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Abstract. The updating of direction sets in direct search methods for unconstrained optimiza-
tion is examined. Both weak and strong quasi-Newton updates are considered together with other
simple quadratic interpolation conditions. Efficient and numerically stable techniques are described
for implementing the appropriate updates. The updating schemes are applicable to both line search
and trust region algorithms as well as some newer grid-based methods for derivative-free optimization
and the updates considered can usually be calculated in O(n2) arithmetic operations.
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1. Introduction. The derivation of quasi-Newton updating formulas by varia-
tional means has been a topic of interest to many authors since the first approach by
Greenstadt in [10]. Examples can be found in [4], [7], [8], [11], [12], [13], [15], [16], and
the references therein. In most cases a quasi-Newton formula is derived by seeking
a smallest correction in some norm to the current estimate of the Hessian matrix of
second derivatives ( or its inverse ) of the function to be minimized. In this paper the
updating of direction sets in direct search methods for unconstrained minimization
is examined in cases where the underlying method can be interpreted as a conjugate
direction, quasi-Newton method or more general grid-based method. Both weak and
strong quasi-Newton updates are considered together with other simple quadratic in-
terpolation conditions. Efficient and numerically stable techniques are described for
implementing the appropriate updates. The updating schemes are applicable to both
line search and trust region algorithms for derivative-free optimization and enable the
new direction set to be calculated in O(n2) arithmetic operations.

Early in the development of quasi-Newton methods low rank corrections to esti-
mates of the inverse Hessian were used in algorithms for the unconstrained minimiza-
tion of f(x), x ∈ Rn. Typically, the iteration

xk+1 = xk + αkpk, k = 1, 2, . . . ,

is applied from an initial approximation x1 where

pk = −Hk∇f(xk),

for a symmetric matrix Hk, intended to approximate [∇2f(xk)]−1 in some sense. In
the absence of any better approximation it is usual to make the choice H1 = I. The
line search parameter αk (steplength) is then chosen automatically at each iteration
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and the matrix Hk is updated to reflect information obtained in the course of the
current iteration. Later implementations updated Choleski factors of Bk = H−1

k .
Probably the most widely recommended update is the well-known BFGS update

Bk+1 =
[
B − BssT B

sT Bs
+

yyT

sT y

]
k

,

followed closely by the rank-one update

Bk+1 =
[
B +

(y −Bs)sT

(y −Bs)T s

]
k

.

Here sk = xk+1 − xk and yk = ∇f(xk+1) − ∇f(xk) and the notation [ · ]k means
everything inside the bracket has an iteration subscript k. The rank-one update need
not preserve positive definiteness for line search algorithms so trust-region methods
are sometimes recommended when this update is used. At each iteration of a trust-
region method a model problem of the following form is solved (see [3], for example).

min
{

1
2pT Bkp + pT∇f(xk) : |‖p‖ −∆k| ≤ ρ∆k

}
, (1.1)

where Bk is an approximation to ∇2f(xk), ∆k is the trust-region radius and 0 < ρ < 1
is a relative tolerance (typically ρ = 0.1 ). More recently direct search methods have
had a resurgence - motivated by improved techniques for establishing good conver-
gence properties. A good survey of progress in this area is given in [14] and in view of
the renewed interest in direction set methods it seems timely to revisit the updating
problem.

2. The weak quasi-Newton condition. Perhaps the simplest quasi-Newton
condition that can be imposed on the symmetric matrix Bk+1 is that it matches
the second derivative information provided by quadratic interpolation along a single
direction p. Therefore, the problem considered first is to find a matrix B+ closest in
some sense to a given symmetric positive definite matrix B such that

pT B+p = d, (2.1)

where here, as in the remainder of this paper, we drop iteration subscripts k and
denote updated items with a superscript ‘+’. In most minimum-norm correction
schemes a matrix E of minimum norm is sought as an additive correction to B so
that B+ = B + E satisfies the required interpolation conditions. The Frobenius
matrix norm is convenient because it usually leads to a linear sub-problem that is
easily solved but it has the disadvantage of giving poor accuracy in directions with
little curvature. This can be alleviated by using weighted Frobenius norms (see e.g.
[13]) but we prefer to adopt an approach more closely resembling that taken in [7].
Specifically, if S is an invertible matrix whose columns are conjugate with respect to
the matrix B scaled such that ST BS = I then

