
AMO - Advanced Modeling and Optimization, Volume 10, Number 1, 2008

Optimization Models for Routing in Switching

Networks of Clos Type with Many Stages

Kaj Holmberg

Email: kahol@mai.liu.se

Department of Mathematics

Linköping Institute of Technology

SE-581 83 Linköping, Sweden

December 17, 2007

Abstract

We present optimization models for the problem of simultaneous routing of connec-

tions through a symmetric Clos network, and for the problem of minimal rerouting of

previously routed connections when a new connection is to be routed. The models can

be used as base for solution methods, such as heuristics for rerouting combined with

Lagrangean relaxation. These approaches can together give bounds on the optimal

number of rearrangements needed. This is done for Clos networks with three stages,

five stages, seven stages, and for an arbitrary number of stages.

Key words: Telecommunication switches, Clos networks, routing, rearrangement

AMO - Advanced Modeling and Optimization. An Electronic International Journal.
ISSN: 1841-4311

1

1 Introduction

In order to be able to route a large number of connections through a switch, it is usual to
couple a number of smaller switches together into a network of special structure, so called
Clos networks, [Clos, 1953]. The question then is how to route the connections through this
special network. We distinguish between two situations, one where a number of connections
simultaneously will be routed through the network, and another where there already is a
number of connections routed through the network, and we wish to route an additional
connection. In the second situation, it is sometimes possible to route the new connection
without changing any of the already existing ones. However, sometimes one needs to change
the routing of the already routed connections. In this case, we wish to change, i.e. rearrange,
as few as possible of the existing connections.

The first of these situations is studied fairly much, while the second is less so. Further-
more, these problems are studied for three stage Clos networks, but much less so for five
stage Clos networks and more stages. Heuristics for simultaneous routing in three stage
Clos networks can be found in [Hwang, 1983], [Jajszczyk, 1985], [Gordon and Srikanthan,
1990], [Carpinelli and Oruç, 1993], [Franaszek, Georgiou, and Li, 1995], [Lee, Hwang, and
Carpinelli, 1996], and [Hwang, 1997]. This means that there is no shortage of proposed
heuristic methods for simultaneous routing. Unfortunately, few of the proposed algorithms
have proved convergence, and there exists published comments to several of them, claiming
that the method doesn’t always work. We conclude that the theoretical/mathematical base
for these methods is weak, and would like to contribute with a more stable theoretical base.
Furthermore, is is hard, in some cases impossible, to extend these methods to more than
three stages.

Our main goal with this paper is to construct mathematical models for these problems,
models that should enable optimization approaches. The models need to be correct and
solvable, and we will to some extent discuss solutions approaches.

We will formulate mathematical models for symmetrical switching networks of Clos type
[Clos, 1953] with three stages, five stage, and so on, up to an arbitrary number of stages.
This will be done first for simultaneous routing, and then for the more interesting case of
minimal rearranging of existing connections in order to route additional connections. We
will mention the usage of heuristics and Lagrangean relaxation for the model of minimal
rearranging. A constructive, primal heuristic may produce a feasible solution to the problem,
and thus an upper bound on the number of rearrangements needed. Lagrangean relaxation
and subgradient optimization can then be used to find lower bounds on this number, so that
we can get an estimate of how close to the optimum the obtained solution is.

The main contribution of this paper is the mathematical treatment of Clos networks of
more than three stages. We will, however, start with a thorough treatment of the three
stage case, mainly in order to try to find structures and principles that can be extended to
higher numbers of stages.

2 Three stages

2.1 Symmetric Clos networks

The basic building block is a square crossbar switch with n inputs and n outputs. Any input
can be connected to any output. Each input can be connected to at most one output, and
although it might be technically possible to connect several inputs to the same output, we
assume that each output is connected to at most one input. The switch can thus simultane-

2

Figure 1: One switch.

ously make n connections between inputs and outputs, and any one-to-one pattern can be
realized.

Mathematically, one could say that this kind of switch corresponds to an assignment
problem, where n inputs are assigned to n outputs. In figure 1, the case when n = 3
is illustrated; in the left figure all possible connections are drawn, in the right a certain
feasible set of connections is drawn.

Switches are usually organized in stages, where each stage is a column of switches, and
each output of a switch in a stage is connected to an input of a switch in the next stage.

A connection or “call” is a request to connect a certain (left-most) input to a certain
(right-most) output. Such a connection needs to be assigned a path through the network
in order for the request to be satisfied. The path determines what switches and what
inputs/outputs the connection will use. One switch in each stage needs to be used.

Often there are already a number of connections assigned through the network, and
sometimes a new request cannot be satisfied. We assume that a new request involves an
unused left-most input and an unused right-most output. Otherwise it is rejected for obvious
reasons.

Nevertheless, there are situations where no path for a requested connection can be found.
In such a case, the network is called “blocking”. If this never happens, the network is called
“nonblocking”. In a “strict-sense nonblocking” network, no existing connection need to be
rerouted, but in a “rearrangeably nonblocking” network, some existing connections may need
to be rerouted in order to allow the new one to be set up.

In [Clos, 1953] so called Clos networks were first studied. There are three stages, the
first one with r n × m switches, the second one with m r × r switches and the third one
with r m× n switches. Thus there are nr different inputs and the same number of outputs.
If m ≥ 2n − 1, one can show that a Clos network is strict-sense nonblocking, [Clos, 1953].
According to the Slepian-Duguid theorem, [Beneš, 1965], a Clos network is rearrangeably
nonblocking if m ≥ n.

One can extend Clos networks by replacing the center stage by three stage Clos networks,
thereby obtaining a five stage network. This can be repeated in order to obtain higher
numbers of stages.

Rearrangeably nonblocking Clos networks with m = n = 2 are called Beneš networks,
[Beneš, 1965]. If there are n inputs, there will be log2 n − 1 stages with n/2 switches. The
total number of switches will then be n log2 n − n/2.

In this paper we focus on symmetrical Clos networks based on symmetrical and identical
n× n switches. Compared to general Clos networks, we have r = m = n, so such a network
is rearrangeably nonblocking, but not strict-sense nonblocking.

The switches are arranged in a symmetrical three stage Clos network as follows. In
the first stage, there are n switches, yielding n2 inputs, and in the third stage there are
n switches, yielding n2 outputs. Between these stages, there is an intermediate stage, also
with n switches.

3

Figure 2: 3-stage switch.

The interconnections between the stages are fixed as follows. The first output of each
switch in the first stage is coupled to the first switch in the second stage. The second output
of each switch in the first stage is coupled to the second switch in the second stage, and so
on. The outputs from the first switch in the first stage is coupled to the first input in each
switch in the second stage. The outputs from the second switch in the first stage is coupled
to the second input in each switch in the second stage, and so on.

The second and third stages are coupled in exactly the same way as the first and second.
This is pictured for n = 3 in figure 2. There are never two connections between one pair of
switches. This arrangement can accommodate n2 connections as discussed above.

2.2 Mathematical model

We now wish to make a mathematical model of the possible ways of connecting the inputs
to the outputs. We consider a situation where m specific connections are requested. For
connection l there is a specific input, the origin, ol, and a specific output, the destination,
dl.

One way of looking at the problem is as a multicommodity network flow problem. The
different connections are modeled as different commodities of flow, where we wish to send
one unit of flow of commodity l from the origin, ol, to the destination, dl. The capacity on
each arc is equal to one. The network has the structure pictured in figure 2.

A general mathematical model for this multicommodity network flow problem is to find
a feasible solution to the constraints below.

4

∑

j:(j,i)∈A

xl
ji −

∑

j:(i,j)∈A

xl
ij =







1 if i = ol

−1 if i = dl

0 otherwise
∀i ∀l

m
∑

l=1

xl
ij ≤ 1 ∀i, j

xl
ij ∈ {0, 1} ∀i, j, l

The network has 6n2 nodes, 3n3 + 2n2 arcs and n2 commodities. (3n3 of the arcs lie inside
the switches.) One might believe that the arcs between the stages can be eliminated, since
there is only one possibility between a pair of switches. However, there is a very important
upper bound of one on the total flow in these arcs, so this elimination cannot be done.
The problem thus has 3n5 + 2n4 variables. For n = 20 this is 1600 nodes, 24000 arcs, 400
commodities and 9 920 000 variables.

