
121

AMO - Advanced Modeling and Optimization, Volume 10, Number 1, 2008

An Optimal Algorithm to Find Maximum
and Minimum Height Spanning Trees on Cactus Graphs

Kalyani Das and Madhumangal Pal

Department of Applied Mathematics with Oceanology and Computer Programming,

Vidyasagar University, Midnapore – 721 102, India.

e-mail: mmpalvu@gmail.com

Abstract.

A cactus graph is a connected graph in which every block is either an edge or a cycle. An

optimal algorithm is presented here to find the maximum and the minimum height spanning

trees on cactus graphs in O(n) time, where n is the total number of vertices of the graph.

The cactus graph has many applications in real life problems, specially in radio communication

system.

Keywords: Design of algorithms, analysis of algorithms, spanning tree, Euler tour, cactus

graph.

AMS Subject Classifications: 68Q22, 68Q25, 68R10.

1 Introduction

Let G = (V, E) be a finite, connected, undirected, simple graph of n vertices and m edges,

where V is the set of vertices and E is the set of edges. A tree is a connected graph without

any circuits. A tree T is said to be a spanning tree of a connected graph G if T is a subgraph

of G and T contains all vertices of G.

A vertex v is called a cut-vertex if removal of v and all edges incident to v disconnect the

graph. A non-separable graph is a connected graph which has no cut-vertex and a block means

a maximum non-separable sub-graph. A block is a cyclic block or simply cycle in which every

vertex is of degree two.

AMO - Advanced Modeling and Optimization, ISSN 1841-4311

Spanning Trees on Cactus Graphs/K. Das and M. Pal 122

A cactus graph is a connected graph in which every block is either an edge or a cycle.

A path of a graph G is an alternating sequence of distinct vertices and edges beginning and

ending with vertices. The length of a path is the number of edges in the path. The longest path

and shortest path are the paths from the vertex u to the vertex v if there exist no other path

from u to v with higher length and lower length respectively. We use lp(u, v) and ρ(u, v) to

denote these paths. The longest distance ld(u, v) and distance d(u, v) between two vertices u

and v are the length lp(u, v) and ρ(u, v) in G if such paths exist.

Note that ld(u, u) = 0, ld(u, v) = ld(v, u) and ld(u, v) ≤ ld(u, w) + ld(w, v).

Also d(u, u) = 0, d(u, v) = d(v, u) and d(u, v) ≤ d(u, w) + d(w, v).

The elongation of a vertex u in a graph G is the longest distance from vertex u to a vertex

furthest from u i.e., el(u) = max{ld(u, v) : v ∈ V }. Vertex v is said to be a furthest vertex of u

if ld(u, v) = el(u).

The eccentricity of a vertex u in a graph G is the longest distance from the vertex u to a

vertex furthest from u i.e, e(u) = max{d(u, v) : v ∈ V }.
In a tree, a vertex v is said to be at level l if v is at a distance l from the root. The height of

a tree is the maximum level which is occurred in the tree.

A graph may have more than one spanning tree. The height of a spanning tree T of a graph

G is denoted by H(T, G). A maximum height spanning tree is a spanning tree whose height is

maximum among all spanning trees of a graph. The height of the maximum height spanning

tree of a graph G is denoted by Hmax(G) = max{el(u) : u ∈ V }.
Suppose v be the vertex for which Hmax(G) is attained and v′ its furthest vertex, then the

longest path i.e., lp(v , v ′) is called as maximum height path (v, v′) and denoted by MHP (v, v′).
A minimum height spanning tree is a spanning tree whose height is minimum among all

spanning tree of a graph. The height of the minimum height spanning tree of a graph G is

denoted by Hmin(G) = min{e(u) : u ∈ V }. The vertex x for which Hmin(G) = e(x) is called

the center of G.

To illustrate the problem we consider a cactus graph of Figure 1.

Some related works are discussed here: In [8], a spanning tree of maximal weight and bounded

radius is determined from a complete non-oriented graph G = (V, E) with vertex set V and edge

set E with edge weight in O(n2) time, n is the total number of vertices in G.

