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(ABSTRACT)

In this thesis, we present variants of Shor and Zhurbenko’s r-algorithm, motivated by the

memoryless and limited memory updates for differentiable quasi-Newton methods. This well

known r-algorithm, which employs a space dilation strategy in the direction of the difference

between two successive subgradients, is recognized as being one of the most effective procedures

for solving nondifferentiable optimization problems. However, the method needs to store the

space dilation matrix and update it at every iteration, resulting in a substantial computational

burden for large-sized problems. To circumvent this difficulty, we first develop a memoryless

update scheme. In the space transformation sense, the new update scheme can be viewed as a

combination of space dilation and reduction operations. We prove convergence of this new

algorithm, and demonstrate how it can be used in conjunction with a variable target value method

that allows a practical, convergent implementation of the method.  For performance comparisons

we examine other memoryless and limited memory variants, and also prove a modification of a

related algorithm due to Polyak that employs a projection on a pair of Kelley’s cutting planes.

These variants are tested along with Shor’s r-algorithm on a set of standard test problems from

the literature as well as on randomly generated dual transportation and assignment problems. Our

computational experiments reveal that the proposed memoryless space dilation and reduction

algorithm (VT-MSDR) and the proposed modification of the Polyak-Kelly cutting plane method
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(VT-PKC) provide an overall competitive performance relative to the other methods tested with

respect to solution quality and computational effort. The r-Algorithm becomes increasingly more

expensive with an increase in problem size, while not providing any gain in solution quality. The

fixed dilation (with no reduction) strategy (VT-MSD) provides a comparable, though second-

choice, alternative to VT-MSDR. Employing a two-step limited memory extension over VT-

MSD sometimes helps in improving the solution quality, although it adds to computational

effort, and is not as robust a procedure.
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Chapter 1  

Introduction  

Consider the nondifferentiable optimization (NDO) problem of minimizing a convex,

though not necessarily differentiable, function f over En. (The case of x being restricted to lie in

some convex subset X of En is treated subsequently.) This problem has received a great deal of

attention over the past three decades, and several new methods have been proposed. Since

nondifferentiability causes serious difficulties when the classical methods designed for

differentiable problems are used, most algorithms for NDO use subgradients in some modified,

related fashion for finding a direction of motion, and usually prescribe in closed-form a suitable

step-size to take along this direction.

Depending on the particular strategy used for finding the direction of motion, algorithms

for NDO can be categorized as follows. The pure subgradient algorithm, which is an analogue of

the steepest descent method for differentiable problems, uses an anti-subgradient as the direction

of motion. On the other hand, deflected subgradient algorithms, also called conjugate

subgradient algorithms, imitate conjugate gradient methods. As with the steepest descent

direction for the differentiable case, the anti-subgradient direction for the nondifferentiable case

can result in a zigzagging phenomenon that might manifest itself at any stage of the subgradient

algorithm, causing the procedure to crawl toward optimality. As a tool to overcome this
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difficulty, a conjugate subgradient concept has been introduced in which the direction of motion

is computed by combining the current anti-subgradient with the previous direction. Note that

while some conjugacy requirement (see [6] and [12]) is enforced for the differentiable case, for

the nondifferentiable case, this concept is used only as a strategy to deflect the anti-subgradient.

The Modified Gradient Technique (MGT) of Camerini et al. [3] and the Average Direction

Strategy (ADS) of Sherali and Ulular [38] are two well-known and extensively tested deflection

strategies (see also Lemarechal [22], and Wolfe [46]).

As an alternate approach for NDO, bundle type methods have been proposed by Mifflin

[28] and Lemarechal [23] in which the direction of motion is obtained via the convex hull of a set

of previously generated subgradients, known as (subgradient) bundles. Unlike the choice of the

step-length in subgradient based algorithms, these bundle methods involve an inexact line search

that produces either an improved solution (serious step) or a trial solution that is rejected (null

step). In either case, a new subgradient is computed and added to the existing bundle to find a

modified direction of motion. Lemarechal [24] presents the concepts of this approach.  Kiwiel

[18, 19] and Lemarechal [26] introduce several different strategies to construct such bundles.

Also, Kiwiel [20, 21] presents improved strategies for such methods under the title of proximal

bundle methods. A major difference between bundle and ordinary subgradient methods is that,

unlike the latter, the bundle type methods generate a sequence of iterates for which the objective

function values are monotone decreasing. For this reason, the bundle type methods are classified

as “descent methods.” However, one difficulty of the bundle methods is that they require the

solution of a quadratic subproblem at each iteration for finding the direction of motion, and this

can become quite expensive, particularly for larger sized problems.
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In contrast with the foregoing methods, variable metric methods have different algorithmic

and theoretical characteristics.  For the differentiable case, we can obtain a deflected gradient by

using a transformed metric based on the Hessian (or its approximation). Similarly, for NDO, a

subgradient can be deflected by premultiplying it with a suitable matrix. Shor [40, 41] presents a

space dilation (or “dilatation” ) procedure that employs an analogous space transformation along

the gradient direction. Goffin [9] presents convergence results for several different choices of

transformation parameters. Of noteworthy value due to its computational performance, Shor and

Zhurbenko [44] and Shor and Shabashova [43] propose the r-algorithm, which is a space dilation

algorithm that dilates the space along the difference of two successive subgradients. Assuming

that the selected anti-subgradient is almost perpendicular to the direction toward optimality, this

r-algorithm is designed to reduce the orthogonal component of the subgradient with respect to

the optimal direction, with the intent of alleviating the zigzagging phenomenon. In practice, the

computational performance appears good, but the method is expensive because of the matrix

storage and updating requirements. Moreover, its theory is complicated, and it loses the

simplicity of subgradient based algorithms that have made the latter so popular.

To overcome these disadvantages, we propose the idea of adopting memoryless updates as

in quasi-Newton methods (see [29]). This can be done by computing the space transformation

operator at each iteration by updating the identity matrix instead of updating the previous

approximation. Naturally, no matrix storage is required.  Moreover, in this case, with a proper

choice of parameters that admits convergence, we show that the memoryless update turns out to

be a convex combination of two successive subgradients, leading to a combination of space

dilation and space reduction operations.
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 From the viewpoint of computational interest, we also study three other variants of this

scheme. In the first variant we adopt a simple fixed dilation strategy (as opposed to varying

degrees of dilation or reduction) in the context of memoryless updates. In the second variant, we

study a two-step limited memory update strategy. The third variant is motivated by the work of

Polyak [32] where a projection onto a pair of Kelley’s cutting planes, based on the current and

the previous iterations, is adopted. This projection is shown by Polyak [32] to yield a direction

that combines the subgradients generated at the present and the previous iterations in a specific

manner. (Kim, Koh, and Ahn [15] propose a similar scheme in which a single projection is

adopted onto a Kelley cutting plane that is generated based on previous iterates.) Since Polyak

assumes a known optimal solution value, we embed this scheme in a variable target value

method [36] where the target value replaces the (unknown) optimal solution value, leading to an

implementable modification of Polyak’s method.

The main purpose of this thesis is to present a theoretically convergent memoryless variant

of Shor and Zhurbenko’s r-algorithm, and from the viewpoint of computational interest, to test

this against the r-algorithm along with other related memoryless and limited memory strategies

that combine two successive subgradients in determining directions. The remainder of this thesis

is organized as follows. In Chapter 2, pertinent background material is presented. In Chapter 3

the proposed memoryless and limited memory update schemes are presented, along with a

modification of the Polyak-Kelly algorithm. Strategies for selecting values for the space

transformation parameter based on relationships with deflected subgradient methods are

presented, and related convergence properties are established. These properties enable us to

imbed this update scheme within a variable target value method [36] that guarantees overall

convergence without any a priori information on the optimal objective function value. The
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different aforementioned memoryless and limited memory variants that are tested herein,

including Polyak’s [32] scheme that leads to a direction that combines two successive

subgradients, are briefly outlined in Chapter 4. Computational results and comparisons are

presented in Chapter 5 using a set of standard test problems from the literature, as well as some

randomly generated dual transportation and assignment problems. Finally, Chapter 6 summarizes

the results and concludes the thesis.
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Chapter 2  

Literature Review  

A general literature review is given for the subject matter pertinent to our research.

2.1 Newton’s Method and Variants  

The following section briefly describes Newton’s Algorithm and some of its variants.

2.1.1 Newton’s Method  

The multidimensional Newton’s method for minimizing a function deflects the steepest

descent direction by premultiplying it by the inverse of the Hessian matrix. This method is

motivated by finding a suitable direction for the quadratic approximation to the function rather

than using a linear approximation to the function, as in the steepest descent method. To motivate

the procedure, consider the following approximation q at a given point xk:

q x f x f x x x x x H x x xk k
t

k k
t

k k( ) ( ) ( ) ( ) ( ) ( )( )= + ∇ − + − −
1

2

where H(xk) is the Hessian matrix of f at xk. A necessary condition for a minimum of the quadratic

approximation q is that ∇q(x) = 0 , or ∇f(xk) + H(xk)(x - xk) = 0. Assuming that the inverse of

H(xk) exists, the successor point xk+1 is given by

xk+1 = xk - H(xk)
-1 ∇f(xk).
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The above equation gives the recursive form of the points generated by Newton’s method for the

multidimensional case. Assuming that ∇f( x ) = 0, that H( x ) is positive definite at a local

minimumx , and that f is continuously twice-differentiable, it follows that H(xk) is positive

definite at points close tox , and hence, the successor point xk+1 is well defined.

Theorem 2.1.1

Let f: En→ E1 be continuously twice differentiable. Consider Newton’s algorithm defined by

the map A(x) = x - H(x)-1∇f(x). Let x be such that ∇f( x ) and H( x )-1 exists. Let the starting point

x1 be sufficiently close tox so that this proximity implies that there exist k1,k2 > 0 with

k1 k2 = ||x1 - x || < 1 such that

1. ||H(x)-1|| ≤ k1

      and by the Taylor series expansion of ∇f,

2. ||∇f( x ) - ∇f(x) - H(x)( x -x)|| ≤ k2 ||x -x||2

for each x satisfying || x - x || ≤ || x1 - x ||. Then, the algorithm converges sublinearly tox with, at

least, an order-two convergence.

Proof: See Bazaraa, Sherali, and Shetty [2].

However, calculating the exact Hessian can be computationally intensive. To cut down on

calculations, initially Davidon, then later Fletcher and Powell [7] proposed a method, where

search directions are of the form dj = -Dj∇f(y), instead of -H-1(y)∇f(y), as in Newton’s method.

The Davidon-Fletcher-Powell (DFP) method belongs to the general class of quasi-Newton

methods.
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2.1.2 quasi-Newton Methods  

This method was originally proposed by Davidon and later developed by Fletcher and Powell

[7]. The Davidon-Fletcher-Powell (DFP) falls under the general class of quasi-Newton

procedures, where the search directions are of the form dj = -Dj∇f(y), in lieu of -H-1(y)∇f(y), as in

Newton’s method. The gradient direction is thus deflected by premultiplying it by -Dj, where Dj

is an n x n positive definite symmetric matrix. The positive definiteness property ensures that dj

is a descent direction whenever ∇f(y) ≠ 0, since then t
jd ∇f(y) < 0. For the purpose of the next

step, Dj+1 is formed by adding to Dj two symmetric matrices, each of rank one. For quadratic

functions, this update scheme is shown later to produce the exact representation of the actual

inverse Hessian within n steps.

Theorem 2.1.2

Let H be an n x n symmetric positive definite matrix, and consider the problem to

minimize f(x) = ctx + ½ xtHx subject to x ∈ En. Suppose that the problem is solved by the DFP

method, starting with an initial point y1 and a symmetric positive definite matrix D1. In particular,

for j = 1,  . . . , n, let λj be an optimal solution to the problem to minimize f(yj + λdj) subject to λ ≥

0, and let yj+1 = yj + λjdj, where dj = -Dj∇f(yj) and Dj is determined by (2.1.1), (2.1.2), and (2.1.3).

