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Abstract

In this paper an algorithm for alignment of two ordered trees is presented. The
algorithm is designed based on the genetic programming which is an extension of
the genetic algorithms. In this approach, the two comparing trees are presented
in parenthesis-form. Randomly, we create some pairs of trees based on these two
trees as the initial population, and then by using a fitness function which is based
on scoring the pairs of labels in tree nodes, the fitness of alignments of all pairs of
trees is obtained. Trees with a better alignment are selected based on their fitness,
then crossover and architecture-altering operations are performed on them to pro-
duce the new generation. These steps are performed until a predefined number of
generations evolve. The crossover operator in our method is designed such that it
replaces only similar sub-trees so that the resulting trees always represent correct
alignments. Architecture-altering operator alters the architecture of a tree by in-
creasing or decreasing the degree of a valid node in it.
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1 Introduction

Application of computer for solving problems has always been one of the major concerns
for computer scientists. There are many problems in the field of computer science which
are NP-hard or have a large polynomial time complexity. One of these problems is ordered
tree alignment.

The tree is one of the major structures for representing data in computer science. A tree
can be recursively defined as a finite set of some nodes in which a special node is root and
the other nodes recursively denote other trees. An ordered tree is a rooted tree in which
the children of each node are ordered. Since trees have many applications in representing
and storage of data, comparing two trees has always been of great importance. As in the
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case of sequences comparisons, there are many ways to measure the similarity between two
trees. For instance one could use tree edit distance, alignment distance, longest common
sub-tree and smallest common super-tree [3, 6, 7, 12, 13].

Here, we consider the notion of alignment of trees as a measure of similarity between
trees. This notion is a natural extension of alignment of sequences. In tree alignment,
two given trees are first made isomorphic by inserting nodes labeled as ′−′ and then the
resulted trees are overlaid over each other.

Several researchers have studied comparing trees, some of them are as follow: In [7],
Jiang et al. proposed the alignment of trees as a measure of the similarity between two
labeled trees. Both ordered and unordered trees were considered in their approach. An
algorithm was designed for comparing two ordered trees T1 and T2 with the time complexity
of O(|T1|.|T2|.(deg(T1) + deg(T2))

2), where |Ti| is the number of nodes in Ti and deg(Ti) is
the degree of Ti, i = 1, 2. The algorithm is faster than the best known algorithm for tree
edit when deg(T1) and deg(T2) are smaller than the depths of T1 and T2. For unordered
trees, they showed that the alignment problem can be solved in polynomial time if the
trees have a bounded degree and becomes MAX SNP-hard if one of the trees is allowed to
have an arbitrary degree.

In [3], Hochsmann et al. presented a systematic treatment of alignment distance
and local similarity algorithms on trees and forests built upon the tree alignment al-
gorithm for ordered trees given by Jiang et. al [7] and extended it to calculate local
forest alignments, which is essential for finding local similar regions in RNA secondary
structures. Given two forests F1 and F2, the time complexity of their algorithm is
O(|F1|.|F2|.deg(F1).deg(F2).(deg(F1)+deg(F2)) where |Fi| is the number of nodes in forest
Fi and deg(Fi) is the degree of Fi.

In [6], Jansson et al. gave a fast algorithm for optimal alignment between two sim-
ilar ordered trees with node labels. If there is an optimal alignment between the two
input ordered trees which uses at most d blank symbols then their algorithm runs in
O(n log n.(max deg)4.d2) time. In particular, if both trees are of bounded degree the
running time reduces to O(n log n.d2).

In [12], Wang et al. presented a dynamic programming algorithm for identifying the
similar consensus (SC) (or the largest approximately common substructures) of two or-
dered labeled trees based on the alignment distance. They consider a substructure of a
tree T to be a connected subgraph of T. Given two trees T1, T2 and an integer d, the SC
problem is to find a substructure U1 of T1 and a substructure U2 of T2 such that U1 is
within distance d of U2 and where there does not exist any other substructure V1 of T1

and V2 of T2 such that V1 and V2 satisfy the distance constraint and the sum of the sizes
of V1 and V2 is greater than the sum of the sizes of U1 and U2. The proposed algorithm
solves the SC problem in time O(d2.|T1|.|T2|.(G1 + G2)

2), where |Ti|, i = 1, 2; is the size
of tree Ti and Gi is the maximum degree of Ti.