B = S−T S−1

and a correction matrix E is required so that

B+ = S−T [I + E]S−1 = B + S−T ES−1 (2.2)

satisfies (2.1). Now it is appropriate to use the Frobenius norm to measure the size of
the correction because it is perfectly scaled relative to the identity matrix. Equation
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(2.1) is sometimes called the “weak quasi-Newton condition” because it is a scalar
version of the more usual (strong) quasi-Newton condition B+p = y obtained by
premultiplying by pT and writing d = pT y. In a derivative-free optimization algorithm
d may be provided by interpolating three function values obtained at distinct points
along a line through the current point x and parallel to the vector p. For example,
the formula

d = f(x− p)− 2f(x) + f(x + p)

may be used when the interpolation points are equally spaced because this is consistent
with the second order directional derivative information pT [∇2f(x)]p = d when f is
a quadratic function. The problem of choosing a smallest correction is easily solved
when p is represented as a linear combination of the columns of S so that

p = Sh

for some known vector h. Then the matrix E can be determined by solving the simple
problem

min
{
‖E‖2F : hT Eh = d− hT h, E = ET

}
. (2.3)

The solution is

E = η[hhT ] (2.4)

where η is the scalar

η =
d− hT h

(hT h)2
.

Instead of updating B to B+ it is possible to update S directly. First notice that
B+, defined by equations (2.2), (2.4), is positive definite, if and only if d > 0 since
det[I + ηhhT ] = 1 + ηhT h = d/(hT h). If B+ is not positive definite then it cannot be
represented in the (real) form [SST ]−1 so only the case where d > 0 is appropriate.
In this case, it suffices to let S+ be the matrix

S+ = S[I + βhhT ] = S + βphT , (2.5)

where the scalar β is chosen so that

[I + ηhhT ]−1 = [I + βhhT ]2.

Writing γ = −η/(1 + ηhT h), so that [I + ηhhT ]−1 = [I + γhhT ], it can be seen that
the two possible choices for β are given by the roots of the quadratic equation

(hT h)β2 + 2β − γ = 0,

Choosing the root smallest in modulus, and taking care to avoid cancellation error,
the formula for β is

β =
γ

1 +
√

1 + γhT h
.

Therefore, S can be updated in O(n2) multiplications and additions. If S is a trian-
gular matrix then triangularity can also be restored to S+ in O(n2) multiplications
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by taking advantage of the rank-one nature of the correction (see, for example, [9]).
Simple though this approach is, there is, perhaps, a better way which is considered
now because both approaches provide useful insight into more complicated situations
where several conditions are required to be satisfied simultaneously by the updated
matrix.

Problem (2.3) is unchanged in theory if S is replaced by SQ, where Q is any
orthogonal matrix. To see this, notice that

B+ = S−T [I + E]S−1 = S−T [QQT + E]S−1 = [SQ]−T [I + F ][SQ]−1

where F = QT EQ. But ‖F‖F = ‖E‖F , therefore, the problem of minimizing ‖E‖2F
in problem (2.3) is equivalent to minimizing ‖F‖2F with S replaced by SQ. Replacing
E by QFQT in (2.3) the equivalent problem is:

min
{
‖F‖2F : (QT h)T F (QT h) = d− hT h, F = FT

}
. (2.6)

The solution to this problem is very easy if Q is chosen so that QT h = θe1, where
θ2 = hT h and e1 is the first column of the identity matrix. This is achieved by letting
Q be an appropriate Householder matrix. Then the problem is trivially to

min
{
‖F‖2F : θ2F11 = d− θ2, F = FT

}
,

which has solution F11 = d/θ2−1, and all other entries of F are zero. Thus I+F is the
identity matrix except that its first entry is replaced by d/θ2 and the updated matrix
S+ is obtained simply by multiplying the first column of the matrix SQ by |θ|/

√
d.

