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Abstract

In this project the optimizationmethod named Space Mapping is presented,

implemented and tested. The project presents novel theoretical additions

to the conventional Space Mapping theory, that links the Space Mapping

framework to surrogate and direct optimization theory. The Space Map-

ping theory de�nes a framework for optimization of an accurate, expensive

non-linear model by utilizing a less accurate, cheaper model, through a pa-

rameter mapping. The implementation is based on a traditional gradient

based trust region method, used in sequential optimization of surrogates

aproximating the expensive model.

Three numerical tests show how the novel theoretical additions greatly en-

hance the Space Mapping method when considering more general problems.

Keywords: non-linear optimization, Space Mapping, surrogate modelling,

trust region methodology.
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Chapter 1

Introduction

This project presents the Space Mapping method for optimization of ex-

pensive non-linear models. The Space Mapping method has been treated

in previous works, for instance [2, 3, 4, 5, 6, 7, 8, 9]. The theory of Space

Mapping belongs to the general surrogate optimization theory. Other work

on surrogate optimization are e.g. [1, 10, 11, 18].

The Space Mapping theory provides a mathematical framework which forms

a natural way of incorporating traditional engineering practices, as for in-

stance rules of thumb and other best practices, in the work with far more

advanced and expensive models.

The Space Mapping method requires two models provided by the user:

� The model on which optimization is to be performed, typically an

accurate, expensive and non-linear model, denoted the �ne model.

� A model approximating the same system as the expensive model,

typically a simpler, cheaper and less accurate model, and presumably

non-linear as well, denoted the coarse model.

In previously described surrogate optimizationmethods, as for instance [10,

18], the coarse model is used as a surrogate for the �ne model. Hence the

optimization is performed on the coarse model, and only a few well targeted

evaluations of the �ne model are needed. Unlike the previous surrogate op-

timization methods, the Space Mapping method constructs a parameter

mapping between the models, and thereby enhancing the usability of the

8 Chapter 1. Introduction

coarse model as an approximation to the �ne model. The parameter map-

ping roughly consists in �tting the coarse model to the �ne model evaluated

in a given set of �ne model parameters. In this project we are using local

linear approximations to this mapping, and thereby generating a sequence

of approximations to the �ne model, using the coarse model through the

parameter mapping.

This project reveals that the conventional formulation of the Space Map-

ping method, see for instance [2, 3], is insu�cient if the coarse model lacks

certain properties in describing the �ne model. Due to this, we present

a novel combined model, which links the Space Mapping method with di-

rect, trust region, optimization methods, as they for instance are described

in [17]. With this combined model, we use any new �ne model evaluation

performed, to update a local linear approximation to the �ne model.

The novel formulation of the Space Mapping method directs most of the op-

timization computational e�ort towards the combined model, while main-

taining the accuracy of the �ne model. Hence the overall computational

e�ort needed is smaller than that needed for direct optimization.

The structure of this report is as follows: Chapter 2 presents the conven-

tional Space Mapping theory, and the thoughts behind the new combined

model. Chapter 3 discusses various aspects of implementing the conven-

tional and the novel Space Mapping formulation in an algorithmic form.

Chapter 4 presents test results. Finally, chapter 5 presents the conclusion

and ideas for future work.
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Chapter 2

Space Mapping theory

In this chapter the conventional Space Mapping theory is described in de-

tail, and the novel approach is presented.

2.1 Introducing notation

When modelling a physical system we discern between two situations:

1. Design of a new system by modelling the expected behaviour, where

the �nal design has to meet some prede�ned speci�cations, and

2. modelling an existing system, where the model has to �t some mea-

surements of the physical system.

With this in mind, let a �nite set of either speci�cations or measure-

ments of a physical system be represented by the set of points ft(i); y(i)g,

i = 1; : : : ;m, in vector notation: ft;yg.

2.1.1 Models

Consider a mathematical model g(t;x) : Rn! R
m, m > n, which should

approximate a given set of points ft;yg, representing some speci�cations

10 Chapter 2. Space Mapping theory

or measurements of the system considered, in an optimal way. We de�ne

the residual vector as f =
�
f (1); : : : ; f (m)

�T
, consisting of the residuals

f (i)(x) = g(t(i);x)� y(i) for i = 1; : : : ;m ; (2.1)

hence f : Rn! R
m.

We wish to �nd a set of parameters x� 2 Rn which makes the model g �t

the points ft;yg, such that a given merit function H, usually a norm in

R
m, of the residual vector, H(f (x)), is minimized.

The choice of merit function H : Rm ! R is arbitrary, as long as it is

continuous and satis�es the requirements:

H(0) < H(q) 8q 2 Rmnf0g ; (2.2)

lim
q!0

H(q) = H(0) ; (2.3)

i.e. having the lowest value for the vector of zeros, and approaching the

lowest value as the parameters approach the vector of zeros.

The parameters x might be constrained to some con�ned region of Rn, due

to either limitations in the model or the system considered. However, to

keep the formulation simple, we will only consider the unconstrained case,

i.e. x 2 Rn.

De�ning the objective function F (x) = H(f (x)), we can write the problem

of minimizing the residuals as,
x� = argmin
x

F (x) : (2.4)

This problem, of making a mathematical model approximate some speci-

�cations or measurements of a physical system, is the main problem ad-

dressed in this project.

Of the general problem presented in (2.4), we will consider only the special

case where the model g, which we denote the �ne model, is very expensive

to evaluate. For instance g is so computationally intensive that evaluation

times rather than the optimization algorithms is the bottleneck, limiting

the practical use of the model. We consider the �ne model as capable

of accurately emulating the behaviour of the physical system, and it may

even include computational utilization of actual hardware measurements.
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Though this project will only consider numerical models. Note that the

resulting expensive objective function F makes the problem (2.4) di�cult

and impractical to solve.

Coarse model

Due to the di�culties associated with the expensiveness of the �ne model,

we introduce a faster and cheaper, but less accurate, model d(t; z) of the

same system, which we denote the coarse model. Such a model may be

a good empirical model. However, the parameter values might be outside

their recommended ranges. The coarse model d is used to gain information

about the �ne model g, by obtaining a correspondence between the pa-

rameters x and z. Before dealing with this, we have a few more prefatory

remarks about the models.

As the �ne model, the coarse model should approximate a given set of

points ft;yg. Hence we wish to �nd the set of parameters z� 2 Rn which

minimize the residuals

c(z) =
h
d(t(1); z)� y(1); : : : ; d(t(m); z)� y(m)

iT
; (2.5)

for some merit function H of the residuals, H(c(z)). The merit function

should be the same as the one used in conjunction with the �ne model

residuals. De�ning the objective function C(z) = H(c(z)) we can write the

problem of minimizing the residual as

z� = argmin
z

C(z) : (2.6)

The process of �nding z� is considered unambiguous, which implies that z�

is a unique, global minimum of C.

Due to the cheap objective function C, the problem (2.6) is much easier

solved than the problem (2.4) related to the �ne model. Notice that the

solution z� of (2.6) might be very di�erent from the solution x� to (2.4),

due to the di�erences between the �ne and the coarse models.

From this place we will interchangeably use the short notations g(x) and

d(z), with the longer notations g(t;x) and d(t; z).
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Smoothness

We require that the vector functions f and c are continuously di�erentiable,

i.e. the functions being di�erentiable and their derivatives being continuous.

This implies that both functions are so smooth that we can express them

by a �rst-order Taylor expansion. Hence, illustrated by f ,

f (x+ h) = f (xk) + f 0(xk)h+ o(khk) ; (2.7)

where k � k indicates some norm in Rn and where f 0(xk) is the Jacobian in

xk,

f 0(xk) �
�
@f (i)

@x(j)
�

; i = 1; : : : ;m; j = 1; : : : ; n :

Due to the smoothness assumption we can de�ne a linearization fk of the

vector function f around a set of parameters xk,

fk(x) � f (xk) + f 0(xk)(x � xk) : (2.8)

Notice that the evaluation of the Jacobian is not considered implemented

as a part of the �ne model, and therefore it is not available for use during

optimization. The Jacobian of the coarse model is assumed available as a

part of the model evaluation, at least as a �nite di�erence approximation

or automatic di�erentiation.

Response

For the convenience of complying with earlier works on Space Mapping

theory, we name the vector resulting from an evaluation of a vector function

a response. Hence an evaluation of the �ne model g for an arbitrary set of

parameters x results in a �ne model response. This concept is illustrated

in �gure 2.1 with an example of a �ne model response.

2.1.2 The mapping function

As the coarse and the �ne model approximate the same physical system, we

may imply some similarity between the models. This naturally leads to the

idea of using the coarse model to gain information about the �ne model. We
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(i)t

g(t  ;  )(i) x

Figure 2.1: An example �ne model response of size m = 5. A response

is the vector resulting from a vector function evaluation for a given set of

parameters.

do this by establishing a functional mapping p between the two parameter

spaces. The mapping function p relates a set x of �ne parameters with the

set z of coarse parameters which yield the best similarity between g(x),

the �ne model response, and d(z), the coarse model response. Hence the

functional relation between the parameter spaces is z = p(x). We measure

the similarity between two responses by the vector of residual errors

r(x; z) = g(x)� d(z)

=
h
g(1)(x) � d(1)(z); : : : ; g(m)(x) � d(m)(z)

iT
;

(2.9)

for given sets of coarse and �ne model parameters. The concept of the resi-

dual error is illustrated in �gure 2.2, where the components of the residual

vector corresponds to the vertical distances between the �ne and the coarse

model responses.

For a �xed set of �ne parameters x, the set of coarse parameters z which

yield the smallest value of some merit function H of the residual errors,

H(r(x; z)), will be termed the mapped set of coarse parameters. We denote

the process of minimizingH(r(x; z)) evaluation of the mapping function

p(x) = argmin
z

H(r(x; z)) : (2.10)

14 Chapter 2. Space Mapping theory

x(i)

zd  (  )
(i)

(i)t

g  (  )

Figure 2.2: Plot of example �ne and coarse model responses (m = 5). The

components of the residual vector, r(x; z) = g(x) � d(z), are the verti-

cal distances between each corresponding set of components in the model

responses.

Hence the mapping function relates the �ne and the coarse model space,

in such way that a set of �ne parameters x is mapped to the set of coarse

parameters z, which yields the best possible �t of a coarse model response

to the actual �ne model response.

The mapping is assumed unique, by which we comprehend the mapping

function being injective, at least within some con�ned regions of interest

within the coarse and the �ne model space. Additionally we assume that

the mapping is smooth, at least locally.

The merit function can be chosen arbitrarily, i.e. it does not have to be the

same as the one used with the residuals between respectively the �ne or

coarse model and the data, as long as it is continuous and the requirements

in (2.2) and (2.3) are satis�ed. Observe that choosing a non-di�erentiable

merit function H, e.g. the in�nity norm, might make the mapping function

non-di�erentiable at some points in the parameter spaces. In chapter 4

some of the e�ects of having non-di�erentiable points in the mapping func-

tion will be examined.

