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Abstract

Symmetry is not only a fundamental concept, but also a tool, in many
�elds. For instance, it is a cornerstone of Modern Physics. If we assume
that physical systems have a high degree of symmetry (or at least, in
an approximate way), then it is possible to simplify the equations that
describe them. Also, the tenacious search for a uni�ed description may be
guided by the notion that a valid (and therefore, preferable) theory would
be the one most symmetrical.

One of the proposed ways to express quantitatively the symmetry de-
gree of shapes is through the coe¢ cients of Fourier series.

Also, we analyze a geometrical construct which gives an e¢ cient mea-
sure of the Level Asymmetry for shapes and in general, for any fuzzy
set.

Keywords: Fuzzy Measures, Bayesian Nets, Fourier Analysis, Com-
puter Vision, Arti�cial Intelligence.
Mathematics Subject Classi�cation: 68727, 03E72, 26E50.

1. Introduction
Quoting Hermann Weyl, "an object is said to be symmetrical, if one can

subject it to a certain operation, and it appears exactly the same after the
operation as before. Any such operation is called a symmetry of the object"
[13].

Symmetry is a fundamental concept and also a useful tool in almost any
scienti�c or artistic �eld. For instance, it is a cornerstone not only of Modern
Physics, but also of apparently unconnected areas as Music. In fact, these two
particular �elds do intersect in the Physics of Sound.
If we assume that physical systems have a high degree of symmetry (at least

approximative), then it is possible to simplify the equations describing them.
Also, in the obstinate search for a uni�ed description for elementary particle,

the clue is the equivalence between valid (and therefore, desirable) theory and
the more symmetrical possible theory.
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Usually, Symmetry, and in parallel, Asymmetry, are considered as two sides
of the same coin: an object will either be totally symmetric, or totally asym-
metric, relative to a pattern object. There would be no intermediate situations
of partial symmetry or partial asymmetry. But this dychotomical classi�cation
is too simple, and lacks of a necessary and realistic gradation. For this reason, it
is convenient to introduce �shade regions�, modulating the degree of symmetry
(a fuzzy concept).
So, de�ning symmetry as a continuous feature, we get to a more complex

de�nition, but more useful in many essential �elds, as Computer Vision. Its
interest is therefore not only theoretical, but also applied in A I.

When we consider an isolated physical system, its symmetry properties are
closely related to the conservation laws which characterize such a system.
The great mathematician Emmy Noether gives a clear description of this

relation, in two theorems, establishing that (�rst theorem) "each symmetry of a
physical system implies that some physical property of that system is conserved".
And conversely (second theorem), "each conserved quantity (into a system) has
a corresponding symmetry".

2. Groups in Action
The transformations describing physical symmetries form a mathematical

algebraic structure, known as Group.
Group Theory may be considered as the Mathematics of Symmetry.
In many physical situations, symmetries are also isometries, that is, trans-

formations that preserve distances: Although many books have appeared on this
subject, [15; 16] stand out as classical reference.

Let O be a general object (image, signal...). We may suppose it is 1-D, 2-D
or 3-D.

The Symmetry Group of O, denoted as G(O); is composed of all the isome-
tries under which invariance is preserved, considering the composition as group
operation.
Therefore, the Symmetry Group is a subset of the Isometry Group, that is,

G (O) � Iso (O) :

So, it is possible to construct new plausible computational tools which allow
the automatic transition from theoretical concepts on Symmetry/Asymmetry
to applications in the real world. And with this, it is the feasible to construct
and manipulate a collection of nearest shapes: given an object O, we will de�ne
SD, the Symmetry Distance of the shape to its reference pattern.
In this way we are quantifying the distance from Symmetry of a shape as

continuous feature, instead of a discrete one. Before we had either exact coin-
cidence or just di¤erence. Now, it is possible to distinguish gradual di¤erences
to its Symmetrical shape.
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This distance from Symmetry in shape will be de�ned [6] as the minimum
mean squared distance required to move points from the original shape, in order
to obtain a symmetrical shape.
So, SD is the minimum e¤ort required to turn a given shape into a symmetric

shape.

