43 4(2 4 6 ) (2 4 6 ) (2 4 6 ) y 4t 0′ ′ ′ ′ ′ ′ ′ ′ ′λ + λ + λ + λ + λ + λ + λ + λ + λ + − ≤  

21 31 41 23 33 43(2 4 6 ) (2 4 6 ) 6t 0′ ′ ′ ′ ′ ′λ + λ + λ + λ + λ + λ − ≤  

 21 31 41 22 32 42(2 4 6 ) (2 4 6 ) 6t 0′ ′ ′ ′ ′ ′λ + λ + λ + λ + λ + λ − ≤  

 21 31 41 22 32 422 4 6 4 8 12 0′ ′ ′ ′ ′ ′λ + λ + λ − λ − λ − λ ≤  

 23 33 43 44 8 12 y 0′ ′ ′− λ − λ − λ + ≤  

11 21 31 41 t 0′ ′ ′ ′λ + λ + λ + λ − =  

21 22 32 42 t 0′ ′ ′ ′λ + λ + λ + λ − =  

31 32 33 43 t 0′ ′ ′ ′λ + λ + λ + λ − =  

j 0ν′λ ≥    for ν = 1, 2, 3, 4; j = 1, 2, 3 

y4 ≥ 0 

The optimal solution is 11 21 31 41 12 22 32 42 13 23( ,  ,  ,  ,  ,  ,  ,  ,  ,  ,′ ′ ′ ′ ′ ′ ′ ′ ′ ′λ λ λ λ λ λ λ λ λ λ  

33 43 4, , , t)′ ′λ λ λ = (0.0074, 0.0148, 0, 0, 0.0148, 0.0074, 0, 0, 0, 0.0222, 0, 0, 0, 

0.0222). Hence optimal solution of the original problem is (x1, x2, x3, x4) = 

4 2
,  ,  2,  0

3 3
 
 
 

. 

6. SUMMARY AND CONCLUSION 

 The single ratio fractional programs play an important role in the 

formulation of variety of decision problems such as facility location, 

production planning. In this paper we have proposed an efficient algorithm for 
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solving a special class of non-linear fractional programs where the numerator 

and denominator both are separable functions. Here we present a solution 

technique in which the numerator and denominator both are replaced by their 

piecewise linear approximations via grid points resulting in a linear fractional 

program. Using Charnes and Cooper transformation method, the linear fractional 

program is then solved. Finally, the solution technique is illustrated by a 

numerical example. 
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