If ∇f(yj) ≠ 0 for each j then the directions d1, . . ., dn are H-conjugate and Dn+1 = H-1. Furthermore,

yn+1 is an optimal solution to the problem.

Proof: The proof of this theorem, given in [2], is based on showing that for any j with 1 ≤ j ≤ n,

we must have the following conditions:

1. d1, . . ., dj are linearly independent.
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2. di
t Hdk = 0 for i ≠ k; i,k ≤ j.

3. Dj+1Hpk = pk, or equivalently, Dj+1Hdk = dk for 1 ≤ k  ≤ j, where pk = λkdk.

Summary of the DFP Method

     We now summarize the DFP method for minimizing a differential multi-variable function.

Initialization Step

Let ε > 0 be a termination tolerance. Choose an initial point x1 and an initial symmetric

positive definite matrix D1. Let y1 = x1, let k = j = 1, and go to the Main Step.

Main Step

1.  If ||∇f(yj) || < ε, stop; otherwise, let dj = -Dj∇f(yj) and let λj be an optimal solution to the

problem to minimize f(yj + λ dj) subject to λ ≥ 0. Let yj+1 = yj + λjdj. If j < n, go to Step 2. If j = n,

let y1 = xk+1 = yn+1, replace k by k+1, let j = 1, and repeat Step 1.

2.  Construct Dj+1 as follows:

D D
p p

p q

D q q D

q D qj j

j j
t

j
t

j

j j j
t

j

j
t

j j
+ = + −1                                                                                   (2.1.1)

where

pj = λjdj ≡ yj+1 - yj                                                                                                           (2.1.2)

qj =∇f(yj+1)-∇f(yj)                                                                                                          (2.1.3)

replace j by j +1, and repeat the Main Step.

The inner loop of the foregoing algorithm resets the procedure every n steps (whenever
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 j = n at Step 1). Any variant that resets every n′ < n inner iteration steps is called a partial

quasi-Newton method. This strategy can be useful from the viewpoint of conserving storage

when n′ << n, since then the inverse Hessian approximation can be stored implicitly by instead

storing only the generating vectors pj and qj themselves within the inner loop iterations.

At each step of the DFP method we have seen that, given some approximation Dj to the

inverse Hessian matrix, we computed the search direction dj ≡ -Dj∇f(yj) by deflecting the

negative gradient of f at the current solution yj, using this approximation Dj in the spirit of

Newton’s method. We then performed a line search along this direction and, based on the

resulting solution yj+1 and the gradient ∇f(yj+1) at this point, we obtained an updated

approximation Dj+1 according to (2.1.1), (2.1.2) and (2.1.3). As seen in Theorem 2.1.2, if f is a

quadratic function given byf x c x x Hxt t( ) ( )= +
1

2
, x ∈ En, where H is symmetric and positive

definite; and if ∇f(yj) ≠ 0, j = 1, . . . , n, then we indeed obtain Dn+1 = H-1. In fact, observe from

parts 1 and 3 of Theorem 2.1.2 that, for each j ∈ {1, . . ., n}, the vectors p1, . . . , pj are linearly

independent eigenvectors of Dj+1H with eigenvalues equal to 1. Hence at each step of the method,

the revised approximation accumulates one additional linearly independent eigenvector, with a

unit eigenvalue for the product Dj+1H until Dn+1H finally has its n eigenvalues equal to 1, giving

Dn+1HP = P, where P is the nonsingular matrix of eigenvectors of Dn+1H. Hence,

Dn+1H = I, or Dn+1 = H-1.

Based on this observation, let us derive the update scheme for the DFP method and other

prominent quasi-Newton methods. Toward this end suppose that we have some symmetric,

positive definite approximation Dj of the inverse Hessian matrix for which p1, . . . , pj-1 are the

eigenvectors of DjH with unit eigenvalues . (For j = 1 no such vectors exist.) Adopting the
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inductive scheme of the theorem, assume that these eigenvectors are linearly independent and are

H-conjugate. Now, given the current point yj, we conduct a line search along the direction

dj = -Dj∇f(yj)   to obtain the new point yj+1 and, accordingly, we define

pj  = yj+1 - yj and

qj = ∇f(yj+1)- ∇f(yj) ≡ H( yj+1 - yj ) = Hpj.                                                                     (2.1.4)

Following the argument in the proof of Theorem 2.1.2, the vectors pk ≡ λkdk, k = 1, . . ., j, are

easily shown to be linearly independent and H-conjugate. We now want to construct a matrix

Dj+1 = Dj + Cj

where Cj is some symmetric correction matrix that ensures that p1, . . ., pj are eigenvectors of

Dj+1H with unit eigenvalues. Hence, we want Dj+1Hpk = pk or, from (2.1.4) that Dj+1 = qk = pk for

k = 1, . . . , j. For 1 ≤ k < j, this translates to requiring

pk = Djqk + Cjqk = DjHpk + Cjqk = pk + Cjqk, or that

Cjqk = 0 for k = 1, . . . , j-1.                                                                                          (2.1.5)

For k ≡ j, the aforementioned condition

Dj+1qj = pj                                                                                                                     (2.1.6)

is called the quasi-Newton condition. This condition translates to the requirement that

Cjqj = pj + Djqj                                                                                                             (2.1.7)

Now, if Cj had a symmetric rank-one term pj pj

t/ pj

t qj, then Cjqj operating on this term would

yield pj, as required in (2.1.7). Similarly, if Cj had a symmetric rank-one term 
− ( )( )

( )

D q D q

D q q
j j j j

t

j j
t

j

,

then Cjqj operating on this term would yield -Djqj, as required in (2.1.7). This therefore leads to

the rank-two DFP update (2.1.1) via the correction term
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C
p p

p q

D q q D

q D q
Cj

j j
t

j
t

j

j j j
t

j

j
t

j j
j
DFP= − ≡

 

                                                                                 (2.1.8)

which satisfies the quasi-Newton condition (2.1.6) via (2.1.7). Moreover (2.1.5) also holds since,

for any k ∈ {1, . . . , j-1}, we have from (2.1.4) and (2.1.8) that

C q C Hp
p p Hp

p q

D q p HD Hp

q D qj k j k

j j
t

k

j
t

j

j j j
t

j k

j
t

j j

= = − = 0

since p Hpj
t

k = 0 in the first term and p HD Hp p Hpj
t

j k j
t

k= = 0
 
in the second term as well.

Hence, following this sequence of corrections, we shall ultimately obtain Dn+1H = I or Dn+1 = H-1.

To further illustrate this convergence property, take the following example.

Consider the problem:

Minimize: − + + +12 4 4 42 1
2

2
2

1 2x x x x x

Note that the Hessian matrix H is given by

H = 
8

4−



   

−4

8
 
  

We generate two conjugate directions, d1 and d2. Suppose we choose d t
1 = (1,0). Then,

d t
2  = (a, b) must satisfy 0 = d t

1 Hd2 = 8a -4b. In particular, we may choose a = 1 and b = 2 so that

d t
2  = (1, 2). It may be noted that the conjugate directions are not unique.

If we minimize the objective function f starting from xt
1  = ( −

1

2
, 1) along the direction d1,

we get the point x t
2 = (

1

2
, 1). Now, starting from x2 and minimizing along d2, we get x t

3 = (1, 2).

Note that x3 is the minimizing point.
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Therefore starting from any point if we minimize in directions d1 and d2, we reach the

optimal point in, at most, two steps.

2.1.3 Memoryless quasi-Newton Methods  

Suppose that at each iteration, instead of using the previous Hessian approximation to

calculate the current Hessian approximation, an identity matrix is used. Therefore, we are

“forgetting” the previous Hessian approximation, hence the name memoryless quasi-Newton

method. This method is related to the conjugate gradient methods as discussed in Bazaraa et al.

[2], and have the same n-step convergence property of quasi-Newton methods foe minimizing

quadratic functions. The storage requirements are similar to conjugate gradient methods, and

inexact line searches can be performed. Also the loss of positive definiteness of Hessian

approximations in the quasi-Newton method are no longer of concern.

2.1.4 Subgradient Algorithm  

The above discussion holds true only for differentiable problems. However, we now describe

an algorithm which develops a direction finding procedure in the absence of differentiability. It is

called the subgradient algorithm.

Consider the problem P defined as

P:  Minimize  { f(x): x ∈ X}                                                                                                      (2.1.9)

where f: En→ E1 is a convex but not necessarily differentiable function, and where X is a

nonempty, closed, convex subset of En. We assume that an optimal solution exists as would be,

for example, if X is bounded, or if f(x) → ∞ whenever ||x|| → ∞.
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For Problem P, we now describe a subgradient optimization algorithm that can be viewed as

a direct generalization of the steepest descent algorithm in which the negative gradient direction

is substituted by the negative subgradient-based direction. However the latter direction need not

necessarily be a descent direction, although it does result in the new iterate being closer to an

optimum solution for a sufficiently small step size. Because of this reason we do not perform a

line search along the negative subgradient direction, but rather prescribe a step size at each

iteration that guarantees that the sequence generated will eventually converge to an optimum

solution. Also, given an iterate xk ∈ X and adopting a step size λk along the direction

dk = -ξk / ||ξk||, where ξk belongs to the subdifferential ∂f(xk) of f at xk (ξk ≠ 0, say), the resulting

point xk +1  = xk + λkdk need not belong to X. Consequently the new iterate xk+1 is obtained by

projecting xk +1 onto X, that is, finding the (unique) closest point in X to xk +1 .

We denote this operation as xk+1 = PX( xk +1 ), where

PX( xk +1 ) ≡ argmin {||x- xk +1 ||: x ∈ X}.

Summary of a Subgradient Algorithm

Initialization Step

Select a starting solution x1 ∈ X, let the current upper bound on the optimal objective value

be UB1 = f(x1), and let the current incumbent solution be x* = x1. Put k = 1, and go to the main

step.

Main Step

Given xk, find the subgradient ξk ∈∂f(xk), of f at xk. If ξk = 0, then stop; xk (or x*) solves

Problem P. Otherwise, let dk = -ξk / ||ξ||, select a step size λk > 0, and compute xk+1 = PX( xk +1 ),
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where xk +1 = xk +  λkdk. If f(xk+1) < Ubk, put Ubk+1 = f(xk+1) and x* = xk+1. Otherwise, let

Ubk+1 ≡Ubk. Increment k by 1 and repeat the Main Step.

Note that the stopping criteria ξk = 0 may never be realized. Even if there exists an interior

point optimum and we do find a solution xk for which 0∈ ∂f(xk), this sufficient condition for

optimality may not be realized because of the arbitrarily selected subgradient ξk generated by the

algorithm. Hence, a practical stopping criterion based on a maximum limit on the number of

iterations performed is almost invariably used.

Note that the directional derivative of f at x in the direction d is given by

f x d
f x td f x

tt
’( ; ) lim

( ) ( )
=

+ −
→0

for any x, d ∈ En. This can be shown to yield

f(x;d) = sup{d.ξ: ξ∈∂f(x)}.

A necessary and sufficient condition that x minimizes f is that f′(x; d) ≥ 0 for all d, or

equivalently that 0 ∈ ∂f(x).

It is certainly possible to use ∂f to define a direction of steepest ascent for any point which

does not solve the problem, and develop a close analogue of the method of steepest ascent for our

problem. We take the view that finding the entire set of ∂f(x) in order to get a locally “best”

direction is too heavy a computational requirement for the problems of interest to us, and we

suppose that, for any x, we obtain only a unique element ξ of ∂f(x) and use this as noted above.

