
A Simple Decomposition based SQP
Algorithm for Large Scale Nonlinear

Programming

Mehdi Lachiheb
Faculté des Sciences de Gabès, Cité Erriadh 6072, Gabès, Tunisie.

lachihebm@yahoo.ca

Hichem Smaoui
Laboratoire de Systèmes et Mécanique Appliquée, Ecole Polytechnique de Tunisie.

hismaoui@yahoo.fr

AMO - Advanced Modeling and Optimization, Volume 10, Number 1, 2008

Abstract: The simple decomposition, originally developed for quadratic
programming, is incorporated into an SQP algorithm in order to handle large
scale nonlinear programming problems. The resulting algorithm is tested on
truss optimum design problems and some analytical problems. Results indi-
cate excellent accuracy and considerable computational advantage in favor
of the proposed algorithm with respect to existing reference codes, especially
in problems where the number of active constraints approaches the number
of variables. Moreover, analysis of the evolution of the optimum set of ex-
treme points of the sequence of quadratic programming problems led to the
development of a procedure for initiating the decomposition with a whole set
of extreme points that further enhances the computational performance of
the proposed algorithm.

Keywords: sequential quadratic programming, nonlinear programming, sim-
ple decomposition, large scale, extreme point, structural optimization.

0AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

95

1 Introduction

The sequential quadratic programming method (SQP) [Powell, 1978, Shanno
and Phua, 1989, Lawrence and Tits, 2001, Schittkowski, 2005], developed in
the late seventies, is recognized as one of the best methods available today
for solving general nonlinear programming problems of the form

P





min f(x)

gi(x) ≤ 0 i ∈ I
hi(x) = 0 i ∈ L

x ∈ IRn

(1)

where I = {1, 2, ...,m} and L = {1, 2, ..., l}. It consists of iteratively solving
a sequence of quadratic programming problems. Consequently, in any im-
plementation of the SQP algorithm for large scale nonlinear programming
problems [Zillober,2004], one should face the issue of solving large quadratic
programming problems (QP)s. In the code NLPQL [Powell, 1983, Schit-
tkowski, 1985,2004], Schittkowski used a dual algorithm to solve the QP ,
whereas in [Boggs, Kearsley, Tolle, 1999] Boggs, A.J. Kearsley and J.W.
Tolle adopted an interior penalty method. In the present work, Sacher’s
decomposition technique [Sacher, 1980], derived from Hohenbalken’s simple
decomposition [Hohenbalken, 1977], is proposed for solving the QP . It con-
sists in transforming the original quadratic programming problem, whose
variables form the space vector, into a problem whose variables are the co-
efficients of the convex combinations expressing the space vector in terms
of the extreme points of the feasible set. Solving a quadratic programming
problem is then achieved iteratively via the repeated solution of two prob-
lems: a master problem and a subproblem. In his original implementation
[Sacher, 1980], Sacher used Lemke’s method to solve the master problem.
Later, Ben Daya [Ben Daya, 1994] applied a logarithmic barrier function
to improve convergence when the feasible domain of the master problem is
bounded.
The objective of the present work is to take advantage of Sacher’s decom-
position by incorporating it into the SQP algorithm in order to enhance its
large scale capabilities [Mulvey, Zenios and Ahlfeld, 1990, Mar’in, 1995].
In the present paper, first, the barrier function used in solving the master
problem [Ben Daya, 1994] is modified to accommodate unbounded feasi-
ble domain by expressing the solutions as combinations of extreme points

96

and extreme rays. The decomposition algorithm has been subjected to
a significant number of tests on examples of QP s. A number of these
test problems have been constructed in a way to exhibit specific features
such as ill-conditioning of the objective function [Lachiheb, 1997]. Second,
the decomposition method thus implemented is integrated into a sequential
quadratic programming algorithm to form a general nonlinear programming
code [Lachiheb, 1997] that will be denoted SQPD. The latter has been val-
idated through a number of numerical tests, each problem being subjected
to many runs using different starting solutions. Then the evolution of the
optimum set of extreme points (SEP) from a SQP iteration to another is an-
alyzed. Examination of this evolution led to the development of a procedure
that aims at reducing the computational effort devoted to the generation
of intermediate extreme points. The underlying idea consists in initiating
the decomposition process with a whole SEP instead of a single extreme
point. The initial SEP is determined from the results of the preceding iter-
ation of the SQP sequence without solving a series of master problems and
subproblems. Finally, numerical results are presented for several nonlinear
programming example problems including truss optimum design problems
and some analytical problems. These results illustrate the performance of
the original and the modified SQPD algorithms and comparison is made
with the reference code NLPQL.

2 Sequential quadratic programming

The sequential quadratic programming method combines the advantages of
variable metric methods for unconstrained optimization with the rapid con-
vergence of Newton’s method for solving nonlinear systems of equations [Fi-
acco and McCormik, 1968]. Newton’s method is known to be quadratically
convergent but requires second order derivatives. Like variable metric algo-
rithms for unconstrained minimization, the SQP method uses only first order
derivatives and exhibits superlinear convergence [Powell, 1978]. It is based
on the works of [Biggs, 1975], [Han, 1977] and [Powell, 1977]. The algorithm
consists in solving a sequence of quadratic programming problems of the form

97

QPk





min Q(d) = 1
2
dtBkd + dt∇f(xk)

∇ gi(x
k)td + gi(x

k) ≤ 0 i ∈ I
∇hi(x

k)td + hi(x
k) = 0 i ∈ L

d ∈ IRn

(2)

where Bk is an approximation of the Hessian L(x∗, λ∗, µ∗) of the Lagrangian
function :

l(x, λ∗, µ∗) = f(x) +
∑

i∈I

λ∗i gi(x) +
∑

j∈L

µ∗jhj(x) (3)

over the set of feasible directions at the solution x∗ of problem P, λ∗ and µ∗

being the optimal Lagrange multipliers.

