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Abstract

Optimal planning and operation of large hydro-power systems, when realistically
considered, usually result in non-linear, non-convex optimization problems of high
dimension which can be difficult to solve using most optimization techniques. Qur
goal is to use a special form of potential function called the Expanded Lagrangian
Function combined with the trust region algorithm to solve large-scale optimization

problems arising in the applications of water resources management problems.

Our trust region algorithm uses a linear combination of an inexact Newton’s
direction and a steepest descent direction, to obtain a feasible descent direction. A
bi-dimensional trust region scheme is used to obtain fast convergence. The inexact
Newton’s direction is obtained by solving a linear system of equations using a pre-
conditioned conjugate gradient method which uses drop-tolerance pre-conditioner

with RCM ordering.

The proposed method is tested on real data of 90 years of information for
the Great Lakes water resources problem. The same application is solved with

LANCELOT, using two different features of this software.

The results of the studies have shown that both algorithms converge to opti-
mum objective values within a 3.0% difference from each other with LANCELOT
providing worser objective values in most cases. Computer time required by both

algorithms are comparable, with LANCELOT being somewhat slower.

iv



The optimal storage levels and releases obtained from the proposed method

when compared with past operations provide a significantly better operation.
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Chapter 1

Introduction

Many systems engineering techniques are used in the planning and operation of var-
ious water resources systems. While simulation methods have been very popular,
optimization models have become more attractive. During the past two decades,
much progress has been made in the theory and practice of constrained nonlin-
ear optimization. Although there are many standardized optimization procedures
capable of solving a wide range of problems, there remains a class of problems
characterized by high dimensionality, nonlinearity and non-convexity which can
pose great solution difficulties to most existing optimization techniques. This is
important because in many applications of water resources, problems with thou-
sands of unknowns and nonlinear and non-convex constraints have to be solved.
The joint operation of a system of reservoirs is a fundamental as well as a com-
plex problem in water resources management. If the system reservoirs are to be
operated to serve multiple purposes such as water supply, hydro-power generation,
recreation, etc, the often conflicting objectives further complicate this problem.

This research develops a new approach to solve large-scale nonlinear optimization
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problems arising in water resources problems. A case study is presented where the
proposed optimization technique is used for determining the optimal operational

policy of the Great Lakes.

1.1 Problem Statement

Large-scale water resources systems usually serve several purposes such as water
supply, hydro-power generation, recreation, water quality improvement, flood con-
trol, fish and wildlife maintenance, and navigation. These multiple objectives can
often be in conflict with one another and optimal planning and operation studies
attempt to compromise between the different purposes. Many large projects with
significant investments, require quantifiable targets to be estimated based on non-
monetary factors. Hydro-power generation is an exception in the sense that the
benefits of additional power production can be easily quantified in monetary terms

on the basis of the market price of encrgy or the cost of alternative supply.

Multi-reservoir operation planning (MROP) can be modeled as a nonlinear,
constrained optimization problem. The objective is to find the set of reservoir
release policies that minimizes the fluctuation of water levels and water flows. If
the inflows to the system are assumed known or predictable with certainty, the
resulting problem becomes deterministic. The focus of the present research is on
deterministic optimization techniques which are generally simpler to solve than

their stochastic counterparts.

A typical MROP problem is characterized by an objective function which is
nonlinear and can be either convex or non-convex while there are both linear and
nonlinear constraints. The nonlinear constraints are due to the fact that reservoir

releases depend on nonlinear functions of reservoir storages. The constraints consist
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of, in addition, linear equalities describing the dynamics of the state transformation,
derived from consideration of mass balance at all storages in the system. In addi-
tion, the variables of the optimization (reservoir storages and releases) are bounded

from above and below based on physical, design or operational limitations.

The non-convexity characteristics mentioned above constitute the primary dif-
ficulty in the successful mathematical solution of the above problem. For small
systems, there are many methods available to solve such problems and find a global
minimum. For example, discrete dynamic programming is the most reliable method

for obtaining the global optimum solution.

The real difficulty arises when the system is large with many variables and
constraints. The development of improved algorithms and/or adaptation of existing

algorithms for solving such problems is therefore a subject of active research.

A stochastic formulation, broadly speaking, is a better representation of a prac-
tical MROP problem since inflow is a stochastic variable. Explicit treatment of
stochasticity and risk, however, can be difficult and complex, particularly in the
case of large systems [57]. Several methods have been developed, including implicit
stochastic and adaptive planning methods [29).

Implicit stochastic optimization involves the use of a long inflow series in a de-
terministic optimization model and the analysis of the results using a regression
model to develop generalized control polices. Adaptive planning or the feed for-
ward control method is based on the repeated application of a deterministic model
using the best estimate of short term forecasts and periodic updating of the system

variables as real-time information becomes available in the progress of operation.
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1.2 Study Objectives

The main objective of this research is to identify, review, design and compare suit-
able optimization models to use in operation planning of large-scale multi-reservoir

systems. The specific objectives are as follows:

1. To survey the use of the optimization procedures for the operational planning

of the multi-reservoir systems.

This covers the applications of the different fields of Linear Programming
(LP), Dynamic Programming (DP) and Nonlinear Programming (NP).

2. To develop, implement and experiment with an Expanded Lagrangian Func-
tion combined with a modified trust region method to provide the Proposed

Method (PM). This includes:

e Studying some special cases of constrained optimization problems and

summarizing the Expanded Lagrangian Function for these cases.
e Proving the global convergence of the modified trust region algorithm.
e Testing the PM on some benchmark application of hydro-power water

resources problem with real data and comparing the output result with

one of the current software packages.

3. To formulate and solve MROP problems as a large-scale nonlinear optimiza-
tion problem, and to implement the PM on these formulated problems, specif-
ically for the application of the Great Lakes water regulation problem. This

requires:

o Taking advantage of the sparsity pattern of the structure of the applica-
tion of MROP in order to solve the linear systems of equations efficiently.
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e Solving the existing application with similar alternatives in order to com-
pare the output performance of the PM with a currently available soft-
ware package.

e Deriving an operating policy for the releases for a long period of time.

1.3 Organization of the Dissertation

This dissertation is organized as follows:

Chapter 2 Nonlinear Programming Problem (NLP): Several implementa-
tions of optimization techniques for solving water resources management problems
are considered. We briefly review the advances on methods based on Linear Pro-
gramming (LP), Dynamic Programming (DP), and Nonlinear Programming (NP).
The advantages and disadvantages of these methods are discussed.

Chapter 3 NP Problem Formulation: A class of algorithms based on the
eventual solution of the first order necessary conditions for constrained optimiza-
tion is explained. An expanded form of equations whose optimum solutions is a
Karush-Kuhn-Tucker (KKT) point is introduced. The expanded form of equations
is simplified for constrained optimization with bound constraints and a special case
of convex quadratic optimization is also presented. This chapter also presents a lit-
erature review on trust region algorithms for nonlinear equations and introduces a
new modification of a bi-dimensional trust region algorithm to solve unconstrained
optimization problems and least square problems.