In [9], the minimum spanning tree problem is considered for a graph with n vertices and

m edges. They introduced randomized search heuristics to find minimum spanning tree in

polynomial time with out employing global techniques of greedy algorithms.

In [10], the authors find a spanning tree T that minimizes DT = Max(i,j)∈EdT (i, j) where

dT (i, j) is the distance between i and j in a graph G = (V, E). The minimum restricted diameter

Spanning Trees on Cactus Graphs/K. Das and M. Pal 123

�

�
�

�

� �
�

�

�

�

�

�

�

���
����

�
�
��

����
��

��
� ����

���� �
��

�
�
��

��
�� ��

��

	
	
		

��
��

�

�

�
�
�
�

���
��

�����

�
��

6

7
8

9

11

14

21

22

23
24

25

2627

28 29

30

�

�

�

�

�

��

��
�

�
��

�
�
��

�
��

����

�
��

��� ��
�

�
�

1

2
3

45

15

1617

19

�

��
��

��
��

�
�
�

��
	

�
�
�

�
�
�
�
�����

��
���
�
�
�

13

20

33

31

32

��
����
�

34

18

10

12

Figure 1: A cactus graph G.

spanning tree problem is to find spanning tree T such that the restricted diameter is minimized.

It is solved in O(log n) time.

In [11], the minimum diameter spanning tree problem on graphs with non-negative edge

lengths is determined which is equivalent for finding shortest paths tree from absolute 1-center

problem of the general graph is solvable in O(mn + n2 log n) time [12].

In our problem, we find the maximum height spanning tree by finding the elongation and the

MHP (u, v). Also we find the minimum height spanning tree by finding the eccentricity and the

radius of the graph G.

In the following section we construct a tree TBC whose nodes are the blocks of G and edges

are defined between two nodes if they are adjacent blocks i.e., they have at least one common

vertex of the graph G.

2 Construction of the tree TBC

As described in [7] the blocks as well as cut vertices of a graph G can be determined by applying

DFS technique. Using this technique we obtain all blocks and cut vertices of the cactus graph

G = (V, E). Let the blocks be B1, B2, B3,. . . , BN and the cut vertices be C1, C2, C3, . . . , CR

where N is the total number of blocks and R is the total number of cut vertices.

Spanning Trees on Cactus Graphs/K. Das and M. Pal 124

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
��

����������

�
�
�
� �

�
�
�

�
�
�
�

�
�
�

6, 7, 8, 9, 10, 11, 12

6, 15, 16, 17, 18, 19 4, 6 6, 33
�
�

�
�

�
�

�
� 10, 22, 23, 24, 25, 26, 27

24, 28, 29, 30 24, 31 24, 32

32, 34

���

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�
��

�
�
�
�

�
�
�
�

8, 13, 14

14, 20 14, 211, 2, 3, 4, 5

���� ��
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

B1

B2 B3 B4

B5

B6

B7 B8

B9

B10 B11 B12

B13

�
��

Figure 2: The intermediate graph G′ of G.

The blocks and cut vertices of the cactus graph shown in Figure 1 are respectively {B1 =

(6, 7, 8, 9, 10, 11, 12), B2 = (6, 15, 16, 17, 18, 19), B3 = (4, 6), B4 = (6, 33), B5 = (1, 2, 3, 4, 5), B6 =

(8, 13, 14), B7 = (14, 20), B8 = (14, 21), B9 = (10, 22, 23, 24, 25, 26, 27), B10 = (24, 28, 29, 30), B11 =

(24, 31), B12 = (24, 32), B13 = (32, 34)}.
Now we have in a position to construct the tree TBC . Before constructing the tree we define

an intermediate graph G′ whose vertices are the blocks of G and an edge is defined between two

blocks if they are adjacent blocks of G .

i.e., G′ = (V ′, E′) where V ′ = {B1, B2, . . . , BN}
and E′ = {(Bi, Bj) : i �= j, i, j = 1, 2, . . . , N , Bi and Bj are adjacent blocks }.
The graph G′ for the graph G of Figure 1 is shown in Figure 2.