3 Sacher’s simple decomposition:

Sacher’s simple decomposition [Sacher, 1980, Shetty 1988] is a method for
solving quadratic programming problems of the form:





min 1
2
xtBx + ctx

A1x ≥ b1

A2x = b2

x ≥ 0

(4)

where x = (x1, x2, ..., xn) ∈ IRn is the vector of variables, B is a n×n positive
semi-definite matrix, A1 and A2 are respectively m1×n and m2×n matrices,
c, b1 and b2 are vectors of dimensions n, m1 and m2 respectively.
Let S = {x ∈ IRn, A1x ≥ b1, A2x = b2 and x ≥ 0} be the feasible set
for problem (4). S is a convex polytope [Rockafellar, 1970], therefore there ex-
ist p extreme points x1, x2 , x3 , ..., xp (p ≥ 1) and q extreme rays d1 , d2 , d3 , ..., dq,
(q ≥ 0) such that

∀ x ∈ S , ∃ u1, ..., up , v1, ..., vq ∈ IR+ /
p∑

i=1
ui = 1 and x =

p∑
i=1

uix
i +

q∑
i=1

vjd
j .

or, in matrix notation
x = Uu + V v (5)

where

98

U =




x1
1 x2

1 ... xp
1

x1
2 x2

2 ... xp
2

...
x1

n x2
n ... xp

n




and V =




d1
1 d2

1 ... dq
1

d1
2 d2

2 ... dq
2

...
d1

n d2
n ... dq

n




.

For simplicity of notation, we introduce the n× (p+ q) matrix W = (U , V)

and the (p + q)-vector w =

(
u
v

)
so that (5) can be written in the form

x = Ww. Substituting Ww for x in problem (4) gives rise to an equivalent
problem, called master problem (MP), defined by

MP





min 1
2
wtQw + stw

p∑
i=1

wi = 1

w ≥ 0

(6)

where Q = W tBW is a (p + q)× (p + q) positive semi-definite matrix and
s = W tc is a (p + q)-vector. Clearly, the master problem involves a single
constraint, moreover, if the number of extreme points needed to express the
solution is low, the problem size may become smaller than that of the original
QP (4). The basic idea of the algorithm is to operate iteratively in subspaces
generated by a small number of extreme points which are updated via the
solution of a linear programming problem, called subproblem (SP),

SP





min htx

A1x ≥ b1

A2x = b2

x ≥ 0

(7)

where h is the gradient of the objective function of problem (4) at the solution
of the current master problem. The subproblem also provides the termination
test for the algorithm.

3.1 Simple decomposition algorithm :

Sacher’s simple decomposition algorithm can be summarized in the following
steps.
• Step 1 : Let U and V be two matrices made up columnwise of extreme

99

points and extreme rays respectively. U has at least one column whereas V
may be empty.
• Step 2 : Solve the master problem MP. If it is unbounded the problem (4)

is also unbounded. Otherwise, let

(
u
v

)
denote the solution of the master

problem and let

x̃ = Uu + V v.

• Step 3 : Solve the subproblem (7) where h = BUu + BV v + c =
Bx̃ + c . If the solution of SP is bounded, then it must coincide with an
extreme point which will be denoted by xk. Otherwise let dk be a feasible
descent direction (htdk < 0).
• Step 4 : If SP is bounded and has a solution xk such that htx̃ = htxk,
then x̃ is the solution of problem (4). Otherwise go to Step 5.
• Step 5 : If there exists i ∈ IN / ui = 0 (resp. vi = 0) then eliminate
extreme point xi (resp. extreme ray di) . If subproblem (7) is bounded,
then replace U by (U, xk). Otherwise replace V by (V, dk). Go to Step 1.

3.2 Convergence of the simple decomposition algorithm

When the feasible set of the problem (4) is bounded, that of the master prob-
lem is always the convex hull of a set of affinely independent extreme points,
therefore, the dimension of the master problem never exceeds n + 1 − m′,
where m′ is the rank of the Jacobian of the active constraints, including
equalities. This, combined with the descent property that results from the
subproblem formulation, implies finite convergence of the simple decompo-
sition [Lachiheb, 1997]. A particularly interesting case is that of problems
having a number of active constraints close to the number of variables. With
these problems the dimension of the master problem is small, which makes
the decomposition method highly efficient.

3.3 Solution of the master problem:

The structure of the master problem makes it suitable for solution by a
penalty method. When the feasible set for the original quadratic problem is
bounded the vector w in problem (6) is made up solely of the components

ui verifying
p∑

i=1
ui = 1 . The barrier function used in [Ben Daya, 1994] is:

100

K(x, r) = −r
nk∑
i=1

log xi.

where nk is the current number of extreme points and extreme rays and r,
a positive real number, is the penalty coefficient. The above function is not
usable in general if the feasible set is unbounded . However, it is applicable
under the assumption of positive definiteness of matrix B.
Remarks:
- in case the function f is not strictly convex one can choose another penalty
function K(x, r) defined by

K(x, r) = −r
nk∑
i=1

H(xi)

where

H(xi) =

{
log xi if xi ≤ 1
1− 1

xi
if xi ≥ 1

which is continuous and differentiable over S.
- an advantage of the adopted choice for the penalty function is in that
the barrier function is strictly convex even when the original function is
nonconvex. This ensures uniqueness of the optimum for any value of r. In
the following, the objective function of the problem (4) is assumed to be
strictly convex. The penalized problem is written as