The problem of ordered tree alignment if trees are large and have unbounded degrees,
has a high computing time [7], so we proposed a genetic programming approach for solv-
ing the problem. In this paper our purpose is to find the optimal alignment of the trees
i.e., the alignment in which maximum number of similar nodes overlay on each other.
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Tree alignment has many applications that some of them include: Web data extraction,
web pages comparison, programming languages codes comparison, tree comparisons in
structured text databases, tree comparisons in image analysis, tree comparisons in auto-
matic theory proving, tree comparisons in compiler optimization and comparison of RNA
secondary structures [7].

In our approach we use genetic programming as a heuristic method for solving this
problem. In this method a population of computer programs is generated using genetic
rules then genetic operators are applied on the individuals of this population to generate
the next population of programs. After producing many generations, the solution of
the problem is obtained. In this approach which is a new method for tree alignment,
an initial random population of trees is created based on the two initial trees. Then
using genetic principles and crossover and architecture-altering operators, next generations
which are evolved generations based on previous ones are created and finally one of the
individuals is selected as the best alignment and solution of the problem. It is noted that,
the main contribution of this paper is presenting a novel approach (genetic programming)
for solving tree alignment problem. As mentioned, few polynomial solution are given
for tree alignment problem, but for large size of trees, the time of the algorithm would
be significantly much. For this reason, the approach of solving this problem by genetic
programming can reduce this time.

The rest of this paper is organized as follows: In Section 2 an overview of the genetic
programming is given, in Section 3 the problem of alignment of trees is presented, in
Section 4 the proposed method for aligning trees is discussed and finally in Section 5 some
experimental results of the method are presented. The conclusion of this work is given in
Section 6.

2 Genetic programming

Genetic programming is in fact an extension of genetic algorithms which was first intro-
duced by John Holland in 1975 [4]. Genetic programming is a domain-independent method
that genetically breeds a population of computer programs to solve a problem. Specifically,
genetic programming iteratively transforms a population of computer programs into a new
generation of programs by applying analogs of naturally occurring genetic operations. As
mentioned, the population individuals in genetic programming are programs which are
each a candidate solution for the problem. In genetic programming the programs are ex-
pressed as syntax trees rather than as lines of code. Internal nodes of such a tree represent
functions or instructions and leaves of the tree, also said terminals, represent independent
variables of the problem or function arguments. Internal nodes can also be zero-argument
functions and random constants [10].

The main difference between genetic programming and genetic algorithms is that pop-
ulation structures in this method are not fixed length characters like in genetic algorithms
which encode problem solutions but are programs which are the problem solutions them-
selves. Genetic programming is capable of solving problems in many fields such as machine
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learning, artificial intelligence, control, robotics, optimization, games theory, regression
and conceptual learning [10].

2.1 Preparatory steps of genetic programming

Genetic programming solves a problem using programs which are in the form of trees
(consisting operands and operators). Defining the problem in genetic programming is
done by performing certain well-defined preparatory steps. The five major preparatory
steps for the basic version of genetic programming are as follow [10]:

1. Defining the set of terminals (e.g., the independent variables of the problem, zero-
argument functions and random constants).

2. Defining the set of primitive functions.

3. Defining the fitness measure (for explicitly or implicitly measuring the fitness of
individuals in the population).

4. Defining certain parameters for controlling the run.

5. Defining the termination criterion and a method for designating the result of the
run.

The first two preparatory steps specify the requirements to create the program. Each
run of genetic programming is a competitive search among a diverse population of pro-
grams composed of the available functions and terminals. The identification of the function
set and the terminal set for a particular problem (or category of problems) is usually a
straightforward process. For some problems, the function set may consist of merely the
arithmetic functions of addition, subtraction, multiplication, and division as well as a
conditional branching operator. The terminal set may consist of the program’s external
inputs (independent variables) and numerical constants.