The principle of the mapping idea is sketched in �gure 2.3. It is shown how

a given set of parameters x, in the �ne model space, is mapped one-to-

one with the corresponding set of parameters z, in the coarse model space.

Notice, that each time the mapping function is evaluated, one �ne model
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evaluation has to be performed. Hence the mapping function is at least as

expensive to evaluate as the �ne model.

z

(1)z

(2)x

(1)x

(2)

coarse model space fine model space

z

x

+

+

Figure 2.3: The �gure is showing an example mapping in two dimensional

space (n = 2) between a set of �ne parameters x = [x(1); x(2)]T and a set

of coarse parameters z = [z(1); z(2)]T . The parameters are related through

the mapping function, z = p(x), de�ned in (2.10).

From the de�nition of the mapping function it follows that

g(x) ' d(p(x)) ; (2.11)

i.e. the coarse model with the mapped parameters approximates the �ne

model. We de�ne the perfect mapping as case where the optimal set of

coarse parameters z = z� minimizes H(d(z)� g(x�)), which, according

to (2.10), implies that z� = p(x�). According to (2.2) a special case of the

perfect mapping is when g(x�) = d(z�), hence when the models match

perfectly at their optima. We use the term unit mapping if p(x) = x 8x,

i.e. the mapped coarse parameters are equal to the �ne model parameters.

We denote d(p(x)) the mapped coarse model.

Parameter extraction

In earlier works the evaluation of the mapping function (2.10) is referred

to as the process of parameter extraction. This name refers to the prop-

erty that the process of minimizing the residual error is consistent with
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extracting parameters from a data �tting problem. Hence solving (2.10)

corresponds to �t the coarse model to a given response of the �ne model,

thereby extracting the set of coarse model parameters, which makes the

coarse model response �t the given �ne model response.

Ensuring a unique mapping

As the mapping function is formulated in (2.10) one �ne function evaluation

is used each time a parameter set is mapped between the �ne and the

coarse model space. If there exist several solutions to (2.10), such that the

mapping is not unique, as presupposed, then further information has to be

obtained about the �ne model. We will leave this problem of ensuring the

uniqueness of the mapping function to a later study. However we will give

a very brief presentation of three approaches below.

Multi point method. One method for ensuring the uniqueness of the

mapping function, is to sample one or more points in the vicinity of the

current set of �ne parameters and using the information obtained to make

a multi point evaluation of the parameter extraction. The problem is how

to select the points to include. A method using a variable number of points

is described in [4]. The method aims at choosing just enough points, in the

right directions from the current point, to ensure a unique mapping.

Known relation. If the relation between one or more parameters is know

in advance, these parameters do not have to be mapped. If previous experi-

ments have shown a simple relation, e.g. linear, between parts of the param-

eter spaces, then this knowledge could be utilized to avoid non-uniqueness

in the mapping function for these parts of the parameter spaces. For in-

stance if z(1) ' �x(1)+� for x(1) in some subset of R, and for known values

of � and �, then the problem (2.10) is reduced by one dimension. Hence

resulting in a problem of �nding the n � 1 unknown, which minimizes the

merit function of m residuals, when considering parameters in the subset

of R.

Double sided parameter extraction. Another approach to ensuring

the uniqueness of the mapping function, is to have the independent param-
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eters t mapped along with the dependent parameters x. This approach is

for instance described in [8].

2.2 Conventional Space Mapping

In this project we term the Space Mapping methods described in earlier

works, see e.g. [2, 3, 6, 7], the conventional Space Mapping. In this section

we present the conventional Space Mapping approach using a novel, concise

formulation.

2.2.1 Novel formulation

Considering the relation presented in (2.11), we observe that d(p(x)) may

act as a surrogate for g(x) the �ne model. This leads to the formulation

of the conventional Space Mapping problem

x�SM = argmin
x

C(p(x)); (2.12)

where x�SM is termed the Space Mapping solution.

Since z = z� minimizesC(z), the above problem corresponds to �nding the

set of parameters x�SM , which is mapped to the optimal set of coarse model

parameters, p(x�SM ) = z�. Hence, the problem (2.12) consists of solving

the set of non-linear equations p(x) = z� for x. Especially if the mapping

is perfect, i.e. p(x�) = z�, we have x�SM = x�, the Space Mapping solution

is a solution to the main problem de�ned in (2.4).

If there exists a set of coarse parameters ^z 2 Rn which ful�lls

H(r(x�;^z)) < H(r(x�; z�)) ; (2.13)

it follows that z� 6= p(x�), i.e. the mapping is imperfect. For the im-

perfect mapping the Space Mapping solution will not be the same as the

optimal solution x� to the main problem (2.4), x�SM 6= x�. Hence in gen-

eral, the conventional Space Mapping method (2.12) yields no guarantee

of convergence towards x�. The case of an imperfect mapping is addressed

in section 2.3, where the conventional Space Mapping problem (2.12) is

extended to work with both perfect and imperfect mapping, until then we

only consider the case of a perfect mapping.
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2.2.2 Previous formulations

The �rst presentations, see e.g. [7], of the Space Mapping method were

formulated with a mapping function made up of weighted prede�ned fun-

damental functions. The Space Mapping problem was formulated as se-

quential solving of an over-determined system of linear equations, for the

least squares solution, for each evaluation of the mapping. Later the idea of

fundamental functions was left behind for a new approach given the name

Aggressive Space Mapping. In [2, 3, 6] the Space Mapping problem was

presented as the Aggressive Space Mapping problem

x�SM = argmin
x

kp(x)� z�k ; (2.14)

i.e. �nding the solution x = x�SM to the system of n non-linear equations

p(x) = z� for some norm in Rn.

Observe that the problem (2.14) is identical to (2.12), since both problems

consist in solving the system of non-linear equations p(x) = z� for x.

We will now look at various methods of solving the conventional Space

Mapping problem as it is formulated in (2.12).

2.2.3 Solving the conventional Space Mapping prob-

lem

Since in general the conventional Space Mapping problem (2.12) is a non-

linear problem, we have to rely on iterative methods to �nd a solution. In

this section we will exploit di�erent approaches to solve the problem, still

considering the case of perfect mapping.

The Jacobian of the mapping function (2.10) is not given as a part of the

function evaluation. But the assumption of a smooth mapping function

makes it obvious to somehow approximate the Jacobian, such that a gra-

dient based method can be used.

Of course it is possible to solve the Space Mapping problem (2.12) with-

out approximating the Jacobian of the mapping function. We term such

an approach derivative free optimization. The derivative free optimiza-

tion methods do, in most implementations, rely on extensive evaluation

of the objective function. This statement applies to most of the direct
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search methods. Although methods aiming at reducing the number of re-

quired function evaluations by using local or global model surrogates and

specialized pattern search algorithms, see e.g. [10], have been formulated,

the general idea of avoiding excessive evaluation of the �ne model is not

favoured by such methods.

Maintaining the idea of in some way approximate the Jacobian of the map-

ping function, we could employ a gradient based method exploiting �nite

di�erence approximations in each iteration step. This would require n + 1

evaluations of the mapping function, and thereby the �ne model, per iter-

ation step. When situated far away from the solution, the use of accurate

derivative information would be unnecessary when taking the costly eval-

uations of the �ne model into account. On the other hand, knowledge of

derivative information close to the solution might result in a higher rate

of convergence compared to the derivative free optimization methods. But

the �nite di�erence approximation is very impractical compared to the ad-

vantages of local models approximating the mapping function as we will

discuss below.

Local models

The presupposed smoothness of the mapping has been utilized in earlier

works [2, 3, 6] to make a linear approximation of the Jacobian in each iter-

ation. We will follow the same approach, making sequential linear approx-

imations pk of the mapping function around the current set of parameters

xk. Hence

pk(x) = zk +Bk(x � xk) ; (2.15)

where Bk is a Broyden rank one (see e.g. [12]) approximation to the Jaco-

bian of the mapping function. For Bk we use the updating formula

Bk+1 = Bk +
zk+1 � zk �Bkhk

hT
k
hk

hTk ; (2.16)

where hk = xk+1 � xk. The mapped parameters zk is the result of evalu-

ating the mapping function (2.10) at xk, zk = p(xk).

The unsophisticated guess, with no prior knowledge, for a mapping function

would be a unity mapping. For this reason, the Broyden approximation

should be initialized with the identity matrix, i.e. B0 = I(n; n) yielding a
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unity mapping at the �rst iteration, when setting z0 = x0. The updating

formula (2.16) ensures that the approximation is corrected at each iteration

step, if the actual mapping should di�er from the unity mapping used as

�rst approximation.

Compared to the �nite di�erence approach, use of the linearized mapping

function pk has the advantages of using only one function evaluation per

iteration.

The approximation error between the real mapping p and the linearized

mapping function pk, for some norm in Rn,

kp(x)� pk(x)k ; (2.17)

depends on two factors: the distance kx � xkk from the current set of

parameters xk, and the quality of the Broyden approximation Bk to the

Jacobian p0(xk). We de�ne a trust region limiting the use of the linear

model to a region, wherein the error (2.17) is acceptable: The linearization

pk is only accepted for the set fx j kx� xkk 6 �kg, which form a con�ned

region around xk. The distance measure �k is the size of the trust region

at the kth iteration.

The size of the trust region should reect the ability of linear model pk to

predict descent directions towards z� for the mapping function p. A poor

alignment between the mapping approximationpk and the actual mapping

p should result in a small trust region. Contrary a good alignment should

result in a large trust region. The updating formula used in our actual

Space Mapping implementation is presented in chapter 3.

In �gure (2.4) a one dimensional example mapping function p is sketched

together with a linear approximation pk(x), which is bounded by a trust

region of size �k.

A second order model could be used instead of the linear model, but the

improvement of including second order terms would not compare favourably

with the heavily increased e�ort needed in updating the second order model.

2.2.4 Iterative formulation

Using the method of local linear models of the mapping function we can

formulate the Space Mapping problem (2.12) as optimization of C(pk(x))
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x
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z=p(x)

k x

Figure 2.4: The �gure shows an example mapping function p(x) and a

linear mapping approximation pk(x) for a problem in one dimension.

for sequential linear approximations pk of the mapping function

xk+1 = argmin
x

C(pk(x)) for kx � xkk 6 �k : (2.18)

Hence C(pk(x)), k = 0; 1; : : : ; acts as surrogates, sequentially approxi-

mating F (x), the main objective function, in the vicinity of the actual set

of parameters xk. This iterative formulation is well suited for trust re-

gion, gradient based methods, like e.g. sequential linear programming for

minimax [14] and various Newton like methods (for instance Levenberg-

Marquardt for non-linear least squares) [15], depending on the choice of

merit function.

Before we discuss previous iterative formulations, we will �rst have a closer

look at how the Broyden formula actually works in relation to the iterative

formulation above.