The LP-relaxation of this feasible set is obtained by replacing xl
ij ∈ {0, 1} by xl

ij ≥ 0.
The constraint matrix of a multicommodity network flow problem is in general not totally
unimodular, so the extreme points of the LP-relaxation are not necessarily integer. Thus
we need to keep the integrality requirements. The integer multicommodity network flow
problem is NP-complete. However, in practice, these problems often are fairly easy to solve.

Here the network is represented by the arc list A. Unfortunately the special structure of
the network is somewhat hidden in this formulation.

While this is a possible way of solving the problem, it is probably not very efficient, due
to the special structure of the network. Therefore, we will look for a more compact model.

Consider a specific connection, l, with input ol and output dl. We assume that 0 ≤ ol ≤
n2 − 1 and 0 ≤ dl ≤ n2 − 1. In each stage, we must decide which switch, which input
and which output the connection shall use. Let us therefore define the following parameters.
Connection l will in stage t use switch kt

l , input itl , and output jt
l . Letting N = {0, . . . , n−1},

we have kt
l ∈ N , itl ∈ N , and jt

l ∈ N .
Knowing ol and dl, we can calculate what switches in the first and third stage that will

be used. If 0 ≤ ol ≤ n− 1, the first switch in the first stage will be used. If n ≤ ol ≤ 2n− 1,
the second switch in the first stage will be used, and so on. We simply get k1

l = ⌊ol/n⌋.
Similarly, we get k3

l = ⌊dl/n⌋. Furthermore we have i1l = ol − k1
l n, and j3

l = dl − k3
l n.

According to the fixed couplings between the first and the second stage, the choice of
output on a switch at stage one exactly determines the choice of switch at stage two. We
simply have k2

l = j1
l . Similarly, the choice of input on a switch at stage three exactly

determines the choice of switch at stage two. We have k2
l = i3l . For the same reasons, we

also have i2l = k1
l and j2

l = k3
l . Thus the choice to be made is which switch in stage two to

use, i.e. k2
l . Everything else follows uniquely. Let us sum this up.

Connection l starts at ol and ends at dl. It will use the following switches and in-
puts/outputs. We denote k2

l by v in order to emphasize that it is the only variable.

Stage Switch Input Output

1 k1
l = ⌊ol/n⌋ i1l = ol − k1

l n j1
l = v

2 k2
l = v i2l = k1

l j2
l = k3

l

3 k3
l = ⌊dl/n⌋ i3l = v j3

l = jl − k3
l n

Thus k2
l is the only choice we have to make for connection l. All the other parameters are

determined by this choice. Another way of illustrating this is shown in figure 3. Solid cir-
cles indicate parameters that are directly calculated from ol and dl and solid lines indicate
the dependencies. Dashed circles indicate parameters not fixed and dashed lines indicate
dependencies between parameters not fixed.

5

k1

i1 j1

k2

i2 j2

k3

i3 j3

o d

Figure 3: Dependencies between parameters.

In the mathematical model, we introduce the following variables.
xil = 1 if connection l uses switch i (in the second stage).

(The relation to the previously used notation is that xil = 1 for i = k2
l , while xil = 0 for all

i 6= k2
l .)

For each switch, each input can be used by at most one connection, and each output can
be used by at most one connection. We will assume that the overall inputs, ol, and outputs,
dl, obey this, i.e. that all ol are different and all dl are different. This takes care of i1l and j3

l .
However, we have to ensure that this is true also for j1

l , i2l , j2
l and i3l . Since j1

l = i3l = k2
l ,

we must ensure that the connections that use the same switch in the first stage or in the
third stage do not use the same switch in the second stage. Because of this, we introduce
the following sets.

L1
k = {l : k1

l = k} and L3
k = {l : k3

l = k}
This means that L1

k is the set of connections that use switch k in the first stage, and L3
k is

the set of connections that use switch k in the third stage. Note that since we can calculate
k1

l and k3
l from ol and dl, these sets are given by the indata.

One may note that L1
k ∩ L1

k′ = ∅ for all k 6= k′ and
⋃

k L1
k = {1, . . . , m}, since each

connection uses exactly one switch in the first stage. Similarly L3
k ∩ L3

k′ = ∅ for all k 6= k′

and
⋃

k L3
k = {1, . . . , m}, since each connection uses exactly one switch in the third stage.

Let us also, for future use, introduce the sets
L2

k = {l : k2
l = k},

i.e. L2
k is the set of connections that use switch k in the second stage. These sets are, as

opposed to L1
k and L3

k, not given by indata, but a way of representing a solution. Again
L2

k ∩ L2
k′ = ∅ for all k 6= k′ and

⋃

k L2
k = {1, . . . , m}.

Now the constraint
∑

l∈L1
k

xil ≤ 1

means that there is at most one connection that uses switch k in the first stage and switch i
in the second stage. This ensures both that output i on switch k in the first stage is used at
most once, and that input k on switch i in the second stage is used at most once. In other
words it takes care of j1

l and i2l .
Similarly, constraint

∑

l∈L3
k

xil ≤ 1

means that there is at most one connection that uses switch k in the third stage and switch
i in the second stage. This ensures both that input i on switch k in the third stage is used
at most once, and that output k on switch i in the second stage is used at most once. So it
takes care of j2

l and i3l .
We know that there is a feasible solution if m ≤ n2, while if m > n2 there is none,

so we assume that m ≤ n2, and consider the question of how to route all the connections
simultaneously. We must ensure that each connection is created, i.e. that each connection
use exactly one switch in the second stage.

6

∑

i∈N

xil = 1 l = 1, . . .m

Thus a feasible solution to the following model tells us how to route the connections.
∑

i∈N

xil = 1 l = 1, . . .m (1.1)

∑

l∈L1
k

xil ≤ 1 i ∈ N, k ∈ N (1.2)

∑

l∈L3
k

xil ≤ 1 i ∈ N, k ∈ N (1.3)

xil ∈ {0, 1} ∀i, l

[P1]

This model has mn variables and 2n2+m constraints (not counting the binary requirements).
For n = 20 and m = n2, this is 8000 variables and 1200 constraints. In practice it is not
very difficult to solve for a general MIP-code, such as the free lp_solve or the more efficient
CPLEX. One may note that P1 is much smaller (less variables and constraints) than the
multicommodity flow model.

An interesting question is if the integrality requirements really are necessary. Considering
the LP-relaxation where xil ∈ {0, 1} is replaced by xil ≥ 0, the question is if all the extreme
points of the feasible set are integral. If this was true, P1 could be solved as an LP-problem.

We have so far not been able to prove that the constraint matrix is totally unimodular,
which would imply that all extreme points are integer. However, we have solved numerous
instances and in none of them did the LP-relaxation give a non-integral solution.

By inserting slack variables, a set partitioning problem is obtained. The feasible set of
the LP-relaxation is a polytope, and in [Balas and Padberg, 1972], it is shown that the
set partitioning polytope is quasi-integral. This means that any edge of the convex hull
of the feasible integer points is also an edge of the polytope. For such an optimization
problem, there exists a sequence of adjacent extreme points that are all integral, leading up
to the integer optimum. This property must be seen as theoretical, since no one has yet
been able to exploit it successfully in a practical solution method. However, in practice the
property seems to imply that the probability of getting an integer solution when solving the
LP-relaxation is very high. (This is the experience for the uncapacitated facility location
problem, the uncapacitated network design problem, and other similar problems with quasi-
integral polytopes.)

Let us consider the LP-relaxation of P1 further. An extreme point of the polyhedron can
be represented as a basic solution, with 2n2 + m basic variables. A basic solution is called
degenerate if one or more of the basic variables have the value zero. A non-degenerate basic
solution would need 2n2 + m variables having strictly positive values. Let us assume that
all variables that do not have the value zero have the value one. (This is the case in all the
extreme points we have encountered in our computational tests.) Due to constraints (1.1)
there will be exactly m variables equal to one (one for each connection), and the rest will
be equal to zero.

