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Abstract

Recognition of symmetrical features, and their degrees into the shapes,
is a priority aspect towards obtaining the essential structure of real world
problems. Through minimizing redundancies, it is possible to reduce the
computational complexity of a task. So, the Computational Symmetry
is an emerging and more and more increasing in the futur new area of
research, advancing in di¤erent directions, as the reasoning, detection and
representation about symmetries on computers. It must be considered
that until now, relatively few computational tools exist to solve real world
situations. A computational model for symmetry will be very useful in
�elds as Machine Intelligence, Robotics or Computer Vision, for instance.
Being, therefore, interesting not only theoretical, from the mathematical
viewpoint (as group theory), but also when we apply A. I.

Here, we will attack the Asymmetry as a continuous Feature, and its
more essential computational aspects: the possibility of obtaining a geo-
metrical construct which give us an e¢ cient measure of the Level Asym-
metry of shapes and in general, for any fuzzy set.

So, it will be possible to attempt the solution of some interesting
open problems. As for instance, the discontinuity introduced by Tem-
poral Asymmetry in Causality Theory.

Keywords: Fuzzy set theory, Fuzzy real analysis, Fuzzy Measures,
Probabilistic Methods in Group Theory, Reasoning under uncertainty,
Graph Theory, Bayesian Nets, Probabilistic Graphical Models, Computer
Vision, Pattern Recognition.
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1. Introduction to Causality
Let us consider the typical question of Virtual or Counterfactual History:

�What would have happened had Hitler died in the July 1944 assassination
attempt?� Logically, Marshal Rommel and other leaders involved in the plot
would have survived to the subsequent revenge, and surely, it would have pro-
duced an armistice, ending promptly with World War II. Therefore, these are
questions like: �what if. . . ?�
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Another famous example is this: �What would have happened had Napoleon
win in the battle of Waterloo?�Then, we would be possibly speaking and writing
in French, instead of English.
Although some examples of counterfactual history can be found in the Vic-

torian period, it was in 1931 at London, when J. C. Squire edited a collection
of essays of this kind: If It Had Happened Otherwise [20], counting with con-
tributing authors as Sir Winston Churchill: �If Lee had not Won the Battle
of Gettysburg� Gilbert K. Chesterton: �If Don John of Austria had Married
Mary Queen of Scots�·Or the famous historian George M. Trevelyan, with the
aforementioned topic, on Napoleon as winner in Waterloo. And some really
curious for Spanish people, as: �If the Moors in Spain had Won �
This book was modi�ed and published the same year in America, under the

name: If: or, History Rewritten.

The Counterfactual Theory starts with the work of the Scottish philosopher
David Hume (1711-1776). Such initial theory is taken up again by John Stuart
Mill, in 1843. Later, David Kellogg Lewis (1941-2001) developed successive,
improved versions of their Counterfactual Theory. In 1999 were exposed the
last of such versions: it was into theWhitehead Lectures, at Harvard University.
The supposition on Lewis [12], according which: an asymmetry of causal

dependence characterizes our world is basic into the Lewisian framework. But
criticism appeared against the explanation given by Lewis, in some authors, as:
Horwich [9], Price [16] and [17] and Hausman [8].
One of the main arguments of the critics is based on supposing that this

explanation of Lewis su¤ers from a certain psychological implausibility. This
can be found in Horwich [9]. Lewis admits that this asymmetry is possibly a
contingent characteristic of the actual world, not present in other worlds.
So, in a world populated by only one atom such asymmetry on the overde-

termination does not hold. For this reason, there exists a possible discontinuity
problem in the boundary. Because if we consider a contractive sequence of sub-
worlds, each of them asymmetric, converging to the monoatomic world, denoted
W, where asymmetry does not hold, we would have a weakness in the theory.