Another respect in which this algorithm differs from the usual steepest ascent prescription is

in making no effort to minimize f in the chosen direction. First, because that would entail a heavy

computational burden; secondly, because the method of choice of direction hardly makes that
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advisable. Indeed, the direction might not even be a descent direction. Our choice of step length

depends only very modestly on the behavior of the function.

2.1.5 Step Length Selection Strategies  

The following result prescribes a step size selection scheme that will guarantee convergence

to an optimum.

Theorem 2.1.3

Let Problem P be as defined in (2.1.9) and assume that an optimum exists. Consider the

foregoing subgradient optimization algorithm to solve Problem P, and suppose that the

prescribed nonnegative step size sequence {λk} satisfies the conditions {λk}→ 0+ and

λkk =

∞∑ = ∞
0

. Then, either the algorithm terminates finitely with an optimal solution, or else an

infinite sequence is generated such that

{UBk}→f* ≡ min {f(x): x ∈ X}

Proof: See Bazaraa, Sherali, and Shetty [2].

Theorem 2.1.3 guarantees that, so long as the step sizes λk satisfy the stated conditions,

convergence to an optimal solution will be obtained. Although this is theoretically true, it is far

from realized in practice. For example, choosing λk = 1/k according to the divergent harmonic

series ( 1
1

/ k
k =

∞∑ = ∞ ), the algorithm can easily stall and be remote from optimality after

thousands of iterations.  A careful fine tuning of the choice of step sizes is usually required to

obtain a satisfactory algorithmic performance.
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Now, an ideal step size to adopt might be that which brings us closest to x*. This step

size λk
*  can be found by requiring that the vector (xk + λk

* dk) - x* be orthogonal to dk, or that   

dk
t [xk + λk

* dk - x*] = 0 . This gives

λk
* = ( x* - xk )

tdk =
( *)

|| ||

x xk
t

k

k

− ξ
ξ

.                                                                             (2.1.10)

The problem with trying to implement the step sizeλk
* is that x* is unknown. However, by the

convexity of f, we have f* = f(x*) ≥ f(xk) + (x* - xk)
tξk; and, hence, from (2.1.10), we have that

λk
* ≥ [f(xk) - f*] / ||ξk||. Since f* is also usually unknown, we can recommend using an

underestimate f in lieu of f*, noting that the foregoing relationship is a “greater than or equal to”

type of inequality. This leads to a choice of step size

λ
β

ξk
k k

k

f x f
=

−( ( ) ]

|| ||
                                                                                                 (2.1.11)

where βk > 0. In fact, by selecting ε1 < βk ≤ 2 - ε2 for all k, for some positive ε1 and ε2, and using

f*, itself, instead of f in (2.1.11), it can be shown (see [2]) that the generated sequence {xk}

converges to an optimum x*.

2.2 Variable Target Value Method  

Sherali, Choi and Tuncbilek [36] introduced a variable target value method, which assumes

no a priori knowledge regarding bounds on the optimum value. This algorithm can be used in

conjunction with pure or deflected subgradient strategies, and provides a great deal of flexibility

by imposing only mild restrictions on the deflection parameter. The algorithm accepts any
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subgradient deflection strategy as long as the deflection parameters Ψk ≥ 0 are chosen such that

|| dk || < M for all k, for some sufficiently large number M.

Summary of the Variable Target Value Method (VTVM)

Notation:

counters: l ≡ outer loop iteration counter, τ = current loop iteration counter, k ≡ total inner loop

iteration counter, and γ ≡ counter of ongoing consecutive nonimprovements.

For any iteration k: xk = iterate, fk = f(xk), gk = subgradient of at xk, dk = direction, λk = step-length,

and zk = incumbent solution value. Also, ∆ = accumulated improvements within the current set of

inner loop iterations.

For any outer loop l:  wl = target value, and εl = acceptance tolerance for declaring that the

current incumbent value is close enough to the target value wl.

Optimum: x* ∈ argmin {f(x): x ∈ X}, and f* ≡ f(x*).

Fixed Parameters for the Algorithm

β ∈ (0,1) = step-length parameter = 0.95.

σ ∈ (0, 1/3) = acceptance interval parameter = 0.15.

τ  = maximum allowable iterations in the inner loop without coming within the acceptance

tolerance of the target value = 75.

γ  = maximum consecutive nonimprovements permitted within the inner loop (initialized at 20,

and incremented by 10 each time this limit is reached, up to value of 50).

η ∈ (0,1) = fraction of cumulative inner loop improvement that is used to decrease the target

value = 0.75.
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Detailed Steps of the Algorithm (VTVM)

Initialization. Select termination parameters ε0 > 0 for the tolerance on the subgradient norms,

ε > 0 for the overall convergence tolerance and kmax ≤  ∞ for the limit on the maximum number of

iterations. (In our runs, we have used ε0  = 10-6, ε = 0.1, and kmax = 2,000. Other parameters used in

the algorithm are as defined above.)

Select a starting solution x1 ∈ X, compute f1 ≡ f ( x1) and let d1 = -g1. If  ||g1|| < ε0, then stop

with x1 as near as optimal solution. Otherwise, set x* = x1 and g*= g1, and record z1 = f1 as the best

known objective function value. Initialize the target value w1 = max{ LB, f1 - || g1||
2 / 2} and the

acceptance tolerance ε1 = σ(f1 - w1), where LB is any known lower bound on f*, being taken as -∞

if no such lower bound is available. (Note that any reasonable value < f1 would suffice for the

second term in the maximand for w1. The stated value corresponds to the minimum value if f is

quadratic with an identity Hessian.)

Step 1 (Inner Loop Main Iteration). If k > kmax, stop. Else, determine dk = -gk +Ψkdk-1 , where

Ψk ≥ 0 is selected via any suitable strategy so long as || dk || < M for all k , for some sufficiently

large number M, and where d0 ≡ 0. If ||dk|| < ε0, then set dk = - gk. Also, compute the step-length

       λ βk
k l

k

f w

d
=

−
|| ||2

.

Find the new iterative xk+1 = PX [ xk + λkdk], where PX[ . ] denotes the projection operation onto X,

and determine fk+1 and gk+1. If ||gk+1|| < ε0, terminate the algorithm with xk+1 as a (near) optimal

solution. Otherwise, increment τ by 1. If fk+1 < zk, update ∆ ← ∆ + (zk - fk+1), and go to Step 2(a).

Otherwise, go to Step 2(b).
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Step 2(a) (Improvement in the inner Loop). Put γ = 0, zk+1 = fk+1 , and update x* = xk+1 and

g* = gk+1 . If zk+1 ≤ wl + εl , then go to Step 3(a). Otherwise, if τ ≥ τ, go to Step 3(b), or else,

increment k by one, and return to Step 1.

Step 2(b) (Nonimprovement in the Inner Loop). Put zk+1 = zk, and increment γ by one. If γ ≥ γ

or τ ≥ τ , go to Step 3(b). Otherwise, increment k by one, and return to Step 1.

Step 3(a) (Outer Loop Success Iteration : zk+1 ≤ wl + εl ). Compute

       wl+1 = zk+1 - εl  - η∆  and εl+1 = max{(zk+1 - wl+1 )σ, ε}.

Step 3(b) (Outer Loop Failure Iteration: zk+1 > wl + εl ). Compute

       wl+1  = 
( )z wk l l+ + +1

2
ε

 and εl+1 = max {(zk+1 - wl+1)σ, ε}.

If  γ ≥γ , adjust γ  as recommended above. If wl+1 - wl ≤ 0.1, then replace β by

max{β /2, 10-6}. Put γ = 0, τ = 0, ∆ = 0, increment l and k by one, and return to Step 1.

 From a practical efficiency point of view, to ensure adequate step-lengths during

improving phases of the algorithm, we can replace the target value update in Step 3(a) by

wl+1 = zl+1 - max{εl + η∆, r|zk+1|}, where 0 < r < 1, and where r is divided by some r >1 whenever

wl+1 is determined by the second term in this maximand. (We used r = 0.08 and r = 1.08 in our

computations.)

A restarting technique is often an important computational ingredient of subgradient

procedures (see [2], [11], and [38]). In the same spirit, for VTVM, whenever the target needs to

be increased at Step 3(b) due to γ  consecutive failures, we restart the algorithm by setting
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xk = x*,  fk = zk , and gk = g*  at the end of Step 3, and then at the next visit to Step 1, we adopt

dk = -gk.

Another consideration is concerned with the stopping criterion that is employed. Note that as

stated, the algorithm is terminated whenever the iteration count exceeds kmax  or when the norm of

the current subgradient becomes sufficiently small. Additionally, we can terminate the algorithm

based on its progress in improving the incumbent value. For example, we can terminate the

algorithm whenever after k > 500 and the algorithm has executed Step 3(a) (outer loop success

iteration) at least once, we obtain that the average of the relative improvement ∆/(zk+1 - wl) over

four consecutive visits of Step 3(b) is less than or equal to 0.05.

2.3 Polyak and Kelley’s Methods

The theoretical basis of the Polyak and Kelley Cut methods is given in this section. In

Section 2.3.1 Polyak’s Algorithm and Kim and Um’s version of Polyak’s Algorithm are

presented. In Section 2.3.2 Kelley’s Cut Method is described and in Section 2.3.3 a Polyak’s

2-Kelley Cut algorithm is discussed.

2.3.1 Polyak’s Algorithm  

In [32] Polyak establishes the convergence of two gradient based minimization methods as

follows.

Consider the minimization of a functional f(x) in a set Q of Hilbert space H. We shall

assume that f(x) has a support functional at every point (we recall that a linear functional c is a

support of f(x) at x if f(x+ y) ≥ f(x) + cty for all y). Call this support functional f′(x). Also, the set
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Q is assumed to be “simple” in the sense that the projection PQ(x) onto it can be found easily. We

minimize f(x) by an iterative method in which starting with some x0, we construct a sequence of

{ xn} in accordance with the relation

        xn+1 = PQ(xn - αnf′(xn))                                                                                      (2.3.1)

for some suitable step size αn.

If Q = H (i.e. the problem has no constraints) while f(x) is differentiable (so that f′(x) is

unique and is the same as the gradient of f(x)), (2.3.1) amounts to an ordinary gradient method

and its convergence has been proved in several papers (see [2]). The following step length

selection method, allows fairly fast convergence if we know the minimum value f* of the

functional.

α λn n
n

n

f x f

f x
=

−
′

( ) *

|| ( )||2
,      0 1 2 2< ≤ ≤ −λ εn ,       ε2 > 0.                                                  (2.3.2)

In [32] Polyak provides the necessary theorems (Theorems 2.3.1 to 2.3.6) and discussion.

Theorem 2.3.1

Let f(x) be convex and continuous, let Q be convex and closed, and let the minimum point

x* ∈ Q,  f(x*) = f* exist and ||f′(x)|| ≤ c on S = {x ∈ Q: ||x - x0|| ≤ ||x* - x0||}. Then, f(xn) → f* in the

method (2.3.1), (2.3.2), while xn is weakly convergent to some minimum point.

Proof: See Polyak [32].
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Theorem 2.3.2

Let Q = H and f(x) be a strongly convex, with constant m, differentiable functional, while

f′(x) satisfies a Lipschitz condition with constant M in S = {x: ||x - x0|| ≤ ||x* - x0||}. Then,

||xn - x*|| ≤ qn || x0- x* ||, and

q
m

M
= −







 <1 11 2

2

2

1 2

ε ε
/

.

Proof: See Polyak [32].

Hence, it follows from Theorem 2.3.2 that the method (2.3.1), (2.3.2) is convergent for

the smooth case at the rate of a geometric progression (when λn ≡ 1), q = (1-m2/M2)1/2, i.e. at

roughly the same rate as an ordinary gradient method.