MPPr





min 1
2
wtQw + stw − r

nk∑
i=1

log wi

p∑
i=1

wi = 1
. (8)

For every solution w =

(
u
v

)
let

- r, a positive real number, is the penalty coefficient.
- D denote the diagonal matrix of dimension nk having wi as components,
- e denote the nk vector whose first p components are ones and the remaining
are zeroes,

- fr(w) = 1
2
wtQw + stw − r

nk∑
i=1

log wi ,

- gr(w) = ∇fr(w) = Qw + s − r D−1e ,
- Hr(w) = ∇2fr(w) = Q + r D−2 .
Lemma :[Ben Daya, 1994]
For each penalty coefficient rj > 0, let λj be the Lagrange multiplier associ-
ated with the unique constraint of problem MPPrj

. Then

101

λj =
etH−1

rj
grj

etH−1
rj

e

and the Newton direction for problem MPrj
at w is given by:

dj = −H−1
rj

(grj
− λje).

4 Perturbation of extreme points

4.1 Extreme point characterization

In case the feasible set

S = {x ∈ IRn/ A1x ≥ b1, A2x = b2 and x ≥ 0} . (9)

of problem (4) is unbounded one may change it into a bounded set without al-
tering the optimum solution, simply by imposing supplementary constraints
xi ≤ a, i = 1, ..., n where a is a sufficiently large real number. In the following,
the assumption of bounded feasible set will be made. Feasible solutions are,
therefore, written as convex combinations of extreme points only. The feasi-
ble set of a generic quadratic programming problem in the SQP sequence is
defined by (9). In order to characterize the extreme points of S we introduce
slack variables and rewrite it as S = {x ∈ IRn/ ∃ h ∈ IRm1 / (x, h) ∈ H}
where

H =

{
(x, h) ∈ IRn × IRm1/ A

(
x
h

)
= b , x ≥ 0 and h ≥ 0

}
,

A =

(
A1 −I
A2 0

)
, b =

(
b1

b2

)
, I denoting the m1 ×m1 identity matrix.

Thus, each extreme point is defined by an m×m, (m = m1+m2) nonsingular
submatrix of A, or simply by a set of m columns of A.

4.2 Influence of conditioning

Let B be a nonsingular submatrix of A and x the solution of the equation
Bx = b. A small perturbation in the matrix A and the right hand side
b results in a perturbation in the set H, and possibly in a change in the
topology and number of its extreme points. The following cases may occur
for a given extreme point characterized by a matrix B:

102

i/ the perturbed matrix B + δB is singular, therefore no extreme point can
be associated to it. In other words, at least one extreme point leaves the
SEP as a result of the perturbation. This may happen when the matrix B
is ill-conditioned
ii/ The matrix (B + δB) is nonsingular and the equation

(B + δB)x = b + δb

has no nonnegative solution, which implies that the extreme point associated
with matrix B transforms into a point which is not a vertex of the perturbed
domain H

′
= {x ∈ IRn/ (A + δA) x ≥ b + δb and x ≥ 0}. In this case at

least one extreme point enters the SEP . This may occur either at a nonde-
generate extreme point with an ill-conditioned associated matrix B, or at a
degenerate point independently of the conditioning of its associated matrix.
iii/ The matrix (B + δB) is nonsingular and the equation

(B + δB)x = b + δb

has a nonnegative solution, which defines an extreme point (xi + δxi). If the
matrix B is well conditioned the perturbed extreme point should be close to
xi according to the following proposition.
Proposition 1 [Ciarlet, 1982]. Let ‖ . ‖ denote a subordinate matrix norm.
If ‖δB‖ < 1

‖B‖ then

‖δx‖
‖x‖ ≤ 1

1−‖B−1‖‖δB‖(Cond(B)(‖δB‖
‖B‖ + ‖δb‖

‖b‖))

where

Cond(B) = ‖B−1‖ ‖B‖ .

4.3 Approximation of the optimum SEP

The solution of the quadratic programming problem by the standard sim-
ple decomposition algorithm has been subjected to testing on many example
problems. Examination of the variations of the extreme points through the
SQP iterations has shown that, in some problems, particularly those exhibit-
ing ill-conditioning, the number of extreme points getting in and out of the
SEP is very large. Considering that the generation of each extreme point
requires the solution of a large LP problem in addition to that of the master

103

problem, the overall computational effort could be improved significantly if
the number of extreme point generations were reduced. On the other hand, it
has been noted that, in most cases and especially at the tail of the sequence,
to each point in the optimum SEP of problem QPk is associated a point in
the optimum SEP of problem QPk+1 defined by the same columns in the
coefficient matrix. In such cases the k+1st optimum SEP can be viewed as
the result of the kth optimum SEP by a smooth mapping T. This leads to
the idea of obtaining the entire optimum SEP for a new QP directly from
the previous one, at least in an approximate way, in general. In an attempt
to construct an approximation of the k+1st optimum SEP , the following
approach is considered. Let {xi, i = 1, ..., nk} be the optimum SEP for the
kth iteration. For each point xj, one seeks a corresponding extreme point, for
the feasible set Sk+1, that is characterized as the closest one to xj. The new
extreme point, denoted by yj, is sought as the solution of the problem:

LSPjk





min
∑

i∈Lj

xi

x ∈ Sk+1
(10)