Chapter 4 The Implementation of the Proposed Method: The methodol-
ogy used to solve constrained optimization methods is explained. There are two
main phases for the algorithm. In the first phase, line search methods along with
the BFGS method is used to obtain a feasible solution which is close to the optimal
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solution. In the second phase, the Expanded Lagrangian Method is used to follow
the penalty path efficiently. Some small test problems including one application of
a water resources problem of medium size are solved with this algorithm and the
results are compared with some other methods which use the Expanded Lagrangian
Method. _

Chapter 5 Case Studies: This chapter introduces the Great Lakes problem as
a large-scale application to test the proposed method. Numerical results are pre-
sented along with the performance of the software package LANCELOT. We show
that the proposed method is capable of solving the Great Lakes mathematical for-
mulation problem with highly nonlinear and non-convex constraints in a reasonable
amount of time. This development allows us to derive the optimum releases and
storages of each lake for a long period of time in order to minimize the fluctuation
of water during the operation of the system. A rolling horizon policy is employed
in order to find the optimal releases and storages for each lake over a period of
90 years. Also, a portfolio optimization formulation from the field of economics
is presented to test the proposed method for a simple case and also to test the

properties of the iterative method used to solve the resulting large linear systems.

Chapter 6 Summary, Conclusions and Future Research: Chapter 6
presents a summary and conclusion for this research and provides suggestions for

future research directions relating to the work developed in this dissertation.



Chapter 2

Optimization Methods in MROP

The optimum operation of multi-reservoir systems is a subject of great practical
and economic interest in the field of water resources problems. With advances in
computer technology, systems engineering techniques are rapidly being used in the
planning, operation and management of modern-day large-scale water systems. To
some extent, this is reflected by the abundance of research publications on this
subject in engineering and related literatures in the past few decades. A complete
review of all previous work on this subject would be a gigantic task. The scope of
the present review will therefore be confined to the coverage of deterministic opti-
mization procedures in the fields of linear programming and nonlinear programming
applied to the planning and real-time operation of multi-reservoir water systems for
hydro-power and closely related purposes. In addition, only methods with potential
for broad application will be discussed.
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2.1 Linear Programming

Linear Programming (LP) is perhaps the most widely used optimization tech-
nique amongst engineers. Its popularity, to some extent, is due to the existence of
standard programming packages capable of solving large problems in a reasonable
amount of time and at a reasonable cost. LP can handle a large number of variables
and constraints but requires that the relationships between these variables be lin-
ear, both in the objective function and the constraints. Dantzig [13] first developed
the Simplex algorithm for the solution of LP problems. Experimental studies show
that the number of iterations of the Simplex method increases proportionally with
the number of constraints and very slowly with the number of variables [68]. How-
ever, it is quite possible to make an example to show that the Simplex method can
require exponential time to converge to an optimal solution [33]. The possibility
of exponential complexity for the Simplex method created the need for much work
to look for a polynomial time algorithm. Karmarkar [32] is believed to be the
first to provide a practical polynomial time algorithm which comes from the class
of algorithms called the interior-point methods (IPM).

Purely linear programming problems in water resources are rare. Most prob-
lems are nonlinear in nature. Some applications of water resources problems have
simple formulation in nature so that it is quite possible to use linear programming
directly. Ellis and Revelle [18] present a deterministic, separable, linear algorithm
for maximizing aggregate hydro-power production. In their iterative method, they
used standard linear programming software to test several applications involving a
hypothetical single-purpose hydro-power reservoir and 20-year monthly flow record
from the Gunpowder River in Maryland. The separable linearized forms were solved

quickly using Mathematical Programming System Extended (MPSX) software on
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a variety of IBM hardware.

Srinivasan and Simonovic [70] present a new reliability model for planning the
operation of a multi-reservoir system for hydro-power generation and flood control

considering the stochastic nature of inflows.

In their proposed method, they maximize the benefits of hydro-power generation
and minimize the economic losses due to reservoirs not meeting required reliabilities
for hydro-power supply and flood control. This algorithm also uses a linearization
technique to approximate the nonlinear energy function and determines the optimal
reservoir release policy along with optimal reliabilities satisfying the hydro-power

demand and providing the required flood control storage.

Most water resources problems, however, are inherently nonlinear in structure
and therefore LP cannot be directly applied. This is especially true of hydro-power
system where energy generation is a non-separable function. In order for standard
LP to be implemented for this type of problem, a suitable linearization scheme
must be introduced. Depending on the nature of such non-linearization, there are

at least two methods for problem linearization.

The first approach, known as piecewise linearization (PL) converts the original
nonlinear function to a series of linear functions with the definition of additional
variables. Sun et al. [72] use the PL method on their implementation. Using a
generalized network formulation, they incorporate the nonlinear evaporation loss
function of a reservoir in a water-supply-optimization model. Then, they piecewise-
linearize the nonlinear function and represent the resulting line segments by a series
of arcs. An appropriate arc-flow multiplier is used to preserve the order of arc-flow
fulfillment. They solve this model by an embedded generalized network algorithm
(EMNET), which is designed to solve a linear programming problem with an em-
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bedded generalized network substructure.

The second method involves repeated applications of LP to solve a series of ap-
proximate problems in which the original objective function is linearized. A widely
adopted linearization scheme is based on the first-order Taylor’s series expansion
of a nonlinear function about a given initial solution. This method is known as
Successive Linear Programming (SLP) and is more general as it can cope

with the introduction of additional variables.

Rezniceck and Simonovic [63] introduce an algorithm for hydro-power optimiza-
tion named EMSLP (energy management by successive linear programming). In
the first stage, the EMSLP algorithm solves the underlying LP problem by succes-
sively updating the estimated storage values. In the second stage, it attempts to
improve the objective function by decreasing the storage variability. The EMSLP

model is considered to be a successful experience with the use of SLP in practice.

Tao and Lennox [73] apply SLP to the operation of the High Aswan Dam on
the Nile River Basin. They report that the feasible solutions of a reservoir system
lie on the hyper-plane determined by continuity equations. The global optimum is
most likely given by a non-extreme point on that hyper-plane if the performance
index is nonlinear and monotonic over the region defined by the bounds of storages

and releases.

SLP usually works reasonably well for problems with lower degrees of nonlin-
earity on the objective function and the constraints. The convergence proof of
SLP is given in [54] for the case of linear constraints. The convergence theorem
states that if the objective function is continuous and differentiable, the sequence
of solutions obtained by SLP will converge to a stationary point for the original
problem, provided that a proper step-bound reduction scheme is chosen. The step-
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bound limitation relates to the maximum allowable change in the decision variables
between two successive iterations. In the next section we will describe Dynamic
Programming (DP), a method that is as widely used in water resources man-

agement problems as LP.

2.2 Dynamic Programming

Dynamic programming (DP) is one of the most widely used optimization techniques
in reservoir operation studies. Early works started with a form of stochastic dy-
namic programming based on calculus of variations. The major breakthrough in
dynamic programming was due to Bellman (3|, who developed what is now called
discrete dynamic programming. He defines dynamic programming as “the theory

»

of multistage decision processes An advantage of dynamic programming over
other methods such as linear programming is that a problem is solved one stage
at a time. The computational burden therefore increases linearly with the number
of stages. Another advantage of DP is that there is no restriction of any kind on
the type and form of the objective value function and the solutions obtained are in

general globally optimum.