Now consider the unsmooth case. We impose an extra condition on

f(x): f(x) – f* ≥ mρ (x, S), m > 0, for all x such that

|| x – PS(x0) || ≤ ρ (x0, S),                                                                                               (2.3.3)

where S = {x ∈ Q, f(x) = f*}. Here and below, ρ(x,S) denotes the distance from x to the set s, i.e.,

ρ(x, S) = || x – PS(x) || = inf
y S∈

|| x – y ||.

Theorem 2.3.3

Let f(x) satisfy (2.3.3), in addition to the conditions of Theorem 2.3.1. Then, the sequence

{ xn} in the method (2.3.1), (2.3.2) is convergent to a minimum point x* at the rate of a geometric

progression:
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           ||xn - x*|| ≤ Kqn,       q
m

M
= −







 <1 11 2

2

2

1 2

ε ε
/

.

Proof: See Polyak [32].

Now take a more general definition of the step length than (2.3.2):

α λn
n

n

n
f x f

f x
=

−
′

( )

|| ( )||2
,      0 1 2 2< ≤ ≤ −λ εn ,       ε2 > 0                                                  (2.3.4)

where f  is not necessarily the same as f*. This method is of interest in the case when we seek

the minimum of f(x) without knowing f*.

Theorem 2.3.4

Let the conditions of Theorem 2.3.1 be satisfied and let f  > f*. Then one of the following

two cases is possible in the method (2.3.1), (2.3.4): a) f(xn)< f  for some n, or b) f(xn) ≥ f  for all

n, f(xn) → f , at the rate of convergence of a geometric progression. If Q = H, λn ≤ 1, f(x0) ≥ f ,

only case b) is possible. If  Q = H, λn≡  1, f(x0) ≥ f , and f(x) is smooth (f′(x) satisfies a Lipschitz

condition), then xn is more rapidly convergent to x : ||xn - x || ≤ Kq(3/2)n, q < 1. Finally if f < f*,

there exists in the method (2.3.1), (2.3.4), with λn ≡ 1 and ε > 0 arbitrary, an n such that

f(xn) ≤ 2f* - f  + ε.

Proof: See Polyak [32].

We now describe a method that is at least as fast as (2.3.1), (2.3.2), and gives the exact

minimum for a piecewise linear functional.
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Again, consider minimization of f(x) on Q and assume that f* = inf
x Q∈

f(x) is known. We

construct as  follows a sequence of points xn and a sequence of sets Qn:

Qn = {x: f(xk) + (x-xk)
t f′(xk) ≤ f*, k ∈ In}, xn+1 = PQPQn(xn).                                      (2.3.5)

Theorem 2.3.5

Whatever the choice of In, method (2.3.5) is convergent, and we obtain the same bound as

for method (2.3.1), (2.3.2) with λn ≡ 1, via

|| *|| || *||
( ( ) *)

|| ( )||
x x x x

f x f

f xn n
n

n
+ − ≤ − −

−
′1

2
2

2 .

If Q = H, and f(x) is piecewise linear in a neighborhood close to its minimum, i.e. representable

as f x f x x c
i m

t
i( ) * max( *)= + −

≤ ≤1
, method (2.3.5) with In = {n - m + 1, n - m + 2, . . . , n} is

convergent after a finite number of steps.

Proof: See Polyak [32].

Now consider a set of convex inequalities fi(x) ≤ 0, i = 1, . . . , m, in finite dimensional

space En. As before we introduce f(x) = max
1≤ ≤i m

fi(x) and adopt the method (2.3.1), (2.3.2), which

here runs as

x x
f x

f x
f xn n n

i n

i n n
i n n+ = −

′
′1 2λ

( )

|| ( )||
( )

( )
( ) ,      f x f xi n n

i m
i n( ) ( ) max ( )=

≤ ≤1
.                          (2.3.6)
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Theorem 2.3.6

Let x* be the unique solution of the set of inequalities, for which the (n+1)th inequality

becomes an equality (for clarity, let  f1(x*) = . . . = fn+1(x*) = 0, fn+2(x*) < 0), . . . fm(x*) < 0). If any

n vectors f′1(x*), . . . , f′n+1(x*) are linearly independent, the sequence {xn} in method (2.3.6)

converges to x* at the rate of a geometric progression.

Proof: See Polyak [32].

We can now describe how method (2.3.1), (2.3.2) can be applied when f* is unknown.

We take an initial approximation for f*, say f , and perform the computations in accordance with

(2.3.1) and (2.3.4). If we get f(xn) < f , or if f(xn) → f , it follows from Theorem 2.3.4 that f > f*

and we have to reduce f . If f(xn) ≥ f + ε, ε > 0, for all n, then f must be increased. In the latter

case, we can see from Theorem 2.3.4 that 
1

2
( inf ( )f f x

n
n+ ) should be taken as the new value

of f .

Kim and Um [17] modified Polyak’s method [32] to improve its computational

efficiency. They did this by combining two consecutive projection operations in a single

projection operation. The resulting algorithm has a convergence property which is strictly

stronger than the original.

To understand this method, consider the problem of minimizing a convex, not necessarily

differentiable, function f: En ∈ E1

 on a closed convex set. The problem can be described as

follows:
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 f* =  minimize f(x)

subject to x∈ S,

where S is a closed convex set. We assume that this problem has a finite optimal solution.

For a convex function f, g is a subgradient of f at x if

 f(x′) ≥ f(x) + (x′ - x)tg   for all x′∈ En.

The subdifferential ∂f(x) is the set of subgradients of f at x. Since f is finite and convex, ∂f(x)

is nonempty for all x.

Let X ≠ ∅ be a closed convex subset of En. For each x ∈ En, define the projection of x on X,

denoted by PX(x), to be the unique point in X such that for all y ∈ X,

|| PX(x) - x || ≤ || y - x ||.

Let ρ be a given parameter which is called the target value, an estimation of f*. For given

xk ∈ S, gk ∈ ∂f(xk) and λk > 0, let

Hk
kλ = { x: f(xk) + (1/ λk) ( x - xk)

tgk ≤ ρ}.

For 0 < λk ≤ 1, Hk
kλ is a cut which does not eliminate any feasible solution with objective

value less than or equal to ρ. Then the subgradient method suggested by Polyak [32] can be

described as follows:

x P P xk S Hk k
k

+ =1 ( ( )),λ     0 2 21 2< ≤ ≤ − <ε λ εk .

When ρ ≥ f*, Polyak [32] established the following convergence property if f(xk) > ρ.

|| * || || * || ( )
( ( ) )

|| ||
x x x x

f x

gk k k k
k

k

− ≤ − − − −
+1

2 2
2

2
2λ λ ρ

,
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where x* is a point in S with f(x*) ≤ ρ. This relation guarantees that this algorithm finds xk with

f(x*) ≤ ρ for some finite k or {xk} converges to a point x* ∈ S with f(x*) ≤ ρ. When ρ < f*, the

convergence of this algorithm is not guaranteed, but it is possible to obtain a good sub-optimal

solution. A target value updating scheme in [37] is developed for strongly convex functions (i.e.,

for which f(λx1 + (1-λ)x2) ≤ λf(x1) + (1-λ) f(x2) - ε ∀ x1 ≠ x2, 0 < λ < 1, and some ε >0), such that

the algorithm finds the optimal value without any prior knowledge of f*.

Summary of Polyak’s Algorithm

Initial Step

Choose any x1 ∈ S and ε1 ∈ (0,1]. Let k = 1.

Main Step

If f(xk) ≤ ρ then terminate the algorithm with xk .

Otherwise choose gk ∈∂f(xk).

Let xk+1 = PS(xk - λk ∂f(xk)), 0< ε1 ≤ λk ≤ 1.

Let k = k+1 and repeat the Main Step.

2.3.2 Kelley’s Cut Method  

Let G(x) be a continuous convex function defined on the n-dimensional compact polyhedral

convex set S = {x: Ax ≥ b}, where A is an m x n matrix, x is an n x 1 column vector of variables

and b is a m x 1 column vector. We assume at every point t in S that there exists an extreme

support, y = p(x, t), to the graph of G(x) with the property that, for some finite constant K,
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 ||∇ p(x, t)|| ≤ K for all x∈ S. We will assume that the gradient vector is a row vector. Let cx be a

linear form, where c is an n x 1 row vector and || c || < ∞. Let R = {x: G(x) ≤ 0} be nonempty and

R ⊂ S.

We may state the convex programming problem formally as follows:

Find a vector τ such that f = cτ = min {cx: x ∈ R}.

Since R is compact, a minimum exists and is finite. Kelley suggested the following

algorithm for solving such a problem.

Theorem 2.3.7

Let G(x) be a continuous convex function defined on the n-dimensional compact convex set

S such that at every point t ∈ S there exists an extreme support y = p(x, t), to the graph of G(x)

with the property that, for some finite constant K,  point ||∇p(x; t) || ≤ K for all x ∈ S . Further, let

cx be a linear form such that || c || < ∞ and let R = {x: G(x) ≤ 0) ⊂ S, with R nonempty. If tk ∈ Sk is

such that

ctk = min {cx: x ∈ Sk}     (k = 0, 1, . . . )

where S0 = S and

Sk = Sk-1 ∩ {x: p(x; tk-1) ≤ 0},

then the sequence {tk} contains a subsequence that converges to a point τ, in R with cτ ≤ cx

for all x ∈ R.

Proof: see Kelley [13].
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2.3.3 Polyak’s 2-Kelley Cut Algorithm  

Recall form (2.3.5) that, In is a subset of indices taken from {0, 1, . . . , n}, containing n,

and that PQ, PQn are projection operators onto Q and Qn respectively. Notice that the method

(2.3.1), (2.3.2), with λn ≡ 1, is a particular case of (2.3.5) in which In = {n}, i.e., we take account

only of this last restriction. This follows since, the point x
f x f

f x
f xn

n

n
n−

−
′

′
( ) *

|| ( )||
( )2 is simply the

projection of xn on to the subspace {x: f(xn) + f′(xn)(x - xn) ≤ f*}. This method has a great deal in

common with [13], though it is not identical. The method (2.3.5) is convergent at the rate of a

geometric progression [32], whereas this is unproven for [13]. A variant of (2.3.5) which is

similar to using two Kelley cuts with known f*, and at the same time is more rapidly convergent

than method (2.3.1), (2.3.2) is obtained if we take In = {n-1, n}. In this case the projection on the

set Qn can be written explicitly

xn+1 = PQ(xn - αnf′(xn)-βnf′(xn-1)),

if    ( ) ( ( ) )
( ) *

|| ( )||
( ) ( ) *x f x x

f x f

f x
f x x fn n
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′ − ≤1 1 2 1 ,
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n

f x f

f x
=

−
′
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|| ( )||2
   and βn = 0,

otherwise,
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n n n

t
n n n

t
n n

n n n
t

n

f x f f x f x f x f x f f x x x

f x f x f x f x
=
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2 .
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2.4 Shor’s r-Algorithms  

Shor [40,41] introduced the space dilation operator which can be represented as

Rα (r) = I + (α − 1)rrt

for some parameter 0 < α < 1 and some dilation vector r that satisfies r tr = 1.  Note that

under the transformation x = Rα (r)y , we get

y = Rα (r )−1 x = I +
1

α
− 1

 
 

 
 rrt 

  
 
  x ,

so that the vector y is obtained by stretching the vector x along the direction r, depending on the

value of α .  The original algorithm uses the (sub)gradient as a dilation vector.  Subsequently, in

[43] and [44], a dilation scheme along the direction of the difference between two consecutive

subgradients has been proposed, and this is widely recognized as being among the most efficient

methods for nondifferentiable optimization problems.  In this procedure, at each iteration k, given

a subgradient gk, the previous subgradient gk-1, and the previous transformation operator Bk −1, a

new transformation operator Bk  is obtained via the following update scheme:

Bk = Bk−1Rα k
( ′ r k )   where ′ =

−
−

− −

− −
r

B g g

B g gk
k
t

k k

k
t

k k

1 1

1 1

( )

|| ( )||
 .