Lj = {i ∈ IN /
∥∥∥xj

i

∥∥∥ ≤ ε}, where ε is a small nonnegative real number.
A drawback of the above formulation is that, due to ill-conditioning or de-
generacy, the new points yi, i = 1, ..., nk are not necessarily affinely indepen-
dent, which may cause the number of points in the SEP to exceed the limit
n + 1−m′ in subsequent steps of the decomposition procedure. The largest
affinely independent subset can be determined by applying the simplex algo-
rithm to the following problem:

Rk





min x =
nk∑
i=1

ui.

nk∑
i=1

uiy
i = x∗

nk∑
i=1

ui = 1

u ≥ 0

(11)

where x∗ =
nk∑
i=1

u∗i y
i , u∗i are the components of the optimum solution of

the master problem corresponding to the SEP {yi, i = 1, ...nk} . The set
of independent extreme points is obtained by retaining solely extreme points
whose corresponding optimal coefficients are positive. The resulting set forms
the initial group of extreme points for problem QPk+1.

104

5 Numerical Examples

The proposed algorithm SQPD has been applied in its original and modified
versions to a number or test problems. A representative selection of these
problems is presented in this section. Comparison of computing times is
made at the end of the section.

5.1 Problem Description and Results

5.1.1 Powell’s Problem

Powell’s problem [Powell, 1978] is an example with a small number of vari-
ables and exhibiting pronounced nonlinearity. Table 1 presents the sequence
of optimum SEP corresponding to a run of the SQP algorithm started at
the solution x0 = (0,−2, 2, 0,−1) using the unmodified version of the sim-
ple decomposition. It can be seen that the maximum number of extreme
points used at a given step is 4, that is less than n + 1 = 6. The basic
columns stabilize from the third iteration for extreme points x3, from the
fourth iteration for x1 and from the sixth for x4. It can be noted that the
latter leaves the optimum SEP at iteration 4 and reenters it at the sixth
iteration. The optimum solution obtained is x∗ = (−0.699034, −0.869963,
2.789922, 0.6968791, −0.69657065) and the objective value is 0.4388502. On
the other hand it should be noted that convergence of the SQP sequence
is achieved within 8 iterations with a tolerance of 10−5 on the norm of di-
rection d, i.e. the same number of iterations as reported in [Powell, 1978].
Similarly, Table 2 presents the sequence of optimum SEP using the starting
point x0 = (−2, 2, 2,−1,−1). In this example, the basic columns are seen
to stabilize from the first iteration for all extreme points. Extreme point x2

leaves the SEP at the fourth iteration. The optimum solution obtained is
x∗ = (−1.71714, 1.59571, 1.82723, −0.76364, −0.76364) and the objective
value is 0.0539495.

5.1.2 Truss Design Example problems

In this section, examples of optimum design problems of truss structures
with a wide range of dimensions are considered. The typical design problem
consists in minimizing the self weight of the truss subject to limitations on
the stress in every member both in compression and in tension and to lower

105

bound restraints on the cross sectional areas which constitute the design
variables.

Iter. 1 2 3 4 5 6 7 8

x1

x2

x3

x4

‖d‖

.00000
49.416
24.166
39.100
0.0000

1.E + 5
49.416
50024.
20039.
1.E + 5

.00000
49.416
50024.
20039.
1.E + 5

1.E + 5
49.416
24.166
39.100
0.0000

0.8074

0.0000
49.570
27.685
25.445
0.0000

1.E + 5
49.570
44132.
49049.
1.E + 5

0.0000
49.570
44132.
49049.
1.E + 5

1.E + 5
49.570
27.699
25.449
0.0000

0.3264

.00000
59.557
35.386
12.031
0.0000

309.49
.00000
23028.
64808.
1.E + 5

309.49
.00000
55.283
47.509
.00000

0.2187

.00000
68.526
42.095
.00000
.74450

184.783
.00000
13505.
76366.
1.E + 5

184.78
.00000
46.717
45.336
.00000

0.1700

.00000
75.862
49.420
.00000
15.535

146.59
.00000
5334.4
90345.
1.E + 5

146.59
.00000
44.959
41.332
.00000

0.0679

.00000
82.122
53.821
.00000
25.021

.00000
82.122
.00000
16968.
16892.

127.80
.00000
44.336
38.406
0.0000

50.599
49.609
50.115
.00000
.00000

0.0044

.00000
82.283
53.782
.00000
24.958

.00000
82.283
.00000
90231.
90155.

127.43
.00000
44.194
38.554
.00000

50.112
49.927
50.021
.00000
.00000

0.0002

0.0000
82.282
53.770
.00000
24.933

.00000
82.282
27.242
1.E + 5
99975.

127.44
.00000
44.183
38.573
.00000

50.049
49.967
50.009
.00000
.00000

.00004

Table 1. Sequence of optimum SEP and ‖d‖ for Powell’s problem
x0 = (0,−2, 2, 0,−1).

106

Iter. 1 2 3 4 5

x1

x2

x3

x4

‖d‖

22.3636
77.7196
.000000
108.712
.000000

100.083
.000000
142.486
.000000
82.8055

22.3636
77.7196
.000000
.000000
108.712

100.083
.000000
142.486
82.8054
.000000

0.30900

24.2513
78.7143
.000000
108.738
.000000

94.8945
000000
137.057
.000000
84.7330

24.2513
78.7143
000000
000000
108.738

94.8945
000000
137.057
84.7330
.000000

0.02544

24.3366
79.3742
.000000
108.171
.000000

93.6834
.000000
135.109
.000000
86.0907

24.3366
79.3742
.000000
.000000
108.171

93.6834
.000000
135.109
86.0907
.000000

0.02190

23.1894
81.0056
.000000
106.168
.000000

23.1894
81.0056
.000000
.000000
106.168

93.2352
.000000
130.634
90.0489
.000000

0.00625

23, 0914
81, 0056
.000000
105.985
.000000

23.0914
81.1590
.000000
.000000
105.985

93.1792
.000000
130.233
90.3946
.000000

0.00006

Table 2. Sequence of optimum SEP and ‖d‖ for Powell’s problem
x0 = (−2, 2, 2,−1,−1) .

