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Abstract

Recently, several modification techniques have been introduced to
the line search BFGS method for unconstrained optimization. These
modifications replace the vector of the difference in gradients of the
objective function, appearing in the BFGS updating formula, by other
modified choices so that certain features are obtained. This paper
measures these modifications on the basis of some safeguarded schemes
for enforcing the positive definiteness of the Hessian approximations
safely in a sense to be defined. Since in the limit the safeguarded
conditions are reduced to the Wolfe conditions, the useful theoretical
and numerical properties of the BFGS method are maintained. It is
shown that some modifications improve the performance of the BFGS
method substantially.
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1 Introduction

Consider finding a least value of a smooth nonlinear function f(x) : Rn → R
by some modified quasi-Newton algorithms that are defined iteratively in the
following way. On every iteration k, an iterate xk and a positive definite
matrix Bk, that approximates the Hessian Gk = ∇2f(xk), are given and
the gradient vector gk = ∇f(xk) and the search direction sk = −B−1

k gk are
calculated. Then, a steplength αk is computed such that a new function
value fk+1, computed at a new iterate xk+1 = xk + αksk, is sufficiently
smaller than fk and usually the curvature condition

δT
k γk > 0, (1.1)

where
δk = xk+1 − xk, γk = gk+1 − gk, (1.2)

is satisfied. A new Hessian approximation Bk+1 is obtained by updating Bk

in terms of the vectors δk and γk, which is maintained positive definite if cer-
tain quasi-Newton updates, particularly BFGS, are employed and condition
(1.1) is satisfied. (For further details, see for example Fletcher, 1987.)

Although the BFGS method is robust, its Hessian approximation has
been modified with γk replaced by another vector (say, γ̂k) (see for example
Yabe, Ogasawara and Yoshino, 2007, and the references therein). Since
the proposed γ-modifications seem to approximate Gk+1δk ‘better’ than γk

in a certain sense, it is expected that the quality of the modified Hessian
approximations are improved. Because the positive definiteness property is
maintained only if condition (1.1) with γk replaced by γ̂k is satisfied, further
ad hoc modification is made to ensure that γ̂T

k δk > 0.
This paper, however, shows that substantial improvement can be ob-

tained if γk is modified only in certain cases. To distinguish these cases,
we will measure the quality of γk or its modifications on the basis of the
techniques of Powell (1978) and Al-Baali (2003a) for their modified BFGS
methods on constrained optimization and nonlinear least squares, respec-
tively. In Section 2, we describe some modified BFGS methods and consider
some safeguarded schemes which maintain the useful theoretical and nu-
merical properties that the BFGS method has. Section 3 summarizes some
numerical results which we obtained by applying the BFGS algorithm and
its modifications to a set of standard test problems. It is shown that the
proposed modification techniques improved the performance of the BFGS
method substantially. Finally Section 4 concludes the paper. Note that ‖.‖
will be used to denote the Euclidean norm.
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2 Modified BFGS Methods

In the BFGS method, a new Hessian approximation is computed by

Bk+1 = bfgs(Bk, δk, γk), (2.1)

where for any B, δ and γ, the function

bfgs(B, δ, γ) = B − BδδT B

δT Bδ
+

γγT

δT γ
(2.2)

defines the well known BFGS updating formula. Since this formula main-
tains the positive definiteness of B if the inequality δT γ > 0 holds, the BFGS
Hessian (2.1) is also positive definite provided that the curvature condition
(1.1) holds. Indeed this condition is guaranteed by choosing a steplength αk

such that the Wolfe conditions

fk − fk+1 ≥ σ0δ
T
k gk (2.3)

and
δT
k γk ≥ −(1− σ1)δT

k gk, (2.4)

where σ0 ∈ (0, 0.5) and σ1 ∈ (σ0, 1), are satisfied. These conditions are used
by Powell (1976) to show that the BFGS method converges globally and
q−superlinearly for convex functions. However the strong Wolfe conditions,
defined by (2.3), (2.4) and