Standard DP can be formulated either in the continuous or discrete form. The
discrete form of DP, however, is more popular for most applications in water re-
sources systems for the reason of simplicity. In discrete dynamic programming, the
computation burden is dependent on the number and discretization of the state
variables. For a system with n state variables and m levels of discretization in each
state variables, there are m"™ combinations that have to be explicitly evaluated at
each stage of analysis. The Computational burden of DP therefore increases ex-

ponentially with the number of state variables. This characteristic is called the



CHAPTER 2. OPTIMIZATION METHODS IN MROP 12

curse of dimensionality and is the greatest weakness of DP. A lot of research has
focused on ways of reducing the computational burden and/or circumventing the

dimensionality problem.

A traditional but simplistic procedure for reducing the computational effort of
DP is the coarse grid method. With this procedure, the problem is first solved
using a coarse discretization of the state variable. Based on the resulting solution,
revised bounds on the state variables are refined and the grid size is then reduced.
The iterative procedure is repeated until the grid size has been reduced to the
desired precision and when no further improvement in the objective function value
is possible. This procedure, however, cannot guarantee a global optimum solution

and it also does not resolve the dimensionality problem.

A technique that truly overcomes the dimensionality problem is the Dynamic
Programming Successive Approximation Method (DPSA). Trott and Yeh {75] were
the first to use this method in reservoir operation study. In this method, an initial
guess of the state trajectory is first made. By allowing only one of the state vari-
ables to vary while keeping all the remaining variables fixed, the resulting problem
is solved as a one dimensional DP problem. After an optimum solution is obtained,
another variable is chosen to vary and the procedure is repeated until convergence.
Trott and Yeh [75] solve a six-reservoir problem with this approach and claimed
convergence within a reasonable number of iterations. In addition to not guaran-
teeing a globally optimum solution, the major weakness of DPSA is its inability to
cope with common constraints such as minimum flow requirements downstream of

two parallel reservoirs or total system generation demands.

Howson and Sacho [31] developed another variant of DP known as the progres-
sive optimality algorithm (POA) for solving multi-state DP problems. The work
was later expanded by Turgeon [76] and applied to the short term hydro-power
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scheduling of a system of four reservoirs in series. The principle of progressive
optimality is based on the premise that a particular trajectory is optimal, if and
only if every decision set is optimal with respect to its initial and terminal states.
The procedure is iterative in nature but does not require discretization of the state
space. For a particular stage, say ¢, the operation of all reservoirs during time ¢
is optimized by temporarily fixing the values of state variables at time ¢ + 1 and
t —1. The resulting single stage optimization problem involving all reservoirs can be
solved using iterative linear programming or nonlinear programming. The stage by
stage optimization is implemented for all stages resulting in an improved/updated
state trajectory. The entire procedure is then repeated until it effectively overcomes
certain criteria. Marino and Loaiciga [45] also adopt POA to the optimal operation
of Northern Central Valley, California which has a total of nine reservoirs.

The above literature review on the use of dynamic programming has been re-
stricted to deterministic applications. It is necessary to mention that there are many
applications of DP to stochastic problems. In fact, discrete dynamic programming
is particularly suited to stochastic applications when compared to all other opti-
mization procedures provided that the systems do not comprise too many state
variables. Perera 55| uses stochastic dynamic programming (SDP) to determine
the operating rules in terms of reservoir targets for urban water supply reservoir
systems. The SDP explicitly accounts for the stochastic nature of a stream-flow
to water supply system by considering a theoretical probability distribution for
stream-flow. Perera provides a theoretical convergence for the global minimum of
his method and applies it to the Melbourne urban water supply system in Australia
to produce the reservoir targets. He concludes that the SDP provides an objective

method of deriving satisfactory and acceptable operating values.

Recently, there has been interest in the use of a neural network procedure based
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method to find the optimal reservoir operating policies. Raman and Chandramouli
[61], for example, applied different methods of DP, SDP and standard operating
policy (SOP) and the neural network procedure based method on the dynamic pro-
gramming algorithm for the Aliyar Darn in Tamil Nadu, India and report promising
results.

2.3 Nonlinear Programming

Nonlinear programming (NLP) is the most generalized deterministic mathematical
programming technique. In this section, we study the recent advances on the

implementation and the models of NLP as they apply to water resources problems.

Many nonlinear programming formulations for the optimization of the multi-
reservoir operation of the hydro-power system exist. Tejada-Guibert et al. [74] de-
velop a model for the optimization of the multi-month operation of the hydro-power
system of the California Central Valley Project called CVPOP. CVPOP includes
the dependence of energy values within each month on the capacity factor of the
generating unit. This disallows the simplification of assuming constant monthly or
yearly values, as is common in other models. The model also includes contractual
energy and capacity constraints which are nonlinear because of the power-plant vari-
ables. Results indicate that large problems stemming from complex configurations
of water resource systems and from diverse physical, economic and operational con-
ditions, often of an unequivocally nonlinear nature, may be solved with nonlinear

programming techniques using currently available commercial systems.

The implementation of Sequential Quadratic Programming (SQP) which pro-
vides a super-linear convergence for many applications is practically used for most

small and medium size problems. Although SQP usually converges faster than
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SLP for most of the problems in small and medium sizes there have been only
a few people who have used SQP for the applications of water resources prob-
lems. Diaz and Fontane [15] use SQP to find the optimal allocation of power-plant
releases during peak demand periods. This carries an economic advantage in the
operation of hydro-power systems interconnected to large electrical networks. They
exploit the concave characteristic of the nonlinear objective function and show a
rapid convergence to the global optimum. They test their methodology on an
existing multi-reservoir hydro-power system in Argentina and report very encour-
aging results. They also compare their results with SLP and report a faster rate of

convergence for SQP.

Fletcher [23] uses SQP for a highly nonlinear and non-convex problem. The
methodology introduces a new method for the first and the second moments of
the storage state distribution in terms of the moments of inflow distribution. In
comparison with other methods which do not consider the minimum and maximum
bound storages and releases in their stochastic formulation, this method is able to
handle bound constraints. The new formulation is highly nonlinear in terms of
the objective function and constraints. Fletcher implements his algorithm to the
Great Lakes Problem in Canada using the SQP method and provides the mean and

variance of storages and releases of the application.

One of the highly successful software packages called GAMS/MINOS employs
a projected Lagrangian [6] on a sequence of linearly constrained subproblems to
solve problem with nonlinear constraints and objective function. During the past
decade, GAMS/MINOS has successfully been used for different applications of wa-

ter resources problems.

