
AMO - Advanced Modeling and Optimization, Volume 10, Number 1, 2008∗

Quaternion Parametric Optimal Partition
Invariancy Sensitivity Analysis in

Linear Optimization

B. Kheirfam1 K. Mirnia
Department of Mathematics

Tabriz University, Tabriz, I.R. Iran
1b.kheirfam@azaruniv.edu

This paper is a tribute to G.B. Dantzig the father of linear
programming and the inventor of the simplex method.

Abstract

In this paper, we consider linear optimization problem in standard form
with perturbation in both the right hand side and objective function data for
which each of them includes a combination of two independent directions with
different parameters. In this way, we have four independent parameters and
refer to the problem as quaternion parametric programming. We are interested
in identifying the region where optimal partition is invariant. This region is
referred to as invariancy region. An algorithmic procedure is presented that
is capable to identify the invariancy region includes the origin in polynomial
time. It is proved that this region is a polyhedron as a convex set. A closed
form of the optimal value function is obtained too.
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1 Introduction

In real life it is possible not only the prices may change but the amount of supplying may change
also. In this respect even the changes in price and also in supplying may happen in two different
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directions .e.g. ∆c1, ∆c2 and/or ∆b1 and ∆b2, since the management may provide the required
quantities from two different sources with the same price but in an odd situation the prices may
change independently. Thus this is the case that we concern the region of the changes so that the
optimal partition remains optimal.

Consider the parametric linear optimization problem as

(P ) min{(c + ε1∆c1 + ε2∆c2)T x| Ax = b + λ1∆b1 + λ2∆b2, x ≥ 0},

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn are known fixed data, ε1, ε2, λ1 and λ2 are real parameters,
∆b1 ∈ Rm,∆b2 ∈ Rm,∆c1 ∈ Rn and ∆c2 ∈ Rn are perturbation vectors, and x ∈ Rn is an unknown
vector.
The dual of (P ) is defined as

(D) max{(b + λ1∆b1 + λ2∆b2)T y|AT y + s = c + ε1∆c1 + ε2∆c2, s ≥ 0},

where y ∈ Rm, s ∈ Rn are the unknown vectors. Any vector x ≥ 0 which satisfies Ax = b + λ1∆b1 +
λ2∆b2 is called a primal feasible solution of (P ). Moreover, a vector (y, s) with s ≥ 0 is called a
dual feasible solution of (D) if it satisfies AT y + s = c + ε1∆c1 + ε2∆c2. Obviously, each primal
feasible solution x only depends on parameters λ1 and λ2 but not ε1 and ε2. Similarly, each dual
feasible solution (y, s) varies depending on ε1 andε2 but not with λ1 and λ2. Therefore, we denote
primal and dual feasible solutions of (P ) and (D) by x(λ1, λ2) and (y(ε1, ε2), s(ε1, ε2)), respectively.
For any primal-dual feasible solution (x(λ1, λ2), y(ε1, ε2), s(ε1, ε2)), the weak duality property holds
i.e.,

(c + ε1∆c1 + ε2∆c2)T x(λ1, λ2) ≥ (b + λ1∆b1 + λ2∆b2)T y(ε1, ε2),

and equality holds if and only if they are optimal solutions (strong duality property [2]). In this
way x(λ1, λ2)T s(ε1, ε2) = 0 holds for optimal solutions that is referred to as complementarity. If
in addition to complementarity, x(λ1, λ2) + s(ε1, ε2) > 0, then these solutions are called strictly
complementary optimal solutions. It is worth mentioning that this kind of optimal solutions exist
by Goldman-Tucker Theorem[9]. Let (P) and (D) denote the feasible solution sets of (P ) and (D),
respectively. Their optimal solution sets are denoted by (P∗) and (D∗), correspondingly.

The optimal value function is defined as

Φ = (c + ε1∆c1 + ε2∆c2)T x(λ1, λ2) = (b + λ1∆b1 + λ2∆b2)T y(ε1, ε2),

where ∆b1,∆b2,∆c1 and ∆c2 are fixed perturbations and (x(λ1, λ2), y(ε1, ε2), s(ε1, ε2)) is a primal-
dual optimal solution of problems (P ) and (D). The support set of a nonnegative vector v ∈ Rn is
defined as σ(v) = {i : vi > 0, 1 ≤ i ≤ n}. The index set {1, 2, . . . , n} can be partitioned into two
subsets

B(λ1, λ2) = {i : xi(λ1, λ2) > 0 for a primal optimal solution x(λ1, λ2)},
N (ε1, ε2) = {i : si(ε1, ε2) > 0 for a dual optimal solution (y(ε1, ε2), s(ε1, ε2))}.