The third preparatory step specifies the fitness measure for the problem. The fitness
measure defines what needs to be done. The fitness measure is the primary mechanism
for specifying the problem’s requirements to the genetic programming system.

The fourth and fifth preparatory steps are administrative. The fourth preparatory
step specifies the control parameters for the run. The most important control parameter
is the population size. Other control parameters include the probabilities of performing
the genetic operations, the maximum size for programs, and other details of the run.
The fifth preparatory step consists of specifying the termination criterion and the method
of designating the result of the run. The termination criterion may include a maximum
number of generations to be run as well as a problem-specific success predicate. The single
best-so-far individual is then searched and designated as the result of the run.
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2.2 Executional steps of genetic programming

After performing the preparatory steps for a problem, genetic programming can be run
as a series of well-defined, problem-independent steps. Genetic programming typically
starts with a population of randomly generated programs composed of the terminals and
primitive functions provided in the first and second preparatory steps [10].

By applying operations analogous to naturally occurring genetic operations , genetic
programming iteratively transforms a population of programs into a new generation of the
population. These operations are applied to individual(s) selected from the population.
The individuals are probabilistically selected to participate in the genetic operations based
on their fitness, as measured by the fitness measure provided in the third preparatory step.
The executional steps of genetic programming are as follow [10]:

1. Randomly creating an initial population (generation 0) of programs composed of
available functions and terminals.

2. Iteratively performing the following sub-steps (called a generation) on the population
until the termination criterion is satisfied:

(a) Executing each program in the population and finding its fitness using the
problem’s fitness measure and performing the sub-step (b) for M times (M is
the population size).

(b) Creating new programs by applying following genetic operations with specified
probabilities:

Reproduction: Selecting one program based on fitness and copying it into
the new population.

Crossover: Selecting two programs based on fitness and creating new child
programs for the new population by combining randomly chosen parts from
two selected programs.

Mutation: Selecting one program based on fitness and creating a child
program for the new population by randomly mutating a randomly chosen
part of the selected program.

Architecture-altering operations: Selecting one architecture-altering
operation from the available set of such operations and creating one new
child program for the new population by applying the chosen architecture-
altering operation to the selected program.

3. After the termination criterion is satisfied, the single best program in the population
produced during the run (the best-so-far individual) is searched and designated as
the result of the run. If the run is successful, the result may be a solution (or
approximate solution) to the problem.

There are some methods for creating the initial population of the programs. In one of
them that is called ”Full” initialization method, program tree nodes are taken from the
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function set until a maximum tree depth is reached. Beyond that depth only terminals
can be chosen. The other method which is called ”Grow” initialization method allows the
selection of nodes from the whole primitive set until the depth limit is reached [10].

3 Tree alignment problem

In this section we formally define [3] the tree alignment problem. Suppose the possible set
of labels of the two trees is denoted by Σ and is called the alphabet. Also suppose that
there is a special symbol called space and denoted by ′−′ which is not in the alphabet Σ.
In order to include label ′−′ in the alphabet we define Σ− as Σ ∪ {−}. Paired alphabet
is also defined as Σ2 = Σ− × Σ− \ {(−,−)} for excluding the paired label (−,−) and
Σ−2

= Σ− × Σ− for including the special pair (−,−). The scoring function Ω is defined
as Ω : Σ−2

→ R. So the score of an alignment A of the trees T1 and T2 can be defined as:

S(A) =
∑

for each node v in A

Ω(label(v)),

in which label(v) denotes the label of the node v.
An alignment A of two trees T1 and T2 is first making the trees isomorphic by inserting

nodes labeled ′−′ in each of them and then overlaying the resulting trees over each other.
The goal of the alignment problem is to find the optimal alignment of the two trees in which
S(A) is maximum. It should be noticed that here, isomorphism is without considering node
labels in the two trees.

As an example of tree alignment, consider the two trees in Fig. 1(a). The isomorphs
of them are shown in Fig. 1(b). Fig. 1(c) shows the optimal alignment of the two trees.