Two properties of the graph G′ are described below.

Lemma 1 In G′ there exists no cycle of length more than 3.

Lemma 2 The three vertices of G′ forming a triangle must have a common cut vertex of G.

Now the tree TBC is constructed from G′ as follows:

We discard some suitable edges from G′ in such a way that the resultant graph becomes a

tree. The procedure for such reduction is given below:

Let us take any arbitrary vertex of G′, containing at least two cut-vertices of G, as root of the

tree TBC and mark it. All the adjacent vertices of this root are taken as children of level one and

Spanning Trees on Cactus Graphs/K. Das and M. Pal 125

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
��

����������

�
�
�
� �

�
�
�

�
�
�
�

�
�
�

6, 7, 8, 9, 10, 11, 12

6, 15, 16, 17, 18, 19 4, 6 6, 33
�
�

�
�

�
�

�
� 10, 22, 23, 24, 25, 26, 27

24, 28, 29, 30 24, 31 24, 32

32, 34

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�
��

�
�
�
�

�
�
�
�

8, 13, 14

14, 20 14, 211, 2, 3, 4, 5

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

B1

B2 B3 B4

B5

B6

B7 B8

B9

B10 B11 B12

B13

Figure 3: The tree TBC of the graph G

are marked. If there are edges between the vertices of this level, then those edges are discarded.

Each vertices of level one is considered one by one to find the vertices which are adjacent to

them but unmarked. These vertices are taken as children of the corresponding vertices of level

one and are placed at level two. These children at level two are marked and if there be any

edge between them then they are discarded. This process is continued until all the vertices are

marked.

Thus the tree TBC = (V ′, E′′) where V ′ = {B1, B2, . . . , BN} and E′′ ⊂ E′ is obtained.

For convenience, we refer the vertices of TBC as nodes.

We note that each node of this tree is a block of the graph G = (V, E).

The parent of the node Bi in the tree TBC will be denoted by Parent(Bi). The tree TBC

constructed from G′ is given in Figure 3.

3 Euler Tour

Euler tour produces an array of nodes. The tour proceeds with a visit to the root and there

after visits to the children of the root one by one from left to right returning each time to

the root using tree edges in both directions. Algorithm GEN-COMP-NEXT of Chen et al. [2]

implements this Euler tour on a tree starting from the root. The input to the algorithm is the

tree represented by a ‘parent of’ relation with explicit ordering of the children. The output of

Spanning Trees on Cactus Graphs/K. Das and M. Pal 126

i : 1 2 3 4 5 6 7 8 9 10 11 12 13

S(i) :(B1)1(B2)1(B1)2 (B3)1 (B5)1 (B3)2 (B1)3 (B4)1 (B1)4 (B6)1 (B7)1(B6)2(B8)1
i : 14 15 16 17 18 19 20 21 22 23 24 25

S(i) :(B6)3(B1)5(B9)1(B10)1(B9)2(B11)1(B9)3(B12)1(B13)1(B12)2(B9)4(B1)6

Table 1: The sequence of nodes obtained from Euler tour.

the algorithm is the tour starting from the root of the tree and ending also at the root. The

tour is represented by an array S(1 : 2N − 1) that stores information connected to the visits

during the tour. The element S(i) of the array S is a record consisting of two fields, one of

which, denoted by S(i).node, is the node visited during the ith visit while the other, denoted

by S(i).subscript is the number of times the node S(i).node is visited during the first i visits of

the tour. Two fields of an element of S are written together using the notation (node)subscript.

Also, we consider an array f(j) which stores the total number of occurrence of the block

Bj , j = 1, 2, 3, . . . , N in the array S(i), i = 1, 2, 3, . . . , 2N − 1. Thus f(j) represents the number

of visits of the block Bj in the Euler tour, i.e., f(j) is the maximum subscript of Bj in the array

S(i).

The array S for the graph of Figure 1 is shown in Table 1.