δT
k γk ≤ −(1 + σ1)δT

k gk, (2.5)

are preferable in practice, because they yield an exact line search with an
optimal value of the curvature δT

k γk = −δT
k gk if σ1 = 0. Since the cost of

finding a steplength decreases as σ1 increases, a sufficiently large value of σ1

is used (see for example Fletcher, 1987).
For large values of σ1, say σ1 ≥ 0.9, an acceptable value of δT

k γk might
be far away from the above optimal value. To rectify this difficulty, Al-Baali
(2003b) modifies γk to some γ̂k subject to

−(1− σl
1)δ

T
k gk ≤ γ̂T

k δk ≤ −(1 + σu
1 )δT

k gk, (2.6)

where 0 ≤ σl
1 < 1, σu

1 ≥ 0 (and σl
1, σ

u
1 < σ1 whenever possible). Note that

conditions (2.3) and (2.6) (referred to as Wolfe-like conditions) will be used
below and reduced to the strong Wolfe conditions if γ̂k = γk and σl

1 = σu
1 =

σ1. Note that if αk is chosen only to satisfy the function reduction condition
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(2.3), the Wolfe-like conditions can be used to maintain the modified Hesian
approximations positive definite.

Since the BFGS method might suffer from large eigenvalues of Bk (see
for example Byrd, Liu and Nocedal, 1992, and Powell, 1986) and γk = Ḡkδk,
where Ḡk =

∫ 1
0 G(xk + tδk)dt is the average Hessian matrix along δk, γk will

be modified below if the ratio

ρk =
γT

k δk

δT
k Bkδk

(2.7)

is sufficiently far away from one. This ratio seems to measure the quality of
γk compared to Bkδk reasonably well (see for example Fletcher, 1994, Gill
and Leonard, 2003, Al-Baali, Fuduli and Musmanno, 2004, and essentially
Powell, 1978).

We now consider some modified techniques for γk. Based on the value
of the ratio (2.7), Powell (1978) updates γk to the hybrid choice

γ̂k = γk + (1− ϕ)(Bkδk − γk), ϕ =
0.8

1− ρk
, (2.8)

only when ρk < 0.2 to modify the BFGS update in an SQP method for
constrained optimization (further detail can be seen in Fletcher, 1987, and
Nocedal and Wright, 1999, for instance).

Al-Baali (2004) extended this modification technique to the limited mem-
ory L-BFGS method for unconstrained optimization by enforcing the con-
ditions

1− σ2 ≤ ρ̂k ≤ 1 + σ3, ρ̂k =
γ̂T

k δk

δT
k Bkδk

, (2.9)

where 0 ≤ σ2 < 1 and σ3 ≥ 0. Note that the choice of steplength αk = 1,
which occurs in the limit, reduces (2.9) to the Wolfe-like condition (2.6)
which yields that the modified curvature γ̂T

k δk is sufficiently positive and
bounded above. Hence the updated Hessian approximation is computed
safely positive definite. Enforcing condition (2.9) with least change in γk,
the author modifies γk to

γ1
k =





γk + (1− ϕ−k )(Bkδk − γk), ρk < 1− σ2,
γk + (1− ϕ+

k )(Bkδk − γk), ρk > 1 + σ3,
γk, otherwise,

(2.10)

where
ϕ−k =

σ2

1− ρk
, ϕ+

k =
−σ3

1− ρk
. (2.11)
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Hence γ1T
k δk is defined sufficiently close to δT

k Bkδk and the conditioning
of the modified-updated matrix Bk+1 is controlled. We observed that this
modification technique improves the performance of the BFGS method sub-
stantially (see Section 3, for detail). Therefore we will combine it below with
other γ-modifications, described in the following way.

Another technique for modifying γk on every iteration is proposed by
Zhang, Deng, and Chen (1999) who updated γk to

γ2
k = γk +

tk
‖δk‖2

δk, (2.12)

where
tk = 3

[
2(fk − fk+1) + (gk+1 + gk)T δk

]
, (2.13)

if tk ≥ ε1‖δk‖2 − γT
k δk, for some ε1 > 0. Otherwise, γ2

k is given by (2.12)
with tk replaced by the right hand side of the former inequality (which rarely
happened for a sufficiently small value of ε1). Hence the inequality γ2T

k δk ≥
ε1‖δk‖2 holds on all iterations so that the modified Hessian approximations
are maintained positive definite.