Using the space transformation x = Bk y , so that Bk
t gk  is a subgradient of F(y) ≡ f(Bky) under this

transformation, a step-length of λk along the anti-subgradient in the transformed space yields

yk +1 = yk − λk Bk
tgk . In the original x space, this yields the new iterate

xk +1 = xk − λkBkBk
tgk .
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Skokov [45] showed that one can reduce the number of arithmetic operations in the computations

by using the symmetric matrix Hk = Bk Bk
t , and directly updating this equivalently via the

following rank-one update scheme, where qk ≡ gk − gk−1 , and pk = Hk −1qk .

Hk = Hk−1 − (1 − α k
2 )

pk pk
t

pk
tqk

 .                                                                          (2.4.1)

Accordingly, we would then have,

xk +1 = xk − λkHkgk .

This r-algorithm, as it is called, was shown to be quite promising for various practical

problems (see [43 and 44]). However, for large sized problems, the matrix updating process

becomes very expensive. By imitating the memoryless quasi-Newton algorithm for the

differentiable case, we now proceed to alleviate this computational difficulty associated with the

r-algorithm. (See [2, 27] for a discussion on memoryless quasi-Newton algorithms.)
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Chapter 3  

Proposed Modified Algorithms  

We are now in a position to present more advanced variants of the algorithms discussed

in Chapter 2. We present a memoryless variant of Shor and Zhurbenko’s r-algorithm, motivated

by the memoryless and limited memory updates for differentiable quasi-Newton methods. Using

this concept, we build a new update scheme that, in the space transformation sense, can be

viewed as a combination of space dilation and reduction operations. We prove convergence of

this new method, and demonstrate how it can be used in conjunction with a variable target value

method that allows a practical, convergent implementation of the method.

In this chapter, we also present a modification of a related algorithm due to Polyak that

employs a projection on a pair of modified Kelley’s cutting planes.

3.1 Memoryless Shor’s r-Algorithm  

From the discussion in Section 2.4, we see a need to develop variants of Shor’s r-Algorithm

that yield comparable, if not better, performance with lesser memory requirements. Toward this

end, assuming that ||gk - gk-1|| ≠ 0, let us define

r
q

q

g g

g gk
k

k

k k

k k

= ≡
−
−

−

−|| || || ||
1

1

                                                                          (3.1.1)



34

to be the normalized difference vector of two successive subgradients. For each k, by replacing

Hk−1 (or the previous transformation matrix Bk −1) with the identity matrix in (2.4.1), we have

Hk = I − (1 − αk
2 )

qkqk
t

qk
tqk

= I − (1 − α k
2)rkrk

t .                                                  (3.1.2)

Accordingly, the direction of motion is computed as

dk = Hk (−gk ) = −gk + (1 − αk
2 )(gk

trk)rk                          (3.1.3a)

and the new iterate is given by

xk +1 = xk + λkdk                                                                        (3.1.3b)

for some step-length λk. To gain some insight into the resulting prescribed direction, let us define

      s
g r

g gk k
k
t

k

k k

= −
− −

( )
|| ||

1 2

1

α .                                                                          (3.1.4)

Then, from (3.1.1), (3.1.3a), and (3.1.4), the direction of motion can be written as

dk = −gk + sk (gk − gk −1 ) = −[(1 − sk )gk + skgk −1]                          (3.1.5)

which is an affine combination of the present and previous anti-subgradients.  Note that in Shor’s

original algorithm, αk  is chosen to be fixed and to lie in (0, 1) so that it dilates the space as

mentioned above.  But here, we relax this requirement, permitting αk  to vary as well as exceed 1,

if necessary, so that at each iteration k, the transformation can either dilate or shrink the space in

varying degrees along the direction rk .  However, we would like to maintain 0 ≤ sk < 1 so that

the direction (3.1.5) is similar to that obtained via a conjugate subgradient deflection strategy in

which the previous direction is substituted by the previous anti-subgradient.  As an aside, note in

this connection that if αk = 1 for any iteration k, then no space transformation is performed and

we obtain sk = 0 , so that this corresponds to simply adopting the pure anti-subgradient direction
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at this iteration. The following is a step-by-step description of the proposed memoryless

r-algorithm.

Summary of Memoryless Variant of Shor’s r-Algorithm

Initialization Step

The first step is specified by the initial value of x0 ∈ En; we calculate gf(x0), choose

λ1 > 0, find

           x1 = x0 -λ1 gf(x0),

and proceed to the Main Step.

Main Step

Let,

qk ≡ gk − gk−1

r
q

qk
k

k

=
|| ||

H I
q q

q qk k
k k

t

k
t

k

= − −( )1 2α

d H gk k k= −( )

and xk +1 = xk + λkdk

for some step-length λk.

If a specified termination criterion is not met, repeat the Main Step.

This is a description of a class of algorithms for which particular variants can be designed

by choosing the sequences {λk+1} and {αk} and specifying a termination criterion. We shall call
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such algorithms as memoryless r-algorithms. There is a further possibility for modifying r-

algorithms - the use of the so-called restoration operator, for which periodically, after a given

number of iterations, we restore the matrices Bk, i.e., {Bk} is replaced by a single matrix. The

problem of the convergence of the algorithms when the values of the function being minimized

vary monotonically, and when there is restoration, is solved comparatively simply, since in fact,

it reduces to the problem of the usual gradient descent method without a change of metric. This

has been studied in detail by several authors [3]. In particular, if f(x) is continuously

differentiable and αk in (3.1.3) is chosen to yield the minimum along the generated direction,

when we use r-algorithms with restoration, the set of limit points of the sequence {xk} consist of

stationary points of f(x). The proof of this is virtually the same as the proof of the analogous

result for the method of the steepest descent.

3.2 Modified Polyak-Kelley Algorithm  

We now propose a version of Polyak’s Algorithm, to be used within the VTVM framework,

which uses the intersection of two Kelley cuts for finding the next iterate. By the convexity of f,

we have

 f(x) ≥ f(xk) + (x - xk)
t gk.

Imposing f(x) ≤ z*, the optimal value, and denoting fk ≡ f(xk) ∀ k, we obtain the Kelley cut

(x - xk)
tgk  ≤ (z* -  fk).                                                                                                  (3.2.1)

Note that xk violates this since z* < fk. The projection of xk onto (3.2.1) is given by
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xk+1 = xk - 
f z

g
gk

k
k

−









*

|| ||2
                                                                                                  (3.2.2)

which is a negative subgradient step of the type we take with β ≡ 1 in (2.1.11), assuming that z*

is known. Note that at the previous iteration, except when RESET = 1, i.e., when the inner

VTVM loop restarts, we would have had a cut similar to (3.2.1) given by

(x- xk-1)
t gk-1 ≤ (z* - fk-1).                                                                                                  (3.2.3)

Therefore, via (3.2.9) or via what follows, we would have xk satisfying (3.2.3) so that

(xk - xk-1)
t gk-1 + fk-1 - z* ≤ 0.                                                                                      (3.2.4)

Now, z* is not typically known, and we have been using a target value to estimate it. Noting

(3.2.2) and the usual choice of a step length given by

λ
β ω

k
k l

k

f

g
=

−( )

|| ||2
                                                                                                              (3.2.5)

when dk = -gk, we can in effect equate (as an estimate) by virtue of (2.3.4)

β (fk - ωl) ≅ (fk - z*).                                                                                                          (3.2.6)

Using (3.2.6) in (3..2.1) and (3.2.3), we get the pair of Kelley cuts

(x - xk)
t gk  ≤ β (ωl - fk)                                                                                                        (3.2.7)

(x - xk-1)
t gk-1 ≤ (fk - fk-1) + β (ωl - fk).                                                                                    (3.2.8)

Note that unlike (3.2.4) we may not have xk satisfying (3.2.8) as assumed by Polyak [32].

Hence, we determine xk+1 as the solution to the following problem that seeks the projection of xk

onto the intersection of the pair of half spaces (3.2.7) and (3.2.8).

Minimize 
1

2
2|| ||x xk−
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subject to (3.2.7) and (3.2.8).

For ease in notation let us define the following:

x  = xk, g0 = gk-1, g1 = gk, θ0 = xk
t

−1  gk-1 + (fk - fk-1) + β (ωl - fk), and

θ1 = xk
t gk + β (ωl - fk)

Hence, the problem becomes

Minimize 
1

2
2|| ||x xk−                                                                                                      (3.2.9)

subject to g xt
1 1≤ θ                                                                                                                              (3.2.10)

               g xt
0 0≤ θ .                                                                                                        (3.2.11)

Denoting α and δ as the Lagrangian multipliers associated with (3.2.10) and (3.2.11),

respectively, the KKT conditions are given as follows, in addition to (3.2.10) and (3.2.11).

 x = xk - α g1 - δ g0                                                                                                          (3.2.12)

( g t
1 x - θ1) α = 0, ( g t

0 x - θ0) δ = 0, (α, δ) ≥ 0.

Note that α = δ = 0 does not yield a KKT solution since xk is known to violate (3.2.10).

Moreover, noting (3.2.13), we would like α > 0 so that the direction dk is of the type that

effectively deflects -gk. Hence, we first test if α > 0, δ = 0 yields a KKT point. If not, we test if

α > 0, δ > 0 yields a KKT solution, and if the latter does not, then we discard (3.2.12) and simply

select the former solution.

Summary of the Modified Polyak-Kelley Algorithm

This uses the procedure VTVM with parameters chosen as described therein, except that we

also store gk-1, fk-1 and xk
t

−1gk-1 (when RESET = 0).
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Step 1  Compute α
β ω

=
−( )

|| ||

f

g
k l

k
2 , and let xk +1= xk - α gk.

If RESET = 1 or g xk
t

k− + ≤1 1 0θ (i.e. 2.3.18 is satisfied), go to Step 3.

Else, go to Step 2.

Step 2  Compute φ0 = || g0 ||
2 || g1 ||

2 - ( g t
0  g1)

2.

If  φ0 ≤ 10-6, go to Step 3.

Else, compute φ1  = β (fk - wl), φ2  = ( xk - θ0), and

α
φ φ

φ
=

−1 0
2

2 0 1

0

|| || ( )g g gt

,  δ
φ α

=
−2 0 1

0
2

( )

|| ||

g g

g

t

.

If α ≤ 0 or δ ≤ 0, go to Step 3.

Else, compute    xk +1 = xk - α gk - δ gk-1

and proceed to Step 3.

Step 3  Compute xk+1 = PX[ xk +1 ] and repeat these steps.

3.3  Memoryless Space Dilation and Reduction Algorithm and its  

Convergence  

Before we present the proposed algorithm and examine its convergence, let us consider the

issue of selecting a step-length rule. Note that for generalized subgradient methods, we can write

xk +1 = xk − tkjg j
j ∈J k

∑ ,                                                                                                     (3.3.1)
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where Jk ⊆ {1, 2, ..., k} and tkj ≥ 0  for all j and k; that is, the direction of motion is some

nonnegative linear combination of the previously obtained anti-subgradients. The convergence of

this procedure has been proven by Kim and Ahn [14] using the ε -subgradient concept of

Nurminski and Zhelikhovski [31] and Demyanov and Vasilev [5], when the step-length is given

by the usual rule satisfying λk ≥ 0 , lim
k → ∞

λk = 0 , and λk
k=1

∞

∑ = ∞ . Since the negative direction

of motion tkj
j ∈Jk

∑ gj  is an εk -subgradient of f at xk  for some εk  for each k (see[14] for the

derivation of εk ), Kim and Ahn require lim
k → ∞

εk = 0  for their convergence theorem to hold.