There are 2n2 inequality constraints that may or may not be active, i.e. slack variables
that may be basic variables. Connection l must pass exactly one switch in stage 1, namely
switch k1

l , so exactly one of constraints (1.2) will be active. It must also pass exactly one
switch in stage 3, namely switch k3

l , so exactly one of constraints (1.3) will be active. Thus
2m of these constraints will be active, and 2n2 − 2m constraints will be inactive, i.e. have
slack variables with positive values. Together this yields 2n2 − m variables that are not
equal to zero.

We conclude that 2m (= (2n2 + m) − (2n2 − m)) of the basic variables will be equal

7

l ol dl k1
l k3

l k2
l Path

1 0 1 0 0 0 0-0, 0-0, 0-1
2 1 4 0 1 1 1-1, 3-4, 4-4
3 2 2 0 0 2 2-2, 6-6, 2-2
4 3 7 1 2 2 3-5, 7-8, 8-7
5 6 0 2 0 1 6-7, 5-3, 1-0
6 7 5 2 1 0 7-6, 2-1, 3-5

Table 1: A small example.

to zero, so the basic solutions are all massively degenerate. (This seems to be a frequent
property of problems with quasi-integral feasible sets.)

If m = n2, then P1 has n3 variables and 3n2 constraints, and all constraints are active,
i.e. all slack variables are equal to zero. Thus in this case, n2 of the 3n2 basic variables will
have positive values, so 2n2 basic variables will be equal to zero.

From a practical point of view, it is clear that the solution to P1 is never unique. Ob-
viously there are many different ways of satisfying a certain number of demand requests.
Simply exchanging two switches yields another solution which in practice is equivalent to
the first one. So not only are there many different basic solutions representing the same
actual solution, but there are also many different actual solutions that are equivalent (for
P1).

2.3 Example

Let us give a small example for the case where n = 3. Assume that m = 6, and the origins
and destinations are given in table 1. The table also gives a solution obtained by solving
P1, in the form of k2

l . The solution can be expanded into a full path for each connection.
The paths are illustrated in figure 4.

In this example we have L1
0 = {1, 2, 3}, L1

1 = {4}, L1
2 = {5, 6}, L3

0 = {1, 3, 5}, L3
1 = {2, 6},

L3
2 = {4}. The x-solution is

x =





1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0



,

so we get L2
0 = {1, 6}, L2

1 = {2, 5}, L2
2 = {3, 4}.

2.4 Matchings and edge colorings

In a companion paper, [Holmberg, 2007b], we discuss P1 in graph terms, and interpret it
as matchings or edge colorings. This interpretation of the problem is well known, see for
example [Hwang, 1983]. We will not go into details about this, but refer to [Holmberg,
2007b]. Here we only summarize some of the results, the first of which is the following.
Any feasible solution to P1 corresponds to the union of a number of matchings, one for each

switch in the second stage.

Minimizing the number of switches used means minimizing the number of matchings,
which leads to the problem of finding an edge coloring of a bipartite graph with minimal
number of colors. The number of colors will be equal to the maximal degree of a node in
the graph, [Berge, 1973], which will be equal to d = max(maxk |L1

k|, maxk |L3
k|).

In [Cole and Hopcroft, 1982] it is shown how to find a minimal edge coloring in a bi-
partite graph in O(|E| log |V |). More recent methods yield O(|E|d) in [Schrijver, 1999] and

8

Figure 4: Connections in 3-stage switch.

O(|E| log d) in [Cole, Ost, and Schirra, 2001]. In our graph |E| = m and |V | = 2n, which
yields O(m log n), O(md) and O(m log d). Furthermore d ≤ n, so O(md) = O(mn) and
O(m log d) = O(m log n). Assuming that m = O(n2), the complexity of the edge coloring
method is O(n2 log n). This proves that simultaneous routing through a three stage network

can be done in polynomial time.

In other words, a solution to P1 is obtainable in polynomial time. One may note that
here we have added the objective of minimizing the number of used switches.

2.5 Heuristic rearrangements

If we are given m connection requirements, i.e. the pairs (ol, dl) for l = 1, . . . , m, (where
m ≤ n2), at the same time, the routing could be established by simply solving P1. However,
in practice this is not the most likely situation. Instead the requirements for connections
would probably turn up one (or a few) at a time. Thus the most important situation from a
practical point of view would be that there is a number of connections already routed, and
one or several new requirements turn up.

We now assume that there are already m − 1 connections set up, and a new one is
requested. We assume that m ≤ n2, since otherwise it will be impossible to route another
connection. At this stage, we know that if all routings are removed and P1 solved, there will
be a feasible solution. However, that could mean changing many of the existing routings,
which would be burdensome. The goal in such a case is to satisfy the new request with as
small changes as possible to the existing routings.

Let x̄ be the solution of P1 without connection m. Then if
∑

l∈L1
k
x̄il = 0, then it

is possible to route a new connection from switch k in the first stage to switch i in the
second level (without rearranging any connections). Furthermore, if

∑

l∈L3
k
x̄il = 0, then it

is possible to route a new connection from switch i in the second stage to switch k in the
third level (without rearranging any connections).

If there is no i that allows a path from k1
m to k3

m, one or more existing connections must

9

be rerouted, in order to accommodate the new connection requirement. If the first part of
the path is free, the connection using the second part of the path must be rerouted. This
connection is given by L2

i ∩ L3
k.

This can be developed into a heuristic search for free paths. Route the new connection
on a path that is almost free, find the connection that blocks the path, and try to reroute
it. Repeat this until a free path is found. For more details, see [Holmberg, 2007a].

We may compare to heuristics such as the one described in [Lee et al., 1996], we find that
the following. There one works with partly infeasible solutions, where paths may end up at
the wrong switch in stage 3. One then applies a swap heuristic that iteratively corrects this.
Thus our heuristic can be put into the same framework. A fairly elaborate scheme seems
necessary in order to avoid cycling, see [Carpinelli and Oruç, 1993]. (A number of proposed
methods of this type have subsequently been shown to fail in certain circumstances.) Our
conclusion is that we may adopt the same strategies as is used in for example [Lee et al.,
1996], in order to make the heuristic converge.

These methods are probably quite quick, but are not guaranteed to give the minimal
number of reroutings.

2.6 Minimal rearrangements

Since heuristics may fail yielding the minimal number of reroutings, one might want to use
an approach that is certain to succeed. Therefore we formulate a mathematical model that,
based on a given solution and new connection requirements, finds a feasible solution with a
minimum of rerouting.

Let us generalize somewhat by allowing more than one new connection. Let l ∈ CO

denote the “old” connections, already routed, and l ∈ CN the new connections, to be routed.
One might allow |CO| + |CN | > n2 and decide which of the new ones to route, based on
the number of reroutings needed. However, here we will not do that, since it requires a
comparison of the disadvantages of not routing different connections. Also one might then
wish to compare this to the disadvantages of rerouting. Instead, we will here assume that
|CO| + |CN | ≤ n2, which means that all connections can be routed, and will also require
that they are all routed.

That is, we require that all (new and old) connections shall be routed, and wish to find
the solution with minimal number of reroutings. To this end, we need to introduce costs for
rerouting. Not making any changes to the present solution should incur no cost at all.

Given a binary solution, x̄, for l ∈ CO there should be a cost if x̄il = 0 and we set
xil = 1, or if x̄il = 1 and we set xil = 0, but not if x̄il = 0 and we set xil = 0 or if
x̄il = 1 and we set xil = 1. Furthermore, there are no costs on xil for l ∈ CN . Now let
A1 = {(i, l), l ∈ CO : x̄il = 1} and A0 = {(i, l), l ∈ CO : x̄il = 0}. The cost should thus occur
if we set xil = 0 for any (i, l) ∈ A1, or set xil = 1 for any (i, l) ∈ A0, and can be expressed
as

∑

(i,l)∈A1

(1 − xil) +
∑

(i,l)∈A0

xil

The cost will be equal to zero if no rearrangements are made, and equal to |CO| if all (old)
routes are changed. We now get the objective function

∑

(i,l)∈A1

(1 − xil) +
∑

(i,l)∈A0

xil = |A1| −
∑

(i,l)∈A1

xil +
∑

(i,l)∈A0

xil =
∑

(i,l)

cilxil + |Co|

where cil = −1 for (i, l) ∈ A1, cil = 1 for (i, l) ∈ A0 and cil = 0 for all i and l ∈ CN . The
mathematical model for minimizing the number of reroutings is thus as follows.