Peseshk et al. [56] presents a nonlinear optimization model to minimize pump-

ing costs for both a well field and a main water supply distribution system. They
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consider individual losses, pump efficiencies, and hydraulic losses in the pipe net-
work. The model is established based on the fact that when demand served is less
than the total capacity, there is a potential for reducing costs in the selection of
pumps to meet the demand. The NLP model is solved using the general nonlin-
ear optimization program MINOS. Peseshk et al. claim that for a given demand,
the optimization procedure provides the best combination of pumps to meet the

demand.

Ostfeld and Shamir [52] develop a model for the optimal operation of a multi-
quality water supply system, under steady-state conditions. The system contains
sources of different qualities, treatment facilities, pipes, and pumping stations. The
objective is to minimize total cost, while delivering to all consumers the required
quantities at acceptable qualities and pressures. They use a special approximation
of the equation for water quality in pipes which enables the model to select the
flow direction in pipes as part of the optimization. The steady-state example that
they use consists of six consumers from three sources, two of them with treatment
plants, and has three pumping stations and 10 pipes. The problem is solved using
GAMS/MINQOS for a base run and four additional runs aimed at studying the effects
of modifications in key data. Ostfeld and Shamir report that the optimal solutions
of the five cases demonstrate response to changes in economic and operational

conditions.

In practice MINOS works reasonably well for applications with lots of linear
constraints and few highly nonlinear constraints. During the past decade there

has been many practitioners in water resources areas who are using MINOS with

GAMS as an interface. (See for examples [53, 44, 71, 35]).

A water distribution system can be also represented by a Network where the

nodes are consumption points, intermediated points, and supply or reservoir regu-
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lation points. The links are pipes that conduct water between adjacent nodes. The
flow through a pipe link is dependent on the pipe diameter and length, the difference
in energy between adjacent nodes, and material friction characteristics. The cost of
the water distribution system is related to the pipe dimensions and supply capac-
ities. Santana and Soares [66] develop a method using a “branch and bound”type
algorithm to solve the problem of least cost water distribution systems design. For
each branch, they obtain the solution of the relaxed optimization by a generalized
reduced gradient technique in the space of the pipe diameter variables. For each set
of diameters they solve the Hazen-Williams nonlinear flow balance equations using
a Newton-Raphson algorithm in the space of the node head variables. Santana and
Soares test their method on a simple five-node artificial water distribution network

design problem with a single load condition and report encouraging results.

During the past few years, there has been tremendous interest in the recent de-
velopment of the software based on Trust Region Algorithms. Large and Nonlin-
ear Constrained Extended Lagrangian Optimization Techniques (LANCELOT)
has been one of the successful software packages designed for the purpose of general
nonlinear programming problems. LANCELOT is a standard Fortran 77 package
for solving large-scale nonlinear constrained optimization problems. By contrast to
the highly successful package MINOS, which is particularly appropriate for large
problems where the number of nonlinear degrees of freedom is modest, the emphasis
in LANCELOT is on problems which are significantly nonlinear, in the sense that
they involve a large number of nonlinear degrees of freedom [11]. However, the fact
that LANCELOT is effective for large-scale applications does not mean that it is

not appropriate for solving problems with only a few nonlinear degrees of freedom.

Since the early development of LANCELOT, there has been a great interest

in the collection of different test problems. The Constrained and Unconstrained
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Testing Environment (CUTE) is a suite of Fortran subroutines, scripts and test
problems for linear and nonlinear optimization problems. This library contains
over 800 different test problems for the purpose of comparison with existing soft-
ware packages. Among the 800 test examples, there are a few problems related to
water resources regulation. For example DALLASL.SIF is a large Dallas water
distribution problem with 667 linear equality constraints and 906 bound constraints
which can be found in the CUTE library. However, we are interested in very large-
scale problems with nonlinear equality constraints and nonlinear objective function

as the case study.

2.4 Summary

It is evident from the above literature review that a wide variety of techniques have
been developed and applied to the optimization studies of multi-reservoir water
resources systems. More algorithms can be expected to unveil themselves in the fu-
ture since this is a field of active research and development. Three different research
areas mainly based on LP, DP and NLP have been reviewed. We have explained
that SLP is used very successfully in the applications of water resources problems.
The fact that there has been many applications of water resources problems with
nonlinear objective functions and constraints has motivated much interest in the
use of NLP for these applications. However, there has been limited documented

research on recent developments on the theory and software packages of NLP.



Chapter 3

NP Problem Formulation

3.1 Introduction

In 1988, Poore and Al-Hassan [58] introduced new algorithms for solving con-
strained optimization problems by using several path-following algorithms. These
algorithms combined smooth penalty functions (the quadratic penalty for equality
constraints, and the quadratic loss and logarithmic barrier functions for inequal-
ity constraints) and their modern counterpart, the augmented Lagrangian function.
They solved these with continuation methods. In the first phase, they minimized an
unconstrained or linearly constrained penalty function, or augmented Lagrangian to
find a point which is reasonably close to the feasible region and then, in the second

phase, they used predictor-corrector continuation methods to follow the path.

This chapter presents the derivation of the Expanded Lagrangian Function for
general nonlinear programming. The quadratic penalty function is considered for
the equality constraints and the logarithmic barrier function is used for the inequal-

ity constraints. A simple form of constraint qualification is given which represent a

19



CHAPTER 3. NP PROBLEM FORMULATION 20

perturbation of the Fritz John first-order necessary conditions. The existence and
the regularity of the penalty path is also studied. A specific form of the optimiza-
tion problem is presented and the expanded Lagrangian equations are summarized

in an elegant form.

Consider the following general nonlinear programming problem,
min{f(z)|k(z) = 0,9(z) > 0} (3.1)

where f : R® - RL,A : R®* — R? and g : R® — RP are assumed to be twice

continuously differentiable.

Definition 3.1 The Lagrangian function associated with (3.1) is defined to be:
L(.’B, ’\a ©, #0) = ”Of - hT’\ - gT“ (3'2)

where the components of A € RY, u € RP, and po € R are called the Lagrange
P g

maultipliers.

Define the mixed quadratic penalty-logarithmic barrier function to be:

P(z,r) = (=) + 5o (2)h(z) — r 3 ln(gi(a)). (33)

i=1
where r is the penalty parameter. Here, the equality and inequality constraints
are incorporated into the penalized objective function P(z,r) through the use of
smooth penalty functions. We describe the penalty path as the solution set of
min P(z,r) as r changes and it must be a solution of VP = 0 by the first-order
necessary conditions. The gradient of the penalty function VP can be formally
identified with that of the Lagrangian VL by defining the Lagrange multipliers
appropriately. Using the definition of these multipliers as additional equations, one
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can obtain an expanded Lagrangian system (ELS) of nonlinear equations which,
with an additional modification, becomes a perturbation of the Fritz John first-
order necessary conditions. This modification prevents unbounded multipliers. Two
different systems, one based on the quadratic penalty-logarithmic barrier function
and the other based on the quadratic penalty-quadratic loss function, have been
derived and analyzed by Poore [58]. This chapter explains the one based on the
quadratic penalty-logarithmic barrier function.