Broyden approximation

The Broyden formula (2.16) works by adding corrections to the approxima-

tion of the Jacobian at each iteration step. We now derive the correction

to the Broyden approximation resulting from the �rst iteration step, using

the conventional Space Mapping formulation in (2.18):
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We assume that the �rst mapping approximation p0 is a unity mapping,

i.e. B0 = I(n; n). For a given starting point x0 we let z0 = x0. It follows

from (2.18) and (2.6) that,

x1 = argmin
x

C(p0(x))

= argmin
x

C(z0 + I(x � x0))

= argmin
x

C(x)

= z� ;

(2.19)

when assuming that kx1 � x0k 6 �0. Hence if z� is encompassed by the

trust region, i.e. kz� � x0k 6 �0, the second set of �ne parameters x1 is

equal to the optimal set of coarse parameters z�.

The mapped set of parameters z1 is obtained by evaluating the mapping

function (2.10) in x1, hence z1 = p(x1).

The step h0 = x1 � x0 and the mapped set of parameters z1 and z0 are

used with (2.16) to get the �rst correction to the Jacobian approximation

of the mapping function,
B1 = B0 +

z1 � z0 �B0h0

hT0h0

hT0

= I+
(z1 � z�)(x1 � x0)T

kx1 � x0k22

:

(2.20)

If the actual mapping function (2.10) is a unity mapping, then

z1 = p(x1) = z�, and the correction to the Jacobian approximation is zero.

If, as expected, the actual mapping function is not a unity mapping, the

Jacobian approximation is corrected by z1�z� in the direction h0. It is easy

to realize that the second mapping approximation p1 ful�ll the conditions

p1(x0) = z0 and p1(x1) = z1, and that for all directions perpendicular to

h0, the mapping approximation is still a unity mapping.

Note the special case for the one dimensional problem: The Broyden for-

mula (2.16) is a generalized secant method, hence for the one dimensional

case it corresponds exactly to the well known secant method. Hence the
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updating formula is reduced to

Bk+1 = Bk +
zk+1 � zk � Bk(xk+1 � xk)

(xk+1 � xk)2

(xk+1 � xk)

= Bk +
zk+1 � zk

xk+1 � xk
� Bk

=

zk+1 � zk

xk+1 � xk
:

(2.21)

Previous iterative formulations

The linearization approach with Broyden update to the Jacobian, used for

solving the conventional Space Mapping problem, is also used in conjunc-

tion with a quasi-Newton method in [6], and with a Levenberg-Marquardt

type damped Newton in [2, 3], to iteratively solve the Aggressive Space

Mapping problem (2.14)

xk+1 = argmin
x

kpk(x) � z�k for kx� xkk 6 �k ; (2.22)

where pk, k = 0; 1; : : : ; are sequential linear approximations of the mapping

function (2.10). Observe that the formulation requires knowledge of the ex-

act coarse model optimum. When implementing the formulation in (2.22),

this information is utilized by setting x0 = z�. Recall from (2.19) how the

formulation (2.18) yields x1 = z� for a trust region large enough. Hence

the two formulations are apparently very similar. In the next subsection

we will analyse in depth the relation between the two iterative formulations

of the conventional Space Mapping problem.

Relating the formulations

Both the formulations in (2.18) and (2.22) lead to sequential solving of a

system of linear equations

pk(x) = ^z (2.23)

for x, where the value of ^z depends, as we derive below, on the size of the

trust region. The solution x = ^x to (2.23) is trivial

zk +Bk(^x� xk) = ^z

) ^x = xk +B�1
k (^z � zk) : (2.24)
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Regarding the value of ^z, we discern between two situations:

1. The coarse model optimum z� is encompassed by the current trust

region, i.e. kB�1
k (z� � zk)k 6 �k, as sketched in �gure 2.5. Then

^z = z� for both the formulations (2.18) and (2.22).

2. The coarse model optimum z� is outside the trust region, as sketched

in �gure 2.6:

� The formulation (2.22) yields ^z = ^z1, where ^z1 lies on the

straight line between zk and z� in the distance k^z1 � zkk = �k

from zk. Hence ^z = zk + �(z� � zk) for the value of � 2 [0; 1]

which makes ^z ful�ll the demand kB�1
k (^z � zk)k = �k. Simple

calculations lead to,
� =

�k

kB�1
k (z� � zk)k

: (2.25)

� The formulation (2.18) yields ^z = ^z2, where ^z2 minimizes C(z)

for kz� zkk 6 �k. This might not necessarily be on the straight

line between zk and z�, due to the non-linearity of C.

Hence the value of ^z might not be the same for the two formula-

tions (2.18) and (2.22). Note that for both formulations we have that

k^z� zkk = �k, hence ^z will lie on the edge of the trust region, due to

z� not being inside the trust region.

In both �gure 2.5 and �gure 2.6 it is illustrated how the solution ^x to (2.23)

might not lie on the straight line between xk and x�, due to the approxi-

mation error (2.17).

Illustrating the method

The iterative formulation (2.22) of the Aggressive Space Mapping problem

is easy to illustrate by geometric reections for a one dimensional problem:

We reuse the example mapping function plotted in �gure 2.4. Below we

follow the iteration process of the �rst four iterations, k = 0; 1; 2; 3 ; using

the iterative formulation in (2.22). We keep the trust region at a constant

size �, since we have not yet discussed exactly how to update it.

k = 0 In the �rst iteration step we set B0 = 1, x0 = z� and z0 = p(x0).

Hence p0(x) = x+z0�z�. Figure 2.7 pictures the situation, the trust
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Figure 2.5: The �gure shows that the formulations (2.18) and (2.22) yield

the same solution when solving (2.23), if z� is encompassed by the trust

region, here for a problem in two dimensional space.
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ẑ1 x̂2

x̂

(1)

1+

fine model spacecoarse model space

+

*x

+
+

+ +

δk kx

+

+

Figure 2.6: The �gure shows that the formulations (2.18) and (2.22) yield

di�erent solutions when solving (2.23), if z� is not encompassed by the trust

region, here for a problem in two dimensional space.
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Figure 2.7: First iteration step, k = 0, using (2.22).
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Figure 2.8: Second iteration step, k = 1, using (2.22).
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Figure 2.9: Third iteration step, k = 2, using (2.22).
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Figure 2.10: Fourth iteration step, k = 3, using (2.22).
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region is marked by the line just above the �rst axis. Following (2.22),

we wish to minimize jp0(x) � z�j by varying x for jx� x0j 6 �. The

solution is x1 = 2z� � z0, as marked on the �gure, hence

x1 = x0 + z� � z0. Graphically the solution is found, where the lin-

earization p0 crosses the dotted, horizontal line in z�.

k = 1 In the second iteration step we evaluate the mapping function (2.10)

to get z1 = p(x1). It follows from (2.21) that B1 =
z1�z0

x1�x0
. Relat-

ing to �gure 2.8, we wish to minimize jp1(x)� z�j by varying x

for jx� x1j 6 �. As seen on the �gure, the solution x2 is located

pretty close to x�, the solution we wish to �nd. Graphically the so-

lution is found, where the linearization p1 is closest to the dotted,

horizontal line in z�. The two lines do not cross each other, due to

p1 being limited by the trust region.

k = 2 From the above iterations, the third iteration step is straight for-

ward: We have z2 = p(x2), and following (2.21) we have B2 =
z2�z1

x2�x1
.

Relating to �gure (2.9), we wish to minimize jp2(x)� z�j by varying x

for jx� x2j 6 �. The solution x3 is located near x�.

k = 3 Fourth iteration step: Relating to �gure 2.10 we have z3 = p(x3) and

B3 =
z3�z2

x3�x2
, and we wish to minimize jp3� z�j for x for jx� x3j 6 �.

The solution x4 (not marked on the �gure) is located very close to x�

the optimal solution. It is not possible with this plot to make further

iteration steps graphically.

When looking at the iteration process, it is clear that the method is con-

verging towards the optimum. But notice what could have happened if

the size of the trust region had been larger in second iteration step (refer

to �gure 2.8): Due to the large linearization error, where the linearization

p1 crosses the vertical dotted line in z�, the solution to p1(x) = z� would

yield a poor step, and the convergence of the method would be disturbed.

This indicates, that we need to adjust the size of the trust region during

every iteration step, according to the quality of the actual linearization. In

chapter 3 we will set up an updating scheme for the size of the trust region.
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Other applications

In earlier works the mapping idea from the conventional Space Mapping

have been used for modelling purposes. See for instance [9] for an arti�cial

neuromodel replacement of the mapping function, or [8] for a piecewise

linear model replacement of the mapping function. These two approaches

both aim at establishing a complete approximation of the mapping function

for some prede�ned regions of the parameter spaces, yielding a mapped

coarse model which is a good approximation to the �ne model, in the

prede�ned regions of interest. Hence the mapped coarse model is capable

of substituting the �ne model in various evaluation intensive explorations of

the �ne model properties, e.g. Monte Carlo analysis, and thereby speeding

the exploration process up by several orders of magnitude.

2.3 The novel Space Mapping approach

In this section we deal with the problems arising when the mapping is im-

perfect. We develop a novel approach, which utilizes a local �ne model ap-

proximation and combines this with the mapped coarse model in a weighted

so-called combined model. The aim is a combined model performing well

in all cases whether the mapping is perfect or imperfect.

2.3.1 A local �ne model approximation

We de�ne a linear approximation to (2.8) the linearization of the �ne model

using a Broyden approximation to the Jacobian of the �ne model1

lk(t;x) = g(t;xk) + ^Bk(x � xk) ; (2.26)

valid for kx� xkk 6 �k, where ^Bk is a Broyden rank one approximation to

the Jacobian of the �ne model. We update ^B using the formula

^Bk+1 = ^Bk +
g(xk+1)� g(xk)� ^Bkhk

hT
khk

hTk ; (2.27)

where hk = xk+1 � xk.

1We will interchangeably use the notations lk(t;x) and lk(x).
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Considering the second iteration using (2.18) it follows from (2.11) that

g(x1) ' d(p1(x1)) :

In general we have

@g(i)

@x(j)
'

@d(i)

@p(1)
@p(1)

@x(j)
+

@d(i)

@p(2)
@p(2)

@x(j)
+ : : :+

@d(i)

@p(n)
@p(n)

@x(j)

=

nX
q=1

@d(i)

@p(q)
@p(q)

@x(j)

(2.28)

where

@d(i)

@p(q)
=

@d(i)

@z(q)

is the ith row in the Jacobian of the coarse model d0(z), and

@p(q)

@x(j)
=

@z(q)

@x(j)

is the jth column in the Jacobian of the mapping function p0(x). Hence

for the second iteration, in matrix notation,

g0(x1) ' d0(p1(x1))p
0
1

= d0(z1)B1 :

(2.29)

If we assume kz0 � z�k 6 �, it follows from (2.20) and (2.29) that the

approximation is
g0(x1) ' d0(z1)

�
I+

(z1 � z�)(x1 � x0)T

kx1 � x0k22

�
: (2.30)

The observation in (2.29) gives us an approximation of the Jacobian of

the �ne model in x1. Thus we can use this approximation to initialize the

Jacobian ^B1 of the linear approximation l1 to the �ne model.