10

v∗ = min
∑

(i,l)

cilxil

s.t. (1.1), (1.2), (1.3), xil ∈ {0, 1} ∀i, l

[P1r]

We know that −|CO| ≤ v∗ ≤ |CO|. The number of reroutings will be equal to nr =
(v∗ + |CO|)/2, since we must adjust for the constant |CO|, and a rerouting makes two
changes, one path is added and another one is removed.

A feasible solution to P1r can be found in polynomial time exactly as for P1, but that
does not ensure minimal rerouting, unless it is optimal. In [Holmberg, 2007b], we describe
a polynomial and practically efficient method based on edge coloring for finding the routing
of a new connection so that minimal rearrangements of other connections are done.

2.7 Lagrangean duality

For the heuristic approaches, it is a disadvantage not to know if the number of rearrange-
ments is minimal or close to minimal. If we have a feasible binary solution to P1r, its
objective function value is an upper bound on the minimal number of rearrangements that
are needed. In order to estimate how close this is to the minimum, we would like to have a
lower bound on v∗ to compare with.

Let us therefore consider using Lagrangean duality as follows. We relax constraints 1.2
and 1.3 with multipliers β and γ. We get the following dual problem.

max g(β, γ) s.t. β ≥ 0, γ ≥ 0
where

g(β, γ) = min
∑

i

∑

l

cilxil +
∑

i

∑

k

βik(
∑

l∈L1
k

xil − 1) +
∑

i

∑

k

γik(
∑

l∈L3
k

xil − 1)

s.t.
∑

i∈N

xil = 1 ∀l

xil ∈ {0, 1} ∀i, l

[LR1]

LR1 is separable into one problem for each connection l. Letting ĉil = cil + βik1
l

+ γik3
l
, we

have g(β, γ) =
∑

l gl(β, γ) −
∑

i

∑

k βik −
∑

i

∑

k γik, where, for each l,

gl(β, γ) = min
∑

i

ĉilxil

s.t.
∑

i∈N

xil = 1

xil ∈ {0, 1} ∀i

Letting ĉîl = mini ĉil, the optimal solution is xîl = 1 and xil = 0 for all i 6= î, i.e. the
subproblem is trivially solvable.

The dual problem can now be solved by searching in β and γ with subgradient opti-
mization, [Poljak, 1967], [Poljak, 1969], [Held, Wolfe, and Crowder, 1974]. It is well-known
that g(β, γ) ≤ v∗ for any nonnegative β and γ. In order to prove optimality of the primal
solution, it is sufficient to find β and γ such that g(β, γ) ≥ v̂ − 2, where v̂ is the objective
function value of P1r, since the objective function value must be an even integer. If the
primal solution is not optimal, an estimation of the error may be obtained by finding a near
optimal solution to the dual problem. For more details, and an algorithmic description, see
[Holmberg, 2007a].

We may also note that solving LR1 yields an x-solution that satisfies (1.1) but probably
not (1.2) and (1.3). In any case this solution might give an indication of how to change
the x-solution. One such solution is obtained every time LR1 is solved, so an iterative dual

11

search method may yields many such indications. Occasionally we may even get a feasible
solution.

3 Five stages

3.1 Mathematical model

Let us now turn our attention to the case with five stages of switches. We replace the center
stage in a three stage network with n blocks of separate three stage units. The first and the
fifth stages distribute the connections between the different three stage units.

The coupling is just an up-scaling of the arrangement of the three stage unit. The first
(and third) stage now consists of n units containing n switches each. The n blocks of three
stage units between them is called the intermediate stage. The first output of the first
switch in the first unit of the first stage is coupled to the first input of the first switch in
the first block in the intermediate stage, the second output of the first switch in the first
unit of the first stage is coupled to the first input of the first switch in the second block of
the intermediate stage, and so on. The first output of the second switch in the first unit
of the first stage is coupled to the second input of the first switch in the second block of
the intermediate stage, and so on. The first output of the first switch in the second unit
of the first stage is coupled to the first input of the second switch in the first block of the
intermediate stage, and so on. This arrangement is pictured in figure 5. In this case, the
network can accommodate at most n3 connections.

Note that the couplings between the first and second stage are not symmetric. The
couplings between the fourth and fifth stages are similar to those between the first and the
second stages, but reversed (mirrored) so that the whole network is symmetrical. One may
also note that there are never two connections between a switch in the first (or fifth) stage
and a block in the center stage.

We could use the multicommodity flow model, as in the three stage case. The only
difference is that the network will be larger, as there will be 10n3 nodes, 5n4 + 4n3 arcs and
n3 commodities, yielding 5n7 + 4n6 variables. (For n = 20 this is 80000 nodes, 832000 arcs,
8000 commodities, and 6 656 000 000 variables.) Again it is doubtful if this is the most
efficient way of solving the problem.

The mathematical modeling is here somewhat more complicated. Let us start by defining
all the parameters, as in the previous section. There is an additional index for blocks.
We need to specify which input/output (i/j), which switch (k) and which block (p) and
connection is to use.

In addition to the previous notation, connection l will use block pt
l in stage t, for t = 1, 2, 3,

where the second stage contains the three stages for switches.
From ol, we calculate p1

l =
⌊

ol/n2
⌋

, k1
l =

⌊

(ol − p1
l n)/n2

⌋

and i1l = ol − k1
l n − p1

l n
2.

From dl, we calculate p3
l =

⌊

dl/n2
⌋

, k5
l =

⌊

(dl − p3
l n)/n2

⌋

and j5
l = dl − k5

l n − p3
l n

2.
We also get k2

l = p1
l and k4

l = p3
l , i2l = k1

l and j4
l = k5

l , as well as i3l = k2
l and j3

l = k4
l .

If we choose to use block p2
l in the second stage, we get j1

l = i5l = p2
l . If we choose to use

switch k3
l in the third stage, we get j2

l = i4l = k3
l .

Thus p2
l and k3

l are the only choices we have to make for connection l. All the other
parameters are determined by this choice. Let p2

l = w and k3
l = v.

12

Figure 5: 5-stage switch.

13

j1 i2 j2 i3 j3i1

k1 k2 k3 k4

i4 j4

k5

i5 j5

p3p2p1o d

Figure 6: Dependencies between parameters in the 5-stage case.

Stage Block Switch Input Output

1 p1
l =

⌊

ol/n2
⌋

k1
l =

⌊

(ol − p1
l n)/n2

⌋

i1l = ol − k1
l n − p1

l n
2 j1

l = w
2 - k2

l = p1
l i2l = k1

l j2
l = v

3 p2
l = w k3

l = v i3l = k2
l j3

l = k4
l

4 - k4
l = p3

l i4l = v j4
l = k5

l

5 p3
l =

⌊

dl/n2
⌋

k5
l =

⌊

(dl − p3
l n)/n2

⌋

i5l = w j5
l = dl − k5

l n − p3
l n

2

We illustrate the dependencies in figure 6. Solid circles indicate parameters that are directly
calculated from ol and dl and solid lines indicate the dependencies. Dashed circles indicate
parameters not fixed and dashed lines indicate dependencies between parameters not fixed.

Comparing to the three stage case, we find that we must first choose the block in the
intermediate stage, and then, within this block, choose the switch in the middle stage (stage
3). For the mathematical model, we therefore define the following variables.

xqil = 1 if connection l uses switch i and block q.
(The relation to the previously used notation is that xqil = 1 for q = p2

l , k = k3
l , while

xqil = 0 for all i 6= k3
l and q 6= p2

l .)
Again, for each switch, each input can be used by at most one connection, and each

output can be used by at most one connection. Assuming that the overall inputs, ol, and
outputs, dl, obey this, takes care of i1l , i2l (via k1

l) and i3l (via p1
l and k2

l). It also takes care
of j5

l , j4
l (via k5

l) and j3
l (via p3

l and k4
l).