The authors showed the useful features of γ2
k that it is reduced to γk

when f is quadratic and for a general sufficiently smooth function f and
small ||sk|| that

(γT
k δk + tk)− δT

k Gk+1δk =
(
γT

k δk − δT
k Gk+1δk

)
O

(
||δk||

)
. (2.14)

This expression yields that γT
k δk + tk(= γ2T

k δk) approximates δT
k Gk+1δk bet-

ter than γT
k δk. The authors also obtained the global and q−superlinear

convergence that the BFGS method has for convex functions. Since the
corresponding modified method performs worse than the standard BFGS
method, other modification techniques have been proposed.

In particular, Zhang and Xu (2001) generalized choice (2.12) to the class
of modified vectors

γ̂k = γk +
tk

uT δk
u, (2.15)

where tk is given by (2.13) and u is any vector such that uT δk 6= 0. Xu
and Zhang (2001) extended the above convergence result to class (2.15),
provided that |uT δk| ≥ ε2‖u‖‖δk‖ and γ̂T

k δk ≥ ε3γ
T
k δk, where ε2, ε3 > 0 are

small numbers. Note that the latter condition will be considered below with
ε3 = 1− σ2.

To maintain the useful invariance linear transformation property of quasi-
Newton methods (see for example Fletcher, 1987), the authors considered
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certain choices for u and recommended u = γk and the modified vector

γ̃k =
(
1 +

t̃k
γT

k δk

)
γk, (2.16)

where
t̃k = max(tk,−σ2γ

T
k δk). (2.17)

Thus the bound
γ̃T

k δk ≥ (1− σ2)γT
k δk (2.18)

is obtained and, by (2.4), the left side of the Wolfe-like condition (2.6) is
satisfied with γ̂k replaced by γ̃k, σl

1 = 1 − (1 − σ2)(1 − σ1) and σu
1 = ∞.

Therefore, σ2 should be chosen so that σl
1 is sufficiently smaller than one.

For σ2 = 1 − 10−4, the authors reported that γ̃k works better than
γk, but we observed that this modification worsens the performance of the
standard BFGS method in several cases of our experiment. One possible
reason for this drawback is that the above choice for σ2 and the usual choice
σ1 = 0.9 imply that σl

1 = 1 − 10−5 and, by (2.6), that the value of γ̃T
k δk is

not necessarily sufficiently positive. To ensure that γ̃T
k δk is far away from

zero, we tried some values of σ2 ∈ (0.01, 0.99) and noticed that these choices
worsen the performance of (2.16)-(2.17). Therefore, we considered the least
value of σ2 = 0 which yields σl

1 = σ1, but avoids using negative values
of tk. We observed that generally this choice works slightly better than
the authors’ choice, but improves the performance of the BFGS method
substantially when combined with the self-scaling technique in a certain
sense (Al-Baali and Khalfan, 2008).

Another possible motivation for the above observations is that when the
value of t̃k = −σ2γ

T
k δk is used with σ2 6= 0, it follows from (2.16) that γ̃T

k δk

equals neither γT
k δk + tk nor γT

k δk. In this case, the useful properties (2.14)
of (2.16) with tk replaced by t̃k and that of γk are destroyed. To maintain
these properties for some nonpositive and bounded values of tk, we consider
the modified vector

γ3
k =





(1 +
tk

γT
k δk

)γk, −σ2γ
T
k δk ≤ tk ≤ σ3γ

T
k δk,

γk, otherwise,
(2.19)

where the scalars σ2 and σ3 are defined as in (2.9). In practice, we choose
values for the latter scalar sufficiently large and for the former one sufficiently
far away from both 0 and 1. Thus wide intervals for negative values of tk
and sufficiently positive values of γ3T

k δk are obtained. We note that γ3T
k δk ∈
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[1 − σ2, 1 + σ3](γT
k δk) and (by (2.3)-(2.5)) the Wolfe-like condition (2.6) is

satisfied with γ3
k replaced by γ̂k and σl

1 = 1 − (1 − σ2)(1 − σ1) (as for γ̃k)
and σu

1 = (1 + σ3)(1 + σ1) − 1. For some values of σ2 ∈ [0.01, 0.99] and of
σ3 ≥ 0, we observed that generally γ3

k is preferable to γ̃k.
It is worth noting that the modified BFGS updates, given by (2.1) with

γk replaced by either γ3
k or γ̃k, belong to the Huang (1970) family of updates

(see for example Fletcher, 1987) and to the γ−scaled BFGS update of Biggs
(1973) (see for example Zhang and Xu, 2001).