3. Remarks on Group Theory
Among others, certain groups are very useful for Modern Physics. For in-

stance, the set of all proper rotations around any axis of a sphere (or ball) is
the Special Orthogonal Group, denoted SO(3). The number 3 refers to the di-
mension of the subjacent space. SO(3) is a special type of group, a Lie Group.
Its rotations can be about any angle. Such rotations preserve distances on the
surface of the ball.
Another useful group is the Lorentz Group, specially, when dealing with

relativistic questions. It is the set of all Lorentz transformations and it is possible
to generalize it to the Poincaré Group.
In the Standard Model, Gauge Symmetry is based on the group

SU (3)� SU (2)� U (1)

because three fundamental forces are described by it

� the symmetry of the SU (3) describes the strong force,

� the SU (2) group describes weak interactions

� the U (1) group describes the electromagnetic force.

In the early 70�s, a new class of symmetry was discovered: Supersymmetry.
Sometimes abbreviated as SUSY, is useful when working with fundamental �elds
and space-times. Initial research on it was related to String Theory. In fact, it
was created to include fermions in such Theory. So, for each boson (a particle
of integral spin, that transmits a force), there is a corresponding fermion (a
particle of half-integral spin).
From a mathematical point of view, SUSY describes complex �elds with

holomorphy (complex di¤erentiability in each point of an open subset of C ).
So, it provided useful models of more "realistic" theories.

Each �nite group can be deconstructed into "atoms of symmetry", also called
"simple groups".
According to the Jordan-Hölder theorem,

Any two deconstructions of a �nite group always give the same
collection of simple groups.
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Most �nite simple groups �t into a table.
But we can �nd 26 exceptions to such a classi�cation. They are the so called

sporadic groups.
One of them is the so-called "Monster" [2]. In fact, it is the largest of them,

containing all but 6 of the other groups. Its size would be expressed by a number
of 54 digits.
It was created by Griess (1982), at Princeton, but their name proceeds from

Conway.
It has more of 1,050 symmetries, and exists into a space of

196; 883 = 47� 59� 71

dimensions. Such factors are the largest divisors of such cardinal of dimension-
ality. Also containing 8� 1053 elements.
Nevertheless, it is a "simple group", in the sense that it does not have normal

subgroups, other than itself and the identity element.

One of its "applications" so far would be giving the best way for packing
spheres in 24 dimensions. That is related with the packing problem, and the
Kepler conjecture, later studied by C. F. Gauss, according to which

"No packing of spheres of the same radius, in three dimensions,
has a density greater than the face-centred (hexagonal) cubic packing".

A very curious associated phenomenom is the Moonshine, between the Mon-
ster and a certain sequence of numbers.
Conway and Norton (1979), and then, Frenkel, Lepowsky and Meurman

searched the connections among the Monster and String Theory. Also Borcherds
analyzed such relations, creating a Monster Lie Algebra, and receiving for this
the Field Medal in 1998.

4. Measuring Symmetry by Fourier Analysis
Let us recall some basic theoretical aspects of Fourier Series. It is a well-

known fact that Jean Baptiste Joseph Fourier (1768-1830) studied the mathe-
matical theory of heat conduction, establishing the partial di¤erential equations
that govern heat di¤usion, and solving them by in�nite series of trigonometric
functions. They are now called Fourier Series.