With regard to ill-conditioning, Poore and Al-Hassan [58] have shown that only
three smooth penalty functions yield well-conditioned expanded Lagrangian sys-
tems. The canonical examples of these three classes are the quadratic penalty
function for equality constraints and the logarithmic barrier function (an interior
method) and quadratic loss function (an exterior method) for inequality constraints.
The remaining smooth penalty functions introduce artificial singularities and ill-

conditioning into the ELS and thus are not used in this dissertation.

The main features of this class of algorithms is that we first use an unconstrained
optimization technique to get on the penalty path at a value of r, say r°, where the
problem is reasonably well conditioned. Then the expanded Lagrangian system is

solved to reach optimality at r =0 .

3.2 The Optimality Conditions Defined by Non-

linear Equations

In order to have a better understanding of the theories that will be explained in this
dissertation, we need to have an overview of some basic material. We review some of

the necessary concepts such as the Lagrange function and the Karush-Kuhn-Tucker
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first and second order necessary and optimality conditions.

The following theorem, due to Fiacco [19], states the Fritz John first order

necessary conditions of problem (3.1).

Theorem 3.1 Let f, g, and h in (3.1) be continuously differentiable on an open
set containing the feasible region of (3.1). Suppose that z* is a (feasible) local
minimizer of (3.1). Then there ezist scalars \; (i = 1,...,q), po , and p; (j =
1,...,p), not all zero, such that:

(

Bo > 0,u>0,g9(z%) 2>
VL(z", A, ., tho) =
h(z") =
Mg(z") =

(3-4)

o O o ©o

\

where M = diag(p), p=(p1,...,pp) and L = pof —hTA—gTp

Note that if o = 0, then the contribution of the objective function is eliminated in
these optimality criteria. For this reason we need to add some additional assump-
tions to ensure that o > 0 and without loss of generality, uo can be taken to be
1. In other words, we need to confirm that some constraint qualification holds for

these equations.

There are several constraint qualifications [19], and the one used in the following
theorem is called the linear independence constraint qualification (LICQ). This
leads to the results called the Karush-Kuhn-Tucker first order necessary conditions.
The following theorems (3.2) to (3.6) are due to Poore and Al-Hassan [58].

Theorem 3.2 Suppose that the functions f,h and g are continuously differentiable

on an open set containing the feasible region. Let z* be a feasible point of the
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nonlinear programming problem (3.1) and define I(z") = {i|ll < i < p: gi(z*) = 0}
to be the set of active constraints. Assume that the following linear independence
constraint qualification holds at z* : The set S := {Vh,-(z');::’;, {Vg:}{i € I(z%)}}
is a set of p+ |I(z")| linearly independent vectors where |A| denotes the cardinality

of the set A. Then the necessary conditions that z* be a local minimizer to (3.1) are

given by equations (3.4) with po = 1.

The second order sufficient conditions require the following definitions of the index

sets A and A, the tangent space T, and a tangent cone C:
A={j:1<j<qgi(z)=0} A={jeAd:p;>0}
T ={yeR":y Vhi(z") =0(j =1,...,9),y" Vg;(z°) = 0 (j € A)}.
C ={yeR:y"Vhi(z) =0(j=1,...,9),y"Vgi(z") =0 (j € A),
y'Vgi(z®) 20 (e A-A)}
Theorem 3.3 Let f, h, and g in the nonlinear programming problem (3.1) be C?

in a neighborhood of the feasible region and let z* satisfy the first order necessary

conditions of Fritz John. Suppose further that

e A = A
o the linear independence constraint qualification in theorem 3.2 is satisfied.

o the Hessian of the Lagrangian V2L is positive definite on the tangent space T.

Then z~ is a local minimum to the nonlinear programming problem $.1.
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This theorem closely parallels the theory to be developed in the next section. An

example of a theorem with weaker hypotheses is:

Theorem 3.4 Let f,h, and g be C? in a neighborhood of the feasible region and
suppose that Fritz John first order necessary conditions are satisfied at a feasible
point z=. Then z* is a local minimizer of (3.1) provided the Hessian of the La-

grangian is positive definite on the tangent cone C.

3.3 The Expanded Lagrangian System

This section presents the Expanded Lagrangian System (ELS) for the general non-
linear programming problem. The mixed quadratic penalty-logarithmic barrier
function is expanded to a set of nonlinear equations which is the perturbation of
the Fritz John first order necessary conditions. The existence and regularity of the
penalty path have already been explained by Poore and Tiahrt [60] and are not
repeated here. Throughout this section f, g, and h are assumed to be at least C.
The mixed quadratic penalty-logarithmic barrier function is

P(z,7) = f(z) + 5-h" (2)h(z) — 7 3 Ingi(2)). (35)

Assume {z : g(z) > 0} to be nonempty. The first-order necessary condition for a
minimum of P is that VP = 0, which is a parameterized system of nonlinear equa-
tions. However, as we explained before, this system suffers from numerical problems
when r — 0%, the Jacobian of VP, the Hessian of P, becomes increasingly ill con-
ditioned as r — 0*. (The £; condition number k,(VZP) = O(%) as r — 0*.) To
remove the ill-conditioning, the equations VP = 0 are expanded as follows : Assum-

ing g(z) > 0 and 7 > 0 then (z,r) solves VP = Vf+ VAT [2] - 3% Vg, [‘,L] =0

=1
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if and only if (z, A, g, 1) solves the expanded system

Vf(z)— Vh(z)TA-Vg(z)Ty = 0
h(z) +rA =0
Mg(z) —re = 0,

where M = diag(p1,..-,4p) and e = (1,1,...,1)7 € RP. (The last two equations
are derived from the definitions A = —h/r and y; = r/g:(z).) Fiacco and Mc-
Cormick [19] were the first to use these equations to investigate the behavior of the
penalty path near r = 0. However, these equations had never been used actively
in the literature for nonlinear programming until the work of Poore and Al-Hassan
(58] who used continuation methodology to solve them. The system (3.3) may still
suffer from numerical deficiency because a multiplier may tend to infinity when
either a constraint cannot be satisfied or a constraint qualification fails [58]. Also
the use of shifts in the barrier function can sometimes cause a multiplier y; to tend

to infinity at a positive value of r.

Theorem 3.5 Let f : R* - R, A:R™ - RY, and g : R™ — RP be C' functions,
and suppose [y is a given nonzero real number. Then when r # 0 and g(z) > 0,

component wise, (z;r) solves

h P T
—— T — -— > — —

VP=Vf+Vh H ;Vg‘ [g‘_] 0 (3.6)
if and only if for the given By # 0 there ezists a solution (z, A, p, po; 7) € RHPHat2
with po > 0 of

VL(z, A, g, po) =
h(z) +7TA =

F(z, A gy pio; 7) = 4 (3.7)

Mg(z) — pire =
B+ + MR- B2 =

o O O o
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where L = pof —hTA —g"p, M = diag(p1, . .-, H8q), p = (1. - )7,
A=(A,...,Ag), and ¥ =r/po.