This leaves j1
l , j2

l , i4l and i5l , but j1
l = i5l = p2

l and j2
l = i4l = k3

l , so in the choice of p2
l

and k3
l , this should be taken into account.

We introduce the following sets.
L1

k = {l : k1
l = k}, L2

k = {l : k2
l = k}, L4

k = {l : k4
l = k} and L5

k = {l : k5
l = k}.

Thus L1
k is the set of connections that use switch k in the first stage, L2

k is the set of
connections that use switch k in the second stage, L4

k is the set of connections that use
switch k in the fourth stage, and L5

k is the set of connections that use switch k in the fifth

stage. Again we note that
⋃

k

L1
k =

⋃

k

L2
k =

⋃

k

L4
k =

⋃

k

L5
k = {1, . . . , m}.

We can calculate k1
l , k2

l , k4
l and k5

l from the given ol and dl, so these sets are given by
the indata. We also introduce the following sets.

P 1
p = {l : p1

l = p} and P 3
p = {l : p3

l = p},
i.e. P 1

p is the set of connections that use block p in the first stage, and P 3
p is the set of

connections that use block p in the last stage. Here
⋃

p

P 1
p =

⋃

p

P 3
p = {1, . . . , m}.

Since k2
l = p1

l , we know the following. If connection l uses block p in the first stage, i.e.
l ∈ P 1

p , then the connection l also uses switch p in the second stage, i.e. l ∈ L2
p. This means

that P 1
p = L2

p. Similarly, since k4
l = p3

l , we have P 3
p = L4

p.
We also introduce

L3
k = {l : k3

l = k} and P 2
p = {l : p2

l = p}

14

as an alternate way of representing a solution.
Since a block in the intermediate stage is a three stage unit, we can use the same type

of constraints.
∑

l∈L2
k

xqil ≤ 1 q ∈ N, i ∈ N, k ∈ N

i.e. at most one connection may use switch k in the second stage and switch i in the third
stage, in any block.

∑

l∈L4
k

xqil ≤ 1 q ∈ N, i ∈ N, k ∈ N

i.e. at most one connection may use switch k in the fourth stage and switch i in the third
stage, in any block. This takes care of the inputs and outputs within the intermediate blocks,
i.e. j2

l and i4l .
We must also take the connections between the intermediate stage and the first and last

stages into account. Between a switch, k, in a block, p, in the first stage and a block in the
second stage, q, at most one connection can be used. The connections using switch k in the
first stage are those in L1

k, and the connections using block p in the first stage are those in
P 1

p , so we consider the connections in P 1
p ∩L1

k. However, P 1
p = L2

p, so we use the set L1
k∩L2

p.
∑

i∈N

∑

l∈L1
k
∩L2

p

xqil ≤ 1 q ∈ N, k ∈ N, p ∈ N

The same holds between the second and last stages.
∑

i∈N

∑

l∈L5
k
∩L4

p

xqil ≤ 1 q ∈ N, k ∈ N, p ∈ N

This takes care of j1
l and i5l .

Here we note that
⋃

p

⋃

k

(L1
k ∩ L2

p) =
⋃

p

⋃

k

(L5
k ∩ L4

p) = {1, . . . , m}.

One might consider only connections using a certain switch, m, in the second stage. Then
we would consider the set P 1

p ∩ L1
k ∩ L2

m. However, we previously noticed that L2
m = P 1

m,
so the set would be P 1

p ∩ L1
k ∩ P 1

m, which obviously is empty if m 6= p (no connection uses
two different blocks in the first stage), and equal to P 1

p ∩ L1
k if p = m. This is an example

of constraints that are automatically satisfied by the definition of our variables and sets.
We now wish to find a feasible solution to the following model.

∑

q∈N

∑

i∈N

xqil = 1 ∀l (2.1)

∑

l∈L2
k

xqil ≤ 1 q ∈ N, i ∈ N, k ∈ N (2.2)

∑

l∈L4
k

xqil ≤ 1 q ∈ N, i ∈ N, k ∈ N (2.3)

∑

i∈N

∑

l∈L1
k
∩L2

p

xqil ≤ 1 q ∈ N, k ∈ N, p ∈ N (2.4)

∑

i∈N

∑

l∈L5
k
∩L4

p

xqil ≤ 1 q ∈ N, k ∈ N, p ∈ N (2.5)

xqil ∈ {0, 1} ∀q, i, l

[P2]

Summing up the roles of the constraints ensuring that each input/output is used by at most
one connection, we find that (2.2) takes care of j2

l , (2.3) takes care of i4l , (2.4) takes care of
j1
l , and (2.5) takes care of i5l .

P2 has mn2 variables and 4n3 + m constraints (not counting the binary requirements).
For m = 20 and m = n3, this is 3 200 000 variables and 40000 constraints. It can be solved

15

with a general MIP-code. There are similarities and differences to P1. Just as P1, P2 will
be massively degenerated. However, it is easy to find instances where the LP-relaxation
does not give an integer solution. In [Holmberg, 2007a], we give an example of P2 and its
solution.

If we do not specify k, the switch in the first stage, in constraints (2.4), we get aggregated
constraints that are summations of (2.4).

∑

i∈N

∑

l∈P 1
p

xqil ≤ n q ∈ N, p ∈ N (2.6)

The same holds between blocks and the second and last stages.
∑

i∈N

∑

l∈P 3
p

xqil ≤ n q ∈ N, p ∈ N (2.7)

Here it is more difficult to see the relations to matchings. Clearly the center stage, which is
three stage units, can be modeled by matchings. This is ensured by constraints (2.2) and
(2.3). Aggregating everything to blocks, we find that constraints (2.6) and (2.7) define what
we may call n-matchings, i.e. multigraphs where not more than n edges may be adjacent
to the same node. Constraints (2.4) and (2.5) are however harder to interpret in matching
terms.

We could construct a bipartite multigraph, called the p-graph, with the edges (p1
l , p

3
l),

and extract matchings from it in polynomial time. One such matching represents connections
that may use the same switch and the same block in the center stages. However, we are not
sure that two such matchings don’t interfere with each other. In other words, we are not
sure to satisfy constraints (2.4) and (2.5).

Clearly (2.6) and (2.7) follows from (2.4) and (2.5), since they are obtained by simply
summing the constraints. However, summing (2.2) and (2.3) over i also yields (2.6) and
(2.7). Interestingly enough, we furthermore find that König’s theorem on bipartite edge
coloring tells us that a bipartite graph with maximal degree d can be colored by d colors.
Applying this result to our case, we see that constraints (2.6) and (2.7) yields a bipartite
graph with degree at most n. Therefore (2.6) and (2.7) tell us that there exists at most
n matchings, i.e. implies (2.2) and (2.3). That seems to indicate that (2.2) and (2.3) are
equivalent to (2.6) and (2.7), which is somewhat surprising.

However, (2.4) and (2.5) do not follow from (2.6) and (2.7). Trying to interpret these
constraints as matchings, we find that in an extended bipartite multigraph, where there is
one node for each block-switch combination, these constraints indeed imply matchings.

Consider a small example, with n = 3 and two connections, one with o1 = 0 and d1 = 0
and one with o2 = 1 and d2 = 1. This means that p1

1 = 0, p3
1 = 0, p1

2 = 0 and p3
2 = 0,

k1
1 = 0, k5

1 = 0, k1
2 = 0, and k5

2 = 0, and also k2
1 = 0, k4

1 = 0, k2
2 = 0, and k4

2 = 0. We have
L1

0 = L2
0 = L4

0 = L5
0 = P 1

0 = P 3
0 = {1, 2}.

The p-graph will simply have two parallel edges between the two top nodes. Since the
degree is less then 3, one block should be sufficient. The multigraph can then be separated
into two identical matchings, corresponding to switches 0 and 1 in block 0. We thus get
k3
1 = 0, p2

1 = 0, k3
2 = 1 and p2

2 = 0.
This corresponds to the solution x001 = 1 and x012 = 1, which satisfies constraints (2.2),

(2.3), (2.6) and (2.7), but not (2.4) and (2.5).
Thus our conclusion is that the solutions must be matchings in two different graphs. In

other words we need to find selections of matchings satisfying additional constraints, and
this is not likely to be possible in polynomial time.