Note that a sequential optimization of linearizations of the �ne model is

similar to a direct optimization of the �ne model. Hence, with the objective

function Lk(x) = H(lk(t;x)� y), and the iterative formulation

xk+1 = argmin
x

Lk(x) for kx � xkk 6 �k ; (2.31)

we have xk ! x� for k !1. See [14] for a proof using the in�nity norm.

The in�nity norm is not demanded by the proof, hence the proof is valid

for other norms as well. This statement is supported by [17] at page 261.
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2.3.2 Combined model

We introduce the combined model, vk(t;x), being a weighted function of

the mapped coarse model approximationd(pk(x)) and the linear �ne model

approximation lk. Hence

vk(t;x) = !k � d(t;pk(x)) + (1� !k) � lk(t;x) ; (2.32)

where !k 2 [0; 1] is the weighting factor.

With the residuals sk(t;x) = vk(t;x) � y of the combined model to the

given points, and the objective function Sk(x) = H(sk(x)) we can formulate

an improved version of the conventional Space Mapping problem (2.12)

xk+1 = argmin
x

Sk(x) for kx � xkk 6 �k : (2.33)

Hence Sk(x), k = 0; 1; : : :, acts as surrogates, sequentially approximat-

ing F (x), the main objective function, in the vicinity of the actual set of

parameters xk.

It is easy to see that the properties of the combined model are as follows:

� For !k = 1 (2.33) corresponds exactly to (2.18), and

� for !k = 0 the successive solving of (2.33) corresponds exactly to a

direct optimization of the �ne model as in (2.31).

The parameter !k de�nes the weight of the mapped coarse model approxi-

mation and the linear �ne model approximation, when calculating the com-

bined model. We expect that the usefulness of the linear model increases

as the iteration steps approach the optimum of the �ne model. On the

other hand, we expect the coarse model to be insubstantial in describing

the �ne model accurately in the vicinity of the optimum. Hence we should

set !0 = 1 to exploit the coarse model in the �rst iteration steps, and we

should reduce !k during iterations as approaching the optimum, causing

the linear model to dominate over the coarse model.

Determining the right size of the trust region of the combined model is

not straight forward. It is not advisable to update the trust region size on

the basis of the ability of Sk to predict descent directions for F . This is

because Sk might promote uphill steps for F , even for a small trust region,

if the mapping is imperfect, as the following reasoning shows: Consider

the situation sketched in �gure 2.11 of the kth iteration, using (2.33), in
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a two dimensional problem. We have that the actual set of parameters xk

is close to the main problem optimum x�. But, the mapping is imperfect,

i.e. p(x�) 6= z�, for which reason the Space Mapping solution x�SM is not

equal to x�. From the �gure we have that x�SM is in an uphill direction

from xk, i.e. F (xk) < F (x�SM). Further we have that the lk part of the

combined model promotes that the next step should be downhill towards

x�, and we have that the d(pk(x)) part of the combined model promotes

that the next step should be uphill towards x�SM . The result is that the

next step hk resulting from (2.33) might be an uphill direction for F for a

large enough value of !k.

(1)

x(2)

x

x

*

xk
x*

SM

Figure 2.11: The �gure shows a contour plot, with x� as minimum, of

an example �ne model F . The situation depicted is the kth iteration us-

ing (2.33). From the current parameters xk, the Space Mapping solution

x�SM is in an uphill direction for F , and the main problem solution x� is

in a downhill direction for F .

Thus we should not base the trust region size of the combined model, on

information arising from a model which might not be able to describe the

�ne model in the vicinity of the optimum. If we somehow detect that the

mapping is imperfect, we should decrease !, such that the linear model is

weighted higher. We will set the size of the trust region �k for the combined

model according to the ability of Lk to predict descent directions for F .

The updating formula used in our actual implementation is presented in

chapter 3.

The advantage of the combined model is the independence of the mapping

being perfect or imperfect. No matter how the coarse model is able to
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describe the �ne model optimum, the linear model part of the combined

model will ensure a good �t to the �ne model, as long as the weight !k is

reduced towards zero as approaching the optimum. Hence sk(xk)! f (x�)

for !k ! 0 and k !1, and therefore we have xk ! x� for k !1.

Notice that the objective function Sk is only slightlymore expensive to eval-

uate than the conventional Space Mapping objective function C(pk(x)).

Since the �ne model response g, used for updating the Jacobian approxi-

mation in (2.27), has to be evaluated anyhow, for being able to evaluate the

mapping function (2.10) used to update the mapping approximation pk.

In practical problems we believe that it is rare that the mapping is perfect

between two models describing the same system. It might be more common

that the mapping is near perfect, hence the di�erence

H(r(x�;^z)) �H(r(x�; z�)) ;

for ^z = p(x�), is rather small. These statements are supported by the test

results obtained in [5], when applying direct optimization on the �ne model

using x�SM as starting point.

In the next chapter, chapter 3, we will look at implementation aspects and

how to control the size of the trust region �k and the new parameter !k,

introduced with the combined model.
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Chapter 3

Aspects of

implementation

The Space Mapping method, as described in chapter 2, rely on iterative

numerical methods for �nding (an approximation to) the solution x� to

the main problem de�ned in equation (2.4). The algorithms describing

the conventional Space Mapping method and the new approach can be

presented in a simple outline form similar to the one below.

Given x0, �0

k = 0

loop
xk+1 = argmin
x

	k(x)

for kxk+1 � xkk 6 �k

Determine 	k+1 and �k+1

k = k + 1

until stop

where 	k : Rn ! R, k = 0; 1; : : : , are surrogate functions, valid for con-

�ned regions kx� xkk 6 �k of the parameter space x 2 Rn. The surrogate

functions are approximating the main objective function F in their regions

of validness.

The algorithm outlined states that for a given starting point x0, and size

of the trust region �0, sets of parameters fxkg, k = 0; 1; : : : , are iteratively
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calculated in the e�ort of approximating the �ne model optimum x�. In

each iteration a subproblem of optimizing a surrogate 	k to F is solved,

and the next surrogate is formed. The iteration loop is stopped according

to some prede�ned stopping criteria, controlling the desired precision.

The remainder of this chapter is divided into two sections: Section 3.1

deals with aspects of implementing the conventional Space Mapping theory,

hence using surrogates of the form 	k(x) = C(pk(x)). Section 3.2 presents

a novel Space Mapping algorithm using the combined model described in

section 2.3.2, hence using surrogates of the form 	k(x) = Sk(x).

3.1 Conventional Space Mapping

We will now focus on the aspects of implementing the conventional Space

Mapping method, as it is presented in section 2.2. Recall that the conven-

tional Space Mapping solution x�SM is only a solution to the main prob-

lem (2.4) if the mapping is perfect, i.e. if p(x�) = z�. Hence the imple-

mentation described in this section will only converge to a main problem

solution in cases where the models implicated yield a perfect mapping.

Thus we should keep in mind that the poorer the mapped coarse model ap-

proximates the �ne model in x� the optimum, the poorer the conventional

Space Mapping solution will approximate a main problem solution.

At �rst, in this section, we present an outline algorithm of the conventional

Space Mapping method, secondly we deal with aspects of controlling the

size of the trust region, and �nally we discuss which stopping criteria to

use.

3.1.1 Simple algorithm

A simple algorithm using the iterative formulation in (2.18) of the conven-

tional Space Mapping is presented below.
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Given x0, �0

B0 = I(n; n), z0 = x0, k = 0

loop
xk+1 = argmin
x

C(pk(x))

for kx� xkk 6 �k

Evaluate g(xk+1)

zk+1 = argmin
z

H(g(xk+1)� d(z))

Update �, B

k = k + 1

until stop

Here I(n; n) is the identity matrix of dimension n. Observe that one eval-

uation of the �ne model is used per iteration.

The approximationBk to the Jacobian of the mapping function is updated

by the Broyden rank one update, presented in (2.16). We recall that if the

approximation is initialized with the identity matrix, the �rst mapping ap-

proximation corresponds to a unity mapping, i.e. p0(x) = x 8 x. In (2.19)

we showed how the unity mapping lead to x1 = z�, when assuming that

kz� � x0k 6 �0.

3.1.2 The trust region

We have mentioned earlier how the size of the trust region should be based

on the performance of the mapping approximation pk(x). If the approxi-

matingmodel shows a good similaritywith the observed behaviour of actual

mapping p(x), the trust region should be adjusted in size to reect this.

When pk is good at predicting descent steps leading p towards z�, the size

of the trust region should be increased, and contrary when pk is not good

at predicting descent steps, the size of the trust region should be decreased.

Observe that for the perfect mapping, we have from �gure 2.6 at page 25

that for a descent step ^h1 = ^x1 � xk in the conventional Space Mapping

problem

kpk(xk + ^h1)� z�k ;

there is a corresponding descent step ^h2 = ^x2�xk in the novel formulation

of the conventional Space Mapping problem

C(pk(xk + ^h2)) :
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Hence when using the novel Space Mapping formulation we can base the

adjustment of the trust region size on the ability of the mapped coarse

model approximation to predict descent steps for the �ne model.

To set up a measure for the ability of C(pk(x)) to predict the improvement

of F , we de�ne �F and �C,

�F = F (xk)� F (xk+1) ; (3.1a)

�C = C(pk(xk)) � C(pk(xk+1)) : (3.1b)

The value of �F is the actual decrease in the �ne models deviation to

the given points, when taking the step hk = xk+1 � xk. Similarly the

value of �C is the decrease in the mapped coarse model approximations

deviation to the given points, when taking the step hk. We observe that

from relation (2.11) it follows that the decrease in the surrogate, �C, should

predict the decrease in the main objective function �F , if the mapped

coarse model is well aligned with the �ne model. Hence the ratio �F=�C

is a local measure for the alignment or similarity of the models in the

direction hk from the current set of parameters xk.

Following [12], we de�ne an updating scheme for the size of the trust region

based on the above observation

�k+1 =
8><

>:
2�k if �F > 0:75�C

�k=3 if �F < 0:25�C

�k otherwise :

(3.2)

The updating scheme works as follows: If the actual decrease, �F , is

greater than 75% of the predicted decrease, �C, the size of the trust

region is increased. If the actual decrease is less than 25% of the pre-

dicted decrease, implying that the models are not well aligned, the size

of the trust region is decreased. In neither cases, the trust region size is

left unchanged. Notice that we do not reduce the size of the trust region

if C(pk(x)) under-predicts the improvement of F (x), since we in the con-

text of unconstrained optimization are focused on predicting descent rather

than the general quality of the approximation. Though the quality of the

approximation is important in constrained optimization, if one wishes to

insure feasibility of the iteration steps.

The constants (0.75, 2, 0.25, 1/3) have been chosen from practical expe-

rience, and [12] states that the resulting method is not very sensitive to
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minor changes in these values; as long as the scaling factors (2 and 1/3)

are chosen such that the values of �k cannot oscillate within the same set

of values.