Proof:Suppose equation (3.6) is valid. Multiply through by po and choose pg > 0 so
that 43 = BE{1+ |h/r3+Ir/glZ]". Then define ¥ =r/uo A = —h/F, s = (uF)/gi,
so that (z, A, p, po; ¥) now solves the ezpanded system (3.7). When pg > 0 and
(z, A, 4, pio;T) solves (3.7), the reduction to (3.6) also follows directly from these

definitions once the normalization has been dropped. O

It is clear that the system of (3.7) can be changed to (3.3) only by setting ug =1
and dropping the normalization. Note that if z° is a solution of min P(z,7o),
Ao = —h(z°) /7o, p = 10/:(2°), and fo = [1 + [p°[} + [A°[3]*/2, then (z, A, i, po; F)
= (2% A% % 1;7¢) is a solution of F = 0, and assuming no singularities are encoun-
tered, one can follow the penalty path (z(r) = min P(z,r)) to r = 0 by following
the solution of FF =0 to ¥ = 0. Given this formulation the necessary and sufficient
conditions for the system (3.7) to be regular at ¥ = 0 are given.

Theorem 3.6 Let the system (3.7) be denoted by F(z;7) = 0 withz = (z,\, p, o).
Let (2°,0) be a solution of F = 0 and assume f,h and g are twice continuously
differentiable in a neighborhood of z°. Define two indez sets A and A and a corre-

sponding tangent space T by
A={j:157<q,9i(z%)=0} A={jeA:p;>0}

T = {yecR":y"Vhi(z°) =0 (j =1,...,9) ,y"Vg;(z°) = 0 (j € A)}.

A necessary and sufficient condition that the Jacobian D,F(2°0) be nonsingular is

that each of the the following three conditions hold:

e A = A; (Stirct Complementarity)
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o S :={{Vg(z°),i € A} U {Vh;(z°)’_,}} is a linearly independent collection

i=1

of p + | A| vectors where |A| denotes the cardinality of A;

o The Hessian of the Lagrangian V2L is nonsingular on the tangent space T at

2°.

If D_.F(2%0) is nonsingular, there ezist neighborhoods By of ¥ =0 and B,
of (2%;0) and a function ¢ € C(B,) such that F(4(7F),7) =0 for all 7 € B,
#(0) = 2°. This solution is locally unique in the sense that if (z;7) € B2 and
F(z;7) = 0,then z belongs to the manifold defined by ¢,i.e., z = ¢(7).

Proof: The necessary and sufficient conditions for the non-singularity of the Jaco-
bian D,F(z%0) have been established in the work of Poore and Tiahrt [60] in the
contezt of the parametric programming problem and will not be reported here. The

remaining part of the theorem follows from the tmplicit function theorem [10].

Several remarks are in order: If z° is a Fritz John or Karush-Kuhn-Tucker point,
then the first condition described above is called strict-complementarity (g;(z°) =
0 implies u? is nonzero) while the second condition is the linear independence
constraint qualification. Furthermore, if the first and second conditions are satisfied
and the third condition is strengthened to the Hessian of the Lagrangian being
positive definite on the tangent space T, then we have a second-order sufficient
condition for z° to be a local minimum provided u® > 0 and g > 0. Finally, it
is noted that the theorem is valid regardless of the point type. It may be a local

minimum, a saddle point, local maximum, feasible or non-feasible critical point.
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3.4 Special Cases

3.4.1 Application with Equality and Bound Constraints

In this section and the next we consider some special cases with nonlinear and linear
equality and inequality constraints respectively. We eliminate the bound constraints
from the expanded Lagrangian System and simplify the equations. This idea has
already been used in the context of linear programming and we have adapted this
for nonlinear programming [5]. Let us consider the minimization of the general

objective function subject to some general equality and box constraints.

min  f(z), (3.8)
s.t. h(z)=0,
[<z<u (3.9)

As explained, the above system can be expanded to the following system,

(
Vf—=VhTA-Vgim —Vgip =

h+7A
(3.10)

Mg, —re

o O o o

ng —Te =

\

]

where gy =z — I, g2 = —z + u, p and & are Lagrange multiplier corresponding to

lower and upper bound constraints respectively.

£

E,

S
I

L't
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and

S
I

Pn

The Newton step of the above equations has the following form,

(vir vet -1 1 | [az]  [ve ]
Vh I 0 O A Vh +rl
= - (3.11)
M 0 N 0 Ap Mg, —re
-M 0 0 N A Mg, —re
with
N =diag(—ly + zy,...,—ln + z,)
and
N = diag(uy — zy,...,un — z,)
The last two equations of (3.11) can be summarized as
MAz + NAp=—-Mg, +re (3.12)
and
—MAz + NAi = —Mg, + re (3.13)

Thus
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Ap = N-(—MAz — Mg, +re) (3.14)

and

AG =N (MAz — Mg, +re) (3.15)

From the first equation of (3.11), we have

V2LAz + VRTAA— Ap+ AE =~V (3.16)

By Substituting (3.15) and (3.14) into (3.16) we get

(VPL+N*M+ N '"M)Az + VETAA = —VL+ N (Mg, —re) — N~} (Mg, — re)

(3.17)
so the system of equations (3.11) is summarized to
VEL+N'M+N M VAT | | A b
4 A4 i I e (3.18)
Vh rl AX b,

where b, = —VL+1TI_I(.IVI.g2 —re)—N"'(Mg,—re)and b = —h—rI; N and N are
diagonal matrices and the inverse of these matrices are readily available. On the
other hand, this systems can still keep the sparsity pattern of the equations. This
modification enables us to handle bound constraints without any need to increase
the number of equations in the expanded Lagrangian system. The application to
the water resources problem that we study later involves such bound constraints.

The next section explains how to summarize equation (3.10) when there are only
linear equations and bound constraints with a quadratic objective function. The

quadratic optimization problem we solve later in section (5.10) has this form.
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3.5 Application with Strictly Convex Quadratic

Objective Function and Linear Constraints

The convex quadratic problem with linear constraints has already been studied by
different people. (See for example [50, 77]). The problem that we are concerned

with in this section has the following form,

min ¢c'z+z"Cz, (3.19)
s.t. Az = b,
l<z<u (3.20)

where z,¢,b,l,u € R*?, C € R**"and A : R® — R%. We also assume that C > 0. As
we can see, the objective function is quadratic so we can add the linear constraints
as a quadratic penalty term to the objective function. This modification allows us

to simplify the Expanded form of the equations very significantly as follows:

min c'z+z'Cz+ LA”—_"ZL:(-A’—'Q, (3.21)

s.t. [<z<u

The expanded form of (3.21) has the following form,

VL=20
Mg —re = 0
Mg, —te = 0
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where VL =c+ Cz + 41%‘" - ‘4—:9 — ¢ + F and p and f are Lagrange multipliers

corresponding to bound constraints.

Vi —-I I Az VL
M N 0 Ap | =—| Mg —re (3.22)
-M 0 N A Mg, —re

The last two equations of (3.22) are,
Ap = N"'(re— MN — MAz) (3.23)
Af =N '(re— MN — MAz) (3.24)

Having used (3.23) and (3.24) in the first equation of (3.22) , we have

T

(C+ 224N M+ N M)A = ~VL— N~ (MN—re)+ N (MF -re) (3.25)

r

Theorem 3.7 IfC>0,0<l<z<u, >0 and i >0, Then

C+4A4+N'M+N M
s positive definite.