In our new approach for aligning ordered labeled trees, genetic programming receives
the two aligning trees as its input and after evolving the populations of program trees for
several generations, produces the (near) optimal alignment of the two trees as its output.

Figure 1: (a) Two sample trees. (b) Isomorphs of the two trees by inserting ′−′ nodes. (c)
The optimal alignment of the two trees.
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4 Tree alignment with genetic programming

In this section the new proposed method for aligning two ordered trees with genetic pro-
gramming is presented. The preparatory steps for genetic programming to solve the prob-
lem, crossover and architecture-altering operations and the other details of the proposed
method are discussed.

4.1 Steps of genetic programming for tree alignment

In this sub section we discuss the preparatory steps that must be performed before the run
of the genetic programming begins. As mentioned before, five steps must be performed in
order to prepare the requirements of the program run. These steps are as follow:

1. Specifying the terminals set: The members of the terminals set are the members

of the alphabet
∑

−2
, i.e., the members of the terminals set are (α, β) such that

α, β ∈
∑

−.

2. Specifying the functions set: In our method the functions set is the null set (),
i.e., in generating the program trees in the proposed method the primitive functions
are not used.

3. Fitness measure: The fitness measure in this method is alignment score, S.

4. Parameters for controlling the run: These parameters include population size,
probability of the reproduction operator, probability of the crossover operator and
the probability of the architecture-altering operations.

5. Termination criterion and result of run: The termination criterion for this
problem is specifying the maximum number of generations the program must run.
The best generated program through the run is designated as the result of the run
(optimal alignment).

It is clear that the generated trees for solving this problem are only composed of ter-
minal nodes or labels alphabet, i.e., they are trees with (α, β) labels. Programs in this
method are alignments of the two trees and for determining the fitness of each one, its
alignment score is computed. The higher the alignment score, the fitter is the program
having it. The only possible termination criterion for this problem is to specify a max-
imum number of generations for the genetic programming to evolve. Since the score of
the optimal alignment is not known and cannot be well estimated too, specifying any
termination criterion based on the score of the generated alignments is impossible.

4.2 Initialization of the population

Initialization always plays a major role in evolving programs in genetic programming, since
if good initialization is done, the convergence of the population programs to the problem
solution will be accelerated.
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The method of initialization (creating generation 0) for the alignment problem is that
first M (M , population size) pairs of trees with one copy of T1 and one copy of T2 in
each of them are created. Then in each of the paired trees, point(s) of inserting space(s)
is randomly selected and the nodes labeled ′−′ are inserted in them. After finishing this
operation, the two trees in each M created pairs are made isomorphic by inserting certain
additional ′−′ labeled nodes and then overlaid on each other. In this way, each resulted
tree becomes an alignment of the two first trees and these M alignments make the initial
population of the problem. Fig. 2 shows a sample initialization for one of the M programs
in generation 0. As it is shown in Fig. 2(b) two ′−′ nodes are both inserted as the children
of the node ′a′. In these random insertions, in the first tree the node ′−′ has become the
parent of node ′f ′ and in the second one the parent of node ′d′. Thus M numbers of Fig.
2(d) trees are created as our initial population.

4.3 Problem specific operators

In order to solve the problem of the alignment of two ordered trees with genetic pro-
gramming approach, the defined operators in genetic programming cannot be utilized in
their initial and simple form. Since the mutation operator replaces a randomly selected
sub-tree by a randomly generated sub-tree in an alignment tree, it will certainly generate
invalid alignment trees and therefore its infeasibility for use in this problem is clear. In
the following section we will discuss the infeasibility of the original crossover operator and
present the alternative operators for it.