The initial size of the trust region �0 and starting point x0 is problem

speci�c. Hence the choice should be made by a quali�ed user. A poor

choice of �0, for instance a too small initial trust region, might result in use

of unnecessarily many iteration steps and thereby disturb the convergence.

Notice that we do not wish to bound the �rst step h0 made by the Space

Mapping algorithm. If we do bound the step, in such way that z� is not

encompassed by the trust region, we will have x1 6= z�, and thereby we will

not fully exploit the advantage of having the coarse model available.

3.1.3 Stopping criteria

Setting the right stopping criteria is important to avoid unnecessarily many

calculations and to assure the desired accuracy of the solution obtained.

In general, we would like to use stopping criteria reecting the conver-

gence xk ! x�, hence stopping the algorithmwhen getting su�ciently close

to the optimum, like the following criteria:

kx� � xkk < ^"1 (3.3)

F (xk)� F (x�) < ^"2 : (3.4)

Since we do not have knowledge of x� during the iterations, we use the

approximation xk+1 instead.

First criterion

The step length khkk = kxk+1 � xkk may be used to approximate the left

hand side of (3.3). Thus our �rst stop criterion proposed is to stop the

algorithm, when the step length is decreased below some small threshold

relative to the value of kxkk, to avoid rounding errors for problems where

kxkk � 1,

khkk < "1(1 + kxkk) ; (3.5)

where "1 is a small positive number. Notice that the right hand side of (3.5)

is positive even if xk = 0.
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The step size can get small due to one of the following three reasons, or a

combination of them,

� the actual parameters is in the vicinity of a stationary point,

� the trust region size is getting small (and thereby forcing the step

size down), or

� there is a strong curvature in the step path.

To prevent the algorithm from being stopped unintentionally by any of the

two last-mentioned reasons, the value of "1 should be set very small, near

machine accuracy.

If the algorithm detects that the size of the trust region decreases to a value

near machine accuracy, which might cause numerical errors, it should be

stopped and an error ag should be set.

If an error occurs during solving the subproblem (2.18), we might end up

having xk+1 = xk, i.e. khkk = 0, without being in the vicinity of x�. In

this case the algorithm should be stopped and an error ag should be set.

Second criterion

We can approximate the left hand side of (3.4) by �C, from (3.1b). Hence

our second criterion proposed is to stop the algorithm if the decrease in

function value decreases below some prede�ned threshold relative to the

value jC(pk(xk))j, to avoid rounding errors for problems where

jC(p(xk))j � 1,

�C < "2(1 + jC(pk(xk))j) ; (3.6)

where "2 is a small positive number. Note that if the value of �C is

approaching zero, then it is due to one of the following three reasons, or a

combination of them,

� the algorithm is approaching a stationary point,

� the curvature of C(pk(x)) is vanishing, or

� the step size is becoming small.

The intention is to have the last reason mentioned controlled by the crite-

rion in (3.5), and thus setting the value of "2 relative to the curvature of

C(pk(x)): If C(pk(x)) is nearly at, then "2 should be set to a lower value

than if the mapped coarse model mostly has large curvatures, and thereby

stop when the algorithm is close to a stationary point.
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Third criterion

To prevent the algorithm from not stopping, if neither (3.5), or (3.6) are ful-

�lled within a reasonable number of iterations, we propose a third stopping

criterion

k > kmax ; (3.7)

hence stopping the algorithm if a prede�ned maximumnumber of iterations

kmax is exceeded. The value of kmax should reect both the accuracy

desired and the resources available for solving the given problem.

3.2 The novel Space Mapping approach

We will now focus on the implementation of the new additions to the Space

Mapping theory. At �rst, an outline algorithm is presented. Here the com-

bined model vk(x) described in section 2.3.2 is used in sequential approx-

imations of the �ne model g(x). Secondly, the transition between the two

parts of the combined model is discussed. Finally, it is discussed how the

new approach inuences the control of the trust region size, and the choice

of stopping criteria.

3.2.1 Simple algorithm

A novel Space Mapping algorithm, based on the conventional Space Map-

ping algorithm from section 3.1.1, is presented below.

Given x0, �0

B0 = I(n; n), z0 = x0, k = 0, !0 = 1

loop
xk+1 = argmin
x

Sk(x)

for kx� xkk 6 �k

Calculate g(xk+1)

zk+1 = argmin
z

H(g(xk+1)� d(z))

Update �, !, B, ^B

k = k + 1

until stop
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The outline algorithm reveals that the implementation of the combined

model is straight forward, and merely is an extension of the conventional

Space Mapping algorithm. Hence most of the remarks about the con-

ventional Space Mapping algorithm are the same for the novel algorithm.

Below we review the few di�erences between the algorithms.

Observe that we have !0 = 1, hence the combined model equals the coarse

model in the �rst iteration. At least the �rst iteration is identical with the

�rst iteration of the conventional Space Mapping algorithm, except for the

updating of ^B and !. Notice that by not using the linear model in the �rst

iteration, we avoid evaluating the �ne model in x0, as it would be necessary

to do if we used a direct method.

The approximation to the Jacobian of the �ne model ^B is updated in

each iteration by formula (2.27). In the �rst iteration ^B is initialized by

^B1 = d0(z1)B1 as derived in (2.29). In the next subsection we deal with

the combined model weighting parameter !.

3.2.2 Transition between models

Choosing the right updating scheme for the weight !, in the combined

model v, is essential for exploiting the full potential of the combined model.

As described in section 2.3.2, it is expected that the coarse model response

d may be most useful when situated relatively far away from x�, and that

its usefulness will decrease as approaching x� the solution. The linear �ne

model approximation lk is expected to be most useful in the vicinity of the

optimum, wherein the coarse model might be inadequate in describing the

�ne model.

From these observations, the obvious choice of updating scheme controlling

the transition would be to utilize the coarse model, when situated far away

from the optimal solution, and to (gradually) weight the linear model higher

as approaching the optimum.

In the next subsections we will discuss the two following approaches of

performing the transition,

� soft switching, and

� hard (or direct) switching.
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Soft switching

We limit the discussion of soft transition to the case of an updating scheme

for ! which yields a monotonously decreasing function for an increasing

number of iterations. Hence ! is not at any time increased during iterations.

Since there is no guarantee that an arbitrary problem's coarse and �ne

model yield a perfect mapping, we are bound to rely on the linear model (2.26)

when approaching the solution. Hence we should at least demand that

!k ! 0 for k!1, i.e. the combined model should equal to or close to the

linear model as the number of iterations approaches in�nity.

To avoid hard switching we desire a bound on the reduction rate per it-

eration, for instance reducing ! by no more than a factor two per itera-

tion !k+1 >
!k
2 .

In general, we do not wish to change the weighting in the combined model,

if the steps produced by the algorithm yield a su�cient reduction in F .

Hence the larger gain in function value relative to the actual function value

�F=F (xk), the less change we want in !. Though, at a given iteration

step we wish to utilize the model giving the best prediction of the decrease

in F . Since the linear model lk is corrected during iterations, and since we

expect that the ratio �F=�C will decrease as approaching x�, we consider

the coarse model as the limiting factor for improving the quality of the

combined model. Hence we will focus on the ability of C to predict decrease

in F , to decide when we should weight the linear model higher in the

combined model. We will consider C to be acceptable in predicting decrease

in F , if �F > 0:25�C the actual decrease in function value �F is at least

25% of the decrease predicted by �C. If this is not the case, we consider

C to be inadequate in describing the decrease in F and the linear model

should be weighted higher.

From the above discussion we propose the following updating formula

!k+1 =

!k

1 + 'k

(3.8)

where 'k 2 [0; 1] is

'k =
8><

>:
F (xk+1)

F (xk)

for �C > 0 and �F > 0:25�C

1 otherwise ;

(3.9)
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when the merit functionH has zero or a positive number as its lowest value,

hence including the norms. In the rare cases where the merit function has

a negative lowest value, we could use

'k =
8>>><

>>>:
1

1 + �F

1+jF (xk)j

for �C > 0 and �F > 0:25�C

1 otherwise ;

(3.10)

which has about the same properties as (3.8).

The proposed formula (3.8) decreases ! by a factor two if there is negative

or no decrease in F or if C(pk(x)) is unable to predict decrease in F , and

it decreases ! very little if there is a large decrease in F . The criterion of

�C > 0 is necessary because there is no guarantee for a positive gain in

C for the imperfect mapping, as described earlier. Note that this updating

scheme may not be the best possible formulation, but it ful�lls the necessary

basic properties discussed above.

We summarize the properties of the updating scheme:

� Only decrease in ! in such way that !k ! 0 for k!1.

� The maximum reduction of ! is a factor two per iteration.

� If �C is poor in predicting �F then ! is halved,

� otherwise ! is reduced according to �F , as explained above.

Note that the criterion of poor predictive ability is weighted higher than the

criterion of positive gain in the function value. Hence, when the mapped

coarse model is poor in predicting the decrease in F , ! is reduced maxi-

mally, even though there might be a large reduction in the function value.

The choice of maximum reduction rate, a factor two, is not �xed, it is cho-

sen from a practical point of view. In chapter 4 we will see that test results

suggest that decreasing !k at a higher rate, or perform a hard switch, gives

better results for the simple problems considered. For problems of higher

complexity other results might be obtained. We will leave further investi-

gations to a later study, where models of higher complexity are available

for numerical tests.

It might be interesting, during a later study, to allow the updating for-

mula to increase ! during iterations, while still satisfying the condition

of !k ! 0 for k ! 1. This could for instance be done by taking the
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ability of the linear approximation to predict the behaviour of the �ne

model into consideration. For that purpose the gain in the linear model,

�L = Lk(xk)� Lk(xk+1), and the ratio �F=�L might be useful.

Hard switching

Hard switching could for instance be when !k is abrupt reduced from full

weight on the mapped coarse model, !k = 1, to full weight on the linear

model, !k = 0. But it could as well be a combination of this abrupt switch

and a soft switching, for instance making a hard switch, when the algorithm

detects that the coarse model is not accurate enough to be of any use. We

name such an approach semi-hard switching.

Determining the stage at which the hard switch should occur is not that

easy. Several measures are relevant. We could for instance look at the

� ratio �F=�C, as for the soft switching, the

� ratio �F=�L, the

� relative decrease in function value of S, or the

� value of !, performing a hard switch when ! gets below some �xed

threshold.

It has not been within the limits of this study to choose an exact way of

performing the hard switch. Though, some simple conclusions are drawn in

chapter 4 on the basis of results from some experiments with hard switching.

Whatever measure chosen, we should at least demand that !k = 0 for

k > ^k, where ^k 6 kmax, hence ensuring that the combined model equals

the linear model before the algorithm is terminated by the criterion in (3.7).