For each j, j = 1, 2, . . . , N , (Bj)f(j) occurs only once in the array S(i) and before (Bj)f(j) all

of (Bj)1, (Bj)2, . . . , (Bj)f(j)−1 occur in order of increasing subscripts of Bj .

The order in which (Bj)f(j), j = 1, 2, . . . , N , occurs in the array S(i) are first noted and

corresponding nodes are considered in the same order for determining the dominating set of G.

This process implies that nodes come first for consideration before the consideration of their

parent.

The following important lemma is proved in [6].

Lemma 3 If S(i).subscript = 1 and S(i+1).subscript �= 1, then S(i).node is a leaf node of the

tree.

4 Computation of elongation

In this section, we introduce a relationship between furthest vertex u of an arbitrary vertex s

and furthest vertex v of u in the cactus graph G. Ghosh et al. [3] proposed an algorithm to

find the diameter of a tree by using shortest path between u and v. In our problem, we find the

longest path between u and v where they contain in the blocks which are the nodes of the tree

Spanning Trees on Cactus Graphs/K. Das and M. Pal 127

� � � �

�

� � � �
�

�

� �

�
�
�	
	
	 �

�� �
��

�� �� ��

�
��

�� ��

!
!

v′
u v

u′

p

v′

u”
p′

vu

p

v”

u′

(a) (b)

!
!

""

Figure 4: (a) Two paths lp(u, u′) and lp(v, v′) intersect, (b) Two paths lp(u, u′) and lp(v, v′) do

not intersect.

obtained from G. Here u belongs to root node of the tree. Let FV (u) denote that the set of all

furthest vertices from u in G.

Two paths intersect if they have at least one common vertex.

Lemma 4 If u′ and v′ are furthest vertex of u and v respectively then lp(u, u′) intersect lp(v, v′).

Proof: Let us consider a graph G1 of Figure 4(a). Here u, u′ are furthest vertices and v, v′ are

furthest vertices.

Suppose lp(u, u ′) and lp(v , v ′) do not intersect. Then there must exist vertices u′′ and p′ in

lp(v , v ′) so that the ld(v, v′) remains same. Similarly, there must exist a vertex v′′ in lp(u, u ′)
so that ld(u, u′) remains same. This is shown in Figure 4(b).

But the graph in Figure 4(b) does not represent a cactus graph. Hence our assumption that

lp(u, u ′) and lp(v , v ′) do not intersect is not correct.

There fore lp(u, u ′) and lp(v , v ′) intersect. �

Lemma 5 If u ∈ FV (s) and v ∈ FV (u) then ld(s, u) ≤ ld(u, v).

Proof: Assume on the contrary that ld(s, u) > ld(u, v). Since ld(u, s) = ld(s, u) hence ld(u, s) >

ld(u, v) which implies that s is furthest vertex of u than v. But it is given that v is a furthest

vertex of u. It is possible only when ld(s, u) ≤ ld(u, v). Thus our assumption is wrong. Hence

ld(s, u) ≤ ld(u, v). �

Lemma 6 For any arbitrary MHP (u, u′) in G and for any arbitrary v ∈ V either u ∈ FV (v)

or u′ ∈ FV (v).

Spanning Trees on Cactus Graphs/K. Das and M. Pal 128

� �� �

� �#
#
#
#

�
�
�
��

u p q u′

v′v

Figure 5: The paths lp(u, u′) and lp(v, v′) intersect

Proof: Let v′ ∈ V be the furthest vertex of v. We have to show that ld(v, v′) = ld(v, u) or

ld(v, v′) = ld(v, u′). From Lemma 4 we see that lp(v , v ′) and lp(u, u ′) intersect. This is shown

in Figure 5. Let lp(p, q) = lp(v , v ′) ∩ lp(u, u ′).
Now p ∈ lp(u, q) and since u′ is furthest vertex of u, lp(q , u ′) ≥ lp(q , v ′). Similarly lp(q , v ′) ≥

lp(q , u ′) as v′ is furthest vertex of v.