Unfortunately this means that the polynomial methods using matching and edge coloring
can not be used for the five stage problem. As of now, we do not know if P2 can be solved in
polynomial time. We may recall a few NP-complete problems with some similarities, namely

16

minimal edge coloring in general (not restricted to bipartite graphs), the maximum disjoint
connecting paths problem (and its variation the minimum path coloring problem) and the
maximum 3-dimensional matching problem, [Garey and Johnson, 1979].

3.2 Minimal rearrangements

If there already is a set connections, CO, set up, and a set of new ones, CN , is requested, we
let x̄ be the solution of P2 without the new connections. Then we search for a î and p̂ that
allows the routing of each new connection. As in the previous case, we can use a heuristic
based on the slack in the constraints. We first decide p̂ with the help of 2.4 and 2.5, and
then decide î with the help of p̂ inserted in 2.2 and 2.3.

For the problem for exactly minimizing the rearranging, let A1 = {(q, i, l) : x̄qil = 1, l ∈
CO}, A0 = {(q, i, l) : x̄qil = 0, l ∈ CO}, and let cqil = −1 for all (q, i, l) ∈ A1, cqil = 1 for all
(q, i, l) ∈ A0 and cqil = 0 for all l ∈ CN . Then we wish to solve

v∗ = min
∑

q∈N

∑

i∈N

m
∑

l=1

cqilxqil

s.t. (2.1), (2.2), (2.3), (2.4), (2.5), xqil ∈ {0, 1} ∀q, i, l

[P2r]

Clearly P2r is more difficult to solve than P1r. The polynomial method in [Holmberg, 2007b]
for the three stage case can not, as far as we see, be used here.

3.3 Lagrangean duality

We can apply Lagrangean duality on P2r by relaxing constraints 2.2, 2.3, 2.4 and 2.5 with
multipliers β1, γ1, β2 and γ2. Letting ĉqil = cqil +β1

qik2
l

+ γ1
qik4

l

+β2
qk1

l
k2

l

+ γ2
qk5

l
k4

l

, we get the

following subproblem, for each l.

gl(β
1, γ1, β2, γ2) = min

∑

q∈N

∑

i∈N

ĉqilxqil

s.t.
∑

q∈N

∑

i∈N

xqil = 1

xqil ∈ {0, 1}∀q, i

Letting ĉq̂îl = minq,i ĉqil, the optimal solution is xq̂îl = 1 and xqil = 0 for all q 6= q̂ and i 6= î.

Again g(β1, γ1, β2, γ2) ≤ v∗ for any nonnegative β1, γ1, β2 and γ2, and the maximal lower
bound can be found by using subgradient optimization,

Another possibility of applying Lagrangean relaxation is to relax only constraints (2.4)
and (2.5), while keeping the constraints (2.2) and (2.3) in the subproblem. In that case the
subproblem is not separable. However, the subproblem will be of the same type as P1r, and
can thus be solved with the same techniques. In order to see this clearly, the indices q and
i should be replaced with one index. This way we get a subgradient optimization procedure
with polynomially solvable subproblems.

4 Seven stages

We will now consider the case with seven stages, which is even more complicated. We do a
similar up-scaling of the network, by replacing the center stage in a three stage network by a
n separate 5-stage units. This configuration can handle up to n4 simultaneous connections.

17

j1 i2 j2 i3 j3i1

k1 k2 k3 k4

i4 j4

k5

i5 j5

p1o

k6 k7

j6i6 i7 j7

dp5p4

r1

p3

r2 r3

p2

Figure 7: Dependencies between parameters in the 7-stage case.

Here we need to use all similarities to the smaller cases. We introduce another index, r,
for the larger groups, and let connection l use group rt

l in stage t.
From ol, we calculate r1

l =
⌊

ol/n3
⌋

, p1
l =

⌊

(ol − r1
l n3)/n2

⌋

, k1
l =

⌊

(ol − r1
l n2 − p1

l n)/n
⌋

and i1l = ol −k1
l n−p1

l n
2− r1

l n
3. From dl, we calculate r3

l =
⌊

dl/n3
⌋

, p5
l =

⌊

(dl − r3
l n3)/n2

⌋

,

k7
l =

⌊

(dl − r3
l n2 − p5

l n)/n
⌋

and j7
l = dl − k7

l n − p5
l n

2 − r3
l n3.

This yields p2
l = r1

l , k2
l = p1

l and i2l = k1
l , followed by k3

l = p2
l , i3l = k2

l , and finally
i4l = k3

l . We also get p4
l = r3

l , k6
l = p5

l and j6
l = k7

l , followed by k5
l = p4

l , j5
l = k6

l , and finally
j4
l = k5

l .
If we choose to use group r2

l in the intermediate stage, we get j1
l = i7l = r2

l . If we choose
to use block p3

l in the third stage, we get j2
l = i6l = p3

l . If we choose to use switch k4
l in the

fourth stage, we get j3
l = i5l = k4

l . Thus only r2
l , p3

l and k4
l remain to be chosen.

In figure 7 solid circles indicate parameters that are directly calculated from ol and dl

and solid lines indicate the dependencies. Dashed circles indicate parameters not fixed and
dashed lines indicate dependencies between parameters not fixed.

We define the following variables.
xrqil = 1 if connection l uses switch i, block q and group r.

We introduce the following sets. L1
k = {l : k1

l = k}, L2
k = {l : k2

l = k}, L3
k = {l : k3

l = k},
L5

k = {l : k5
l = k}, L6

k = {l : k6
l = k} and L7

k = {l : k7
l = k}. L1

k is the set of connections
that use switch k in the first stage, L2

k is the set of connections that use switch k in the
second stage, L3

k is the set of connections that use switch k in the third stage, L5
k is the

set of connections that use switch k in the fifth stage, L6
k is the set of connections that use

switch k in the sixth stage, and L7
k is the set of connections that use switch k in the seventh

stage.
We could also introduce the following sets. P 1

p = {l : p1
l = p}, P 2

p = {l : p2
l = p},

P 4
p = {l : p4

l = p}, and P 5
p = {l : p5

l = p}, i.e. P 1
p is the set of connections that use block p

in the first stage, P 2
p is the set of connections that use block p in the second stage, P 4

p is the
set of connections that use block p in the third stage, and P 5

p is the set of connections that
use block p in the last stage. However, P 1

p = L2
p, P 2

p = L3
p, P 4

p = L5
p and P 5

p = L6
p.

We could also define R1
r = {l : r1

l = r} and R3
r = {l : r3

l = r}, but R1
r = P 2

r = L3
r and

R3
r = P 4

r = L5
r.

The mathematical model is scaled up as follows, following the earlier principles.

18

∑

r∈N

∑

q∈N

∑

i∈N

xrqil = 1 ∀l (3.1)

∑

l∈L3
k

xrqil ≤ 1 r ∈ N, q ∈ N, i ∈ N, k ∈ N (3.2)

∑

l∈L5
k

xrqil ≤ 1 r ∈ N, q ∈ N, i ∈ N, k ∈ N (3.3)

∑

i∈N

∑

l∈L2
k
∩L3

p

xrqil ≤ 1 r ∈ N, q ∈ N, k ∈ N, p ∈ N (3.4)

∑

i∈N

∑

l∈L6
k
∩L5

p

xrqil ≤ 1 r ∈ N, q ∈ N, k ∈ N, p ∈ N (3.5)

∑

q∈N

∑

i∈N

∑

l∈L1
k
∩L2

p∩L3
s

xrqil ≤ 1 r ∈ N, k ∈ N, p ∈ N, s ∈ N (3.6)

∑

q∈N

∑

i∈N

∑

l∈L7
k
∩L6

p∩L5
s

xrqil ≤ 1 r ∈ N, k ∈ N, p ∈ N, s ∈ N (3.7)

xrqil ∈ {0, 1} ∀r, q, i, l

[P3]

This problem has n3m variables and 6n4 + m constraints. A model for minimal rearrange-
ments can be constructed as in the previous sections.