This partition is known as the optimal partition of the index set {1, 2, . . . , n} for problems (P ) and
(D), and is denoted by

π(λ1, λ2, ε1, ε2) = (B(λ1, λ2),N (ε1, ε2)).

Since the optimal solution sets (P∗) and (D∗) are convex, optimal partition is unique.
Karmarkar[7] initiated a method that solves linear optimization problems in polynomial time

which are developed as interior point methods later on. An interior point method terminates at
primal-dual strictly complementary optimal solution which is enable to identify associated optimal
partition[6].

In this paper we want to identify the region where optimal partition is invariant. This study has
been carried out for special cases. In quaternion parametric programming, if all parameters (corre-
spondingly all perturbing direction) are zero but one, the problem is referred to as uni-parametric
linear programming [1, 3, 8]. Moreover, the case when the right hand side and objective function
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data have one identical parameters, is investigated in [4, 5]. In these cases, the range of the pa-
rameter variation is an interval on the real line that is referred to as invariancy interval. The end
points of these intervals are called transition points. Here, we suppose that all four parameters varies
independently and derive strong results for this general case that covers all previous ones.

The paper is organized as follows. In section 2, some fundamental concepts are presented.
Section 3, devoted to present an algorithmic approach that is capable to identify the invariancy
region. Section 4, talks about the representation of optimal value function. Examples presented in
section 5 to illustrate the results.

2 Invariancy regions

Let optimal partition for unperturbed version of problems (P ) and (D) is known as π = (B,N ).
Thus, the invariancy region is the set of parameter vectors (λ1, λ2, ε1, ε2) where for the members of
this set, π(λ1, λ2, ε1, ε2) = (B,N ) holds. This region is nonempty, because the origin belongs to it.
This invariancy region is denoted by IR. For ε1 = ε2 = 0, problems (P ) and (D) reduce to

min{cT x|Ax = b + λ1∆b1 + λ2∆b2, x ≥ 0}, (1)

and
max{(b + λ1∆b1 + λ2∆b2)T y| AT y + s = c, s ≥ 0}. (2)

The invariancy region associated to these problems is denoted by IRP .
The following lemma shows that the set of dual optimal solutions (D∗) for problem (2) on the

IRP is invariant.

Lemma 1. The set of dual optimal solution set (D∗) for problem (2) on IRP is invariant.

Proof. For two arbitrary pairs of parameters (λ̄1, λ̄2), (λ̃1, λ̃2) ∈ IRP , let (x̄, ȳ, s̄) and (x̃, ỹ, s̃) be
given primal-dual optimal solutions of problems (1) and (2) at (λ̄1, λ̄2) and (λ̃1, λ̃2), respectively.
From the assumption, we have

π(λ̄1, λ̄2) = (B,N ) = π(λ̃1, λ̃2). (3)

It is easy to verify that (x̄, ỹ, s̃) and (x̃, ȳ, s̄) are primal-dual solutions (1) and (2) at (λ̄1, λ̄2) and
(λ̃1, λ̃2), respectively. Moreover, the optimality properties x̄T s̃ = 0 and x̃T s̄ = 0 immediately follows
from (3). The complete proof.

On the other hand, for λ1 = λ2 = 0, problems (P ) and (D) reduce to

min{(c + ε1∆c1 + ε2∆c2)T x|Ax = b, x ≥ 0}, (4)

max{bT y|AT y + s = c + ε1∆c1 + ε2∆c2, s ≥ 0}. (5)

The invariancy region associated to these problems is denoted by IRD. The following lemma shows
that the set of primal optimal solutions (P∗) on the IRD is invariant. The proof is similar to the
proof of Lemma 1 and is omitted.

Lemma 2. The set of primal optimal solutions on invariancy region IRD is invariant.

The following lemma shows that the invariancy region in the context is convex. Thus, for iden-
tifying the region, one only need to determine its border.