107

Ten Bar Truss. In this example the optimum design problem for the ten
bar truss structure depicted in Figure 1 is considered. The detailed problem
statement is given in [Kirsch, 1981]. The allowable stresses and the lower
bound on the cross sectional area are respectively ±2500kips and 0.1 in2.
It can be noted that the problem statement is independent of the Young
modulus which does not need to be specified. The problem is solved by
the SQP algorithm using the unmodified simple decomposition. The se-
quence converges within 6 iterations with a tolerance of 10−6 on ‖d‖. The
optimal solution obtained is x∗ = (7.937867, 0.1, 8.0621, 3.9379, 0.1, 0.1,
5.7447, 5.5690, 5.5690, 0.1)in2 and the optimum volume is 15931, 8in3. Ta-
ble 3 shows the sequence of optimum SEP . It is interesting to note that,
except for the first iteration, the optimum SEP reduces to a singleton. In-
deed, the number m′ of active constraints, including lower bound constraints
on the variables, is 10, so that n + 1−m′ = 1. As a consequence, there is no
master problem to solve. Moreover, the unique extreme point corresponds
to a constant set of basic columns with respect to both the original design
variables and the slack variables.

Iter. 1 2 3 4 5 6
x1 x2 x1 x1 x1 x1 x1

4.76881
.000000
8.09764
3.52469
.000000
.000000
4.39436
4.18233
5.19629
.000000

4.35332
.000000
8.89494
3.39200
.000000
.000000
5.29781
3.25080
4.99725
.000000

6.39218
.000000
7.88101
3.79158
.000000
.000000
5.60752
4.66185
5.43361
.000000

7.57217
.000000
7.96076
3.83744
.000000
.000000
5.64397
5.36208
5.46885
.000000

7.82922
.000000
7.96213
3.83787
.000000
.000000
5.64472
5.46714
5.46899
.000000

7.83786
.000000
7.96213
3.83787
.000000
.000000
5.64472
5.46899
5.46899
.000000

7.83787
.000000
7.96213
3.83787
.000000
.000000
5.74472
5.46899
5.46899
.000000

‖d‖ 2.090 2.008 1.210 0.0257 0.0086 0.00001

Table 3. Sequence of optimum SEP and ‖d‖ for ten bar truss problem.

108

360

360

(9)
(10)

(6)

(4)

(2)

(7)

(1)

(8)

(5)

(3)◦ ◦ ◦

◦ ◦ ◦′′′
′

′′′
′

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@¡

¡
¡

¡
¡

¡
¡

¡
¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

? ?
100klb 100klb

Figure 1. Ten bar truss (unit: inch)

47

4645

4039

4443

4241

3837

3635
3433

3231

30 2928 2726

25

2423
2221

20

1918

1716

15

1413

1211

10

98

76

5

43

21

′′′′ ′′′′

58

18.4

42.6

17.1

42.9

36

13.5
16.5

62.5

35.2

71.9

75.8

103.2

118.6

122.8

6klb

14.1klb

-

?

Figure 2. Forty-seven-bar transmission tower (unit: inch)

109

(1) (3)(2)

◦

100

100

′′′′′ ′′′′′ ′′′′′
@

@
@

@
@

@
@

@
@

@ ¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

@
@R
20klb

Figure 3. Three bar truss (unit: inch)

(B/B)

(A/A)

(C/C) (D/D)

D

D

µ

µ

C

C

R

R

B

B

¾

¾

A A66

³³³³³³
³³³³³³

0.3m

0.04m

1m

0.3m

0.2m

0.3m

0.2m

£
££
£
££
£
££
£
££
£
££

PPPPPPPPPPPP³³³³³³³³³³³³

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

Figure 4. Truss framing Structure

110

Forty-seven-bar transmission tower. In this example a larger truss
structure is considered and design variable linking is applied so that the
number of design variables is reduced to 27. The detailed problem statement
is given in [Kirsch, 1981] and the structure is shown in Figure 2.
The truss is to be designed for minimum self weight subject to stress con-
straints given an allowable stress limit of 35 kips, and 0.1 in2 minimum gage
restraint on the cross sectional areas. Starting from an initial design with
all cross sections at 10 in2 and using the SQPD algorithm, the solution is
obtained within 10 SQP iterations. The optimal solution is x∗ = (1.340856,
0.10, 0.10, 1.274094, 0.10, 0.10, 1.180685, 0.111531, 0.10, 1.066225, 0.121519,
0.10, 0.931220, 0.140893, 0.10, 0.768537, 0.232367, 0.5335577, 0.853049, 0.337046,
0.342363, 0.140052, 0.216507, 0.626915, 0.517970, 0.571995, 0.428604)in2 and
the optimum volume is 2172.73 in3. As observed in the previous example,
the optimum SEP is a singleton except for the first iteration. This is in
agreement with the statement that the number of retained extreme points is
governed by the number n + 1 −m′. Indeed, in both problems the number
of active constraints, including side constraints, is equal to the number of
independent design variables, that is n + 1−m′ = 1.
Three Bar Truss. The structure and loading of this example are described
in Figure 3. The design problem consists of finding the truss with minimum
weight subject to strength constraints under a single loading condition as-
suming a symmetric structure [Kirsch, 1981]. Allowable stresses are 20000
psi in tension and 15000 psi in compression.
In this classical small size example problem the maximum number of extreme
points in a group is 2, whereas it is unity in the ten bar truss and the trans-
mission tower examples above. Indeed, the problem is formulated in terms
of two design variables (n = 2), on the other hand, at the optimum a single
constraint is active (m′ = 1), which is possible because of the nonlinearity
of the stress in the first bar. Therefore, the maximum number of extreme
points in a group is n+1−m′ = 2. It has been noted, however, after several
runs conducted with different starting points using the SQPD algorithm,
that the group of extreme points remains a singleton throughout the solu-
tion process. This provides evidence that the maximum number of extreme
points in a group is not necessarily reached.
Truss framing Structure. The structure considered in this example is
a truss framing subjected to a uniformly distributed vertical load q. Given
the problem symmetry, only half the structure is modeled (although one can
reduce the problem size further to a quarter). The retained model, as shown