Using this same divergent series step-length rule, we can establish the convergence of the

procedure (3.1.3) under a suitable assumption. To see this, let us define

vk = fk − fk−1 − gk −1
t (xk − xk −1) ≥ 0                                                                             (3.3.2)

where ft ≡ f(xt) for all t, and consider the following lemma.

Lemma 3.3.1.  Suppose that the direction of motion dk  is given by (3.1.3a) or (3..1.5). If

0 ≤ sk < 1 in (3.1.4) for all k, then

f (x) − fk ≥ −dk
t (x − xk) − skvk

for all x ∈ Rn , that is, −dk  is an (skvk )-subgradient of f at xk .

Proof: Using the fact that gk  is a subgradient of f at xk , and that gk −1  is a vk -subgradient of f at

xk , we have for all x ∈ En,
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−dk
t(x − xk ) − skvk = (1 − sk)gk

t (x − xk) + sk gk −1
t (x − xk ) − skvk

≤ (1 - sk) [f(x) - fk] + sk[f(x) - fk + νk] - skνk = f(x) - fk.

This completes the proof.

Thus, according to the results in [14], if lim
k → ∞

skvk = 0 , then the procedure (3.1.3), used

along with a divergent series step-length rule, will generate a sequence of solutions that

converges to an optimal solution. Note that the assumptions 0 ≤ sk < 1 and lim
k → ∞

skvk = 0  can

be established by choosing {α k} → 1 suitably, so that 0 ≤ sk < 1 for all k and lim
k → ∞

sk = 0,

provided that {vk} is bounded. However, this strategy loses the merit of using a variable metric

method, since {α k} → 1 eventually leads the algorithm to a pure subgradient method. Likewise,

for generalized subgradient methods characterized by (3.3.1), since tkj implicitly involves both the

affine combination weights associated with the subgradients and the step-lengths, we cannot

control the affine combination weights independently, and thus, we might lose the advantage of

freely selecting a desired direction. Considering these weaknesses, that are further aggravated by

the poor computational behavior of a divergent series step-length rule, we devise a new

algorithm that employs (3.1.3) along with the more popular step-length rule

λ βk k
k

k

f w

d
=

−
|| ||2

                                                                                                            (3.3.3)

where w is a suitable target value and βk > 0 is an appropriately controlled step-size parameter.

Note that among the various step-length rules for subgradient algorithms (see [1] and [10]), this

rule is known to be quite promising in practice.
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From now on, we consider a constrained problem of minimizing f(x) over some convex

subset X of En , so that the proposed algorithm can be used for solving a wider class of problems.

Hence, a new iterate is computed by

xk +1 = PX(xk + λkdk )                                                                                                    (3.3.4)

instead of (3.1.3b), where PX (⋅) denotes a projection operation onto the set X. The following

result establishes the principal convergence property of the proposed algorithm.

Theorem 3.3.1. Suppose that w ≥ f ∗ ≡ f (x∗) , where x* is an optimal solution to the problem

of minimizing f(x) over x ∈ X , and that the procedure (3.1.3a) and (3.3.4) using the step-length

rule (3.3.3) is run while fk remains greater than the target value w. Moreover, suppose that αk  and

βk  used in (3.1.4) and (3.3.3), respectively, are chosen such that

0 ≤ sk < 1  and  0 < ε1 ≤ βk ≤ ε2k ≡ 1 −
skvk

fk − w
≤ 1                                             (3.3.5)

holds for all k for some ε1 > 0 , where vk  is given by (3.3.2). Assume that || gk || < M for all k, for

some M > 0. Then, either (i) for some k we will have fk+1 ≤ w, or else, we will have (ii)

fk > w for all k and lim
k→∞

fk = w.

Proof: Clearly, either fk+1 ≤ w for some k, or else fk > w for all k. Assuming the latter, we have

|| *|| || ( ) *|| || *||x x P x d x x d xk X k k k k k k+ − = − − ≤ + −1
2 2 2λ λ

= − + + − = − + −|| *|| || || ( *) || *|| || ||x x d d x x x x d Rk k k k k
t

k k k k k k
2 2 2 2 2 22 2λ λ λ λ
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= || xk - x* ||2 + λk kd2 2 + 2λk dk
t (xk - x*) = || xk - x*||2 + λk kd2 2 - 2λkRk                                    (3.3.6)

where

Rk = (1 − sk )gk
t (xk − x∗ ) + skgk −1

t (xk − x∗ ).

Since 0 ≤ sk < 1, we have

Rk = (1 − sk )gk
t (xk − x∗ ) + skgk−1

t (xk −1 − x∗) + skgk−1
t (xk − xk−1)

≥ (1 − sk)( fk − f ∗) + sk ( fk−1 − f ∗ ) + skgk−1
t (xk − xk−1)

= (1 − sk )( fk − f ∗ ) + sk( fk−1 − f ∗ ) + sk ( fk − fk−1) − skvk

= fk − f ∗ − skvk ≥ fk − w − skvk = ( fk − w)(1 −
skvk

fk − w
) ≥ βk ( fk − w).

Hence,

λ λ λ λ β βk k k k k k k k k k
k

k

d R d f w
f w

d
2 2 2 2

2

22 2 0|| || || || ( )
( )

|| ||
− ≤ − − = −

−
< .

Therefore, from (3.3.6), we have that || || || ||x x x xk k+
∗ ∗− < −1

2 2  for all k, that is, { }|| ||x xk − ∗  is a

nonnegative, monotone decreasing sequence, and so, we must have,

βk
k

k

f w

d
2

2

2
0

( )

|| ||

− →    as   k → ∞ .

Since || dk || ≤ (1-sk) || gk || + sk || gk || < M by the boundedness of the subgradient norms, and βk  is

bounded away from 0, we have that lim
k→∞

fk = w. This completes the proof.

The above theorem establishes convergence of the procedure (3.1.3a) and (3.3.4) used in

conjunction with the step-length rule (3.3.3), given an upper bound on the optimal objective

function value w that is used as a fixed target value. On the other hand, the following corollary

addresses the convergence behavior when the upper bounding target values vary.
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Corollary 3.3.1. Suppose that for each k, the target value w is permitted to vary, and is taken as

some wk  satisfying fk > wk ≥ f ∗  for all k. If αk  and βk  are selected to satisfy (3.3.5) with w

replaced by wk , and if || gk || < M for all k, for some M, then, for any given δ1 > 0 , there exists a

K1  such that

fk − wk ≤ δ1    for all   k ≥ K1.                                                                                      (3.3.7)

Proof: Following the proof of Theorem 3.3.1 for the case fk > wk for all k, we have 

lim
( )

|| ||k
k

k k

k

f w

d→∞

− =β 2
2

2
0

which gives lim
k→∞

( fk - wk)= 0. The assertion therefore holds true, and the proof is complete.

For convergence to hold in Theorem 3.3.1 and Corollary 3.3.1, we require the condition

(3.3.5). To avoid the case of simply taking an anti-subgradient as the direction of motion (i.e.,

dk = −gk ), we may wish to restrict the choice of sk  in (3.3.5) to sk > 0 as far as possible.

Now, to construct a procedure for selecting αk  that defines sk  via (3.1.4), let us first assume

that for all k,

|| gk - gk-1 || ≠ 0  and  gk
trk ≠ 0 .                                                                                         (3.3.8)

Accordingly, define

a
g g

g rk
k k

k
t

k

= −
− −1 1|| ||

  and  a k = max{0, ak}                                                                  (3.3.9)

and consider the following results.
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Lemma 3.3.2. For each k such that (3.3.8) holds, if αk  is chosen to satisfy

a k < αk
2 < 1   if   gk

trk > 0

1 < α k
2 < a k   if   gk

t rk < 0

 
 
 

                                                                                          (3.3.10)

then, 0 < sk < 1.

Proof: If gk
trk > 0, then αk

2 < 1 implies that sk > 0 from (3.1.4). Since a k < 1, we have

1 12 1> > ≥ −
− −α k k

k k

k
t

k

a
g g

g r

|| ||

which implies that

( )
|| ||

1 2 1− < − −αk
k k

k
t

k

g g

g r

and hence that 0 < sk < 1. For the case of gk
trk < 0, we again have sk > 0 in (3.1.4) since

αk
2 > 1. Since a k = ak > 1, we have

α k k
k k

k
t

k

a
g g

g r
2 11< = −

− −|| ||
.

Hence,

( )
|| ||

1 2 1− > − −αk
k k

k
t

k

g g

g r
.

Therefore, we have sk < 1 since gk
trk < 0. This completes the proof.

Now, in addition to the condition (3.3.8), let us assume that for each k, vk ≠ 0, and define 

b
v

f w
g g

g rk
k

k k
k k

k
t

k

= − − −
− −1

1
1 1

1( )( )
|| ||

ε   and  b k = max{0, bk}                               (3.3.11)
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for any given 0 < ε1 < 1 and for some target value wk  satisfying fk > wk ≥ f ∗ . Note that if

gk
trk > 0, then b k < 1, and if gk

trk < 0, then b k = bk > 1.

Lemma 3.3.3. For each k such that vk ≠ 0 and (3.3.8) holds, if fk > wk and if αk  is chosen to

satisfy 
b k < α k

2 < 1   if   gk
t rk > 0

1 < α k
2 < b k   if   gk

trk < 0

 
 
 

                                                                                     (3.3.12)

then, we have

ε2k ≡ 1 −
skvk

fk − wk

> ε1 .

Proof: Observe that when gk
trk  is of either sign, we have 
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This implies that

skvk

fk − wk

< 1 − ε1

and hence the assertion holds true.

From Lemmas 3.3.2 and 3.3.3, combining (3.3.10) and (3.3.12), we see that for each k,

whenever vk ≠ 0 and (3.3.8) holds true, if αk  is chosen to satisfy
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max{ , }a bk k k< <α 1 ,   if   gk
trk > 0

1 < <αk k ka bmin{ , } ,   if   gk
trk < 0

then, noting (3.3.5), we will have that

0 < sk < 1   and   ε1 < ε2k .                                                                                          (3.3.13)

On the other hand, if (3.3.8) is violated, we can simply select sk = 0  so that (3.3.5) holds

true, thereby supporting Theorem 3.3.1 and Corollary 3.3.1 in either case. Moreover, note that

while defining bk , we require that vk ≠ 0. However, this requirement is not necessary for the

assertions of Theorem 3.3.1 and Corollary 3.3.1 to hold true, since ε2k = 1 if vk = 0. Hence, to

avoid the case of an undefined bk  in (3.3.11) when vk = 0, we can set b k = 0  if gk
trk > 0, and

set b k = M  for some large number M ≥ a k  if gk
trk < 0. (Note that we can simply take M = a k

in this latter case.)  Then, under assumption (3.3.8), the above choice of αk  still guarantees

(3.3.13). To summarize, the routine for finding the direction of motion, along with the prescribed

parameters for determining the step-length, is formally stated below.

Memoryless Space Dilation and Reduction (MSDR) Strategy:  Direction and Step-

Length Parameter Subroutine

Let ε3 > 0 and ε4 > 0  be some (small) tolerances, and let 0 < ε1 < 1 be a chosen step-

length parameter. (We chose ε1 = 0.1 and ε3 = ε4 = 10−6 .)

Step 1. If || gk - gk-1 || < ε3, exit the subroutine with dk = −gk , and let sk = 0  and ε2k = 1.

Otherwise, compute rk  as in (3.1.1). If gk
trk = 0  (practically, ≤ 10−6 ), exit the subroutine with
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dk = −gk , and let sk = 0  and ε2k = 1. Otherwise, find ak  and a k  as in (3.3.9), and compute vk

as in (3.3.2). Proceed to Step 2.

Step 2. If vk > ε4 , compute bk  and b k  as in (3.3.11) and proceed to Step 3. Otherwise, set 

b k =
0, if gk

trk > 0

a k, if gk
trk < 0

 
 
 

                                                                                               (3.3.14)

and proceed to Step 3.