Fourier saw that any periodic signal is a linear composition of sinusoids, or
sine waves. So, developing a periodic function (f) by an in�nite sum of terms,
each one of them being an expression only in sines, or only cosines functions,
or perhaps in both, each one provided with a particular "weight", ak or bk;its
so-called coe¢ cients of Fourier

f = a0 +
P1

k=1 fak cos (k') + bk sin (k')g

or equivalently,
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f =
P1

k=0

�
ak cos

�
2�k tT

�
+ bk sin

�
2�k tT

�	
if we consider the phase angle

' = 2� t
T

But sometimes, we can see

f = a0 +
P1

k=1

�
ak cos

�
2�k tT

�
+ bk sin

�
2�k tT

�	
Or also

f = a0 +
P1

k=1 fak cos (k!0t) + bk sin (k!0t)g

Observe in all these equations the range of the corresponding summatory,
k 2 N or k 2 N�.

Therefore, a periodic function, f (t) ; is representable by an in�nite sum of
sine and/or cosine functions that are harmonically related. So, the frequency of
any trigonometric term is an harmonic (a multiple integral) of the fundamental
frequency of the periodic function.

In the aforementioned equations, we have

a0; ak; bk : Fourier coe¢ cients, reachable from f (t) by

a0 =
1
T

R t0+T
t0

f (t) dt

ak =
2
T

R t0+T
t0

f (t) cos (k!0t) dt

bk =
2
T

R t0+T
t0

f (t) sin (k!0t) dt

where

!0 =
2�
T

is the fundamental frequency of f:

T is its period, and k!0 the k-th harmonic of f (t) :

For the subsequent analysis, it is convenient to see the e¤ect of symmetry
on the Fourier coe¢ cients. It depends, obviously, on the type of symmetry.

In the case of f is an even function, that is, when

f (t) = f (�t) ; 8t

we �nd these reductions, where some of the coe¢ cients disappear
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a0 =
2
T

R T=2
0

f (t) dt

ak =
4
T

R T=2
0

f (t) cos (k!0t) dt

bk = 0

In the case of f is an odd function, that is, when

f (t) = �f (�t) ; 8t

we �nd these reductions, where some of the coe¢ cients disappear

a0 = 0

ak = 0

bk =
4
T

R T=2
0

f (t) sin (k!0t) dt

In the case of f possessing a half-wave symmetry, that is, when

f (t) = f
�
t� T

2

�
; 8t

we �nd these reductions

a0 = 0

ak =

(
0; if k even

4
T

R T=2
0

f (t) cos (k!0t) dt; if k odd

bk =

(
0; if k even

4
T

R T=2
0

f (t) sin (k!0t) dt; if k odd

And �nally, in the case of f possessing a quarter-wave symmetry, that is,
when f has half-wave symmetry, and moreover it has symmetry about the mid-
point of the positive and negative half-cycles, we may distinguish between two
subclasses,

f is even. Then,

a0 = 0

ak =

(
0; for k even

8
T

R T=2
0

f (t) cos (k!0t) dt; if k odd

(in both cases, because of the half-wave symmetry)

bk = 0

(in this case, because the even character of f )
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f is odd. Then,

a0 = 0

ak = 0

(in both cases, because f is odd))

bk =

(
0; if k even

8
T

R T=2
0

f (t) sin (k!0t) dt; if k odd

(in this case, because the half-wave subjacent symmetry of f ).

We start from an object, shape or form F , where generally we refer to its
boundary, when it is a 3-dimensional construct.
About the symmetry, we know that symmetry is never perfect in the real

world. Therefore, perfect symmetry is an imaginary, ideal reference, product of
mathematically creative minds.
So, we are considering the actual symmetry, Ga; corresponding to an im-

perfect form, Fa; as opposed to ideal symmetry, Gi; associated to its "perfect"
form, Fi:
In fact,

Ga is a subgroup of Gi

When we say: "the form F has symmetry G", we are expressing that the
form F belongs to the set S (G) : Such set, S (G), contains all the shapes which
are invariant under transformations of the symmetry group, G.
This can be denoted

F 2 S (G)

We may de�ne a space of all the possible objects, or shapes, denoted by

X = fXigi2N

In this way, we can assign to each element of X a crisp set containing all
objects which ful�l the conditions of G:
If we denote this set as S (G) ; we have the mapping