Lemma 3. The invariancy region IR is a convex set.
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Proof. Without loss of generality, we can suppose that the invariancy region, is not the singleton
{(0, 0, 0, 0)}. Let (λ̄1, λ̄2, ε̄1, ε̄2) and (λ̃1, λ̃2, ε̃1, ε̃2) be two arbitrary members of the region IR. In
addition, let (x̄, ȳ, s̄) and (x̃, ỹ, s̃) be strictly complementary optimal solutions of problems (P ) and
(D) at these points, respectively. For

λ1 = θ1λ̄1 + (1− θ1)λ̃1,

ε1 = θ2ε̄1 + (1− θ2)ε̃1,
λ2 = θ1λ̄2 + (1− θ1)λ̃2,

ε2 = θ2ε̄2 + (1− θ2)ε̃2,

where θ1, θ2 ∈ (0, 1). We define

x = θ1x̄ + (1− θ1)x̃,

y = θ2ȳ + (1− θ2)ỹ,

s = θ2s̄ + (1− θ2)s̃.

Obviously, (x, y, s) is a primal-dual feasible solution of problems (P ) and (D) at (λ1, λ2, ε1, ε2).
Moreover, σ(x) = σ(x̄) ∪ σ(x̃) = B and σ(s) = σ(s̄) ∪ σ(s̃) = N , that proves the optimality of this
solution for problems (P ) and (D), as well as having the optimal partition π(λ1, λ2, ε1, ε2) = (B,N ).
The proof is complete.

Now, we state a fundamental theorem that demonstrate the relationship between the invariancy
region IR and two invariancy regions IRP and IRD. This theorem plays a main role in identifying
the invariancy region.

Theorem 4. Consider the problems (P ) and (D). Let IRP and IRD be the invariancy regions for
corresponding primal and dual problems. Then,

IR = IRD × IRP .

Proof. Let π = (B,N ) be the optimal partition of the index set {1, 2, . . . , n} for problems (P ) and
(D). Moreover, let (x∗, y∗, s∗) be a strictly complementary optimal solution of these problems. Thus,
σ(x∗) = B, and σ(s∗) = N .
First, we prove that IRD × IRP ⊆ IR. Let ((λ̄1, λ̄2), (ε̃1, ε̃2)) ∈ IRD × IRP . Thus, there is a
strictly complementary optimal solution for problems (P ) and (D) at (λ̄1, λ̄2), say (x̄, ȳ, s̄) with
optimal partition π. Analogously, there is a strictly complementary optimal solution (x̃, ỹ, s̃) for
these problems at (ε̃1, ε̃2) with the same optimal partition. By Lemmas 1 and 2, one can consider
(x̄, ỹ, s̃) as a strictly complementary optimal solution of these problems at (λ̄1, λ̄2, ε̃1, ε̃2). Since,
σ(x̄) = B, and σ(s̃) = N , the inclusion IRD × IRP ⊆ IR is concluded.
One the other hand, to prove IR ⊆ IRD × IRP , let (λ̄1, λ̄2, ε̃1, ε̃2) ∈ IR. Thus, there is a strictly
complementary optimal solution for (P ) and (D) at this point, say (x̄, ỹ, s̃) where σ(x̄) = B and
σ(s̃) = N . It is easy to verify that (x̄, y∗, s∗) is a strictly complementary optimal solution of problems
(P ) and (D) at (λ̄1, λ̄2), with optimal partition π = (B,N ). Thus, (λ̄1, λ̄2) ∈ IRD. Similarly,
(x∗, ỹ, s̃) is an optimal solution of these problems at (ε̃1, ε̃2), with the same optimal partition. Thus,
(ε̄1, ε̄2) ∈ IRP . The proof is complete.

According to the Theorem 4, to identify the invariancy region IR, it is enough to determine the
invariancy regions IRD and IRP . It will be shown that all auxiliary linear optimization problems
for obtaining recent invariancy region can be solved in polynomial time by an interior point method,
thus the invariancy region IR can be identified in polynomial time as well.