Proof 3.1 For any nonzero d € R we have, d"(C + # +ﬂ'1M+N-1H)d =
d"Cd+d"4Ad + d"(N"'M + N '"M)d where dCd > 0, since C > 0 and, for

r>0,d" A:—Ad > 0 and finally since

B B
Iy —ll u)] -2y

N'M+N 'M= . (3.26)

. —bBn_ _
Zn—In YUn—ZTn

where ;—"‘_l—. + B >0, fori=1,...,n, we have dT(_N_'lM+F—’H)d > 0 which

u;—z;

establishes the proof.
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Algorithm (3.1) shows a simple Pseudo-code for the application discussed in this
section. The term i::—‘ in the objective function may remove the sparsity pattern
of the system of equations. But at each minor iteration, only diagonal elements of
the matrix C + ‘4,# +N M+ N "M are changed. This is an important feature
as one can use the Choleskey factorization at the beginning of each minor iteration
to solve the equations and then use this factorization for the next minor iterations
as a preconditioner and apply the conjugate gradient method. As we will show in
our results, at each step of the algorithm, only a few conjugate gradient iterations

are needed in order to solve the system of equations.
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Algorithm 3.1

Initialize z,r and the tteration counter k.

=—o

k=0,r=r,,zo=(u+1)/2, M=M° M=M ,N=N°and N=N".
Do while r < toler

while not converged do
ke—Fk+1;
ifk=1
L« chol(C + 44 + N'M + N 'M).
Solve LLTAz = ~VL - N"Y(MN —re) + N (MN —re).
else

Apply L as pre-conditioner, find Az using Preconditioned Conjugate Gradi-

ent.

end
Update Ap = N~'(re — MN - MAz).
and A = N—l(re — MN - MAz).

Compute the step-length a
Update £ «— z + aAxz.
Update p < p + alp.
Update o «— g+ aApn.

end do
r« reducer and k< 0

end do
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3.6 Trust Region Methods for Nonlinear Equa-

tions

Our main concern in this section is to use the concept of Trust Region Algorithms
to solve the nonlinear equations arising in the Expanded Lagrangian Systems (3.7).
We are interested in having a trust region algorithm with robust convergence prop-
erties and the ability to deal specifically with Sparse Nonlinear Least Square Prob-
lems. Despite the fact that there are many applications in large scale, there have
been few algorithms and codes designed for this purpose. Fletcher [20, 22] was
the first person who provided software to solve the nonlinear equations based on
a modification of Levenberg’s algorithm. Duff et al. [17] use linear programming
combined with trust region idea to solve the nonlinear equations. It is based on
minimizing the [;-norm of the linearized vector within an l.-norm trust region,
thereby permitting linear programming techniques to be easily applied. At each

step d;. is a solution of the problem

min || fi + Jid |
st || d[l< Ax. (3.27)

This is equivalent to a linear program which can be expressed as

minz:((,- + &)
ot Td+(—£=—f, (3.28)
(3.29)

>0,6>0
(2082 i=1,2,...,n (3.30)
—Ap <d; <A
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Note that the constraint matrix is
(Je I =1) (3.31)

so that a typical basis has a mixture of columns from Ji, I and —I and its triangular
factors will be sparser than those of Ji if a good pivotal sequence is used. This
linear program may be solved by the simplex method or any other interior point
algorithm. Duff et al [17] show that their method converges to an optimal solution
for some test problems even when the Levenberg-Marquardt code NS03 [62] and
the sparse dog-leg code of Munksgaard and Reid [51] fail to converge.

There are also other algorithms which keep the properties of rapid convergence
in the low-residual cases and behave reasonably well in the general cases. For
example, Martinez’s algorithm [47, 48] represents a compromise between global
convergence in the general case and rapid local convergence in the “easy”case. Its

main features, described in algorithm (3.2), are the following:

1) At each iteration, the linear Least Squares problem
J(ze)dr = —F(z4)

is incompletely solved using a Preconditioned Conjugate Gradient method.

We may call this procedure an “Inexact Gauss-Newton "strategy.

2) The point z,; is obtained using a search procedure in the plane spanned by dj

and V(2 || F(z) [|?)l.s-

Algorithm 3.2 Let F: D CR* > R™, m >n, F € CYD), D an open set.
z° € D is an arbitrary initial point, () a sequence of strictly positive numbers

such that limn. =0, 6,, 62 € (0,1), 036(0,%),11 >1, and0< M < M < .
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Also, let T be the k-th approzimation to the solution obtained with this algo-

rithm. Then denote
1
Fi =F(zt), Ji = J(zk), ge = I Fe = V(g | F(z) II?) |z,

To obtain the new step T4y, perform in the case gr # 0 the following steps:

Step 1: Compute Ji. and gr. If g =0, stop.
Step 2: Obtain wp € R™ such that

N JETewe + gell < mellgrll (3.32)

Step 3: Obtain vi. € R" as the solution of the following bi-dimensional problem:
Minimize | Jiv + Fi ||
st. v=Age + Awe, (v < Hwell.
Step 4: Set d. = —gi. Test the following two conditions for vy:
(e, 9) < —Orllvell [l gell (3.33)

and

Mgl < llwell < M[gll. (3.34)

If equations (3.33) and (8.34) are satisfied, set di = v, otherwise &z = d},
Step 5: Sett =|| d} ||. Perform steps (5a) to (5d).
(5a) Obtain d as the solution of the problem:
Minimize | Jid + Fi ||

st d=XAdl + Aod2, ||d]| <t (3.35)
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(sb) If
SIFG+d) P < SIF@E) P + Olgnd  (336)

go to step 5d.

(5¢) Lett be such that
Ot <t <(1—63)t

Replace t by t, Go to step 5a.

(5d) dr = d, Ziy1 = Tk + di-

To conclude this section we shall prove that this algorithm is well defined. The
following proof is restated from [47].

We prove that when ¢ is small enough, condition (3.36) is satisfied. Let us call
d(t) the solution of the minimization problem (3.35). Because, d(t) is the solution
of a two variable problem restricted to the bi-dimensional ball of radius ¢, therefore,
lim,_,q %)m is the steepest descent direction of the function restricted to the plane
spanned by d; and d2. On the other hand, the steepest descent direction of the
(unrestricted) function belongs to this plane (di = —gi). Therefore

dit) gk

e [lde)ll gl

Now if we define:

UL F(ze +d) II? = Il F(ze) 1)
4l

1
o) = ;
then we have by the Mean Value Theorem:

o(d) = “"”‘H*f“d”d), 0<c<l.
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Thus ¢(d) tends to — || gk ||, when ¢ tends to 0.

On the other hand, the expression %’;T‘IQ, also tends to — || g ||. Thus,

(L Fe+d) I - | P 1) _
(gk’d> ’

) 1
hm 5

and so

1 (I FEe+d) P -1 FEIIP) S
= 2 0
2 (gkvd)
if ¢ is small enough. But since (gi,d) < 0 the inequality (3.36) holds for small ¢.