4.3.1 Crossover operator

The crossover operator which is the main operator in genetic programming has the task of
randomly exchanging the sub-trees of the generated trees in the population. This operator
with its original and simple form cannot be used in solving the alignment problem because
it violates the closure property of the operators in genetic programming. Closure property
means that every operator which is performed on program(s) in the population must
result in valid program(s) such that each represents a valid and possible solution for the
problem. It can be easily shown that the crossover operator violates the closure property
of the operators because it randomly exchanges any sub-tree of the first parent by any sub-
tree of the second one so the resulting trees can represent the alignment of two trees other
than the two of the problem. For solving this problem one way is to apply a constraint on
crossover operator to keep the order of the nodes in the trees and always generate valid
trees for the problem.

Definition 1 Consider two trees T1 and T2 with paired labels (α, β). We call two sub-trees
T ′

1 and T ′

2 of the two trees T1 and T2 ”similar”, if by (a) deleting the children labeled
(−,−) in the two sub-trees, (b) relabeling the children labeled (−, α) and (α,−) to α and
labeled (α, β) to αβ and (c) ignoring the root labels in the two sub-trees, the two sub-trees
become isomorphic. We denote the root of the new sub-trees by R. For example, two
similar sub-trees and the procedure for determining their similarity are shown in Fig. 3.
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Figure 2: (a) The two first trees. (b) The two trees after inserting ′−′ nodes. (c) The two
isomorphic trees. (d) The resulting alignment.

As it is shown in Fig. 3, the two sub-trees are made isomorphic by the procedure
defined in Definition 1. It is clear from this example that in two similar sub-trees the
order of the nodes is equal, excluding the nodes labeled (−). In fact the two strings
obtained from level-order traverse of two similar sub-trees must be equal, excluding the
′−′ characters.

Figure 3: (a) Two sample sub-trees. (b) Converting them to verify their similarity.
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In the proposed method for crossover, only similar sub-trees of the program trees are
exchanged. In this way, the closure property of the operators is satisfied for the crossover
operator and all the trees generated by this operator will represent possible and valid
alignments for the problem. The reason for ignoring the roots of the two sub-trees in
showing their similarity is that in this case the number of similar trees in the two trees is
incremented. The results of the experimental tests show that this way of crossing over the
trees well provides different combination of the trees for searching the optimal alignment.

4.3.2 Architecture-altering operators

The architecture-altering operator is the operator that only exists in genetic programming
and not in genetic algorithms. This operator in accompany with crossover operator, can
play an important role in generating the possible alignments and acts somehow like the
mutation operator, even in the experimental results of this method there were cases in
which the role of the architecture-altering operator was stronger than the crossover one.
A possible reason for this can be the special nature of the trees in this problem.

The proposed architecture-altering for this problem can be categorized as two types:
degree increasing operator and degree decreasing operator. Now we discuss these opera-
tors.

1. Degree increasing architecture-altering operator

This operator randomly finds (if exists) a node i labeled (−,−) in the tree and deletes
it from the tree. By deleting this node, its children come up one level and become
the children of the parent of the deleted node (−,−). This operation increases the
degree of the parent node by deg(i) − 1. Fig. 4 shows the function of this operator.

2. Degree decreasing architecture-altering operator

This operator is like the previous one but inserts a new node in the tree. This
operator randomly finds (if exists) a node i with a degree of three or more and then
randomly selects m consecutive sibling of the node. After this, a new node labeled
(−,−) is inserted into the tree as the parent of these m siblings. This operation

Figure 4: Degree increasing architecture-altering operator increases the degree of node
(a,a) from 2 to 3.
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Figure 5: Degree decreasing architecture-altering operator decreases the degree of node
(a,a) from 3 to 2.

decreases the degree of the node i by m− 1. The function of this operator is shown
in Fig. 5.

It is clear that the architecture-altering operations do not violate the closure property
of the operators since they only insert/delete nodes labeled (−,−) and these nodes do not
have any effect in the order of alignment trees nodes.