2. Symmetrical Features
In our world, there are many temporal asymmetries.
The supposition on Lewis, according which an asymmetry of causal depen-

dence characterizes our world, is basic in the framework of the Lewisian Theory.
Usually, the Symmetry, and in parallel, the Asymmetry, can be considered

as the two sides of the same coin: an object will be totally symmetric, or totally
asymmetric, relative to a pattern object, without intermediate situations, of
partial symmetry or partial asymmetry. But this dychotomical classi�cation,
because their simplicity, su¤er a lack of necessary and realistic grades. For this
reason, it is convenient the introduction of �shade regions�, modulating the
degrees (a fuzzy concept).
So, de�ning the symmetry as a continuous feature, many more complex than

in the discrete de�nition, but more convenient solving many problems [14]: a
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computational model for symmetry will be very useful in �elds as Machine Intel-
ligence, Robotics or Computer Vision, for instance. Being, therefore, interesting
not only theoretical, from the mathematical viewpoint (as group theory), but
also when we apply A. I.
Because the profound understanding of Symmetrical features is very funda-

mental in basic sciences. It is very usual which it gives support to scienti�c
discoveries. So, for instance:
- the double helix, in the human DNA structure,
- the symmetry of time and space, in Relativity,
- the apparition of the quasicrystals �eld of study, and their mathematical

translation, known as Penrose Tile. It is a nonperiodic tiling generated by an
aperiodic set of prototiles. Because their nonperiodic character, it lacks any
translational symmetry. Therefore, a shifted copy will never match the original
exactly.
Because recognition of symmetrical features, and their degrees into the

shapes, is a prioritary aspect towards obtaining the essential structure of real
world problems. Through minimizing redundancies, it is possible to reduce the
computational complexity of a task. So, the Computational Symmetry is an
emerging and more and more increasing in the future new area of research, ad-
vancing in di¤erent directions, as the reasoning, detection and representation
about symmetries on computers. We must consider that until now, relatively
few computational tools exist for to solve real world situations.
Remember [21]:
Let O be a general object (image, signal...). For instance, in dimension one,

two or three (1D-, 2D-, 3D-).
The Symmetry Group of O, denoted as G(O); is composed of all the isome-

tries under which is preserved their invariance, considering the composition as
group operation.
Therefore, the Symmetry Group will be a subset of the Isometry Group:

G (O) � Iso (O)

The mathematical study of the Symmetry, into the �at (therefore, for 2D-
shapes), make partial or total use (for monochrome patterns) of:
- seven frieze groups along one dimension (so called strip patterns), where

2-dim patterns are repeated along one dimension. They are the 1-dim crystal-
lographic groups.
- seventeen distinct crystallographic planar groups: wallpaper patterns, i.e.,

17 wallpaper groups, describing patterns generated by two linearly independent
translations. They are the 2-dim crystallographic groups.

In abrigde analysis, we have the subsequent classi�cation:

First Case: There exist Rotations:
If the minimal rotational angle is: � = 60o :
p6 : No Re�ections.
p6m : Re�ections are present.
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The number 6 indicates which acting six times, consecutively, rotations of
angle �=3 radians, we can reach the identity transformation.

If � = 90o; then:
p4 : No Re�exions.
p4g : There are Re�ections, but its edges no necessarily passing through the

rotation center of 90o:
p4m : There are Re�ections, with re�ection axis passing through rotation

centers of 90o: For each of such rotation centers must to pass at least a re�ection
axis.
(4 indicate that applying four times a rotation of �=2 radians; we reach to

the identity transformation).

If � = 120o; then:
p3 : No Re�ections.
p31m : Re�ections, but there exist rotation centers of � = 120o through does

not pass anything re�ection axis.
p3m1 : There are Re�ections and for each rotation center of � = 120o crosses

some re�ection axis.
(3 because applying three times a rotation of 2�=3 radians, it reaches the

identity).

If � = 180o; then:
p2 : No Re�ection. Neither Glide-Re�ection (that is composition of transla-

tion and re�ection).
cmm : There are Re�ections. Its axis passing through the rotation centers.

But there are also rotation center through does not pass re�ection axis.
pmm : There are also Re�ections. For each rotation center of 180o ever

passing re�ection axis. They intersect orthogonally, in the rotation centers.
Such aforementioned re�ections are of parallel axis. Glide- Re�ections can also
exist. Its edges are orthogonal to the precedent ones.
pgg : No Re�ections, but Glide-Re�ections: their respective edges are or-

thogonal among them.
(2 indicate that applying two times a rotation of angle �, we will reach the

identity).
In the particular cases of cmm and pmm; Glide-Re�ections are also allowed.

But then, their axis coincides with the re�ection axis.