111

in Figure 4, comprises 380 bars. The truss is to be designed for minimum
self weight subject to stress constraints given an allowable stress limit of
250MPa, and 0.1 cm2 minimum gage restraint. No variable linking is used
in this example. Assuming a load density q = 5kN/m2, an initial design
with all cross sections at 2.5 cm2 is chosen, and using the SQPD algorithm,
a final solution is found within 9 SQP iterations. The optimal volume is
13656.4cm3. The number of extreme points here again stabilizes at unity at
the tail of the sequence and it did not exceed two.
A second run is conducted using a load intensity q = 10kN/m2. The op-
timal volume of 24397.2 is reached after 17 iterations. However, unlike the
previous truss examples the present one converges to a solution with three,
that is more than one, extreme points in the final group. The explanation
lies again in the nonlinear nature of the problem as illustrated by the three
bar truss example. It is also noted that the number of extreme points is 3 at
most throughout the sequence of quadratic problems.
Two other runs are conducted using load intensities q = 20kN/m2 (resp.
40kN/m2). Convergence is achieved at 30 (resp. 34) iterations. For both
runs the optimal group of extreme points counts seven elements. This num-
ber, which is not exceeded in the intermediate iterations, is clearly very small
in comparison with the problem dimension.

5.1.3 Large Scale Analytical Problems

The test problems considered next are large scale analytical problems. The
first two are reference problems NLP1 and NLP2 that have been treated
in [Boggs, Kearsley, Tolle, 1999] to test a penalty type algorithm. Next
a parameter dependant family of analytical problems, denoted NLP3, is
considered.
Problem NLP1: This problem is written as follows:

NLP1





min 1000[(
n∑

i=1
x3

i)
2 − (

n∑
i=1

x2
i)(

n∑
i=1

x4
i)]

xi − xi+1 ≤ 0 i = 1, ..., n− 1
x2

i − xix
2
i+1 ≤ 0 i = 1, ..., n− 1

x1 ≥ 0 xn ≤ 1.

(12)

112

It has been solved in [Boggs, Kearsley, Tolle, 1999] for a number of variables
n = 200. Here, the algorithm SQPD is first applied for n ranging between
200 and 1000. Given that the problem possesses multiple optima, the algo-
rithm is run with different starting points for each value of n. In all cases the
number of extreme points at the optimum of each quadratic programming
subproblem is less than or equal to four. It should be noted that most of
the pivot operations are devoted to the generation of the first extreme point
(phase I) which requires in the order of n pivots and often largely exceeds
this number. The subsequent extreme points are deduced from the first via
only a small number of pivots. It can also be remarked from the data given
in Table 4 that, for this example problem, the performance of the modified
SQPD algorithm, as measured by the total number pivots, is nearly simi-
lar to that of the original algorithm SQPD. This happens here because the
number of intermediate extreme points and the number of pivots per extreme
point generation are so small in his case that no possibility is left for their
reduction.
Problem NLP2: This problem

NLP2





min
n∑

i=1
[10(xi+1 − x2

i)
2 + (1− xi)

2]

xi − xi+1 ≤ 0 i = 1, 3, ..., n− 1
4xi+1 − x2

i − 4 ≤ 0 i = 1, 3, ..., n− 1

2xi+1 + xi − 1 ≤ 0 i = 1, 3, ..., n− 1

x1 ≥ 0 xn ≥ 0

. (13)

is constructed with Rosenbrock’s function as an objective. A relevant feature
of this function is the tridiagonal structure of the Hessian matrix. Problem
(13) has been treated in [Boggs, Kearsley, Tolle, 1999] with n = 250. Using
the algorithm SQPD, the problem has been solved for n = 100, 200, 250, 500
and 750 with corresponding numbers of constraints m = 296, 596, 746, 1496
and 2246, respectively. The number of iterations (nit) to convergence is re-
ported in Table 4. The maximum number of extreme points at the optima of
the quadratic programming subproblems is six for all three cases. The master
problem size is, therefore, small compared to that of the problem P . Table
4 shows the total number tnep (resp. tnepm) of extreme points generated
throughout the solution by the algorithm SQPD (resp. modified SQPD)
and the total number tnp (resp. tnpm) of pivot operations performed by the

113

same algorithm. These results demonstrate an advantage of the approxima-
tion procedure, that is, the reduction in the number of pivots required for
the generation of one extreme point. This reduction can be explained by the
specific structure of problem (10) that demands a computational effort gen-
erally equivalent to that of a linear system of m equations, whereas problem
(7) of the original SQPD method requires the effort of the solution of an
arbitrary LP problem.