From the above inequality it is seen that lp(q , v ′) = lp(q , u ′) i.e, lp(v , v ′) = lp(v , u ′).
In a similar manner we can prove that lp(v , v ′) = lp(v , u). �

In the following algorithm we compute a furthest vertex of an arbitrary vertex s ∈ V . Also

we find the elongation of s using this algorithm.

Algorithm FDV (s)

Input: The cactus graph G = (V, E) and an arbitrary vertex s.

Output: The furthest vertex from s and el(s).
Step 1: Compute the blocks and cut vertices of G and construct a tree TBC where the root

node contains the vertex s.

Step 2: Apply Euler tour on TBC and store the output in the array S(1 : 2N − 1), N is the

total number of nodes of TBC .

Step 3: Compute f(j) which stores total number of occurrences of the node Bj in the array

S, j = 1, 2, . . . , N.

Step 4: Note the order in which (Bj)f(j), j = 1, 2, . . . , N occurs in the array S(i).

Spanning Trees on Cactus Graphs/K. Das and M. Pal 129

Step 5: Consider the nodes Bj one by one following the order of Step 4 and let a be the cut

vertex of Bj and Parent(Bj). Now the earning longest distance, denoted by eld(a)

is computed as follows:

(i) If f(j) = 1, i.e., for a leaf node Bj , eld(a) = |Bj | − 1 and FV (a) is the set of

adjacent vertices of a in Bj .

(ii) If f(j) �= 1, i.e., for an interior and root node Bj . Compute eld(a) and eld(s)

respectively as

eld(a) = Max {|Bj | − 1, eld(vk) + ld(a, vk)}
eld(s) = Max {|Bj | − 1, eld(vk) + ld(s, vk)}
v′ks are the cut vertices of Bj other than a or s where j = 1, 2, . . . , N and k < |Bj |.

Step 6: Obtain a sequence of nodes through which el(s) is determined from step 5. In this

sequence for a node Bj if

(i) f(j) �= 1 and eld(a) = |Bj | − 1, then FV (s) = FV (a), otherwise

(ii) FV (s) = FV (a) for a node Bj in which f(j) = 1, a is a cut-vertex of Bj and

Parent(Bj).

Step 7: Find el(s) from the relation el(s) = eld(s).

end FDV (s)

The blocks and cut vertices of any graph can be computed in O(m + n) time [7]. For cactus

graph m = O(n), hence Step 1 of Algorithm FDV(s) takes O(n) time. As the array S is obtained

by applying Euler’s tour on the tree TBC , Step 2 takes O(n) time. Step 3 takes only O(n). Step

5 can be perform by comparing f(j) with 1 for j = 1, 2, . . . , n, so this step takes only O(n) time.

Obviously, Step 4 and Step 6 takes O(n) time. Hence the total time complexity of Algorithm

FDV (s) is O(n). Here all the arrays are of size O(n). So the space complexity is also of O(n).

5 Determination of maximum height spanning tree

In this section, we describe an algorithm to find the tree with maximum height. According

to Lemma 6, if u ∈ FV (s) then u is an end point of MHP (u, v), v ∈ FV (u). Thus again we

construct a tree where the root node contains u. Then we find el(u) and corresponding FV (u)

by applying the algorithm FDV (u). Hence the length of MHP (u, v) = el(u), v ∈ FV (u).

Algorithm MXHST

Input: The cactus graph G = (V, E).

Output: Maximum height spanning tree HMAX(G) = (V, E′), E′ ⊂ E.

Spanning Trees on Cactus Graphs/K. Das and M. Pal 130

Step 1: Select arbitrarily a vertex s and find the vertex u ∈ FV (s) using algorithm FDV (s).

Step 2: Find a vertex v ∈ FV (u) using algorithm FDV (u).

Step 3: Take u as root of the spanning tree HMAX(G) and delete one edge say e from each

cycle such that e /∈ lp(u, v),

end MXHST

Lemma 7 The tree HMAX(G) obtained from the algorithm MXHST is the tree with maximum

height.