The product SQ takes only O(n2) multiplications because of the special form of the
Householder matrix. The excellent numerical stability properties of operating with
orthogonal matrices and simple column scaling are thus obtained in this approach
but the first approach may be preferred if maintaining triangularity of the factor
S+ is required. The latter approach shows also that if p is any column of S (or a
scalar multiple) then the solution to problem (2.3) is obtained by simply rescaling this
column. This extends readily to rescaling any number of columns. That is, if each
column sj , j = 1, 2, . . . , n, of the matrix S is used to obtain corresponding second
directional derivative estimates dj , then the problem

min{‖E‖ : sT
j S−T [I + E]S−1sj = dj , j = 1, 2, . . . , n, E = ET }, (2.7)

is solved (in terms of updating S) by simply scaling each column of S so that

s+
j = sj/

√
dj (2.8)

because

S−1sj = ej . (2.9)

This seems to be a quite natural approach. In the next section the case where both
problems (2.3) and 2.7) are combined to provide n + 1 conditions is considered.

3. Directional derivatives and the weak quasi-Newton condition.
Frequently, in derivative-free optimization algorithms it happens that central differ-
ence formulas are used to estimate a gradient vector or first directional derivatives
along a set of directions. At negligible extra cost this also provides second direc-
tional derivatives (see, for example, [5], [6]). Often these are then used to define a
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search direction p so that n + 1 directional derivatives may have been estimated by
quadratic interpolation at the end of each iteration of the optimization algorithm.
Specifically we suppose that, if G denotes the true second derivative matrix (constant
if f(x) is quadratic), then estimates dj ≈ sT

j Gsj , j = 1, 2, . . . , n and d ≈ pT Gp, are
available. In this section we assume that the information is consistent with a positive
definite second derivative matrix. Equation (2.8) shows that we can rescale each col-
umn of S as soon as the second directional derivatives are estimated so we suppose
dj = 1, j = 1, 2, . . . , n, and and we require to calculate B+ (implicitly by updating
S) by solving the problem

min{‖E‖ : sT
j B+sj = 1, j = 1, 2, . . . , n, pT B+p = d}, (3.1)

where, as before, B+ = S−T [I + E]S−1. Again writing p = Sh and using equation
(2.9) the problem is

min{‖E‖ : eT
j Eej = 0, j = 1, 2, . . . , n, hT Eh = d− hT h, }, (3.2)

where we have chosen not to include the symmetry constraint E = ET in (3.1), (3.2),
anticipating that the solution will be symmetric automatically. The solution is

E = µ[hhT − diag(hhT )] (3.3)

where µ is the scalar

µ =
d− hT h

(hT h)2 −
∑

h4
i

.

This formula for µ is well-defined provided that h has at least two non-zero components
because the denominator is then guaranteed to be positive. If h has only one non-
zero component, say hk 6= 0, then there is a potential inconsistency in the constraints
sT

k B+sk = dk and pT B+p = d. This may be unlikely to happen in a practical
algorithm but there may be potential instabilites when all but one component of h is
tiny. In such a case a simple remedy is to drop the offending constraint. This simplifies
the problem to one of re-scaling each of the directions as in equation (2.8). Notice
that, if n = 2, then there are only 3 entries of the symmetric matrix B+ to calculate
so the exact second derivative matrix is obtained (provided h1 6= 0 and h2 6= 0) by
imposing the n + 1 constraints in (3.1). As in Section 2, the next step is to update S
using the form

[B+]−1 = [S+S+T ] = S[I − µdiag(hhT) + µhhT]−1ST. (3.4)

Usually this can be achieved in O(n2) multiplications because the matrix inside the
brackets is a rank-1 correction to a diagonal matrix but the method of calculation is
deferred to Section 5.

4. Directional derivatives and the strong quasi-Newton condition.
In this section the case is considered where the strong quasi-Newton condition is
imposed on B+ through the equation

B+p = y, (4.1)

simultaneously with second directional derivative conditions

sT
i B+si = di, i = 1, . . . , n. (4.2)
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As before the matrix B+ is represented in the form

B+ = S−T [I + E]S−1

and the symmetric correction matrix, E, of minimum Frobenius norm is sought subject
to satisfying, if possible, the conditions (4.1) and (4.2). Therefore, the problem to be
solved is

min
{
‖E‖2F : Eii = di − 1, Eh = z − h, E = ET

}
. (4.3)

Here, h is the vector satisfying p = Sh, and z = ST y. If the (strong) quasi-Newton
condition is written in the form 1