Step 3. Select a suitable combination weight φk  satisfying 0 < φk < 1 (we selected φk  = 0.5),

and compute α k  as

αk
k k k

t
k

k k k
t

k

a b g r

a b g r
=

>
<







max{ , },

min{ , }, .

if

if

0

0
                                                                          (3.3.15)

Determine the transformation parameter αk  as

αk = φk + (1 − φk )α k ,

(3.3.16) and proceed to Step 4.

Step 4. Compute a direction of motion dk  as dk = −gk + (1 − α k
2 )(gk

trk )rk , or equivalently, as 

dk = −[(1 − sk )gk + skgk −1] ,

where sk  is defined as

s
g r

g gk k
k
t

k

k k

= −
− −

( )
|| ||

,1 2

1

α    0 < sk < 1.

Compute
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ε2k = 1 −
skvk

fk − w
,

and terminate the subroutine.

The overall algorithm for which Theorem 3.3.1 and Corollary 3.3.1 hold true can then be

stated as follows. At the k-th iteration of the prescribed procedure, assume that we have a current

subgradient gk  and a previous subgradient gk −1  (when k ≥ 2 ). Then the direction of motion dk

can be computed by the foregoing subroutine MSDR when k ≥ 2 , with d1  taken simply as −g1 .

Computing the step-length by (3.3.3), where the parameter βk  is chosen to satisfy (3.3.5), and

where sk  is given by the subroutine MSDR, the new iterate is determined via (3.3.4), and the

process is repeated.

We remark here that the result in Theorem 3.3.1 requires the target value to be chosen as an

upper bound on the optimal objective value. On the other hand, when the target value is a lower

bound on the optimal value, an analogous result to that of Allen et al. [1] for the pure subgradient

strategy is elusive. However, by imbedding the foregoing scheme within the framework of a

variable target value method as described in [36], we can construct a convergent algorithm. As

shown in [36], because the proposed scheme satisfies the property of Theorem 3.3.1 and

Corollary 3.3.1, this procedure will generate a monotone, non-increasing sequence of incumbent

objective values {zk} that converges to an ε -neighborhood of the optimal objective function

value, for any chosen ε > 0 , without any a priori knowledge about the optimal objective

function value. Accompanying this scheme, is a sequence of target values ��{w
/
} updated via an

outer loop of the procedure, which guides the step-length selection process defined by (3.3.3)

during the inner loop iterations. (Note that these target values might lie above or below the
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optimal value.) The inner loop of the procedure attempts to approach the current target value

within a variable tolerance, and depending on whether or not it is successful, it readjusts the

target value along with the tolerance in an outer loop update. For the sake of completeness, the

specific details of this algorithm are provided below, with the main inner loop being suitably

modified to accommodate the MSDR strategy. (Note that all parameter values are fixed as

prescribed.)

Variable Target Memoryless Space Dilation/Reduction Algorithm (VT-MSDR)

Initialization. Select termination parameters ε0  for the tolerance on subgradient norms, ε  for the

overall convergence tolerance, and kmax  for the limit on the maximum number of iterations. (In

our runs, we have used ε0 = 10−6 , ε = 0.1, and kmax = 2000.) Other parameters used in the

algorithm are defined as follows (recommended values are specified): β ∈ (0,1) =  step-length

parameter = 0.95; σ ∈ (0, 1
3) =  acceptance interval parameter = 0.15; τ =  maximum

allowable iterations in the inner loop without coming within the acceptance tolerance of the

target value = 75; γ =  maximum consecutive nonimprovements permitted within the inner loop

(initialized at 20 and incremented by 10 each time this limit is reached, up to a value of 50);

η ∈ (0,1) =  fraction of cumulative inner loop improvement that is used to decrease the target

value = 0.75; r ∈ (0, 1) =  factor for ensuring adequate step sizes during initial, improving

iterations = 0.1. (Related parameter r = 1 + r .)

Select a starting solution x1 ∈ X , compute its objective function value f1 , and let the initial

direction of motion be d1 = −g1 , where g1 is a subgradient of f at x1 . If ||g1|| < ε0, then stop with
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x1  as a near-optimal solution. Otherwise, set x* = x1 and g* = g1, and record z1 = f1 as the best

known objective function value. Initialize the outer loop counter L =1, and compute the initial

target value w LB f g1 1 1
2= −max{ , || || /2} , where LB is any known lower bound on f*, being taken

as -∞ if no such lower bound is available. Also, select the initial acceptance tolerance that

defines an acceptable degree of proximity to the current target value as ε = σ(f1-w1). Set the

counter τ  of current inner loop iterations to zero, the counter γ  of consecutive nonimprovements

to zero, and the total inner loop iteration counter k to one. Put ∆  = 0, where ∆  measures

accumulated improvements within the current inner loop iterations.

Step 1 (Inner Loop Main Iteration)

Step 1(a). If k > kmax, stop. Else, use subroutine MSDR to compute the search direction dk along

with the step-length parameter ε2k. If ||d1|| < ε0, then set dk = -gk and ε2k = 1. Also, compute the

step-length

λ βk k
k L

k

f w

d
=

−







|| ||2

,

where βk = β if k ≤ 1000 , and βk = minimum {ε2k, β} otherwise.                                        (3.3.17)

Step 1(b). Find the new iterate xk+1 = PX[xk + λkdk], evaluate its objective function value fk+1, and

find a subgradient gk+1 of f at xk+1. If ||gk+1|| < ε0, terminate the algorithm with xk+1 as a (near) optimal

solution. Otherwise, increment τ by 1. If fk+1 < zk, update ∆ ← ∆ (zk - fk+1), and go to Step 2(a).

Otherwise, go to Step 2(b).
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Step 2(a)  (Improvement in the Inner Loop).  Put γ = 0, zk+1 = fk+1, and update xk* =  xk+1 and

gk* =  gk+1. If zk+1 ≤ wL + εL, then go to Step 3(a). Otherwise, if τ ≥ τ , go to Step 3(b), or else,

increment k by one, and return to Step 1.

Step 2(b) (Nonimprovement in the Inner Loop). Put zk+1 = zk, and increment γ by one. If γ ≥ γ 

or τ ≥ τ , go to Step 3(b). Otherwise, increment k by one, and return to Step 1.

Step 3(a) (Outer Loop Success Iteration: zk+1 ≤ wL + εL. Decrease Target Value and Adjust

Acceptance Tolerance.) Compute a new target value as

 wL+1 = zk+1 - max{ εL + η∆, r|zk+1|},

and if wL+1 is determined by the second term in the above maximand, divide r by r . Let

 εL+1 = max{(zk+1 - wL+1)σ, ε}.

Put τ = 0 and ∆ = 0, increment L and k by one, and return to Step 1.

Step 3(b) (Outer Loop Failure Iteration: zk+1 > wL + εL. Increase Target Value and Adjust

Acceptance Tolerance.) Compute a new target value as

w
z w

L
k L L

+
+=

− +
1

1

2

( )ε
 and let εL+1 = max{(zk+1 - wL+1)σ, ε}.

If γ ≥ γ , adjust γ  as recommended at the Initialization step. If wL+1 - wL ≤ 0.1, then replace β by

max{β / 2, 10−6} . Put γ = 0, τ = 0, ∆ = 0, and increment L and k by one. Reset xk = x*,

fk = zk , and gk = g*, and let dk  = -gk and ε2k = 1. Compute the step-length λk as in (3.3.17), and

return to Step 1(b).
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Chapter 4  

Outline of Related Algorithmic Variants  

In the foregoing chapter, we have described a theoretically convergent memoryless space

dilation/reduction algorithm. For the sake of computational interest, we also consider now some

other memoryless as well as limited memory variants of this algorithm, along with Shor and

Zhurbenko’s r-algorithm [44]. In addition, within the framework of the variable target value

method, we test our variant of Polyak’s [32] strategy that uses projections onto a pair of modified

Kelley’s cutting planes to arrive at a search direction. This direction yields a different

combination of the current and the previous subgradients than does the MSDR strategy.

Originally the LMSD and MSD algorithm variants were run separately for Shor’s

r-algorithm and VTVM search strategies using the same direction finding routines. It was

observed that Shor’s r-algorithm gives rapid improvement during the first few iterations but is

slow to converge to the actual optimum. Therefore, it was decided to merge the two search

techniques, using Shor’s step-length procedure for initial iterations and the VTVM step-lengths

for later iterations for the LMSD and MSD strategies. The ideal number of Shor’s step-lengths

before switching to the VTVM strategy was experimentally determined to be 750 iterations.

It should be noted that only the VT-MSDR Algorithm and the r-algorithm are theoretically

convergent; the remaining procedures must be viewed as heuristic methods. Also, in all

algorithms using VTVM, β is initialized at 0.95 and adjusted as in the VTVM [36]. The tested

algorithms are summarized below.
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4.1 Variable Target Memoryless Space Dilation and Reduction Algorithm  

(VT-MSDR):  

This is the algorithm described in Chapter 3. In Step 1, if the normalized difference between

the current and previous subgradients (qk) is < 0.1, the previous α value (αk-1) is retained, and sk is

calculated directly. Using (3.3.14) in Step 2, bk  is calculated only if vk < −10 6 .

4.2  Shor and Khurbenko’s r-Algorithm:  

This is the algorithm due to Shor and Zhurbenko [44]. (We used the space dilation parameter

α = 1 / 3 as recommended.) Shor and Shabashova [43] and Lemarechal [25] suggest two step-

length strategies for this algorithm. After several trial runs, we found the following choice of

step-lengths to yield the best results:

λk = hk / || dk ||, where hk = h0δ
k−1 , and where h0 = 7 and δ = 0.95.                  

This algorithm was also run for a maximum limit of 2000 iterations and the maximum

consecutive non-improvement iteration limit (γ ) was set to 20, i.e., if 20 iterations do not result

in an improved solution, the search procedure proceeds with the Hessian matrix reinitialized to

the identity matrix.
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4.3 Variable Target Memoryless Space Dilation Algorithm (VT-MSD):  

This is the same memoryless algorithm as VT-MSDR except that instead of the direction

finding routine MSDR, we employ a fixed dilation parameter αk = 1 / 3 along with a

combination of step-length strategies used for the two foregoing procedures.  Accordingly, Step

1(a) of the algorithm VT-MSDR described in Chapter 3 gets replaced by the following.

Step 1(a). If k > kmax , stop. Else, compute the search direction 
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                                                             (4.3.1)

where qk = gk − gk−1 . If ||dk|| < 10-6, set dk = −gk . Also, compute the step-length

λk

k

kd
=

−7 0 95 1( . )

|| ||
  if k < 750, and λ βk

k

k

f w

d
=

−


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


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l

|| ||2
, otherwise.                                      (4.3.2)

4.4 Variable Target Limited Memory Space Dilation Algorithm (VT-LMSD):  

This is a two-step limited memory variant of the foregoing procedure. Specifically, starting

with the negative subgradient direction, we use at the next iteration a one-step update as given by

(4.3.1), except that we use 10−1 in (4.3.1) in lieu of 10−6 , and then use a two-step limited memory

update at the next iteration (in case ||qk|| < 10-1 and ||dk|| > 10-6 in (4.3.1)). Thereafter, we stay with

the limited memory two-step lag direction so long as the denominators in the formulae remain

greater than 10−1, falling back to the one-step update direction or the anti-subgradient direction
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otherwise, and then building up again to the two-step update direction as before. Intuitively, we

can see that this 2-step upgrade strategy is intended to perform closer to the r - algorithm by

adopting an additional update step beyond the memoryless scheme, but involving a limited

increase in storage requirements. Also, in this scheme, the step-length is selected according to

(4.3.2).