Since the modified choice γ1
k retains the invariance property of quasi-

Newton methods and works better than the above γ-modifications, it is
worth considering class (2.15) with u = γ1

k and maintaining the properties
of modification (2.19). Using the interval for tk as in (2.19), we suggest the
modification

γ4
k =





γk +
tk

γ1T
k δk

γ1
k , −σ2γ

T
k δk ≤ tk ≤ σ3γ

T
k δk,

γk, otherwise.
(2.20)

This choice (like γ3
k) improves the quality of γk, but worsens that of γ1

k .
This result can be motivated by the fact that condition (2.9), with γ̂k

replaced by γm
k , is guaranteed if m = 1. Therefore we consider two further

modification techniques to γm
k . In one technique, we consider modifying γm

k

in a manner similar to that of modifying γk by formula (2.10). On replacing
γk by γm

k in this formula, it follows that

γ̂m
k =





γm
k + (1− ϕ̂−k )(Bkδk − γm

k ), ρ̂m
k < 1− σ2,

γm
k + (1− ϕ̂+

k )(Bkδk − γm
k ), ρ̂m

k > 1 + σ3,
γm

k , otherwise,
(2.21)

where

ϕ̂−k =
σ2

1− ρ̂m
k

, ϕ̂+
k =

−σ3

1− ρ̂m
k

, ρ̂m
k =

γmT
k δk

δT
k Bkδk

. (2.22)

In practice, this class of modifications improves over γm
k for m = 2, 3, 4.

Note that formula (2.21) reduces to γ1
k if m = 0, 1, assuming γ0

k = γk.
Since γk might approximate Gkδk or Gk+1δk better than Bkδk, it is worth

maintaining γm
k sufficiently close to γk. Thus we consider replacing Bkδk by

γk in class (2.21)-(2.22) so that γm
k is updated to

γ̄m
k =





γm
k + (1− ϕ̄−k )(γk − γm

k ), ρ̄m
k < 1− σ2,

γm
k + (1− ϕ̄+

k )(γk − γm
k ), ρ̄m

k > 1 + σ3,
γm

k , otherwise,
(2.23)
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where

ϕ̄−k =
σ2

1− ρ̄m
k

, ϕ̄+
k =

−σ3

1− ρ̄m
k

, ρ̄m
k =

γmT
k δk

δT
k γk

. (2.24)

This class of modifications is proposed by Al-Baali (2003a), in the structured
BFGS method for nonlinear least squares, to maintain γm

k sufficiently close
to γk. We note that if γm

k = νγk (as in (2.16)) and (2.19)), where ν is
a scalar, then γ̄m

k = ν̂γk, for some ν̂, maintains the direction of γk. In
practice class (2.23) seems to be competitive with class (2.21) for modifying
the BFGS method.

We now outline the modified BFGS methods.

Algorithm 3.1: Modified BFGS

0. Given a starting point x1, a symmetric positive-definite initial Hessian
approximation B1 and values of σ0 and σ1. Set k := 1.

1. Terminate if a convergence test holds.

2. Compute the search direction sk = −B−1
k gk.

3. Find a steplength αk and a new point xk+1 = xk + αksk such that the
strong Wolfe conditions

fk+1 ≤ fk + σ0αkg
T
k sk, |gk+1sk| ≤ −σ1g

T
k sk,

(i.e., (2.3)-(2.5)), are satisfied.

4. Compute δk and γk, defined by (1.2).

5. Choose a modified vector γ̂k.

6. Update Bk by the modified BFGS formula

Bk+1 = bfgs(Bk, δk, γ̂k).