3.2.3 The trust region and stopping criteria

As explained in section 2.3.2 we will avoid using

�S = Sk(xk) � Sk(xk+1) ; (3.11)

the gain in the combined model as basis of an updating formula for the size

of the trust region for the combined model. Instead we base the updating

of the trust region size on the ability of the linear model to predict descent

directions for the �ne model. Hence we compare the measure

�L = Lk(xk) � Lk(xk+1) (3.12)

46 Chapter 3. Aspects of implementation

with �F , and we use the following updating formula of the trust region

size

�k+1 =
8><

>:
2�k if �F > 0:75�L

�k=3 if �F < 0:25�L

�k otherwise :

(3.13)

The formula works similar to (3.2): If the actual decrease in F exceeds

75% of the predicted decrease by Lk, the trust region is doubled in size. If

the actual decrease in F is below 25% of the predicted decrease, the trust

region is shrunken to a third of the actual size.

The stopping criteria proposed for the conventional Space Mapping algo-

rithm are as well directly applicable for the new algorithm. Similarly using

the gain in the combined model, we summarize the stopping criteria

� k > kmax,

� khkk < "1(1 + kxkk),

� �S < "2(1 + jSk(xk)j) .

As presented in this section 3.2, the implementation of the novel approach

to the Space Mapping method is not much more di�cult than the imple-

mentation of the conventional approach. We believe that the little extra

e�ort required when making an actual implementation is fully compensated

by the generalization of the method to be independent of the mapping be-

ing perfect or not. In the next chapter, we present results from tests using

an implementation of the novel algorithm.
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Chapter 4

Testing

In this chapter we present results from tests of the novel Space Mapping

method. For the testing a Matlab implementation of the algorithm pre-

sented in section 3.2 is used. The chapter is divided in three sections, one

for each example. In each section results from tests using the Space Map-

ping method on the actual example are presented and discussed, together

with results from a direct optimization of the �ne model.

Due to the relative small time scope of this project, it has not been possible

to apply the Space Mapping method to expensive models. Instead we have

applied the method to simple models with only a few free parameters. Thus

we are leaving thorough testing of the novel Space Mapping method to a

later study. Due to these limitations we are not able to draw conclusions on

the performance of the Space Mapping method when applied to complicated

models.

The three examples treated are,

� a transmission line transformer example with two free parameters

(section 4.1),

� a piston simulator with two free parameters (section 4.2), and

� a one dimensional data �tting problem (section 4.3).

For all the examples we choose the in�nity norm as merit function, hence

F (x) = kf (x)k1, and we measure distances in the parameter spaces us-

ing the in�nity norm as well. We use the minimization routine MINCIN
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described in [16], for solving the subproblems of minimizing the current

surrogate and for evaluating the mapping function. The routine performs

linearly constrained minimax optimization of a vector function, the actual

method is described in [13].

The direct optimization, mentioned above, consists in sequential optimiza-

tion of linear approximations to the �ne model, as presented in (2.31).

Hence the direct optimization algorithm iteratively calculates sets of pa-

rameters fxdkg, k = 0; 1; : : : ; in the e�ort of approximating the �ne model

optimum x�. The �rst linear approximation l0 is initialized with a �nite

di�erence approximation. The following approximations lk, k > 0, are

formed from l0 by making corrections using the Broyden rank one update

formula (2.27), as it is explained in section 2.3.1. The size of the trust re-

gion is updated by the procedure presented in section 3.2.3, hence updated

according to the ability of Lk to predict decrease in F . However we have

replaced the constants 2 and 3 in (3.13) by the constants 1.2 and 1.8, on

the basis of observed improvements of performance.

4.1 Transmission Line Transformer

This example, provided by M.H. Bakr1, concern the design of a 10:1 trans-

mission line transformer (TLT). The physical background concerning the

problem is not a topic of this thesis. We will consider the example as a

given coarse model d and a given �ne model g, each with two designable

parameters, n = 2, and each with a response of size m = 11. There are no

design speci�cations, i.e. y = 0, hence we have c = d and similarly f = g.

The main problem is to �nd the set of �ne model parameters x = x� which

minimizes F (x) with regard to the functional constraint F (x) 6 0:50. We

notice that this constraint makes the problem a global optimization prob-

lem. Furthermore we are informed that the physical nature of the TLT

makes both models repetitive in their response for changes in parameter

values of a certain magnitude. To avoid worries about the constraint and

the repetitiveness, we ignore the global constraint, and instead constrain

the parameters to a small con�ned area of the parameter space encompass-

ing the solution.

The models provided are quite similar in their responses, as the contour

1M.H. Bakr is with McMaster University, Canada.
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plots in �gure 4.1 reveal. However, the optima are not the same, as seen

in the �gure, i.e. z� 6= x�.

Before test results are examined, we introduce the signatures that are used

subsequently in the remainder of this chapter. In �gure 4.2 the signatures

for the iteration process plots are presented. The signatures should be

interpreted as follows: From a given set of parameters xk in the k'th iter-

ation, represented by the leftmost asterisk (�), the next set of parameters

resulting from the k'th step, would be

� xck+1 represented by the triangle (M), if the mapped coarse model

approximation is used (i.e. !k = 1),

� xlk+1 represented by the circle (�), if the linear model is used (i.e.

!k = 0), or

� xk+1 represented by the rightmost asterisk (�), if the combined model

is used.

Since we want to examine the iteration process, we exclusively use the

stopping criterion: k < 35, hence allowing 35 iteration steps. For this

problem, the initial size of the trust region is set to �0 = 0:01 � kx0k1 :

With this choice of �0 the coarse model optimum z� is not encompassed by

the trust region kx�x0k 6 �0, but recall that we are not bounding the �rst

step of the Space Mapping algorithm by a trust region. Hence the speci�ed

trust region is in e�ect from the second iteration.

4.1.1 Soft switching

The �rst results presented are from a test of the Space Mapping algorithm

using the smooth transition approach for updating !. Figure 4.3 and �g-

ure 4.4 show the iteration process for both the Space Mapping algorithm

and for a direct optimization using same starting point and initial size of

the trust region. Since the �rst iteration is not bounded by a trust region,

we have x1 = z� for the Space Mapping method.

Figure 4.3 shows that both the Space Mapping and the direct optimiza-

tion converges towards x�, the optimal solution, as both the distances

kxk � x�k1 and kxdk � x�k1 are approaching zero for k !1.

Notice in �gure 4.4 that the second and third step produced by the Space

Mapping algorithm are in uphill directions for F . Furthermore we notice

that the mapped coarse model approximation, if used exclusively, in the
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Figure 4.1: Upper picture: Contour plot of the �ne model, with marking

of the initial set of parameters x0, and the optimal set of parameters x�.

Lower picture: Contour plot of the coarse model, with marking of the initial

�ne model parameters x0 and the corresponding mapped set of parameters

z0 = p(x0), as well as the two sets of optimal parameters x� and z�.

Both pictures: The visible parts of the parameter spaces reects the chosen

constraints upon the parameter values.
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* *

Figure 4.2: The drawing presents the signatures for the iteration process

plots, illustrated by a single iteration step. See text for details.
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Figure 4.3: Plot showing distance, in in�nity norm, to x� at each iteration

step. The full line with plusses (+) represents fxdkg, the sets of parameters

resulting from a direct optimization. See text and �gure 4.2 for the other

signatures.
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Figure 4.4: Plot showing function value F at each iteration step.

iterations k > 5 suggests steps hck = xck+1 � xk leading further away from

x� than the steps hlk = xlk+1 � xk suggested by the linear model: After

the fourth iteration, the linear model promotes descent steps for F . In

the iterations k < 5 the situation is opposite: The mapped coarse model

approximation suggests better steps than the linear model.

We interpret the information derived from �gures 4.3 and 4.4 in the follow-

ing way: After initialization with gradient information from the mapped

coarse model in the second iteration, the linear model requires two itera-

tions to be corrected, before it is aligned enough with the �ne model to

predict descent steps for F . Further we deduce that the mapping is imper-

fect for this problem, since the mapped coarse model keeps on promoting

steps leading away from the optimum, even when situated very close to

the optimum. The uphill steps in iteration two and three suggest that we

experience the situation sketched in �gure 2.11 at page 32, where the algo-

rithm produces uphill steps due to the mapping being imperfect, and due

to the mapped coarse model approximation being weighted too much in

the combined model.

The �rst two steps of the direct optimization results from a �nite di�erence

approximation. We see how the Space Mapping algorithm bene�ts from the
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knowledge of the coarse model optimum, by taking the �rst step directly to

z�, in the near vicinity of x�. The direct method is bound to take smaller

steps, for which reason it requires about 15 steps to get as close to x� as

the Space Mapping method gets by its �rst step.

In �gure 4.5 the trust region size of the combined model is plotted together

with the actual step size at each iteration step. From the �gure it is seen,

that the trust region is bounding the step size of the steps hk, k = 2; : : : ; 5.

From the sixth iteration, the trust region keeps increasing in size, while the

actual step size decreases.
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Figure 4.5: Plot showing the step size and the actual size of the trust region

at each iteration step for the combined model.

In �gure 4.6 the values of 'k and !k are plotted for each iteration step,

where

'k =
(
F (xk+1)

F (xk)

for �C > 0 and �F > 0:25�C

1 otherwise ;

and

!k+1 =

!k

1 + 'k
:

Notice that the value of 'k is either very close or equal to one during all

iterations, which implies that !k is approximately halved in each iteration,

corresponding to the functional dependence

!k ' !0
�
1

2
�k�1

for k > 0 : (4.1)

Comparing �gure 4.6 with �gure 4.5 and 4.3 it is evident how the expo-

nential reduction of !k slows down the convergence of the Space Mapping
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method, as the systematic error introduced by the mapped coarse model

is the dominating reason that the actual steps di�er from steps directly

to the optimum. Consequently, the distance from the actual parameters

to the optimum is reduced at an exponential rate. A faster convergence

might have been achieved by exclusively use of the linear model, as the

linear model, beginning from iteration seven, promotes steps which leads

to a higher rate of convergence, than the steps actually taken by the al-

gorithm. We will examine this in detail in some of the next subsections,

when dealing with the semi-hard and the hard switching approaches.
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Figure 4.6: Plots showing the values of 'k and !k in each iteration step.

The above observation is supported by �gure 4.7, which shows the abilities

in each iteration of the actual approximating models to predict the next

�ne model response, when taking the step hk. We measure this ability

for respectively d(pk(x)) the mapped coarse model approximation, lk the

linear model and vk the combined model by the following error measures,

H(g(xk+1)� d(pk(xk+1))) ; (4.2a)

H(g(xk+1)� lk(xk+1)) ; (4.2b)

H(g(xk+1)� vk(xk+1)) ; (4.2c)

which we term the predicting error of the models. Notice that the lower



4.1 Transmission Line Transformer 55

the value of the predicting error, the better the ability of predicting the

next �ne model response.
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Figure 4.7: Plot showing the predicting errors of respectively d(pk(x))

(��), lk(x) (� � � ) and vk(x) (|). The measures reects the abilities in

each iteration of the actual approximating models to predict the next �ne

model response.