Remark 5. Theorem 4 says that the invariancy region IR is a convex set in a space of dimension
four. It is easy to verify that if (ε1, ε2) = (λ1, λ2), then IR = IRP ∩ IRD. On the other hand, if
either IRD or IRP is the singleton {(0, 0)}, then the invariancy region IR is in two dimensional
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subspace (including either (λ1, λ2) or (ε1, ε2)). On the other hand, if both invariancy regions IRP

and IRD are singleton {(0, 0)}, then IR = {(0, 0, 0, 0)}. Observe that the boundaries of the region
(including lines and points) are in special case, optimal partition at there defers from the optimal
partition at interior points of the region.

The next two lemmas denote relationship between primal (dual) optimal solution set at boundary
points and interior points of IRP (IRD). We present a simple proof for the first one and the proof
of the other goes similarly.

Lemma 6. Let the invariancy region IRP with the optimal partition π = (B,N ) be known . More-
over, let (λ̄1, λ̄2) be a parameter value on the boundary of this region and π̄ = (B̄, N̄ ) denotes
associated optimal partition. Then B̄ ⊂ B.

Proof. It is straightforward to verify that (λ̄1, λ̄2) is the optimal solution of the following problem

min(max){λ1 : ABxB − (∆b1 +
λ̄2

λ̄1
∆b2)λ1 = b, xB ≥ 0},

and the statement follows immediately.

Lemma 7. Let the invariancy region IRD with the optimal partition π = (B,N ) be known .
Moreover, let (ε̄1, ε̄2) be a parameter value on the boundary of this region and π̄ = (B̄, N̄ ) denotes
associated optimal partition. Then N̄ ⊃ N .

3 Algorithmic approach to identify invariancy re-

gions

According to Theorem 4, it is enough to find the regions for (λ1, λ2) and (ε1, ε2), independently.
Let us consider identifying of the region for (λ1, λ2). We investigate the case λ2 = αλ1. In this
case, the problem reduces to uni-parametric problem and one can immediately find the maximum(or
minimum) value of λ as follows [8]:

λu = max(min){λ1 : ABxB − (∆b1 + α∆b2)λ1 = b, xB ≥ 0}. (6)

The following result can be concluded directly from the convexity of the optimal solution set.

Lemma 8. Let (λ̄1, λ̄2) and (λ̃1, λ̃2) be two arbitrary points with identical optimal partition π =
(B,N ). Then, for any point at the line segment between these two points, optimal partition is
invariant. Moreover, there are two points Λ+ = (λ+

1 , λ+
2 ) and Λ− = (λ−1 , λ−2 ) (these points might be

at infinity) on this line that optimal partition is invariant on the interior point of the line segment
jointing points Λ+ and Λ−.

Proof. First part of lemma is trivial by the convexity of the optimal solution set. Observe that the
representation of the line including two points (λ̄1, λ̄2) and (λ̃1, λ̃2) is

λ2 =
m̃λ̃1 − m̄λ̄1

λ̃1 − λ̄1

λ1 +
m̄− m̃

λ̃1 − λ̄1

λ̃1λ̄1,

where m̃ and m̄ are two real numbers satisfying in

λ̄2 = m̄λ̄1 and λ̃2 = m̃λ̃1, (7)

respectively. To identify two points Λ+ and Λ−, it is enough to find the maximum and minimum of
λ1 over the feasible set

{λ1 : ABxB − (∆b1 +
m̃λ̃1 − m̄λ̄1

λ̃1 − λ̄1

∆b2)λ1 = b +
m̄− m̃

λ̃1 − λ̄1

λ̃1λ̄1∆b2, xB ≥ 0}, (8)

respectively and using (7). The proof is complete.
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Remark 9. If the value of λ1 in 8 is infinite then the region is unbounded as it is shown in figures 2
and 4.

Recall that the (half-)lines obtained in Lemma 8 are transition (half-)lines when λ̄1 and λ̃1 are
two points that calculated by (6) with appropriate values of α. The intersection of two consequent
transition (half-)lines is referred to as transition points.

Let us consider a case when optimal partitions at two points (λ̄1, λ̄2) and (λ̃1, λ̃2) are not iden-
tical. The next lemma explains this situation. Suppose that is given a transition point. One can
find its immediate neighboring transition point as well as the transition line joining them as follows.
Let two points (λ̄1, λ̄2) and (λ̃1, λ̃2) be obtained by solving (6) leading to two different optimal
partitions. Then either

Case 1, They belong to two different transition lines; or

Case 2, At least one of these points is a transition point.