5 Nine stages and more

5.1 Mathematical model

Considering nine stages, i.e. replacing the center stage in a three stage network by n separate
7-stage units, we may handle up to n5 connections. We have now identified a structure in
how the dependencies and the mathematical model grows. There is an additional index for
“collections of groups”, t.

∑

t∈N

∑

r∈N

∑

q∈N

∑

i∈N

xtrqil = 1 ∀l (4.1)

∑

l∈L4
k

xtrqil ≤ 1 t ∈ N, r ∈ N, q ∈ N, i ∈ N, k ∈ N (4.2)

∑

l∈L6
k

xtrqil ≤ 1 t ∈ N, r ∈ N, q ∈ N, i ∈ N, k ∈ N (4.3)

∑

i∈N

∑

l∈L3
k
∩L4

p

xtrqil ≤ 1 t ∈ N, r ∈ N, q ∈ N, k ∈ N, p ∈ N (4.4)

∑

i∈N

∑

l∈L7
k
∩L6

p

xtrqil ≤ 1 t ∈ N, r ∈ N, q ∈ N, k ∈ N, p ∈ N (4.5)

∑

q∈N

∑

i∈N

∑

l∈L2
k
∩L3

p∩L4
s

xtrqil ≤ 1 t ∈ N, r ∈ N, k ∈ N, p ∈ N, s ∈ N (4.6)

∑

q∈N

∑

i∈N

∑

l∈L8
k
∩L7

p∩L6
s

xtrqil ≤ 1 t ∈ N, r ∈ N, k ∈ N, p ∈ N, s ∈ N (4.7)

∑

r∈N

∑

q∈N

∑

i∈N

∑

l∈L1
k
∩L2

p∩L3
s∩L4

v

xtrqil ≤ 1 t ∈ N, k ∈ N, p ∈ N, s ∈ N, v ∈ N (4.8)

∑

r∈N

∑

q∈N

∑

i∈N

∑

l∈L9
k
∩L8

p∩L7
s∩L6

v

xtrqil ≤ 1 t ∈ N, k ∈ N, p ∈ N, s ∈ N, v ∈ N (4.9)

xtrqil ∈ {0, 1} ∀t, r, q, i, l

[P4]

19

Now we have identified a structure that enables us to construct models for even larger num-
bers of stages, if the networks are constructed by the same principles, namely the following.
A 2K +1-stage network is constructed by letting n 2K−1-stage networks replace the center
stage in a three stage network, and connecting the stages accordingly.

For a 2K + 1-stage network, there will be K decisions for each connection. For K = 1,
we get three stage networks, and the decision is which switch (in the second stage) to use.
For K = 2, we get five stage networks, and the two decisions are which switch and which
block to use. For K = 3, we get seven stage networks, and the three decisions are which
switch, which block and which group to use.

A 2K +1-stage network can handle up to nK+1 origin-destination pairs. The mathemat-
ical model will have nKm variables and 2KnK+1 + m constraints in 2K + 1 groups.

In a 2K + 1-stage network, stage K + 1 is the center stage. The following constraints
will either concern stages before the center stage, K, K − 1 etc, or concern stages after
the center stage, K + 2, K + 3 etc. The second and third sets of constraints will be sums
over LK

k and LK+2
k , handling the inputs/outputs closest to the center stage. The following

two sets of constraints will be sums over i and over LK−1
k ∩ LK

p and LK+3
k ∩ LK+2

p . The

following two sets of constraints will be sums over q and i and over LK−2
k ∩LK−1

p ∩LK
r and

LK+4
k ∩ LK+3

p ∩ LK+2
r . Each new two groups of constraints handle the inputs/outputs one

stage more away from the center stage.
Now let switch index i be denoted by iK , block index q by iK−1, group index r by

iK−2 and so on. When enumerating constraints, we denote k with j1, p with j2, s with j3
and so on. This means that i1 will denote the largest units, i.e. the first decision, i2 the
second largest unit, i.e. the second decision, and so on up to iK , which denotes the smallest
unit, which is the choice of switch in the center stage. On the other hand, j1 denotes the
smallest unit when it comes to constraints. (This discrepancy is motivated by a much needed
symmetry in the following parts of the paper.)

We define the following variables.
xi1···iK l = 1 if connection l uses switch iK , block iK−1, group iK−2, etc.

The mathematical model, [P5], will now be as follows.

20

∑

i1∈N

· · ·
∑

iK∈N

xi1···iK l = 1 ∀l (5.1)

∑

l∈LK
j1

xi1···iK l ≤ 1 i1 ∈ N, . . . , iK ∈ N, j1 ∈ N (5.2)

∑

l∈L
K+2

j1

xi1···iK l ≤ 1 i1 ∈ N, . . . , iK ∈ N, j1 ∈ N (5.3)

∑

i1∈N

∑

l∈L
K−1

j1
∩LK

j2

xi1···iK l ≤ 1 i2 ∈ N, . . . , iK ∈ N, j1 ∈ N, j2 ∈ N (5.4)

∑

i1∈N

∑

l∈L
K+3

j1
∩L

K+2

j2

xi1···iK l ≤ 1 i2 ∈ N, . . . , iK ∈ N, j1 ∈ N, j2 ∈ N (5.5)

∑

i2∈N

∑

i1∈N

∑

l∈L
K−2

j1
∩L

K−1

j2
∩LK

j3

xi1···iK l ≤ 1 i3 ∈ N, . . . , iK ∈ N, j1 ∈ N, . . . , j3 ∈ N (5.6)

∑

i2∈N

∑

i1∈N

∑

l∈L
K+4

j1
∩L

K+3

j2
∩L

K+2

j3

xi1···iK l ≤ 1 i3 ∈ N, . . . , iK ∈ N, j1 ∈ N, . . . , j3 ∈ N (5.7)

...
∑

iK−1∈N

· · ·
∑

i1∈N

∑

l∈
T

K
m=1

Lm
jm

xi1···iK l ≤ 1 iK ∈ N, j1 ∈ N, . . . , jK ∈ N (5.8)

∑

iK−1∈N

· · ·
∑

i1∈N

∑

l∈
T

K
m=1

L
2K+2−m
jm

xi1···iK l ≤ 1 iK ∈ N, j1 ∈ N, . . . , jK ∈ N (5.9)

xi1···iK l ∈ {0, 1} ∀i1, . . . , iK , l

Here LK
j1

is the set of connections that use switch j1 in stage K, LK−1
j1

∩LK
j2

the set of con-
nections that use switch j1 in stage K − 1 and switch j2 in stage K, etc.

Since each connection must pass each stage once, each l is represented in one the left-
hand-sides of constraints (5.2), in one the left-hand-sides of constraints (5.3), in one the
left-hand-sides of constraints (5.4), in one the left-hand-sides of constraints (5.5), etc. This
means that taking the union of all the sets L in the left-hand-sides yields the whole set of
connections (each once). More formally we have

⋃

j1

LK
j1

=
⋃

j1

⋃

j2

(LK−1
j1

∩ LK
j2

) = · · · =
⋃

j1

· · ·
⋃

jK

(

K
⋂

m=1

Lm
jn

) = {1, . . . , m}.

We have K groups of constraints, each containing two groups, one containing constraints
for stages before the center stage and one containing constraints for stages after the center
stage Let us use the parameter v for these groups. The first group is a bit special, but for
v = 2, 3, . . . , K, the constraints will be the following.

∑

iv−1∈N

· · ·
∑

i1∈N

∑

l∈
T

v
m=1

L
K−v+m
jm

xi1···iK l ≤ 1 iv ∈ N, . . . , iK ∈ N, j1 ∈ N, . . . , jv ∈ N

∑

iv−1∈N

· · ·
∑

i1∈N

∑

l∈
T

v
m=1

L
K+2+v−m
jm

xi1···iK l ≤ 1 iv ∈ N, . . . , iK ∈ N, j1 ∈ N, . . . , jv ∈ N

In order to simplify notation somewhat, let

M1
v (j1, . . . , jv) =

v
⋂

m=1

LK−v+m
jm

and M2
v (j1, . . . , jv) =

v
⋂

m=1

LK+v+2−m
jm

.