In the �gure, it is seen how both d(pk(x)) and lk, after a couple of it-

erations, improve their ability of predicting the next �ne model response,

though d(pk(x)) stops its improvement at a certain error level. After about

the �fth iteration, d(pk(x)) shows a nearly constant systematic error in pre-

dicting g(xk+1). On the other hand, the linear model improves generally

during all iterations. We notice how the prediction error of the combined

model reects the gradual transition from the mapped coarse model to the

linear model. Observe that the increase in error of lk and vk from iteration

�ve to iteration six, coincide with the reduced reduction rate of ! for these

iterations.

Figure 4.8 shows the gain per iteration in F (x), C(pk(x)) and Sk(x). We

see how �F is negative for the �rst iterations due to the uphill steps, and

how �C is positive in the same iteration. This indicates that there is a

severe misalignment between the models. In iteration four �C is negative,
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implying that the mapped coarse model approximation predicts an increase

in F for the step h4, even though there actually is a decrease in F . In

the �rst iterations, the linear model is just as badly aligned with the �ne

model as the mapped coarse model is. From iteration three �L improves

in alignment with �F .
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Figure 4.8: Plot showing the gains �F , �C, �L in each iteration for

respectively F (x), C(pk(x)) and Lk(x), by taking the step hk from xk.

Figure 4.9 shows the ratios �F=�S and �F=�L for each iteration. The

ratios reect the ability of the models Sk and Lk to predict the change

in F . As explained in section 3.2.3, the updating of the trust region size

is based on the ratio �F=�L. Relating �gure 4.8 with �gure 4.5 we see

how the trust region size is decreased in the �rst iterations where the ratio

�F=�L is negative (i.e. less than 0.25), and how the trust region size is

increased when the ratio exceeds 0.75.

4.1.2 Convergence rate

As stated in the previous subsection, it is evident that the reduction of !,

even though it is exponential most of the time, is not fast enough to ensure

that the approximation error of the mapped coarse model approximation
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Figure 4.9: Plot showing �F
�S and �F
�L for each iteration, the ratios reect

the models abilities to predict a change in F . The threshold values 0.25 and

0.75 are marked with dashed horizontal lines.
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is not inuencing the �nal convergence rate of the Space Mapping method.

We analyse the �nal convergence rate in the following way:

We de�ne the deviation ek of the actual parameters xk to x� as

ek = x� � xk : (4.3)

Following [12] we de�ne linear convergence as

kek+1k

kekk

6  ; (4.4)

where  < 1 is a constant and xk close to x�, and we de�ne super-linear

convergence as

kek+1k

kekk

! 0 for k!1 : (4.5)

In table 4.1 the actual parameter values of the iteration process described

above are listed. The values of the error ratio in the rightmost column are

plotted in �gure 4.10. From the table, we see that the algorithm is con-

verging towards x� with a linear convergence rate of  ' 0:5. Observe how

the convergence rate corresponds to the exponential reduction rate in (4.1).

We deduce that the higher value of the prediction error (4.2c) of the com-

bined model compared to the prediction error of the linear model (4.2b)

is imposed by the nearly constant systematic prediction error (4.2a) of the

mapped coarse model.
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Figure 4.10: Plot showing kek+1k

kekk

the ratio of the parameter approximation

error. Values origin from table 4.1.

We believe, that the only way to get the combined prediction error (4.2c) as

low as the prediction error of the linear model, is to make a hard switch, i.e.
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k x
(1)
k x

(2)
k

kek+1k1

kekk1

4 1.34601780914888 0.08465190727944 0.85760501635907

5 1.34552151285258 0.08415561098314 0.66792408877117

6 1.34476468713360 0.08316301839055 0.08178716742582

7 1.34591573154247 0.08132984256509 0.18074011302569

8 1.34588150284224 0.08119606982526 0.32050595464602

9 1.34589489041187 0.08117314760791 0.52246126727375

10 1.34589940736086 0.08117025141431 0.50637023522784

11 1.34590184681142 0.08116847426687 0.49961630419999

12 1.34590309897770 0.08116751376455 0.49968450889113

13 1.34590372449511 0.08116703482540 0.50000274299820

14 1.34590403685766 0.08116679626213

: : : : : : : : :

34 1.34590434922334 0.08116655770063

Table 4.1: Selected values from the iteration process of Space Mapping

method using the soft switching approach.

setting ! = 0, after a number of iterations, since increasing the maximum

reduction rate is not su�cient, if we intend to make the method generally

applicable.

4.1.3 Semi-hard switching

The above discussion about �nal rate of convergence suggests a semi-hard

switching approach, i.e. setting ! = 0 somewhere in the �nal stage of the

iteration process. In �gure 4.11 the parameter distances from the optimum,

resulting from experiments with semi-hard switching at ks = 1; : : : ; 8 ; are

plotted. However, the plots for ks = 4; 5 are not present, because the plots

for ks = 3; 4; 5; 6 are visually identical. Since !k = 1 for k = 1; 2 we have

that the semi-hard switching is identical to hard switching in the �rst two

iterations.

By visually comparing the plots in �gure 4.11, we see that the highest

rates of �nal convergence are for semi-hard switching at ks > 2. For semi-

hard switching at ks = 2 the algorithm gets close to the optimum at an

earlier stage in the iteration process, but the convergence rate is not as

high. Further we notice that for ks > 6 the combined model is disturbed,
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by the poor steps promoted by the mapped coarse model, before making

the hard switch. Hence, judging from �gure 4.11, the switch should be per-

formed at ks = 3; 4; 5; 6, for the present example, hence for ! in the interval

[0:03; 0:25]. In a later study it might be interesting to experiment with a

criterion causing a hard switch when ! gets below a certain threshold, for

instance switching when ! < 0:1.

We now focus on the case of semi-hard switching at ks = 3. The actual

parameter values for iteration step k = 6; : : : ; 12 are listed in table 4.2

and the measure of convergence rate, being the rightmost column of the

table, is plotted in �gure 4.12. In both the table and the �gure we see that

the rate of convergence is super-linear in the �nal stages of the iteration

process. Hence, the semi-hard switching yields an signi�cant improvement

of the �nal rate of convergence for this problem. We would not expect

a higher rate of convergence than superlinear, for a method only using

approximations to the �rst order information of the problem.

k x
(1)
k x

(2)
k

kek+1k1

kekk1

6 1.34480217728959 0.08316301839055 0.06784063007082

7 1.34596220933005 0.08130199885149 0.11799000438378

8 1.34590031983539 0.08118253840237 0.02058810609003

9 1.34590461445012 0.08116622868797 0.01659136363124

10 1.34590434577409 0.08116656315912 0.00395930128719

11 1.34590434921049 0.08116655772197 0.00279958622629

12 1.34590434922363 0.08116655770042

: : : : : : : : :

34 1.34590434922364 0.08116655770041

Table 4.2: Selected values from the iteration process for the novel Space

Mapping method, using semi-hard switching at ks = 3.

4.1.4 Hard switching

In this subsection we consider the hard switching approach, i.e. having

!k = 1 for k < ks and !k = 0 for k > ks, ks being the iteration step

at which the hard switch occur. In �gure 4.11 we saw what happened if

the hard switch where performed at k = 1; 2. In �gure 4.13 the iteration
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Figure 4.11: The plots show the iteration processes for the Space Mapping

method using semi-hard switching at respectively ks = 1; 2; 3; 6;7; 8. The

vertical dotted line in each plot, marks the iteration at which the hard switch

occur.
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Figure 4.12: Plot showing
kek+1k

kekk

the ratio of the parameter approximation

error for selected iteration steps, when using semi-hard switching at ks = 3.

processes resulting from experiments with hard switching at ks = 1; : : : ; 8

are plotted.

From the plots we see how the solution is located for all displayed choices of

ks. However, for ks = 3; 6 the algorithm escapes the minimizer again, most

likely due to a combination of rounding errors inuencing on the Broyden

update and a too large trust region. Judging from the �gures there are no

advantages of the hard switching approach over the semi-hard switching

approach. In fact, the convergence in the �nal stages seems, by visual

estimate, to be more disturbed than what we saw in �gure 4.11 for the

semi-hard switching. Thus, from these experiments, we would recommend

using the semi-hard switching approach rather than the hard switching or

the soft switching approaches.

4.1.5 Conventional Space Mapping Solution

As stated in section 4.1.1 the mapping is imperfect for the present problem.

In �gure 4.14 the approximate location of the conventional Space Mapping

solution x�SM is marked.

We have located the aproximative conventional Space Mapping solution by

solving the problem

x�SM = argmin
x

kd(z�)� g(x)k : (4.6)

We denote the numerical solution to (4.6) xk. In �gure 4.14 we observe how

xk does not map the exact coarse model optimum, p(xk) 6= z�. We have
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Figure 4.13: The plots show the iteration processes for the Space Mapping

method using hard switching at respectively ks = 3; 4; 5; 6; 7; 9. The vertical

dotted line in each plot, marks the iteration at which the hard switch occur.
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examined the problem (4.6) by contour plots and found that it actually is a

well behaved problem with a regular solution. The phenomenon observed

might be due to the mapping function having non-di�erentiable points in

the vicinity of x�SM . It has not been within the limits of this project to

examine this phenomenon in depth. We refer to the discussion about non-

di�erentiable points in the mapping function in section 4.3.
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Figure 4.14: Contour plot of the �ne model, at which the location of the

xk ' x�SM , zk = p(xk), x� and z� are marked. Notice that zk 6= z�

implying that xk is not the exact conventional Space Mapping solution x�SM .

As the �nal exploration of the TLT example, �gure 4.15 shows results from

the iteration process of a test where the direct method is started in z�, and

where the Space Mapping uses a semi-hard switch at ks = 2. In the �gure

we see how the direct method has the advantage of not being inuenced by

the mapped coarse model, as the Space Mapping method is. This indicates

to us how much the choice of starting point inuences on the convergence

results.
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Figure 4.15: Plot showing the iteration process when starting the direct

optimization in the coarse optimum, and setting ! = 0 at k = 2.

4.1.6 Summarizing the TLT example

We now summarize the main conclusions to be drawn from the TLT exam-

ple.

During the investigations, we have experienced how the choice of transition

approach in the combined model inuences on the convergence properties

of the novel Space Mapping method. Judging from these simple tests, the

semi-hard switching approach seems to outperform both the soft switch-

ing and the hard switching approaches, when considering the �nal rate of

convergence and the overall performance of the method.