To clarify the situation, we choose a convex combination called midpoint of these two points and
identify the optimal partition at it.
For Case 1, if this optimal partition is identical with π = (B,N ), the optimal partition at origin,
then trivially, these two points belong to two different transition lines. The following lemma says
that one can identify in polynomial time a transition line that contains one of these points.

Lemma 10. Let two points (λ̄1, λ̄2) and (λ̃1, λ̃2) be given by solving appropriate problems as (6),
with different optimal partitions. Then transition lines containing these points can be identified in
polynomial time.

Proof. Without loss of generality, we prove the statement for (λ̄1, λ̄2), the proof for the other point
goes analogously. Let (λ̂1, λ̂2) be a midpoint between (λ̄1, λ̄2) and (λ̃1, λ̃2) defined as

λ̂1 =
λ̄1 + λ̃1

2
, λ̂2 =

λ̄2 + λ̃2

2
.

Let α̂ = λ̂2

λ̂1
. We solve problem (6) for α̂ and identify the corresponding optimal partition as

π̂ = (B̂, N̂ ). If π̂ is identical with the optimal partition at (λ̄1, λ̄2), then two points (λ̂1, λ̂2) and
(λ̄1, λ̄2) belong to a single transition line and one can identify it by the procedure presented in the
proof of Lemma 8. Otherwise, we update as

(λ̂1, λ̂2) → (λ̃1, λ̃2),

and continue the procedure of this proof till for corresponding m̄ and m̃, |m̄− m̃| < ε holds, where ε
is a reasonable computational tolerance. It is straightforward to verify that the procedure terminates
in almost k = dlog2

|m̄0−m̃0|
ε e iterations, where m̄0 and m̃0 are slopes corresponding to initial points

(λ̄1, λ̄2) and (λ̃1, λ̃2), respectively. It is obvious that when the procedure terminates at exactly
k iteration, then (λ̄1, λ̄2) is a transition point. In this case, one can consider m̃ = m̄0 + 2ε and
m̄ = m̄0 + 4ε and run the procedure presented in the proof of Lemma 8 to identify the transition
line containing (λ̄1, λ̄2). The proof is complete.

For Case 2, if the optimal partition on this midpoint is identical with the optimal partition at
either (λ̄1, λ̄2) or (λ̃1, λ̃2), then the other one is a transition point. In this situation, one can apply
the procedure presented in the proof of Lemma 10, to identify a transition line containing this
transition point. If the optimal partition defers from optimal partitions at both points (λ̄1, λ̄2) and
(λ̃1, λ̃2), then both of them are transition points and the line segment joining them is a transition
line.

Now we are ready to combine these results in a single algorithm.
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Algorithm

Step 1: Consider two real values ᾱ and α̃ and solve (6) for these values. Denote
corresponding points with (λ̄u1, λ̄u2) and (λ̃u1, λ̃u2).

Step 2: Denote optimal partitions at (λ̄u1, λ̄u2) and (λ̃u1, λ̃u2), with π̄ and π̃, re-
spectively.

Step 3: If π̄ = π̃, then do as the proof of Lemma 8.

Step 4: If π̄ 6= π̃, then do as the proof of Lemma 10.

Step 5: Having a transition point, run the procedure at the end of Lemma 10, till
reaching to the first obtained transition point.

4 The optimal value function on an invariancy re-

gion

In this section, we investigate the behavior of the optimal value function. The following theorem
presents the representation of the optimal value function on the invariancy region IR.

Theorem 11. The optimal value function Φ is linear in terms of each parameter and it is of degree
two totally form on the invariancy region IR.

Proof. Let (λ̄1, λ̄2, ε̄1, ε̄2), (λ̃1, λ̃2, ε̃1, ε̃2), and (λ̂1, λ̂2, ε̂1, ε̂2), be three arbitrary elements in the invari-
ancy region that are not on a single line. Let (x̄, ȳ, s̄), (x̃, ỹ, s̃) and (x̂, ŷ, ŝ) be arbitrary primal-dual
optimal solutions at those points, respectively. For

λ1 = λ̂1 − θ1∆λ̄1 − θ2∆λ̃1, (9)

λ2 = λ̂2 − θ1∆λ̄2 − θ2∆λ̃2, (10)
ε1 = ε̂1 − θ3∆ε̄1 − θ4∆ε̃1, (11)
ε2 = ε̂2 − θ3∆ε̄2 − θ4∆ε̃2, (12)

where 0 < θ1, θ2, θ3, θ4 < 1,∆λ̄1 = λ̂1 − λ̄1,∆λ̃1 = λ̂1 − λ̃1,∆ε̄1 = ε̂1 − ε̄1,∆ε̃1 = ε̂1 − ε̃1. We define:

x∗ = x̂− θ1∆x̄− θ2∆x̃,

y∗ = ŷ − θ3∆ȳ − θ4∆ỹ,

s∗ = ŝ− θ3∆s̄− θ4∆s̃.