We have
⋃

j1

· · ·
⋃

jK

M1
v (j1, . . . , jv) =

⋃

j1

· · ·
⋃

jK

M2
v (j1, . . . , jv) = {1, . . . , m}.

Now M1
v (j1, . . . , jv) is the set of connections that use switch jm in stage K − v + m for

21

m = 1 to v, i.e. switch j1 in stage K − v + 1 and switch j2 in stage K − v + 2 and so on, up
to switch jv in stage K.

The model, [P6], now becomes as follows.
∑

i1∈N

· · ·
∑

iK∈N

xi1···iK l = 1 ∀l (6.1)

∑

l∈LK
j1

xi1···iK l ≤ 1 i1 ∈ N, . . . , iK ∈ N, j1 ∈ N (6.2)

∑

l∈L
K+2

j1

xi1···iK l ≤ 1 i1 ∈ N, . . . , iK ∈ N, j1 ∈ N (6.3)

∑

iv−1∈N

· · ·
∑

i1∈N

∑

l∈M1
v (j1,...,jv)

xi1···iK l ≤ 1 ∀iv, . . . , iK , j1, . . . , jv, v = 2, . . . , K (6.4)

∑

iv−1∈N

· · ·
∑

i1∈N

∑

l∈M2
v (j1,...,jv)

xi1···iK l ≤ 1 ∀iv, . . . , iK , j1, . . . , jv, v = 2, . . . , K (6.5)

xi1···iK l ∈ {0, 1} ∀i1, . . . , iK , l

For any given K, this model is well stated. The number of indices, and thus also number of
sums, variables and constraints, are then fixed and given.

5.2 Rearrangements

Again let x̄ be the solution of P6 without the new connections. Then we search for îK , îK−1,
îK−2 . . . î1, that allows the routing of each new connection. We can device a sequential
heuristic that first decides î1 with the help of 6.4 and 6.5 for v = K, then î2 with the help
of î1 and 6.4 and 6.5 for v = K − 1, and so on, until finally deciding îK with the help of
i1 · · · iK−1 together with 6.2 and 6.3.

The model for minimal rearrangements will be as follows. Let A1 = {(i1, . . . , ik, l) :
x̄i1···iK l = 1, l ∈ CO}, A0 = {(i1, . . . , ik, l) : x̄i1···iK l = 0, l ∈ CO}, and let ci1···ikl = −1 for
all (i1, . . . , ik, l) ∈ A1, ci1···ikl = 1 for all (i1, . . . , ik, l) ∈ A0 and ci1···ikl = 0 for all l ∈ CN .

v∗ = min

m
∑

l=1

∑

i1∈N

· · ·
∑

iK∈N

ci1···iK lxi1···iK l

s.t. (6.1), (6.2), (6.3), (6.4), (6.5), xi1···iK l ∈ {0, 1} ∀i1, . . . , iK , l

[P6r]

The number of variables in this linear integer programming problem is mnK and the number
of constraints is m + 2KnK+1.

5.3 Lagrangean relaxation

Applying Lagrangean relaxation, we use multipliers β for constraints (6.2) and (6.4) and γ
for (6.3) and (6.5). We get the following dual problem.

max g(β, γ) =
∑

l gl(β, γ) − C(β, γ) s.t. β ≥ 0, γ ≥ 0
where the Lagrangean subproblem is separable into one problem for each connection l.

gl(β, γ) = min
∑

i1

· · ·
∑

iK

ĉi1···iK lxi1···iK l

s.t.
∑

i1∈N

· · ·
∑

iK∈N

xi1···iK l = 1 ∀l

xi1···iK l ∈ {0, 1} ∀i1, . . . , iK , l

[LR6l]

Letting

22

ĉî1···̂iK l = min
i1···iK l

ĉi1···iK l,

the optimal solution is xî1···̂iK l = 1. This yields

gl(β, γ) =
∑

i1

· · ·
∑

iK

min
i1···iK l

ĉi1···iK lxi1···iK l

So again the subproblem is trivially solvable. The dual problem can now be attacked
with subgradient optimization. This approach will yield a sequence of lower bounds that
can be compared with upper bounds from a constructive heuristic. One should, however,
bear in mind that in order to solve the dual problem to maximize g(β, γ), one needs to find
the optimal values of all the multipliers, β and γ. There are KnK+1 β-variables, and the
same number of γ-variables. More details are found in [Holmberg, 2007a].

Another possibility is to apply Lagrangean relaxation to all constraint groups except the
first three, 6.1, 6.2 and 6.3. This yields a subproblem of the same type as P1r. The details
are very similar to those discussed earlier.

6 Conclusions

We have constructed mathematical models for finding the routing through symmetrical
Clos networks, for three stages, five stages and so on up to any number of stages. We give
models for simultaneous routing of connections, and for routing of additional connections,
with the objective of doing minimal rearrangement of the previously routed connections.
The models can be used to analyze the problem, and to discuss both exact and heuristic
solution methods. We mention the possibility of using a primal heuristic together with a dual
Lagrangean relaxation scheme for finding bounds on the optimal number of rearrangements.

References

Balas, E., and Padberg, M. (1972), On the set-covering problem. Operations Research 20,
1152–1161.

Beneš, V. (1965), Mathematical Theory of Connecting Networks and Telephone Traffic, Aca-
demic press.

Berge, C. (1973), Graphs and Hypergraphs, North-Holland, Amsterdam.

Carpinelli, J. D., and Oruç, A. Y. (1993), A nonbacktracking matrix decomposition al-
gorithm for routing on Clos networks. IEEE Transactions on Communications 41,
1245–1251.

Clos, C. (1953), A study of nonblocking switching networks. Bell Syst. Tech. J. 32, 406–424.

Cole, R., and Hopcroft, J. (1982), On edge coloring bipartite graphs. SIAM Journal on

Computing 11, 540–546.

Cole, R., Ost, K., and Schirra, S. (2001), Edge-coloring bipartite multigraphs in O(E log D)
time. Combinatorica 21, 5–12.

Franaszek, P. A., Georgiou, C. J., and Li, C.-S. (1995), Adaptive routing in Clos networks.
in: Proceedings of the International Conference on Computer Design, 266–270.

Garey, M. R., and Johnson, D. S. (1979), Computers and Intractbility: A Guide to the

Theory of NP-Completeness, W. H. Freeman and Company, New York.

23

Gordon, J., and Srikanthan, S. (1990), Novel algorithm for Clos-type networks. Electronics

Letters 26, 1772–1774.

Held, M., Wolfe, P., and Crowder, H. P. (1974), Validation of subgradient optimization.
Mathematical Programming 6, 62–88.

Holmberg, K. (2007a), Optimization models for switching networks of Clos type with
many stages. Research report LiTH-MAT-R-2007-11, Department of Mathematics,
Linköping Institute of Technology, Sweden.

Holmberg, K. (2007b), Graph optimization approaches for minimal rerouting in symmetric
three stage Clos networks. Research report LiTH-MAT-R-2007-12, Department of
Mathematics, Linköping Institute of Technology, Sweden.

Hwang, F. K. (1983), Control algoritmhs for rearrangeable Clos networks. IEEE Transac-

tions on Communications 31, 952–954.

Hwang, F. K. (1997), A modification to a decomposition algorithm of Gordon and Srikan-
than. IEEE Transactions on Computers 46, 958–960.

Jajszczyk, A. (1985), A simple algorithm for the control of rearrangeable switching networks.
IEEE Transactions on Communications COM-33, 169–171.

Lee, H. Y., Hwang, F. K., and Carpinelli, J. D. (1996), A new decomposition algorithm for
rearrangeable Clos interconnection networks. IEEE Transactions on Communications

44, 1572–1578.

Poljak, B. T. (1967), A general method of solving extremum problems. Soviet Mathematics

Doklady 8, 593–597.

Poljak, B. T. (1969), Minimization of unsmooth functionals. USSR Computational Mathe-

matics and Mathematical Physics 9, 14–29.

Schrijver, A. (1999), Bipartite edge-coloring in O(∆m) time. SIAM Journal on Computing

28, 841–846.

24