Second Case: No Rotations. Therefore, it is not necessary to distinguish a
minimal rotation angle.
According to re�ections and glide-re�ections which shown, it should be:
cm : Re�ections and Glide-Re�ections.
pm : Re�ections, but no Glide-Re�ections.
pg : No Re�ections, but Glide-Re�ections.
p1 : Only translations appears among the symmetries.
So, for both precedent questions, this will be the answer: No Re�ections

neither Glide-Re�ections
As you can see, we are described the seventeen crystallographic planar groups

di¤erent that there exists.
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In the spatial case (for 3D-shapes), we need some of the 230 spatial groups,
generated by three linearly independent translations. So called regular crystal
patterns.

Or any other general symmetry group. Observe that for every n-dimensional
euclidean space, in spite of the existence of in�nite possible periodic patterns,
the cardinal number of the set of symmetry groups for a symmetrical pattern is
always �nite.
The symmetry group of a repeated pattern is a good descriptor, in Arti�cial

Vision research.

Given a n-dimensional object, O, some essential tools will be:
� mirror-symmetry, or invariance under a re�ection about an hyperplane

(n-1)-dimensional, passing through their center of mass,
� rotational-symmetry of order n, showing invariance under rotation of angle

2�=n radians, about their center of mass (2-dim case), or a line (the rotational
symmetry axis) passing through the center of mass of the object (3-dim case).
It will be denoted Cn-symmetry. Observe that the C1 would be the circular
symmetry,
� radial symmetry :the symmetry of a 2-dimensional object where are com-

bined both types of such precedent symmetries: mirror-symmetries and Cn-
symmetries. The radial-symmetry of order n is denoted Dn-symmetry.

So, it is possible to construct new plausible computational tools which per-
mets the progressive translation from theoretical concepts on:

Symmetry/Asymmetry

to interesting applications in the real world.
And with this, the apparition of a new collection of nearest shapes. Because

given an object O, we will de�ne SD, the Symmetry Distance of the shape to
their reference pattern.
In this way, quantifying the amount of distance departure from Symmetry

in shape, as continuous feature, instead of discrete feature: not only the total
coincidence neither the absolute di¤erence, but gradual, with their Symmetrical
shape.
This distance from Symmetry in shape will be de�ned as the minimum mean

squared distance required to move points from the original shape, in order to
obtain a symmetrical shape.
So, SD is the minimum e¤ort required to turn a given shape into a symmetric

shape.
Every pair of such shapes (V and W , for instance) will be represented by its

respective sequence of points.
So, for instance, when n = 3 :

fVjgj=n�1j=0 and fWjgj=n�1j=0

See for this the Fig. 1, going from a high level of asymmetry to another
lowest, or vice versa.
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Then, the aforementioned metric, m, will be de�ned as:

m : 	�	! R+ [ f0g

m (V; W ) = m
�
fVjgj=n�1j=0 ; fWjgj=n�1j=0

�
=

P
kVj�Wjk2

n

Also we will de�ne the Symmetric Transform of V ; denoted ST (V ); as the
closest symmetric shape to V, relative to such metric.
In the particular aforementioned case, corresponding precisely to Fig 1, we

have:

m (V; W ) = m
�
fVjgj=2j=0 ; fWjgj=2j=0

�
= kV0�W0k2+kV1�W1k2+kV2�W2k2

3

By this tool, it is possible to introduce the SD of a shape, V, as the distance
measured between such V and their Symmetry Transform, ST (V ):

We will shown the Algorithm necessary to evaluate such Symmetry Trans-
form (ST):
We depart of n original points: fVjgn�1j=0 ; which conforms the shape of Oi:

First step: Fold fVjgn�1j=0 into
�
V �j
	n�1
j=0

: For instance, in the Cn case, rotat-

ing each point counterclockwise about the centroid by 2� jn radians.

Second step: Average this new set of points: V }0 = 1
n

n�1P
j=0

V �j

Third step: Unfold such average point, so obtaining:
n
V }j

on�1
j=0

: In the

aforementioned example, of Cn � symmetry; it consists in maintain V }0 ; and
then we rotate the points 2� jn radians.

In this way, we can reach:

ST
�
fVjgn�1j=0

�
=
n
V }j

on�1
j=0

Corresponding one-to-one with the points of the precedent shape, but in
"more symmetrical" position now.