The example showed how an imperfect mapping can lead to situations,

where the mapped coarse model promotes steps in uphill directions. Con-

sequently a systematic error is introduced to the combined model for ! 6= 0,

and we showed how this error inuences the �nal rate of convergence, being

linear for the case of soft switching.
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4.2 Piston

The second example, the piston model, is provided by P.E. Frandsen2. The

model calculates the pressure over time at an oil producing well relative to

a �xed injection pressure. The physical background concerning the model

is not a topic of this thesis. The piston model is providing us with a

�ne and a coarse model each with two free parameters. We wish to �t,

in the minimax sense, the �ne model to a given history of oil pressures

from a producing well. The history is represented by the points ft(i); y(i)g,

i = 1; : : : ; 20, originating from an evaluation of the �ne model. Hence at

the optimal solution x�, the �ne model residuals to the data points are

zeros, f (x�) = 0. Thus the mapping is perfect for this problem, since

^z = z� minimizes
kr(x�; ^z)k = kg(x�)� d(^z)k

= k(g(x)� y)� (d(^z) � y)k

= kf (x)� c(^z)k

= kc(^z)k :

In �gure 4.16 results from the iteration process, using the novel Space

Mapping method with smooth switching, are plotted together with results

from a direct optimization. From the �gure it is seen how both methods

converge towards the optimum. We observe the Space Mapping algorithm

shows a uttering behaviour, jumping in and out of the vicinity of the

solution, and that the methods do not locate the exactly same solution. The

uttering behaviour might be caused by a combination of rounding errors

inuencing the Broyden update and too large a trust region. However, this

cannot be the complete explanation, since these conditions are present for

all the iteration processes presented. We will not go further into this in the

present study.

In �gure 4.17 the distances from the current parameters xk respectively

the mapped parameters zk = p(xk) to the coarse model optimum z� are

plotted. From the �gure it is seen that x1 = z�, and that the mapped

parameters zk converges towards the coarse model optimum, as we would

expect in the case of a perfect mapping. But we observe that the mapped

parameters show the same uttering behaviour, as we observed with the

�ne model parameters in �gure 4.16.

2P.E. Frandsen is co-supervising this project.
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Figure 4.16: Plot showing distance from the current parameters to the op-

timum x�. The signatures corresponds to the signatures presented by �g-

ure 4.2.
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Figure 4.17: Plot showing the distances from respectively xk and zk to the

coarse model optimum z�.

In �gure 4.18 the gain in function value of respectively F (x), C(pk(x)) and

Sk(x) are plotted for the �rst ten iteration steps. The �gure shows that the

models generally are well aligned. We observe that F increases in value at

iteration k = 7. Relating this observation to �gure 4.16, it is evident that

the uphill step is caused by the inuence of the mapped coarse model in

the combined model. The mapped coarse model promotes a step leading

away from x�, while the linear model promotes a step leading towards x�.

The actual step is a combination of the two steps promoted by the models.

In �gure 4.19 the values of ' and ! are shown for each iteration step. From

the �gure it is seen how ' is almost zero at some stages in the iteration

process, and that the values are changing more during the process than

for the TLT example. Thus the exponential decay of ! is less than 1=2 as

observed in the TLT example.

In �gure 4.20 we see the predicting errors of the approximating models. As

for the TLT example, the mapped coarse model shows a nearly constant

systematic error in predicting the �ne model response, even though it is

producing descent steps for F . This observation shows, that for the general

Space Mapping problem the coarse model is allowed to show systematic
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Figure 4.18: Plot showing the gains �F , �C, �L for a selected interval of

iteration steps.
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Figure 4.19: Plots showing the values of 'k and !k in each iteration step.
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errors in predicting the actual response, as long as it is performing well

in predicting descent steps for the objective function, as we would expect.

Notice that this would not be possible without the parameter mapping.

The parameter mapping is the strength of the Space Mapping method

comparing to other surrogate optimization methods, as e.g. [10].
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Figure 4.20: Plot showing the predicting errors of respectively d(pk(x)),

lk(x) and vk(x). The measures reects the abilities in each iteration of the

actual approximating models to predict the next �ne model response.

The piston example has been tested with the di�erent approaches of per-

forming the transition in the combinedmodel. Here, we present results from

a single test. In �gure 4.21 results from a iteration process using the Space

Mapping method with semi-hard switching at ks = 2 are plotted. From

the �gure we see that there is no change in the convergence towards the

solution. However the Space Mapping algorithm is not uttering around

the vicinity of the solution, as for the soft switching approach.

In this example the coarse model optimum z� is placed farther away from

x� than the set of starting parameters x0 is. By tests it shows out that the

direct method has no advantage of starting in the coarse model optimum,

as it had in the TLT example | in fact more steps are required to reach

x�. We cannot draw any conclusions from this observation, based on only
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Figure 4.21: Left �gure: Plot showing distances from the actual parameters

to the optimum, the novel Space Mapping method uses semi-hard switching

at ks = 2. The vertical dotted line, marks the iteration at which the hard

switch occur. Right �gure: Plot showing the distances of respectively xk

and zk to the coarse model optimum z�.

two examples. However we believe that for many problems we will have

that z� is not in the vicinity of x�, and therefore it would be natural if

there in general were no bene�t of starting a direct optimization in z�.

4.3 Data �tting

The last example presented in this report is a one dimensional data �tting

problem. The example is used to plot complete mapping functions for

di�erent choices of merit functions.

We consider a set of data points ft(i); y(i)g, i = 1; : : : ; 200. The data points

originate from an experiment where the light intensity from a laser source

were measured in the small interval of time, after switching o� the laser

source, until the light dies out. We wish to approximate the data with the

�ne model:
g(t(i);x) = q2 exp(�xq1t
(i)) + q3; qj 2 R; j = 1; 2; 3 ;

where qj are constants. The objective function is f (t;x) = [f(t(i);x)], where

f(t(i);x) = g(t(i);x)� y(i). We have a coarse model which approximates
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the same set of data:

d(t(i); z) = zw1(t
(i))2 + w2t
(i) + w3; wj 2 R; j = 1; 2; 3 ;

where wj are constants. The objective function is here c(t; z) = [c(t(i); z)],

where c(t(i); z) = di(t
(i); z)� y(i). In �gure 4.22 the optimal minimax de-

signs of both the coarse and the �ne model are shown together with the set

of data points.
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Figure 4.22: Data points and optimal designs of the two models, optimized

in the minimax sense.

In �gure 4.23 we have plotted the complete mapping function of the prob-

lem, using the in�nity norm as merit function for the mapping function. In

this �gure, we see how the mapping function for the most part shows an

exponential relation between the parameters. In �gure 4.24, where we have

a closer view at the vicinity around the point of the optimal solutions, we

see that the point of the optimal solutions is not placed on the mapping

function.

The horizontal distance between the point of optimal solutions and the

mapping function is

kx� � x�SMk1 :
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Figure 4.23: Plot showing the complete mapping function, using the in�nity

norm as merit function, for the one dimensional data �tting problem. The

point of the optimal solutions (x�; z�) is marked.
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Figure 4.24: Plot showing close up of the complete mapping function, using

the in�nity norm as merit function.
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The vertical distance between the point of optimal solutions and the map-

ping function is

kz� � ^zk1 ;

where ^z is the set of coarse parameters which yields the best �t of the

coarse model response to the �ne model response evaluated in x�.

Observe the bend in the mapping function, implying that the mapping

function is non-di�erentiable at this point. It is evident that if we linearize

the mapping function in the vicinity of the bend, the linearization error

becomes enormous, when the linearization is used past the bend. The

bend occurs due to the use of the non-di�erentiable in�nity norm as merit

function. In �gure 4.25 the mapping function for the same problem, using

the two norm as merit function, is plotted. From the �gure it is seen that

the mapping function is di�erentiable in the interval shown, the vicinity of

the optimum.
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Figure 4.25: Plot showing a close up of the complete mapping function,

using the two norm as merit function.

The above observations with a non-di�erentiable point in the mapping func-

tion, suggests that caution should be taken when interpreting the results

from an iteration process. Non-di�erentiable points in the mapping func-
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tion might cause uttering in the parameter values, due to the large lin-

earization errors introduced in the vicinity of the non-di�erentiable points.

This is a natural consequence of violating the assumption of a di�erentiabil-

ity, when employing a gradient based method using sequential linearizations

to approximate the considered function.

76 Chapter 4. Testing



77

Chapter 5

Conclusion

In the following the results and conclusions of the project are summarized.

The material presented mostly consists in theoretical work, a smaller part

consists in numerical veri�cation and investigation of the Space Mapping

method.

The theoretical work can be divided into three subjects: the conventional

Space Mapping method, the novel Space Mapping method and aspects

about implementation of the two methods.

We now draw up the conclusions concerning the theoretical work and the

numerical testing.

Conventional Space Mapping

The concept of a mapping function, establishing the parameter mapping

between the coarse and the �ne model, has been described in detail. From

this, a novel, concise formulation of the conventional Space Mapping prob-

lem has been derived, showing how the coarse model, by utilizing param-

eter mapping, can act as a surrogate to the main problem | provided

the parameter mapping is injective for the areas of the parameter spaces

considered.

Previous formulations of the conventional Space Mapping problem have

been presented. Iterative formulations, exploiting trust region methodol-

ogy and approximative linearizations of the mapping function, for both
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the novel and a previous formulations of the conventional Space Mapping

problem, have been derived and presented.

The exact relations between the novel and the previous iterative formula-

tions have been described, and the previous iterative formulation has been

illustrated by geometrical considerations.

The conventional Space Mapping has been proven inadequate for solving

general problems, where the mapping function, relating the coarse and the

�ne model, is so-called imperfect.

Novel Space Mapping approach

A novel approach to the Space Mapping problem has been presented, link-

ing the conventional Space Mapping method with a direct method in a

combined model, capable of acting as a surrogate for the main problem.

The combined model consists of weigthed contributions from the coarse

model using parameter mapping, and a local linear approximation to the

�ne model. The use of the linear approximation has been prooven to make

the Space Mapping generally applicable, no matter if the mapping function

is perfect or imperfect | provided that the weight in the combined model

is pushed towards the linear approximation, as the iterations progresses,

such that the combined model equals the local approximation in the �nal

stages of the iteration process.

Implementation aspects

Di�erent aspects of implementing the iterative formulations, of respectively

the conventional and the novel Space Mapping formulation in iterative

algorithms, have been discussed. Among these aspects three approaches to

performing the transition between approximating models in the combined

model have been discussed. These are soft, semi-hard and hard switching.

The updating of the trust region has been discused for both formulations,

and it has been proposed to use di�erent updating approaches for the con-

ventional and the novel Space Mapping method.
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Testing

Three examples have been presented, and tested using the the novel Space

Mapping method. The investigations have shown that the semi-hard ap-

proach to transition is superior to the soft transistion approach, when con-

sidering �nal rate of convergence.

The e�ect of the problem having an imperfect mapping has been inves-

tigated as well. The coarse model, using parameter mapping, have been

found to promote poor steps for the algorithm, for the case of an imperfect

mapping.

Further investigations have shown how the parameter mapping enables the

use of coarse models showing severe approximation errors to the �ne model,

while still contributing positively to the convergence of the algorithm.

For further work with the Space Mapping method the following items are

suggested:

� Testing on larger problems.

� Further work on transition strategies.

� Working with models not having same dimensionality.

� Working with ensuring uniqueness of the mapping function, avoiding

more than one solution to the subproblem of mapping the parameter

spaces.

� Working with constrained problems.

� Further exploration of non-di�erential points in the mapping func-

tion.
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