G! S (G)

For this reason, we may introduce a membership function,

�G : X! [0; 1]

X ! �G (X) � � (G;X)
with X 2 X
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This characterises the membership degree of the shapeX to the set S (G) : That
is, its degree of ful�lment of symmetry requirements which contain G:

Hence, we have di¤erent situations,

� full membership: when �G (X) = 1

� null membership (or not membership at all): �G (X) = 0

� partial membership: 0 < �G (X) < 1

In the 2-D case, generalizable to 3-D and higher [12; 13], we may consider the
forms and their boundaries closed surfaces in R3: It is feasible to describe them
by selecting a convenient coordinate system. So, we obtain a form function,
denoted here by

R (�; �)

Here, we put

R � radius
� � azimuthal angle

and

� � polar angle
relative to the axis where is higher the symmetry

being its corresponding ranges

R > 0

0 � � < 2�
0 � � � �

The centre must be chosen so as highest symmetry is reached in this point.
Then, it may be the centroid of the shape.

So, we obtain the subsequent equation

R (�) = a0
2 +

P1
k=1 fak cos k�+ bk sin k�g

Which can be translated to a sinusoidal expression,

R (�) = &0
2 +

P1
k=1 &k sin (k�+ �k)

Or also, if it is expressed in cosinusoidal way,
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R (�) = �0
2 +

P1
k=1 �k cos (k�� �k)

Such expansion always exists, when the function f is periodic and ful�ls
some conditions by Dirichlet.

Now, it is already possible to introduce the measure of Degree of Symmetry,
in our modelling process.
Suppose a given form, F , which presents certain symmetries, described by

the symmetry group G. Then, the form must contain only terms which are
compatible with G, whereas incompatible term must disappear. If we denote
� (F;G) the symmetry degree of F relative to G, we de�ne

� (F;G) =

PK
i>0

compatible

ciPK
j=1 cj

That is, the proportion between the sum of coe¢ cients of every term com-
patible with G over the sum of all coe¢ cients of form F . So, describing their
relative contribution to F of terms compatible with G.
Clearly,

0 � � (F;G) � 1

Then, it induces a natural

Classi�cation of Fuzzy Asymmetries

according to their value,

� (F;G) = 0 : MISSING SYMMETRY

When G cannot be found in F

� (F;G) ' 0 : HIDDEN SYMMETRY

When F bears not perceptible relation to G, but � (F;G) > 0

� (F;G) > 0 : DISTANT SYMMETRY

When F is notably deviated from G, but with a clear relation between F
and G

� (F;G) < 1 : APPROXIMATE SYMMETRY

When there are little deviations of F from G
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� (F;G) / 1 : APPARENT SYMMETRY

When there are only imperceptible deviations of F from G

� (F;G) = 1 : ACTUAL SYMMETRY

When F strictly ful�lls the symmetry conditions of G.

5. A new geometrical modelling
Now, we need some previous and very essential concepts [2; 13].

In Fuzzy Measure Theory (connected with such idea in Classical/Crisp Mea-
sure Theory), a fuzzy atom is a fuzzy measurable set which has positive fuzzy
measure, and contains no "smaller" set of positive fuzzy measure.

Formally expressed:

Given a fuzzy measurable space, (X; 
); and a �nite fuzzy measure, �; on
that space, a fuzzy set A � 
 is called a (fuzzy) atom, if

� (A) > 0

and for any measurable fuzzy subset,

B � A

with

� (A) > � (B)

it holds

� (B) = 0

A fuzzy measure which has no atoms is called a non-atomic fuzzy measure.
That is, a fuzzy measure is non-atomic, when

8A fuzzy measurable with � (A) > 0;
9 a measurable fuzzy subset; B � A;

such that : 0 < � (B) < � (A)

Then, a non-atomic fuzzy measure with at least one positive value has an
in�nite number of di¤erent values into [0; 1] :
Being as starting point a set A; such that