Therefore, the SD of a shape V will be evaluated passing �rstly through
their Symmetry Transform, and then, computing their respective distance:

SD (V ) = m (V; ST (V ))
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This measure is invariant under translation and rotation [23].
If the shape V is totally symmetric, then coincides with their symmetric

transform, and so, SD is null.

The symmetry has been de�ned on a sequence of points. Therefore, a sub-
jacent problem of election of a subset of points.
Given a general shape, O; it is necessary the transformation which departing

from their boundary, @O; go until a �nite sequence of points. This permets to
apply the precedent algorithm:

Folding!Averaging!Unfolding

Such selection can proceeds in di¤erent ways:
We can obtain a polyhedral (ever improved) approximation to O: Suppose

that the @O is a closed planar curve of length L:
Then, to introduce (for instance) �ve points: fVig4i=0, it will be su¢ cient

with to �x an initial point, say V0; and from here, applying a distance equal to
L=5 over the curve, V1; and so on, until V4:
From then, turning out V0 (see : Fig: 2) :

V0 (+L=5)! V1 (+L=5)! V2 (+L=5)! V3 (+L=5)! V4 (+L=5)! V0

The di¢ culty can appear when the shapes are partially occluded, or perhaps
noisy data set.
In such case, it requires a previous process of smoothing.
For example, by the equiangular selection (see Fig. 3).

In a very common situation, into the real-world: when the shape is partially
occluded, we need to recompose the missing region by supporting in symmetrical
features. It is possible to determine a centroid, which by successive approxima-
tions, can give us their center of symmetry.
See Fig.4, with a partially occluded shape.
It is de�nable the symmetry center as the point which minimizes the total

of symmetry distances:
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min
P

SD

Their location is possible applying iteratively a procedure of hill-climbing:
the gradient descent method. For this, we depart from the centroid of the shape.
The position of each new points would be modeled by a Gaussian distribution,
which by standardization can be considered a N (0; 1) :

There exists also a valuable method evaluating such probable positions, given
a set of measurements. Their theoretical basis will be the Maximum Likelihood
Criterion. So,we can depart of n ordered points: fWign�1i=0 ; each one of them
with locations described by a Gaussian:

Wi � N (Vi; �i) ; 8i = 0; 1; 2; :::; n� 1

being Vi their expected position and �i the covariance matrix.
Finally, the probability distributions of SD values corresponds to a chi-square

with (n� 1) freedom degrees: �2n�1: But, as known, this would be approximated
by a Gaussian distribution.

3. Our geometrical model
For each vertex or node, representing into the graph a random variable, we

dispose of the probability distribution value associated with their position. So,
each possible situation of the node, into the corresponding slice, must possess a
numerical image of the random variable, that jointly with the symmetry distance
value until the pattern object, O, provides of a pair, describing probabilistically
their position and how far is of symmetrical �nal place. Because we don´t
know previously the exact position of each node, into each slide, advancing onto
the development structure, but only known the probability distribution of such
position: with what non-deterministic value such node goes to �ll a place.

It is possible to de�ne a Markovian Decision Process, from this model, as
a sequential chain of steps, to carry through such randomized Markov process:
where each node only depends of the corresponding vertex, that belongs to
shapes into the same or the precedent slice (markovian property).

Such shapes can be supposed:
- polyhedral of n vertices in the �rst step, fVjgn�1j=0

- n-1 vertices in the second shape, fVjgn�2j=0

- and so on, until to reach the triangular shape: fVjg2j=0
- the line, fVjg1j=0
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And �nally, the monoatomic world: a point, W = V0.
Every one of such shapes would be included into their corresponding slice.

Furthermore, it is possible to suppose associate with them an asymmetry
level decreasing, by applying in each step on its points the algorithm to obtain
the Symmetry Transform, before acting to delete the corresponding point:

fVjgn�1j=0 ! ST
�
fVjgn�1j=0

�
! fVjgn�2j=0 ! ST

�
fVjgn�2j=0

�
! :::

:::! ST
�
fVjg2j=0

�
! ST

�
fVjg1j=0

�
! ST (W = V0) = V0

The elimination order will be given by the natural decreasing order of the
indices, according the pre�xed order of vertices in the original shape.
We can to take as Total Expectancy Reward (TER), for their minimization