Problem n m nit tnep tnp tnepm tnpm

NLP1

100
500
700
1000

200
1000
1400
2000

16
19
17
14

97
95
93
82

16552
32225
41325
62552

98
99
97
89

16802
31120
42752
65432

NLP2

100
200
250
500
750

296
596
746
1496
2246

60
35
28
24
46

776
183
211
190
446

22221
14395
18792
31384
112160

873
180
229
189
335

14550
12630
12142
20335
46381

Table 4. Extreme point and pivot count.

Problem NLP3: A family of example analytical problems are now con-
structed in the following form:

NLP3





min
n−p∑
i=1

exp((x2
i − 4)(xi − 4)) +

n∑
i=n+1−p

(x2
i − 1)(xi − 1).

gi(x) = x2
i + x2

i+1 − 5 ≤ 0, i = 1, ..., n− 1
gn(x) = x2

n + x2
n−1 − 5 ≤ 0

x ≥ 0.1

(14)

where p is a positive integer which controls the number of active constraints
at the optimum.
The analytical solution of these problems is trivial. Many example prob-
lems have been solved using both the unmodified and the modified SQPD

114

in order to assess the incidence of the initial SEP approach on the com-
putational effort as the problem size increases. The computational load,
justifiably measured by the total number of pivots (tnp) involved in the gen-
eration of extreme points, is plotted in Figure 5 as a function of the number
of variables for p = 20 and n ranging from 100 to 1000. The saving achieved
by the modified SQPD method is clearly demonstrated. It is noted that the
computational advantage improves to greater proportions and reaches 60%
as the problem size increases. This is essentially explained by two factors.
The first is that the modified method avoids the redundant generation of
intermediate extreme points normally carried out in the SQPD algorithm.
The second is that the LP subproblems that generate the initial SEP in
the modified algorithm are more straightforward to solve than the LP sub-
problems of the SQPD algorithm because of the a priori knowledge of the
basis. The effect of the second factor is clearly illustrated by the case with
n = 450 where the total number of generated extreme points is nearly the
same for both algorithms, whereas the modified algorithm requires only half
the number of pivots.

-

6
◦ SQPD
• modified SQPD

0 n

tnp (×1000)

100

50

500

100

1000

150

•◦ •
◦ •
◦
•
◦ •

◦

•

◦

•

◦

•

◦

•

◦

•

◦

•

◦

•

◦

•

◦

•

◦

Figure 5. Evolution of total number of pivots versus problem size.

115

Furthermore, it is noted that, as the problem size is increased the com-
putational effort required by SQPD varies almost linearly, whereas by the
modified algorithm it grows in a rather logarithmic pattern. Indeed, in the
present example the number n−m′+1 = p+1 is constant and the number of
extreme points generated by the modified algorithm remains nearly constant
independently of n, due to the small number of intermediate extreme points.

5.2 Computational time

All of the numerical examples presented in this paper were run on a 700
Mhz Pentium III personal computer. Computational CPU time in seconds is
reported in Table 5 for all runs of the SQPD algorithms and NLPQL code.

6 Conclusion

In the present work Sacher’s simple decomposition is applied in solving the
quadratic programming problems of the sequence of the SQP algorithm for
nonlinear programming. The resulting algorithm naturally preserves the su-
perlinear convergence of the sequential quadratic programming method and
provides a capability for handling large scale problems. Moreover, a proce-
dure is developed that aims at reducing the computational effort devoted to
the generation of intermediate extreme points. It consists in initiating the de-
composition process with a whole set of extreme points, determined from the
results of the preceding iteration, without solving a series of master problems
and subproblems. Numerical examples of nonlinear programming problems
consisting of some structural optimization problems and selected analytical
problems are solved using the proposed algorithm in both its original and
modified versions and a reference code NLPQL. Results indicate improved
robustness and excellent accuracy in the solutions obtained by the proposed
algorithm. Computational efficiency of the algorithm is particularly high for
large problems with a number of active constraints close to the number of
variables, such as those encountered in structural optimization. Comparison
of the original and the modified versions of the proposed algorithm reveals
computational saving up to 60%.

116

CPU time(s)

Problem n m nit SQPD modified SQPD NLPQL

NLP1

100
500
700
1000

200
1000
1400
2000

16
19
17
14

2,02
101,5
214,8
532,5

2,08
100,1
217,1
543,3

failed
failed
failed
failed

NLP2

100
200
250
500
750

296
596
746
1496
2246

60
35
28
24
46

33,4
75,5
149,6
874,4
6030

20,9
50,1
103,3
549,8
2732,7

18
111,4
115
866
4149

NLP3
p = 20

100
200
500
800

200
400
1000
1600

40
50
48
54

4,9
39,1
232,2
752,7

4,3
29,7
168,9
531

6,1
64,3
839,1
4811,9

NLP3
p = 10

100
200
500
800

200
400
1000
1600

42
54
52
54

2,9
23,4
235,4
558,2

1,8
14,3
134,1
279

6,5
68,1

1051,9
5623

Truss design
10
27
380

20
94
760

6
10
17

0,2
1,3

1028

0,2
1,3

1004

0,3
1,4

1919

Table 5. Computational time.

References

[1] Ben Daya, M., (1994) A Hybrid Decomposition Approach for Convex
Quadratic Programming, King Fahd University of Petroleum and Min-
erals, under code SE/LINPROG/138.

[2] Biggs, M.C., (1975) Constrained Minimization Using Recursive
Quadratic Programming, Towards Global Optimization, L.C.W. Dixon
and G.P. Szergo, eds. North Holland, pp.341-349.