2 [E + ET ]h = z − h then there is no need to include
the symmetry condition - it will be satisfied automatically. Following the approach of
Greenstadt [10, 11, 12, 13] the solution to the quadratic programming problem (4.3)
is readily shown to have the form

I + E = D − diag(λhT + hλT ) + λhT + hλT , (4.4)

where D = diag(d1, . . . , dn). It is easy to verify that (4.2) is satisfied by (4.4) for
any choice of the vector λ and it remains to choose λ ∈ Rn to satisfy the equation
Eh = z − h or equivalently,

[D − diag(λhT + hλT ) + λhT + hλT ]h = z. (4.5)

The vector λ can be isolated in Equation (4.5) by noticing that (hλT )h = (hhT )λ and
that

diag(λhT + hλT )h = 2diag(hhT )λ

which allows Equation (4.5) to be re-written as

(hT h)λ− 2 diag(hhT )λ + (hhT )λ = z −Dh,

or, letting ĥ denote the unit vector, ĥ = h/‖h‖, the matrix form of the system of
linear equations defining λ is

[I − 2 diag(ĥĥT ) + ĥĥT ]λ = (z −Dh)/(hT h). (4.6)

The following theorem provides a simple condition on h which guarantees that
the linear system (4.6) is solvable uniquely for λ.

Theorem 4.1. Let û ∈ Rn be a unit vector, and let nnz(·) denote the number of
nonzero components in the vector (·). Then the matrix

A = I − 2 diag(ûûT ) + ûûT , (4.7)

is positive definite iff nnz(û) > 2, and positive semi-definite, with rank(A) = n− 1, if
nnz(û) ≤ 2.

Proof.
If nnz(û) = 1 with, say, ûj = ±1 then A is the identity matrix except that the

jth diagonal entry is zero. Therefore, A is singular (positive semi-definite with rank
n− 1).

If nnz(û) = 2 with, say, ûj = cos θ, ûk = sin θ, then A is the identity matrix
except for the 2× 2 positive semi-definite submatrix,[

ajj ajk

akj akk

]
=

[
sin2 θ sin θ cos θ
sin θ cos θ cos2 θ

]
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so again A is singular (positive semi-definite with rank n− 1).
If nnz(û) ≥ 3 then consider the diagonal matrix

I − 2 diag(ûûT ). (4.8)

This matrix has at most one non-positive diagonal entry because û has at least three
nonzero components. If all diagonal entries are positive then A is the sum of a
positive definite (diagonal) matrix and a rank one positive semi-definite matrix and
is, therefore, positive definite. Otherwise, the diagonal matrix (4.8) has exactly one
non-positive diagonal entry, say its jth diagonal entry. In this case A can be rewritten:

A = Dj + ûûT − 2û2
jeje

T
j , (4.9)

where Dj is the diagonal matrix (4.8) except that its jth diagonal entry is 1, that is

[Dj ]ii = 1− 2û2
i > 0, i 6= j; [Dj ]jj = 1,

and ej denotes the jth column of the identity matrix. Since Dj is positive definite,
this form shows that A has at most one non-positive eigenvalue (interlacing eigenvalue
theorem). Therefore, A is positive-definite if and only if A has a positive determinant.
Now det(Dj) > 0, and

det(A) = det(Dj) det(I + D−1
j ûûT − 2û2

jeje
T
j ), (4.10)

because D−1
j ej = ej . Using the well-known result (see [1], for example) that

det(I + xyT + wzT ) = (1 + yT x)(1 + zT w)− (zT x)(yT w)

and

1− û2
j =

∑
i 6=j

û2
i > 0,

equation(4.10) becomes

det(A) = det(Dj){(1 + ûT D−1
j û)(1− 2û2

j ) + 2û4
j}

= det(Dj)

1− û2
j + (1− 2û2

j )
∑
i 6=j

û2
i

1− 2û2
i


= det(Dj)

∑
i 6=j

2û2
i (1− ûi

2 − û2
j )

1− 2û2
i


> 0.

Therefore, A is positive definite iff nnz(û) ≥ 3 and positive semi-definite with rank
n− 1 if nnz(û) < 3.

Corollary 4.2. The necessary and sufficient condition for equation (4.6) to
have a unique solution is that nnz(h) ≥ 3.