� (A) > 0
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From this, we may construct a decreasing sequence of fuzzy measurable
subsets,

A1 � A2 � A3 � :::

such that

� (A1) > � (A2) > � (A3) > :::

Non-atomic fuzzy measures have a continuum of values.
Because if � is a non-atomic fuzzy measure, and A is a fuzzy measurable set,

with

� (A) > 0

then

8b 2 R; which holds 0 < b < � (A) ;
9 a measurable fuzzy subset; B � A;

such that � (B) = b

The precedent result is due to W. Sierpinski [12] :
And it is a clear reminiscent of the Intermediate Value Theorem for contin-

uous functions.

So, for instance, if we consider our [5],

Corollary: Let (E ; �) a �nite fuzzy metric space, and fAigni=1 a DCC or
contractive chain of enchained fuzzy subsets (or subworlds into the universe
U � A), according to Noether condition, all them containing the monatomic
fuzzy set (or world) A; that is,

A � ::: � Ai+1 � Ai � U; 8i 2 f1; 2; :::; ng

being

limi!1 Ai = A

Then, we have

[La (Ai)] = 0; in the atom;

or monatomic world; Ai = A

[La (Ai)] = 1; in other worlds
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Where La denotes our Asymmetry Level Fuzzy Measure, which will be �nite,
according hypothesis.
In fact,

<La � [0; 1]

Obviously, it veri�es the Decreasing Chain Condition (DCC), which for in-
stance, characterizes the Artinian modules.

Geometrically, the situation (relative to such symmetric character) should
be modelled by a contractive set, or decreasing collection, verifying the DCC
condition, therefore a chain of subworlds, each one inserted in the precedent,
and where each one, but the last, shows asymmetries, whereas at the end, in
the limit, the total symmetry appears.

Because our construct holds the Decreasing Chain Condition (DCC), it may
be stationary from a certain step,

9m 2 N : Am = Am+1 = Am+2 = :::

To solve this problem, either we can admit the symmetry as discontinuous
function, and so we see without problems that

ASYMMETRY ! ASYMMETRY ! ASYMMETRY ! :::

::: ! ASYMMETRY ! SYMMETRY

Or we may assign a certain value as level of symmetry or asymmetry (by
duality), with a de�nition suggested by the belonging degree of elements to fuzzy
sets; or equivalently, as a level of satisfaction of some condition or property,
de�ned so in the limit it is possible to obtain the state of complete symmetry,

A1 � A2 � A3 � ::: � An � ::: � A = fag

So, for instance, with the contractivity condition taken from the concept of
cardinality,

c (A1) � c (A2) � c (A3) � ::: � c (An) � ::: � c (A) = 1

Also we can suppose, simplifying, that each world has a cardinal number
one less than the precedent world.
Once classi�ed in decreasing order, reaching some degree of homogeneity

among elements, it is possible to introduce the function �symmetry level� (or
asymmetry level, by duality). Respectively denoted Ls and La:
With an increasing sequence of values in their sequence, depending on the

cardinality of the selected world at each step, until converging to one from the
left (as symmetry value, corresponding with the totally symmetrical scenario),
in the limit, when we �arrive� to the monoatomic world, aforementioned and
denoted as A;
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fAngn2N ! A

Also we can introduce fuzzy concepts to represent the uncertainty in mea-
sures: triangular fuzzy numbers, triangular shaped fuzzy numbers, trapezoidal
fuzzy numbers, trapezoidal shaped fuzzy numbers, and so on, with their corre-
sponding operations, mutual relationships and therefore using fuzzy mathemat-
ics, after a process of fuzzi�cation of shapes.

6. Conclusion
From this construction a new Normal Fuzzy Measure is feasible, called Asym-

metry Level Measure, and denoted La; as we described in detail in some of our
papers [see 7] :

Such framework allows the possibility of solving the temporal asymmetry
problem.
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