4.4 Probabilities of the operators

As it is shown in the Fig. 1, each of the operators used in genetic programming has its own
specific selection probability such that sum of the probabilities of all the operators must be
1. In the proposed method for aligning trees, since we have three operators reproduction,
crossover and architecture-altering, therefore sum of the probabilities of these three oper-
ators must be equal to 1. Normally the probability of the crossover operator is set higher
than other operators due to its major role, but generally, specifying the probabilities of
the operators is an experimental work and cannot be done precisely for every problem.
One possible solution for resolving this problem is to dynamically alter the probabilities
of the operators during the run of genetic programming. In this method after evolving
one or some generations, if the average fitness of the programs generated by an operator
is increased, its probability will also increase and if the average fitness is decreased, its
probability will decrease too. However the main drawback of this method is that it highly
increases the run time of the program since in each generation it takes O(M), (M is the
number of programs in each generation) time to compare the programs generated in that
generation with the previous generation and in total O(G×M), (G is the number of gen-
erations) time is added to the run time of the program. Considering the above argument
and the experimental results obtained, there was no need to use dynamic probabilities, so
static probabilities were used.
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4.5 Formalization of the genetic programming method

As mentioned before, genetic programming is a search method that searches the space of
the programs. If the state space of this search is illustrated, it can be seen that at first,
the population of the programs is somewhat like a cloud of randomly distributed points
but after evolving some generations the shape of this cloud is changed and moves in the
search space following a well-defined trajectory [10].

Genetic programming schema is syntactically a tree in which there are some special
nodes called ”don’t care”. These nodes exactly specify a terminal node or a primitive
function. Semantically, a schema represents all the programs that match its size, shape and
defining (non-”don’t care”) nodes. For example the schema H = (DON’T CARE ×(+y

DON’T CARE)) represents the programs (+x(+yx)), (+x(+yy)), (×x(+yx)), etc [10].
Suppose H is a schema and δ(H, t) is the probability that a newly generated program

at generation t belongs to H. Since there are three operators in our method, we have [10]:

δ(H, t) = P [A program in H is obtained via reproduction]
+ P [Two children matching H are produced by crossover]
+ P [A program matching H is obtained via architecture-altering].

Then supposing that reproduction is performed with probability Pr, crossover with
probability Pc and architecture-altering with probability Pa, (Pr + Pc + Pa = 1), we will
have [10]:

δ(H, t) = Pr × P [A program in H is selected for cloning]
+ Pc × P [Parents and crossover points are such that the two children match H]
+ Pa × P [Parent and arch-altering operator are such that child matches H].

Clearly, the first probability in this expression is simply the probability of selection for
the members of the schema H by for instance fitness-proportionate selection. So,

P [Selecting a program in H for cloning] = P (H, t) [10].

Now we must calculate the second probability in the expression. This is the probability
that parents have the shapes and contents compatible with H and also the crossover points
in the parents are selected such that they exactly provide the conditions for generating
such children through exchanging two similar sub-trees.

A notion that helps simplify the calculation of this problem is that, although the
probability of choosing a particular crossover point in a parent depends on the actual size
and shape of such a parent, the process of crossover point selection is independent from
the actual primitives present in the parent tree. Since in the proposed method for aligning
two trees, all the generated trees in the population are isomorphic and have exactly the
same structure, the probability of selecting a crossover point in one tree exactly equals the
probability of selecting the point in any other tree [10]. By applying this observation we
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can write:

P [Parents and crossover points are such that the resulting children match H] =∑
i,j(P [Sub-trees resulted from crossover points are similar]

×P [Parents are such that if crossed over in points i, j produce two children in H]).

The first probability cannot be calculated easily because two similar sub-trees do not
necessarily have the same structure and only by converting them by the procedure in
Definition 1, similarity or dissimilarity of them can be recognized.

Now we must calculate the selection probability (for crossover) of the parents such
that they have nodes that if crossed over in the specified cross over points, produce two
children in schema H. The children produced via crossover are similar if and only if the two
exchanged sub-trees along with the two parents have the structure and nodes compatible
with schema H. This probability can be calculated but needs several other concepts and
notations which are beyond the scope of this paper.

For the architecture-altering operation, we can express the probability that the resulted
child matches the schema H as follows:

P [The parent and the architecture-altering operator are such that the produced child is in H] =∑
For all the parents([ Selected tree can be degree increased/decreased]

×[Degree increasing/decreasing is performed such that the resulting tree is in H]).