It can be easily investigated that (x∗, y∗, s∗) is a primal-dual optimal solution for (P ) and (D). The
optimal value function at this solution is,

Φ = (b+λ1∆b1+λ2∆b2)T y∗ = a0+a1θ1+a2θ2+a3θ3+a4θ4+a5θ1θ3+a6θ1θ4+a7θ2θ3+a8θ2θ4, (13)
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where

a0 = (b + λ1∆b1 + λ2∆b2)T ŷ,

a1 = −(∆λ̄1∆bT
1 ŷ + ∆λ̄2∆bT

2 ŷ),
a2 = −(∆λ̃1∆bT

1 ŷ −∆λ̃2∆bT
2 ŷ),

a3 = −(b + λ̂1∆b1 + λ̂2∆b2)T ∆ȳ,

a4 = −(b + λ̂1∆b1 + λ̂2∆b2)T ∆ỹ,

a5 = (∆λ̄1∆b1 + ∆λ̄2∆b2)T ∆ȳ,

a6 = (∆λ̄1∆b1 + ∆λ̄2∆b2)T ∆ỹ,

a7 = (∆λ̃1∆b1 + ∆λ̃2∆b2)T ∆ȳ,

a8 = (∆λ̃1∆b1 + ∆λ̃2∆b2)T ∆ỹ.

On the other hand, solving equations (9), (10) for θ1, θ2 and equations (11), (12) for θ3 and θ4 lead
to

θ1 = α1 + β1λ1 + γ1λ2,

θ2 = α2 + β2λ1 + γ2λ2,

θ3 = α3 + β3ε1 + γ3ε2,

θ4 = α4 + β4ε1 + γ4ε2,

where

α1 =
λ̂∆λ̃2 − λ̂2∆λ̃1

∆λ̄1∆λ̃2 −∆λ̄2∆λ̃1

,

β1 = − ∆λ̃2

∆λ̄1∆λ̃2 −∆λ̄2∆λ̃1

,

α2 =
λ̂2∆λ̄1 − λ̂1∆λ̄2

∆λ̄1∆λ̃2 −∆λ̄2∆λ̃1

,

β2 =
∆λ̄2

∆λ̄1∆λ̃2 −∆λ̄2∆λ̃1

,

γ1 =
∆λ̃1

∆λ̄1∆λ̃2 −∆λ̄2∆λ̃1

,

γ2 = − ∆λ̄1

∆λ̄1∆λ̃2 −∆λ̄2∆λ̃1

.

Substitution of the values θ1, θ2, θ3, θ4 in (13) leads to

Φ(λ1, λ2, ε1, ε2) = b0 + b1λ1 + b2λ2 + b3ε1 + b4ε2 + b5ε1λ1 + b6ε2λ1 + b7ε1λ2 + b8ε2λ2,

where

b0 = a0 + α1a1 + α2a2 + α3a3 + α4a4 + α1α3a5 + α1α4a6 + α2α3a7 + α2α4a8,

b1 = β1a1 + β2a2 + β1α3a5 + β1α4a6 + β2α3a7 + β2α4a8,

b2 = γ1a1 + γ2a2 + γ1α3a5 + γ1α4a6 + γ2α3a7 + γ2α4a8,

b3 = β3a3 + β4a4 + β3α1a5 + β4α 1a6 + β3α2a7 + β4α2a8,

b4 = γ3a3 + γ4a4 + γ3α1a5 + γ4α1a6 + γ3α2a7 + γ4α2a8,

b5 = β1β3a5 + β1β4a6 + β2β3a7 + β2β4a8,

b6 = β1γ3a5 + β1γ4a6 + β2γ3a7 + β2γ4a8,

b7 = β3γ1a5 + β4γ1a6 + β3γ2a7 + β4γ2a8,

b8 = γ1γ2a5 + γ1γ4a6 + γ2γ3a7 + γ2γ4a8,

that completes the proof.
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5 Illustrative example

In this section, examples are presented to illustrate the obtained results.