Proof: In algorithm MXHST we arbitrarily select a vertex s, then find the furthest vertex u

using algorithm FDV (s). Also find the furthest vertex v of u using FDV (u). Thus we get the

MHP (u, v). Lemma 5 supports that there is no longest path other than lp(u, v) in the graph

G. Hence the height which is equal to the length of MHP (u, v) obtained from the algorithm

MXHST is maximum. �

Theorem 1 The spanning tree obtained from the algorithm MXHST is computed in O(n) time.

Proof: Step 1 and Step 2 of algorithm MXHST determine the furthest vertices of s and u

by using algorithms FDV (s) and FDV (u). Those algorithms take O(n) time. In Step 3 the

deletion of edges from all cycles can be performed in O(n) time as the numbers of blocks are

less than the number of vertices n. Hence the algorithm MXHST is computed in O(n) time.

Again, the space complexity of the algorithms FDV (s) and FDV (u) is O(n). Hence the space

complexity of the algorithm is also of O(n). �

6 Minimum height spanning tree in cactus graph

In order to find the minimum height spanning tree we have to find the center of G first. Wang

et al. [5] find the center of the cactus graph in linear time.

Here we construct a tree having the center x as root and delete one edge from each cyclic

block so that e(x) becomes the height of the tree.

6.1 Deletion of edge from a cyclic block with m vertices

Let Bj be a cyclic block where Bj = {v1, v2, . . . , vm} and v1 is the cut vertex of Bj and

Parent(Bj).

If m is even, delete the edge (vm
2
, vm

2
+1) or (vm

2
+1, vm

2
+2) /∈ ρ(x, u) or any one of them if both

does not belongs to ρ(x, u).

Spanning Trees on Cactus Graphs/K. Das and M. Pal 131

�
��

� �

� �
��
��

�
�
��

�� ����
�
��

�
��

v1

v2

v3

v4

vm

vm−1

vm−2

��

�

�
� �

� �

�

�
�
�� �

�
�

�
�

��

�
�
�

�
�� $

$$

!
!!�

�
��

v1

v2

v3v4

v5

v1

v2

v3

v4

Figure 6: cyclic block with m vertices,m being even and odd.

If m is odd, delete the edge (vm+1
2

, vm+1
2

+1) /∈ ρ(x, u).

For the root block we take x as v1.

Algorithm MNHST

Input: The cactus graph G = (V, E).

Output: Minimum height spanning tree HMIN(G) = (V, E′′), E′′ ⊂ E.

Step 1: Find the center of G say x and the corresponding shortest path ρ(x, u) and eccen-

tricity e(x).

Step 2: Determine the cut vertices and blocks and construct a tree TBC in which the root

node contains the vertex x as described in Section 3.

Step 3: For each node Bj find cut vertex of Bj and Parent(Bj). Also determine the number

of vertices mj in each node Bj . If mj is even or odd delete one edge from each cycle

as descried in Section 6.1.
end MNHST

Lemma 8 The tree HMIN(G) obtained from the algorithm MNHST is the tree with minimum

height.

Proof: In algorithm MNHST we find the center x of G so that the eccentricity of x is minimum

among all the vertices of G. Also we make a tree with the blocks where the root contains the

vertex x and delete the edge from each block in such a way that the height of the tree does not

exceed the length of e(x). Hence the tree HMIN(G) obtained from the algorithm MNHST is

of minimum height. �

Theorem 2 The spanning tree obtained from the algorithm MNHST is computed in O(n) time.

Spanning Trees on Cactus Graphs/K. Das and M. Pal 132

�

�
�

�
�

� �
�

�
�

�
�

�

�

�
�

�

�

� �

�

�

�

�

�
�

�

�

� ���
� �

�

� �

�

�

� �

�

�

�
�

��

���

 ���

��
��

�
�

��

�
�

%%
�� &&

��
�
�
��

�
�

�
��

"
"

'
''

�
�

�
�

�
�

(
(

�
�

�
%
%
%
%
%% #

#
)

))

�� �
�

�
�'
'

�
��

�

� �

"
"
""

�������

*
**

�
�

'
''