7. Set k := k + 1 and go to Step 1.

Note that, in Step 5, the choice γ̂k = γk yields the standard BFGS method
(referred to as BFGS0 in the next section), while a modified choice γ̂k yields
a modified BFGS algorithm.
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3 Numerical results

In this section we test the performance of the modified BFGS Algorithm 3.1,
using some γ−modifications considered in this paper. In Step 0, we let the
initial Hessian approximation be defined by B1 = I, the unit matrix, and
use the values of σ0 = 10−4 and σ1 = 0.9. The run was stopped in Step 1
when either

‖gk‖2 ≤ εmax(1, |fk|),
where ε is the machine epsilon (≈ 10−16), fk − fk+1 ≤ 0, or the number of
iterations reached 105. In Step 3, we use Scheme (2.6.4) of Fletcher (1987)
for obtaining an acceptable steplength for the strong Wolfe conditions. This
scheme is based on some interpolation and firstly tries the initial estimate
(2.6.8) of Fletcher, which in the limit becomes 1. In Step 5, when the
modified γ̂ = γ2

k (given by (2.12)) is used, we let ε1 = 10−4. For the other
modifications, we let σ2 = 0.9 and σ3 = 9.

We study the behaviour of some modified BFGS methods by choosing
in Step 5 that γ̂ = γm

k , for m = 0, . . . , 6 (the corresponding methods are
referred to as BFGSm), where

• γ0
k denotes the standard γk.

• γm
k , for m = 1, 3, 4, are defined by (2.10), (2.19) and (2.20), respec-

tively.

• γ5
k denotes γ̂3

k which modifies γ3
k by (2.21)-(2.22) with m = 3.

• γ6
k denotes γ̄4

k which modifies γ4
k by (2.23)-(2.24) with m = 4.

We will not report the results for the other γ-modifications considered in
this paper, because their performance were worse than that of γ1

k . Indeed,
BFGS2 performs worse than BFGS0 (the standard BFGS method).

We implemented the above modified BFGS algorithms in Fortran 77,
using Lahey software with double precision arithmetic. We applied these
algorithms to a set of 89 standard test problems. The dimensions of 44
tests are small in the range [2,40], while the others are large in the range
[100, 400] (for detail, see Table 2 below). One of these tests is proposed
by Fletcher and Powell (1963), another can be seen in Grandinetti (1984)
and the other tests have been collected and described by Moré, Garbow and
Hillstrom (1981) and Conn, Gould and Toint (1988).

To examine the performances of the above modified BFGS algorithms
we compared the number of line searches and function and gradient evalu-
ations (referred to as nls, nfe and nge, respectively) required to solve the
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Table 1: Modified BFGS Methods
Method Al Af Ag

BFGS1 0.802 0.890 0.805
BFGS3 0.927 0.928 0.928
BFGS4 0.937 0.934 0.937
BFGS5 0.796 0.881 0.802
BFGS6 0.759 0.813 0.756

test problems with those required by BFGS0. The numerical results are
summarized in Table 1, using the rule of Al-Baali (see for example Al-Baali
and Khalfan, 2008). The heading Al is used to denote the average of cer-
tain 89 ratios of nls required to solve the test problems by a method to the
corresponding number required by BFGS0. A value of Al < 1 indicates that
the performance of the algorithm compared to that of BFGS0 improved by
100(1− Al)% in terms of nls. Otherwise the algorithm worsens the perfor-
mance by 100(Al−1)%. The headings Af and Ag denote similar ratios with
respect to nfe and nge, respectively.

An examination of the results in Table 1 shows that the performance of
BFGSm, for m = 3, 4, and for m = 1, 5, 6, are respectively a little better
than and much better than that of BFGS0 in terms of nls, nfe and nge.

The improvement of the latter three methods over BFGS0 is at least 20%
in terms of nls and nge and at least 11% in terms of nfe. Although the latter
improvement seems small, it is about 40% in terms of the total nfe and nge
required to solve all problems and 90% on a few problems. This observation
shows a significant improvement of the above three efficient modified BFGS
methods over the BFGS0 method. We also note from Table 1 that BFGS6

defines the most efficient method with average improvement over BFGS0 by
24%, 19% and 24% approximately in terms of nls, nfe and nge, respectively.