Example 12. Consider the problem as follows
min −11x1 −2x2 +x3 −3x4 −4x5 −x6

s.t 5x1 +x2 −x3 +2x4 +x5 = 12
−14x1 −3x2 +3x3 −5x4 +x6 = 2
2x1 + 1

2x2 − 1
2x3 + 1

2x4 +x7 = 5
2

3x1 + 1
2x2 + 1

2 x3 + 3
2x4 +x8 = 3

x1, x2, x3, x4, x5, x6, x7, x8 ≥ 0.

It is easy to verify that π = (B,N ) = ({1, 2, 3, 5, 6}, {4, 7, 8}) is the optimal partition of the index

set {1, 2, 3,..., 8}. Let ∆b1 = (
5
3
,
101
6

,
−5
6

,
−3
4

)T and ∆b2 = (
−17
6

,
32
3

,
−1
6

,
−1
2

)T be perturbing
directions. Running Algorithm leads to the region depicted in Figure 1.
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A = (2.6, 2.2)
r

K = (−1.7, 0.42)r
B = (−1.2, 1.2)r

H = (−1.8, 0.35)

r

G = (0.3,−2.4)r

F = (8.7,−12.4)r
Figure 1:The invariancy region obtained for Example 1.

Example 13. Consider the problem as follows
min − x1 − x2 − 2x3

s.t : x1 + x2 + 2x3 + x4 = 1
x1 − x2 + x5 = 1
x1 + x2 + x3 + x6 = 1
x1, x2, x3, x4, x5, x6 ≥ 0.

It is easy to verify that π = (B,N ) = ({1, 2, 3, 5, 6}, {4}) is the optimal partition of the index
set {1, 2, 3,..., 6}. Let ∆b1 = (1, 2, 1)T and ∆b2 = (2, 0,−3)T be perturbing directions. Running
Algorithm leads to the region depicted in Figure 2.
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F = (−1/2, 1/16)r
G = (−2/3, 0) r

E = (−1/2,−1/4)

r

Figure 2:The invariancy region obtained for Example 2.

Example 14. Consider the example 13 with perturbation vectors ∆b1 = (1, 1
2 , 1

4 )T and ∆b2 =
(−1, 2, −3

4 )T . Running Algorithm leads to the region depicted in Figure 3.
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E = (−4/9,−4/3)

r
F = (−6/5,−1/5)

r

B = (1/2, 3/2)r

A = (10/3,−4/3)r

Figure 3:The invariancy region obtained for Example 3.

Example 15. Consider the problem as follows

min − 2x1 − x2

s.t : x1 + x2 + x3 = 4
x1 + 2x2 + x4 = 6
2x1 + x2 + x5 = 6
x1 + x6 = 3
x1, x2, x3, x4, x5, x6 ≥ 0.

It is easy to verify that π = (B,N ) = ({1, 2, 3, 4, 6}, {5}) is the optimal partition of the index set
{1, 2, 3,..., 6}. Let ∆b1 = (1, 2,−1, 1)T and ∆b2 = (2,−1, 1, 2)T be perturbing directions. Running
Algorithm leads to the region depicted in Figure 4.
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�A = (−3/4, 3/4)r

B = (−1/2, 1/6)r

C = (7/3,−8/3)
r

D = (3,−3)
r

Figure 4:The invariancy region obtained for Example 4.

In the Figures 1, 2, 3 and 4, lines determining the invariancy regions are called transition lines
and intersection of these lines are transition points. Consider the point (λ̄1, λ̄2) = (2, 2) on the
transition line AB in Figure 1, it is easy to verify that the optimal partition in this point is

π = (B,N ) = ({2, 5, 6}, {1, 3, 4, 7, 8}).

Thus B̄ ⊂ B,N ⊂ N̄ . This result is in agreement with Lemmas 6 and 7. By the step 2 of the
Algorithm, Lemmas 6 and 7 are true in other transition lines of this region and also in the invariancy
regions of other examples.
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