(instead of maximization) process the previous de�ned Symmetry Distance (SD)
between the succesive shapes.
Also it is possible to introduce a new Reward function as inversely propor-

tional to such SD translated in 1:

TER = 1
1 + SD (Oi; O)

In such case, will be logical to apply the procedure of maximization, without
the �nal problem of discontinuity.
According the observability of system states, we construct a FOMDP (Fully

Observable Markovian Decision Process), being described without hidden vari-
ables.
Associated with each step of this process, we have the �transition probabil-

ities�: in the instant temporal t, the system is in the state Si, after to take the
action, or decision, ai :

do(X = xi)

When it was in the state Si�1.
Such probability of transition will be expressed as:

Pt (Si = Si�1; ai)

But omitting the typical restriction of Markov Process, we arrive to Bayesian
Nets (BNs). These will be expanded to Dynamic Bayesian Nets (DBNs), mod-
elyzing explicitly the time. So, it generalizes many other models, as the HMMs
(Hidden Markovian Models).
The subjacent (and basical) idea is the replication of the shapes (therefore,

the set of its nodes-vertices, representing random variables), on a sequence of
temporal points. Because in our case, the random variables can be the succesive
shapes, in the evolution, or its nodes.
Then, we can reach a Foliation of Bayesian Nets, F , where each BN belongs

to a temporal slice, and so, the total construct will be a Dynamic Bayesian Net:
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Foliation of BNs = S (T ) = [t2T S (t)

It contains its corresponding slices. So, we can consider each shape immersed
in their parallel plate (when we consider the particular case of dimension two),
into the global Foliation de�ned on BNs.

So, will be a Dynamic Model, and concretely, aDBN; composed by succesive
temporal BNs, where the vertices are the nodes in each shape and plate. See
for this Fig. 5, which shows their temporal evolution.
But allowing the possibility of existence of arcs among the nodes of di¤erent

slices: temporal edges. Such slices are not necessarily each one connected with
the nearest slice, except in the Markovian particular case.
Jointly with another type: the classical synchronal arcs, connecting nodes

of BNs that belongs to the same slice.
Also we need to comment that such directed edges never will be pointing to

the past, because their dynamical character.
We will depart of a model, that is, an idealized representation of reality that

highlights some aspects, but ignoring others.
Geometrically, the situation (relative to such symmetric character) should

be: a contractive set, or decreasing collection, of subworlds, each one inserted
in the precedent, where each one, but the last, shows asymmetries, whereas in
the limit, �nally, the symmetry appears.
To solve this problem, either we can admit the symmetry as discontinuous

function, and so we see without problems that:

ASYM ! ASYM ! ASYM ! :::! ASYM ! SYMMETRY

Or we may assign a certain value, as a level of symmetry or of asymmetry
(complementarity), with a de�nition suggested by the belonging degree of ele-
ments to fuzzy sets; or equivalently, as a level of satisfaction of some condition
or property, de�ned so in the limit it is possible to obtain the state of complete
symmetry.

A1 � A2 � A3 � ::: � An � ::: � A = fag

So, for instance: with the contractivity condition taken from the concept of
cardinality:

c (A1) � c (A2) � c (A3) � ::: � c (An) � ::: � c (A) = 1
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Also we can suppose, simplifying, that each world has a cardinal number
one less than the precedent world�s.
Once classi�ed in decreasing order, reaching some degree of homogeneity

among its elements, it is possible to introduce the function �symmetry level�
(or asymmetry level, by complementarity). Respectively, denoted Ls and La:
It is possible to consider each subworld immersed in a di¤erent slice. So,

we will advance through a progressive and contractive sequence of subworlds.
Then, it can appears as a Foliation of BNs as described, so generating a Dynamic
Model.
With an increasing sequence of values in a succession, depending on the

cardinality of the selected world at each step, until converging to one from the
left (as symmetry value, corresponding with the totally symmetrical scenario),
in the limit, when we �arrive�to the monoatomic and totally symmetrical world:

fAngn2N ! A

4. Conclusion
From this construction it is posssible to introduce a new Normal Fuzzy Mea-

sure, named Asymmetry Level Measure, denoted La; or equivalently, the Sym-
metry Level Measure, denoted Ls, as we described in detail by our recent paper
[5] : Such framework permets the ascension until the only perceived summit: the
possible solution of temporal asymmetry problem, in Causality Theory.
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