We now compare BFGS1 to BFGS4 which are based on the modified
choices γ1

k and γ4
k , respectively. Since the latter modification is also based

on the former one and Table 1 shows that BFGS1 performs much better
than BFGS4, it follows that γ4

k worsens γ1
k . Hence class (2.15) worsens

some useful γ-modifications. However, a comparison between BFGS3 and
BFGS5, which are respectively based on the modified choices γ3

k and γ̂3
k ,

shows that the latter modification improves the former one. Hence our
modification technique (2.21) improves some useful choices of class (2.15).
Since BFGS6 depends on the modified choice γ̄4

k which is also based on γ4
k ,
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the numerical results show that the former modification improves the latter
one substantially. Hence the technique (2.23) is also useful in practice.

The above comparisons clearly show that the modified choice γ1
k plays

an important role for improving the performance of the BFGS method.

4 Conclusion

The numerical results, reported in the previous section, clearly show that
our modified classes (2.21) and (2.23) perform well in practice. They are able
to improve some modified vectors successfully and yield efficient modified
BFGS methods. Although the most efficient BFGS6 method belongs to
class (2.23), we observed that class (2.21) improved several γ-modifications,
which are not reported here, better than the former one. Therefore, further
numerical experiments are required to choose some typical values for σ2 and
σ3 to obtain a highly efficient method.

In particular, when the well-known quasi-Newton DFP method was ap-
plied to our set of problems, we observed that the modified choice γ̂3

k works
substantially better than γ̄4

k , defined by (2.21) and (2.23), for m = 3 and
m = 4, respectively. Indeed the modified choice γ̂3

k with σ2 = σ3 = 0.5
improved the performance of the DFP method significantly with a slight im-
provement over the standard BFGS method. This support the predictions
of Dixon’s (1972) result (see for example Fletcher, 1987) that the iterative
sequence {xk} of the BFGS and DFP methods is the same in the limit when
the strong Wolfe conditions (2.3)-(2.5) are used with sufficiently small values
of σ1.
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Table 2: Test Functions

Test Code n Function’s name
MGH3 2 Powell badly scaled
MGH4 2 Brown badly scaled
MGH5 2 Beale
MGH7 3† Helical valley
MGH9 3 Gaussian
MGH11 3 Gulf research and development
MGH12 3 Box three-dimensional
MGH14 4† Wood
MGH16 4† Brown and Dennis
MGH18 6 Biggs Exp 6
MGH20 6,9,12,20 Watson
MGH21 2†,10†,20†, ‡ Extended Rosenbrock
MGH22 4†,12†,20†, ‡ Extended Powell singular
MGH23 10,20, ‡ Penalty I
MGH25 10†,20†, ‡ Variably dimensioned
MGH26 10,20, ‡ Trigonometric of Spedicato
MGH35 8,9,10,20, ‡ Chebyquad
TRIGFP 10,20, ‡ Trigonometric of Fletcher and Powell
CH-ROS 10†,20†, ‡ Chained Rosenbrock
CGT1 8 Generalized Rosenbrock
CGT2 25 Another chained Rosenbrock
CGT4 20 Generalized Powell singular
CGT5 20 Another generalized Powell singular
CGT10 30, ‡ Toint’s seven-diagonal generalization of

Broyden tridiagonal
CGT11 30, ‡ Generalized Broyden tridiagonal
CGT12 30, ‡ Generalized Broyden banded
CGT13 30, ‡ Another generalized Broyden banded
CGT14 30, ‡ Another Toint’s seven-diagonal generalization

of Broyden tridiagonal
CGT15 10 Nazareth
CGT16 30, ‡ Trigonometric
CGT17 8, ‡ Generalized Cragg and Levy
†: Two initial points were used; the standard point x̄ and 100x̄.
‡: n = 40, 100, 200, 400 were used to define large dimensional tests.
MGH: Tests collected by Moré, Garbow and Hillstrom (1981).
CGT: Tests collected by Conn, Gould and Toint (1988).
TRIGFP: Test given by Fletcher and Powell (1963).
CH-ROS: Test given by Grandinetti (1984).
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