The above result is not surprising because the cases where nnz(h) < 3 include
those where n = 2 or n = 1. If n = 2 then taking symmetry into account there are 3
entries of E to be estimated but equations (4.1) and (4.2) provide 4 scalar conditions.
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Similarly, when n = 1 there are 2 scalar conditions for the one entry of E. If n = 3
and no component of h is zero then there are six scalar conditions for the six unknown
entries defining the symmetric matrix E. The exact second derivative matrix is then
obtained by the calculation described above. Theorem 4.1 also shows that for larger
values of n equations (4.1) and (4.2) may be inconsistent when the data used to define
the correction E lies in a subspace of dimension less than three. More importantly it
provides an easy test for what is referred to in [4] as “poisedness.”

To illustrate this let h1 = 1, h2 = 10−8 = h3, and let û = h/‖h‖. If û and the
matrix A defined by equation (4.7) are calculated using standard IEEE double preci-
sion arithmetic then (using MATLAB) the calculated matrix, float(A), say, produces
a negative calculated eigenvalue (again using MATLAB) and the condition number
of A exceeds 1015. Theorem 4.1 states that the exact matrix A is positive definite.
Clearly, it would be unwise to attempt to calculate λ in equation (4.6) using such
an ill-conditioned matrix. This is easily avoided by applying a threshold policy. For
example, if the number of components of û that have absolute value greater than, say,
τ = 10−5 is less than three the conditions (4.1) and (4.2) are potentially inconsistent
and one or more should be discarded. The simplest ones to discard are those in the
set (4.2) for which |ĥj | < τ because these are possibly in conflict with the informa-
tion provided in the vector quasi-Newton condition (4.1). Fortunately, this strategy
should not require frequent loss of information when n is large because it is unlikely
that there will be too many tiny components in ĥ and the condition number of A can
be expected to be small. In limited numerical trials the calculated condition number
rarely exceeded single figures.

Of course, in practice it is not necessary and certainly not desirable to form the
matrix A in order to solve equation (4.6). At worst A is just a rank-2 correction
to a positive definite diagonal matrix and for large n it is most likely just a rank-1
correction to a positive definite diagonal matrix. Therefore, all the updating formulas
considered so far are expressible in terms of vectors and diagonal matrices that can
be calculated in O(n) floating point operations. In the next Section it is shown that
the update formulas can be applied to S stably and efficiently.

5. Updating S efficiently. All the updates derived in this paper can be ap-
plied to the matrix S in O(n2) multiplications and additions. Already this has been
established for the weak quasi-Newton condition in Section 2. For the update (3.4)
we first note that we can only apply the update if

I − µdiag(hhT) + µhhT (5.1)

is positive definite. If the diagonal matrix Dµ = [I − µdiag(hhT)] is also positive
definite (which is always the case when µ is negative) then

I − µdiag(hhT) + µhhT = D
1
2
µ [I + µh̃h̃T]D

1
2
µ , h̃ = D− 1

2
µ h.

Then the update on S can be completed using the technique described in Section 2
for the weak quasi-Newton update. If Dµ is not positive definite but the matrix (5.1)
is, then we proceed as in Section 4 to write (5.1) as a rank-2 correction to a positive-
definite diagonal matrix following the procedure described by equations (4.7)-(4.9).
This is then treated as two sequential updates. Either way we are left with an update
of the form S̃[I + ηh̃h̃T ]−1S̃T which can be handled in the same way as the simple
update described in Section 2, although it may be necessary to apply an update of the
form (2.5) twice. These techniques can be applied to the more complicated update
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(4.4) by re-writing the trailing terms of (4.4) as λhT + hλT = uuT − vvT (see [2] for
details). Then we are left with two symmetric rank-1 changes and we can apply the
techniques already described.

6. Concluding remarks. Several direction set updating schemes for derivative-
free optimization have been described. The examples considered in this paper are far
from exhaustive. Many other interpolation conditions might be included in place of
or in addition to those already considered. Of course the updating scheme forms only
a small part of the overall optimization algorithm and it remains to be seen whether
the ideas presented here will lead to more efficient or robust algorithms for derivative-
free optimization. In a forthcoming paper we will report on numerical trials for a
derivative-free trust-region algorithm for unconstrained optimization that makes di-
rect use of the updates described here.
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