�
�

�

� � � �

 ++
&
&

�����

� �

�
���

30

29

28

24

32
23

22

�

���

��

������

�
�

31

32
25

26
27

9

�
�

�

��

%%

��

10

11

12
8

13
14

20

21

7

6

33
4 19

18

17

16

15

3

2

1

5

10

27 22

23

24

26

25

31

34

32 28 30

29

9

8

1314

21

11

12

6

33
4 19

18

17

15

16

� �
�

�

�
�

��

��

21
5

1
3

2

(a) (b)

��

�
�

��

�
�

���

$
$$

Figure 7: (a) Spanning tree with maximum height, (b) Spanning tree with minimum height of

the graph of Figure 1.

Spanning Trees on Cactus Graphs/K. Das and M. Pal 133

Proof: In the algorithm MNHST Step 1 takes O(n) time as in [5], the center of a cactus

graph is computed in linear time. The blocks and cut vertices of any graph can be computed

in O(m + n) time [7] and the tree TBC is also found in O(n), hence Step 2 takes O(n) time.

Step 3 is computed in O(n) time as number of nodes are less than the number of vertices of G

and every node is taken once to find the number of vertices and deletion of edge. Hence the

complexity of the algorithm MNHST is O(n). �

6.2 An illustration

We illustrate the problem for the cactus graph of Figure 1.

Suppose the arbitrary vertex is 7. Then FV (7) = {3, 5, 15, 19, 28, 30} and el(7) = 11 using

algorithm FDV (7). Now take any vertex say, 30 from FV (7). Then FV (30) = {3, 5, 15, 19}
and el(30) = 16 using algorithm FDV (30), i.e., maximum height of the spanning tree is 16.

The center of the graph is 10 and e(10) = 6, i.e., minimum height of the spanning tree is 6.

The trees are given in the Figure 7.

References

[1] Chen, C. C. Y., and Das, S. K., Breadth-first traversal of trees and integer sorting in

parallel, Information Processing Letters, 41 (1992) 39-49.

[2] Chen, C. C. Y., Das, S. K., and Akl, S. G., A unified approach to parallel depth-first

traversals of general trees, Information Processing Letters, 41 (1991) 49-55.

[3] Ghosh, S. K. and Maheswari, A., An optimal parallel algorithm for computing furthest

neighbors in a tree, Information Processing Letters 44 (1992) 155-160.

[4] Koontz, W. L. G., Economic evaluation of loop feeder relief alternatives, Bell System Tech-

nical J., 59 (1980) 277-281.

[5] Lan, Y. -F., Wang, Y. -L. and Suzuki, H., A linear-time algorithm for solving the center

problem on weighted cactus graphs, Information Processing Letters, 71 (1999) 205-212.

[6] Pal, M., and Bhattacharjee, G. P., An optimal parallel algorithm for all-pairs shortest paths

on unweighted interval graphs, Nordic Journal of Computing, 4 (1997) 342-356.

[7] Reingold, E. M., Nivergent, J and Deo, N., Combinatorial Algorithms : Theory and Prac-

tice, (Prentice Hall, Inc., Englewood Chiffs, New Jersy, 1977).

Spanning Trees on Cactus Graphs/K. Das and M. Pal 134

[8] Scrdjukov, A.I., On finding a maximum spanning tree of bounded radius, Discrete Applied

Mathematics, 114 (2001) 249-253.

[9] Neumann, F. and Wegener, I., Randomized local search, evolutionary algorithms and the

minimum spanning tree problem, Theoretical Computer Science , 2007, Article in Press.

[10] Hassin, R. and Levin, A., Minimum restricted diameter spanning tree, Discrete Applied

Mathematics, 137 (2004) 343-357.

[11] Hassin, R. and Tamir, A., On the minimum diameter spanning tree problems, Information

Processing Letters, 53(2) (1995) 109-111, 1995.

[12] Kariv, O. and Hakimi, S. L., An algorithmic approach to network location Problems, Part

1: The p-center, SIAM J. Appl. Math, 37 (1979) 513-537.