The first probability means that if the selected tree is supposed to increase, it must
have at least one node labeled (−,−) and if it wants degree decreasing it must have at least
one node with a degree of three or higher. The second probability can also be calculated
but is beyond the scope of this paper.

4.6 Alignment algorithm

In this section the general algorithm for alignment of two ordered trees using genetic
programming is given. This algorithm is shown in Algorithm 1. As it is shown in this
algorithm, initialization is done first and a number of random programs each representing
a possible alignment are generated. Then until the number of evolved generations is
less than or equal to the maximum number of generation specified, in each generation
the reproduction, crossover and architecture-altering operators are performed and each
of them generate one, two and one programs for the next generation respectively. This
procedure lasts until the generated programs for the next generation are equal to the
specified population size for each generation. At the end of each generation, the best
generated program is saved and at the end of the run the best generated program is
selected among these saved programs and is recognized as the best alignment and solution
of the problem.
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5 Experimental results

In this section some of the experimental results obtained from the implementation of the
proposed method are presented. For displaying trees in the implementation, we have
used the list-representation method of the trees. But for further readability, the trees are
displayed in their original form here. In the Fig. 7 the optimal alignment obtained for
some pair of sample trees along with their corresponding parameters are shown.

In the sample trees shown in Fig. 7 which are all classic and valid samples of the tree
alignment, the alignments obtained via genetic programming method is exactly identical
to the optimal alignments obtained for these trees via classical and non-heuristic methods
and genetic programming has succeeded in producing the optimal alignment in all the
cases.

6 Conclusion

In this paper a new method for aligning ordered trees by applying genetic programming
was presented and discussed. First, Five preparatory steps for genetic programming were
presented. The function set was null and the programs were the same as alignment trees.
The fitness function in this method was a scoring mechanism over alignment trees nodes
and the different parameters for controlling the run were also discussed. The termination
criterion for this method was specifying a maximum number of generations to evolve the
programs and the reason for such a termination criterion was analyzed. Next, the initial-
ization method for the population was presented that consisted of paired isomorphic trees
generated by inserting ′−′ symbols in the trees. Then the most important part of the
proposed method, i.e., the special operators designed for solving the alignment problem
was discussed. These operators consisted of crossover which exchanged random similar
sub-trees of two parent trees and the architecture-altering operators which had increas-
ing/decreasing types, the former increased the degree of a tree by deleting a node labeled
(−,−) and the later decreased the degree by inserting a node labeled (−,−).The best
generated alignment tree in each generation was saved and finally the best alignment was
searched through these saved alignments and was designated as (near) optimal alignment
for the two input trees.

Some formalizations of the method were also presented using genetic programming
theorem. At the end, the result of testing the method on several sample trees were showed
in all of which obtained alignments were the optimal alignments for the trees.

For continuing this research, multiple alignments of ordered trees, dynamic chang-
ing of control parameters during the run and defining further operators for the genetic
programming can be suggested.
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Algorithm Genetic - Alignment
Begin

Gen := 0;
Create initial random population of programs;
while Gen ≤ number of maximum generations do begin

Apply fitness measure on all the programs in the population;
Gen := Gen + 1;
Count := 0;
while Count < Popsize do begin

Select a genetic operation based on operations probabilities;
case of reproduction do begin

Select one program based on fitness;
Perform reproduction;
Copy selected program into new population;
Count := Count + 1;

end;
case of Crossover do begin

Select two programs based on fitness;
Perform crossover;
Insert two children into new population;
Count := Count + 2;

end;
case of Architecture - Altering do begin

Select Degree Increasing or Decreasing operation based on their
probabilities;
Select one program based on fitness;
Perform Architecture - Altering operation;
Count := Count + 1;

end;
Store the best program created in this generation;
end;

end;
Select the best program among the stored programs as the optimal alignment;

End;

Figure 6: Genetic programming algorithm for aligning two ordered trees.
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Figure 7: Some pairs of sample trees with their obtained alignments via genetic program-
ming, the corresponding parameters are also shown.
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