117

[3] Burke, J.V. and Han, S.P., (1989) A Robust Sequential Quadratic Pro-
gramming Method, Math. Prog., vol.43, pp.277-303.

[4] Boggs, P.T., Kearsley, A.J. and Tolle, J.W., (1999) A Practical Algo-
rithm for General Large-Scale Nonlinear Optimization Problems, SIAM
J. Optimization, vol.9, nr.3, pp.755-778.

[5] Boggs, P.T., Kearsley, A.J. and Tolle, J.W., (1999) A Global Conver-
gence Analysis of an Algorithm for Large-Scale Nonlinear Optimization
Problems, SIAM J. Optimization, vol.9, nr.4, pp.833-862.

[6] Ciarlet, P.G., (1982) Introduction à l’Analyse Numérique Matricielle et
à l’Optimisation, Masson, Paris.

[7] Dantzig, G.B., (1963) Linear Programming and Extensions, Princeton
University Press.

[8] Fiacco, A.V. and McCormick, G.P., (1968) Nonlinear Programming : Se-
quential Unconstrained Minimization Techniques, John Wiley and Sons,
NewYork, SEC.2.4.

[9] Han, S.P., (1977) A Globally Convergent Method for Nonlinear Pro-
gramming, J. Optimization Theory and Applications, vol.22, pp.297-
309.

[10] Hearn, D.W., Lawphongpanich, D.W. and Ventura, J.A. (1987) Re-
stricted Simplicial Decomposition: Computation and Extensions, Math.
Prog. Study, vol.31, pp.99-118.

[11] Hock, W. and Schittkowski, K., (1981) Test Examples for Nonlinear
Programming Codes, Lecture Notes in Economics and Mathematical
Systems 187, Springer-Verlag.

[12] Kirsch, U., (1981) Optimum Structural Design, McGraw-Hill Book
Company.

[13] Lachiheb, M., (1997) Extension de la décomposition hybride pour la
programmation non linéaire, Mémoire de D.E.A. Mathématiques ap-
pliquées, ENIT, Tunis.

118

[14] Lawrence, C.T. and Tits, A.L., (2001) A Computationally Efficient Fea-
sible Sequential Quadratic Programming Algorithm, SIAM J. Optim.,
vol.11, nr.4, pp.1092-1118.

[15] Mar’in, A., (1995) Restricted Simplicial Decomposition with Side Con-
straints, Networks, vol.26, pp.199-215.

[16] Mulvey, J.M., Zenios, S.A. and Ahlfeld, D.P., (1990) Simplicial Decom-
position for Convex Generalized Networks, Journal of Information and
Optimization Sciences, vol.11, pp.359-387.

[17] Panier, E.R. and Tits, A.L., (1978) A Superlinearly Convergent Fea-
sible Method for the Solution of Inequality Constrained Optimization
Problems, SIAM J. Control Optim. vol.25, pp.934-950.

[18] Powell, M.J.D., (1978) Algorithms for Nonlinear Constraints that use
Lagrangian Functions, Math. Prog. vol. 14, nr.2.

[19] Powell, M.J.D., (1978) The Convergence of Variable Metric Methods
for Nonlinearly Constrained Optimization Calculations, Nonlinear Pro-
gramming 3, O.L. Mangasarian R.R. Meyer and S.M. Robinson, eds.,
Academic Press.

[20] Powell, M.J.D., (1978) A Fast Algorithm for Nonlinear Constrained Op-
timization Calculations, Numerical Analysis, G.A. Waston ed., Lecture
Notes in Mathematics, Springer Verlag, vol. 630, pp.144-157.

[21] Powell, M.J., (1983) On the Quadratic Programming Algorithm of Gold-
farb and Idnani, Report DAMTP 1983/Na 19, University of Cambridge,
Cambridge.

[22] Rockafellar, R.T., (1970) Convex Analysis, Princeton, New Jersey,
Princeton University Press.

[23] Sacher, R.S., (1980) A Decomposition Algorithm for Quadratic Pro-
gramming, Math. Prog., vol.18, p.16-30.

[24] Schittkowski, K., (1985) NLPQL: A Fortran Subroutine Solving Con-
strained Nonlinear Programming Problems, Annals of Operations Re-
search, Vol.5, pp.485-500.

119

[25] Schittkowski K., (2004) NLPQLP20: A Fortran implementation of a
sequential quadratic programming algorithm with distributed and non-
monotone line search - User’s guide, Report, Department of Computer
Science, University of Bayreuth.

[26] Schittkowski K., (2005), Optimization in industrial engineering: SQP-
methods and applications, Radioss User Meeting, Mecalog, Nice, June
20-22.

[27] Shanno, D.F. and Phua, K.H., (1989) Numerical Experience with Se-
quential Quadratic Programming Algorithms for Equality Constrained
Nonlinear Programming, ACM Transactions on Mathematical Software,
vol.15, nr.2, pp.49-63.

[28] Shetty, C.M. and Ben Daya, M., (1988) A Decomposition Procedure
for Convex Quadratic Programs, Naval Research Logistics Quarterly,
vol.35, pp.111-118.

[29] Ventura, J.A. and Hearn, D.W., (1993) Restricted Simplicial Decompo-
sition for Convex Constrained Problems, Math. Prog., vol.59, pp.71-85.

[30] Von Hohenbalken, B., (1977) Simplicial Decomposition in Nonlinear
Programming Algorithms, Math. Prog., vol.13, pp.49-68.

[31] Zillober Ch., Schittkowski K., Moritzen K., (2004) Very large scale op-
timization by sequential convex programming, Optimization Methods
and Software, Vol.18, nr. 1, pp.103-121

120