4.5 Variable Target Polyak Kelley-Cut Algorithm (VT-PKC):  

In Polyak’s [32] scheme, given an iterate xk  and having determined a subgradient gk  of f at

xk , the next iterate is computed by first projecting xk  onto the intersection of the pair of Kelley’s

cutting planes

(x − xk )t gk ≤ (z∗ − fk)   and  (x − xk −1)
t gk−1 ≤ (z∗ − fk−1) ,                                      (4.5.1)

where z∗  is the optimal objective function value. However, z∗  is (typically) unknown, and by our

step-length strategy (3.3.17) in the variable target algorithm, we are estimating (z∗ − fk )  by

β(wL – fk). Hence, in lieu of (4.5.1), we project xk  onto the pair of Kelley cuts 

��(x − xk )t gk ≤ β (w
/

− fk )   and  ��(x − xk −1)
t gk−1 ≤ [ fk + β(w

/
− fk )] − fk −1.              (4.5.2)

This yields a solution of the form xk − ψ1gk − ψ2 gk −1, where ψ1  and ψ 2  are easily determined

coefficients (see Polyak [32]). Using xk − ψ1gk − ψ2 gk −1 effectively as “xk + λkdk ” at Step 1(a)

of the algorithm of Chapter 3, we accordingly obtain the required variant of Polyak’s algorithm.

Note that the search direction here is composed of some combination of the current and the

previous subgradients, as in the proposed MSDR procedure.
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Chapter 5  

Computational Experience  

In this Chapter, we provide computational results for the five procedures outlined in Chapter

4. For this purpose, we used a set of 15 test problems from the literature, as well as some

randomly generated dual transportation and assignment problems. The 15 test problems were

taken from various sources from the literature and are described in [36] along with their

prescribed starting solutions (also, see Kiwiel [20]). The dual transportation problems are of the

form

TR(n):  Minimize − Si
i =1

n

∑ xi + Dj
j =1

n

∑ maximum
1≤i ≤ n

{xi − cij}
 

  
 

  

where there are assumed to be n sources and n destinations having respective supplies Si ,

i = 1, …, n, and demands Dj , j = 1, …, n, and where cij  is the cost of shipping a unit of the

product from source i to destination j. (Here, x represents the dual variable vector with respect to

the standard transportation supply constraints and was initialized at zero in the test runs.) The

corresponding primal transportation problems were generated using the technique described in

[34] and [37]. The dual assignment problems, denoted by AS(n), were generated similarly,

having Si = 1 and Dj = 1 ∀ i, j in [14].
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All the algorithms were coded in C and were run on an IBM 3090, Model 300E computer.

The parameter choices were fixed at the stated prescribed values for all the runs. Table 1 gives

the results obtained for the aforementioned 15 standard test problems, and Table 2 gives the

results obtained for some 15 dual transportation and assignment problems of various specified

sizes. In each of these tables, f(x*) denotes the known optimal objective value, f(xbest) denotes the

objective value of the best solution found by each of the corresponding methods, and “cpu secs”

denotes the cpu time in seconds. All methods were run for a maximum of 2000 iterations.

Examining the results in Table 1, we observe that the methods VT-MSDR and the

r-Algorithm yield a comparable performance with respect to the quality of the solution produced

and the effort required, except for Problem 3 for which the r-Algorithm stalled relatively further

from optimality. The fixed dilation and the limited memory variants VT-MSD and VT-LMSD

improve over VT-MSDR for a few problems such as Problems 2, 5, 6, and 7, but similar to the

r-Algorithm, they experienced convergence difficulties with Problem 3. By far, our modified

version of Polyak’s method (VT-PKC), where we have employed the modified Kelley cuts

(4.5.2) and have embedded the resulting direction and step-length strategy in the variable target

value method of Chapter 3, provided the best overall performance in terms of the quality of

solutions produced for this set of test problems.

Subgradient-based methods usually find dual transportation problems very challenging to

solve, and this is evident from the % gap from optimality at termination for the test cases

reported in Table 2. Here, VT-MSDR exhibits a superior performance over the r-Algorithm as

problem size increases, both with respect to solution quality, and particularly, with respect to

computational effort. The variant VT-MSD exhibits a comparable performance to VT-MSDR,

with the latter again dominating the performance as problem size increases. The limited memory
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variant VT-LMSD performs identically as the algorithm VT-MSDR with respect to solution

quality except that it stalled far from optimality for Problem 2. However, because of the two-step

update process, it is computationally somewhat more expensive. The method VT-PKC exhibits a

closely competitive performance in comparison with VT-MSDR on this class of dual

transportation problems. In contrast, the dual assignment problems are relatively easier to solve,

although still presenting a useful set of test problems. As seen in Table 2, the class of procedures

VT-MSDR, VT-MSD, VT-LMSD, and VT-PKC all yield competitive results, with VT-LMSD

producing the best quality solutions, although not significantly better than VT-MSDR. Again, in

comparison with VT-MSDR, the r-Algorithm requires a substantially greater effort and does not

produce solutions of as good a quality as the other methods over the same number of iterations.

Overall, with respect to solution quality and effort, VT-MSDR and VT-PKC appear to yield the

best performance.
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Table 5.1.  Computational Results Using Test Problems from the Literature.

VT-MSDR r-Algorithm VT-MSD VT-LMSD VT-PKC

Problem n f (x∗ ) f(xbest) Cpu secs f(xbest) cpu secs f(xbest) cpu secs f(xbest) cpu secs f(xbest) cpu secs

1 5 22.600 22.600 0.16 22.610 0.28 22.600 0.18 22.602 0.19 22.602 0.15

2 10 –0.0841 –0.809 1.07 –0.834 0.77 –0.838 1.07 –0.838 1.48 –0.818 0.97

3 50 0.0 29.694 0.5 187.736 7.36 185.408 0.55 1067.857 1.04 0.0 0.49

4 48 –638565 –540062.3 4.86 –522383 4.11 –533958.3 4.97 –540062.3 6.49 –632919.4 4.6

5 48 –9870 –8774.3 4.97 –9675.06 3.98 –9851.205 4.98 –8114.299 6.54 –9869.999 4.6

6 50 0.0 6.165 6.6 0.132 9.48 0.0235 6.52 6.165 8.6 0.007 6.13

7 30 0.0 5.891 4.46 0.094 3.04 0.0513 1.71 0.3 1.97 0.026 1.58

8 4 0.707 0.707 0.11 0.707 0.12 0.707 0.13 0.707 0.17 0.707 0.1

9 4 1.014 1.014 0.09 1.015 0.19 1.014 0.13 1.014 0.15 1.014 0.1

10 6 1.015 0.115 1.07 0.062 1.21 0.069 1.1 0.115 1.54 0.11 1.04

11 5 –32.349 –32.348 0.21 –32.195 0.14 –32.322 0.23 –32.345 0.32 –32.346 0.21

12 4 –44.0 –44.0 0.09 –44.0 0.1 –44.0 0.12 –44.0 0.14 –44.0 0.08

13 4 23.887 29.792 0.53 23.887 0.58 23.887 0.2 23.887 0.71 23.887 0.5

14 6 68.829 68.83 0.81 68.847 0.35 68.83 0.86 68.83 1.19 68.83 0.79

15 10 –0.368 –0.362 1.1 –0.345 0.85 –0.362 1.17 –0.362 1.53 –0.362 1.07
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Table 5.2.  Computational Results for Dual Transportation and Assignment Problems.

VT-MSDR r-Algorithm VT-MSD VT-LMSD VT-PKC

Problem Type
(n)

f (x∗ ) % gap Cpu secs % gap cpu secs % gap cpu secs % gap cpu secs % gap cpu secs

1 TR(20) –4339 4.19 1.33 2.83 2.75 6.22 1.37 4.19 1.87 4.066 1.29

2 TR(30) –6406 4.07 2.73 8.48 6.58 6.37 2.79 42.29 3.75 4.45 2.65

3 TR(50) –11622 3.35 7.17 2.01 16.86 2.16 7.25 3.35 9.83 3.15 6.65

4 TR(80) –18444 5.03 17.9 3.10 43.61 3.70 17.35 5.03 23.78 5.13 16.62

5 TR(100) –23394 7.57 27.25 6.08 68.7 3.83 26.79 7.57 36.75 7.34 25.43

6 TR(120) –27119 3.57 38.47 0.89 97.74 3.25 38.11 3.57 52.15 3.68 36.11

7 TR(150) –34061 4.79 60.03 4.04 152.61 5.21 59.09 4.79 80.37 4.83 56.18

8 TR(180) –40440 3.65 87.16 8.91 241.29 4.38 84.07 3.65 114.88 3.99 80.31

9 TR(200) –45170 4.01 107.22 9.26 305.22 5.55 105.24 4.00 143.25 4.54 100.3

10 TR(250) –59044 11.69 165.44 19.54 436.95 14.84 160.75 11.69 218.72 11.65 153.05

11 TR(300) –72222 8.41 241.13 13.72 639.99 11.86 231.86 8.41 317.63 8.37 221.13

12 AS(180) –1915 0.01 27.13 0.00 17.2 0.00 2.82 0.00 52.29 0.00 18.75

13 AS(200) –2157 0.02 28.94 1.99 73.53 0.00 4.67 0.00 67.52 0.00 34.63

14 AS(250) –2697 0.00 50.77 4.16 164.07 0.00 14.97 0.00 110.85 0.01 55.32

15 AS(300) –3246 0.00 84.61 7.14 242.42 1.61 235.95 0.00 161.83 0.00 71.7
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Chapter 6  

Conclusions and Recommendations for Future Research  

Shor and Zhurbenko’s [44] r-Algorithm is a well-known and popular method for solving

nondifferentiable optimization problems that employs a space dilation strategy in the direction of

the difference between two successive subgradients. In this thesis, we have investigated the

design of a memoryless variant of this algorithm. The variant developed permits a combination

of space dilation as well as reduction strategies. Using a popular and computationally effective

step-length rule (in contrast with the divergent series step-length rule), along with variable upper

bounding target values, we have established the convergence of this proposed procedure. This

convergence property permitted us to embed the proposed scheme into a variable target value

method developed by Sherali et al. [36], which assumes no a priori knowledge of the optimal

objective function value, and that employs target values that might lie above or below the

optimal value, and yet ensure overall convergence.

The resulting procedure, called the VT-MSDR Algorithm, has been tested against the

r-Algorithm using several standard problems from the literature as well as a set of randomly

generated dual transportation and assignment problems. (Although these test problems are not

too large, they are all quite challenging to solve and provide an adequate test-bed for our

methods.) In addition to these algorithms, we have developed and tested three additional variants
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from the viewpoint of computational interest, all embedded within the same variable target value

method. The first variant (VT-MSD) uses a fixed dilation parameter in a memoryless space

dilation scheme. The second variant (VT-LMSD) also uses a fixed dilation scheme, but employs

a two-step limited memory update procedure. The third variant (VT-PKC) adopts a different

combination of the two successive subgradients using Polyak’s [32] scheme of projecting onto a

pair of modified Kelley cutting planes. These cutting planes employ an estimate of the unknown

optimal value as prescribed by the variable target value method within which this procedure is

embedded.

The computational results exhibit that VT-MSDR and VT-PKC provide an overall

competitive performance relative to the other methods tested with respect to solution quality and

computational effort. The r-Algorithm becomes increasingly more expensive with an increase in

problem size, while not providing any gain in solution quality. The fixed dilation (with no

reduction) strategy VT-MSD provides a comparable, though second-choice, alternative to

VT-MSDR. Employing a two-step limited memory extension over VT-MSD sometimes helps in

improving the solution quality, although it adds to computational effort and is not as robust a

procedure.

While our focus here has been on investigating space dilation (and reduction) methods and

their memoryless and limited memory variants, comparisons with other methods and further tests

on solving Lagrangian relaxations of various problems, for example, is of interest. This is

recommended for future research.
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