3.7 Global Convergence Results

For completeness, in this part some global convergence results are presented. Most

of these are stated without proof as these results are directly from [47].

The results presented here also hold for any scalar function f € C'(D), with
Vf(z) = g(=).
Let, f(z) = } || F() II*

Define
Clv,w)={z€R"|[z=mv+ 71w, 7,72 >0}

(the convex cone determined by v and w).

The algorithm (3.2) is a particular case of a more general algorithm, which is

as follows:

Algorithm 3.3 Given z° € D an arbitrary initial point, consider the sequence

defined recursively as follows:
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If g = g(z*) =0, stop. Otherwise:
Tiyy = Tk +di

where

de € Cldp,dz), Ildell < 12l
(dfevgk) S _01 ” d;: ” " gk "7 1= 172'
Mgl < lldll < Mg, i=12

f(ze + di) < f(zi) + 02(gx, dr),

and, finally, one of the two following possibilities hold:

dp=d?
or:
There ezists
di € C(d}, d),
s.t.
lde 1< v Il de |,
and

F(ze+de) > f(ze)+ 62(gk, de)-

40

(3.37)
(3.38)
(3.39)
(3.40)

(3.41)

(3.42)

(3.43)

(3-44)

Theorem 3.8 (Martinez, 87) Ifz* € D is a limit point of the sequence generated

by the above general algorithm, then g(z*) = 0.

Proof 3.2 Ifz" is a limit point of the sequence (zi), then there ezists a subsequence

(3k)keK1CN such that
lim zF=12"

ke K,
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Define B = {zi, k € K }. B is a bounded subset of D. Therefore, as f € C*(D),
It g(z) II< Cy forallz € B.

Now, if g(z*) # 0, then there exists K, an infinite subset of K,, such that:
| g(zi) |= C2>0 forallk € K,.

Therefore,
MC, < ||d.|| < MC, foradlke K,, i=1,2.

Hence, there exists K3 C K, such that

lim d =d;, i=1,2.
kEKs

and

MC, < ||&|| £ MG, i=12
Taking limits on both sides of 3.88 and 3.39 for k € K3, gives:

(di,g(z7)) < =0 [ il |l 9(=z") |l

and

Mgzl < &l < M|g=)], i=1,2

Now consider two possibilities:

(a) There ezists a > 0 such that || di ||> @ || gk || for all k € K.
(b) The opposite to (a).
(a) In case (a),

aC;<allglz) |l < lldell < Il < Mlg(ze) Il < MCy
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for k € Kj.

Therefore, there erists K4 C K3, such that

lim di=d#o.

Now, by equation (8.87), di is in the positive cone determined by di and &2. A
straight forward calculation shows that the inequality (3.38) holds for all the mem-

bers of this cone. So,

(de,g(zk)) < —Oilldell llg(ze) | = —v<0

Taking limits on both sides of this inequality for k C Ky, results in:

f(z"+d) = kl‘isffl{l‘ flze + di) < klgi!(l‘ f(zi) + 02(dk, g(zx))
= f(z") +0:(d,g9(z")) < f(z") — 6162 || A || || g(=™) |l
= f(z7) - 6,7.

Thus, there ezists k, € N such that, if k > k,, k € K4, then

f(zens) = f(orea) < F(°) = 027
which is a contradiction.

(b) In case (b), di # d and lim di = 0 for all k € K5, an infinite subset of
K. Therefore,

lm dp =0,
kGKs

and
fzi + die) > f(zi) + 02(dx, gi.).

Thus for k € K,

(Jks g(zk + Cka)) > 92(d‘ka gk)v 0 S Ck S 1
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and so

- -

dk - dk
(—— 9(zx + Gedr)) > 02(——, gx)- (3.45)
|| di |l Il di ||

Now let K¢ be an infinite subset of Ks such that limeg, II%:H =0.

Taking limits on both sides of equation (8.45) for k € Kg, gives:
(9(z7),v) 2 62(g(z"),v).

But d; belongs to C(d},d?), so (Jk/ | dy lg(z)) < =601 || g(zk) ||, thus

(v,g(z")) < 0. This implies that 8, > 1, which is a contradiction.

Thus the proof is complete. °

Corollary 3.1 Let ¢ > 0. If {z : f(z) < f(z°)} is compact, then there ezists
k € N such that || g(z¢) || < e.

The ‘topological’ properties of the above general algorithm may be completed

with the following two results, which are stated here without proof.

Lemma 3.1 Let z* be a strict local minimum of f in D, € > 0. Then, there ezists

a neighborhood V of = such that =, € B(z",¢) for all k > k,, provided z*> € V.

Theorem 3.9 (Martinez, 87) If z* is a strict local minimum of f in D, then

there exists € > 0 such that im z, = z*, whenever z° € B(z",¢).

Martinez [47] showed that his algorithm shares the same properties as Gauss-
Newton and related methods in the case of full-rank and low-residual, however, his
algorithm needs to solve the subproblem several times. This makes the algorithm

in some cases inefficient. Martinez and Santos (48] suggest a new Curvilinear search
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direction which prevents the algorithm from solving the subproblem more than once

to provide the new direction dj.

The proposed method has new approach similar to the work of Martinez and
Santos. Like in the previous algorithm, after the calculation of an approximated
Gauss-Newton direction d, the next iterate on a two-dimensional subspace which
includes d is determined. We simplify the process of searching the new point by
defining the plane using a scaled gradient direction. The global convergence prop-

erties are presented at the end.
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3.8 A New Algorithm with Curvilinear Search

Direction

In this section we present the proposed algorithm which does not need to solve the
subproblem in step 5 of algorithm (3.2) several times.

Algorithm 3.4 Let F: Q C R®* - R™,m > n,F € C}(2),Q an open set. Let
z° € Q be an arbitrary initial point, n € [0,1),6,,8, € [0,1),6; € [0, %),EI_ >0,Me
(6,7, 7).

Let z be the k-th approzimation to the solution. We denote F, = F(zt), Ji =
J(zk), g = JTFe =V(L | F(z) %) |zx» De = diag(o},...,0F), where

(zi)? if (z1)? € (M, M),
= M if (zi)<M,
M if (1) > M.

Step 1: Compute Ji. and gi. If gi = 0, stop.

Step 2: Obtain wp € R™ such that

NI hwe + gell < mell ge | (3.46)

Step 3: Obtain vi, € R™ as the solution of the following bi-dimensional problem:
Minimize || Jiv + Fi ||

st v=Mge + Aw, |v| < ||we|-
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Step 4: Set di = —gi. Test the following two conditions for vi:

(v ge) < =G llvell [l gell (3.47)

and

Milgell < lloll € Mlgell- (3.48)

If (8.47) and (3.48) are satisfied, set di = vi otherwise set di = dj,

Step 5: Sett =1 perform steps (5.a) to (5.d)

(5.a) Set
9 9%
d = d(t) = 3d} + ===Et(1 — t*)d} (3.49)
9 4
(5.b) If
1 1
5 I F(zi +d) I? < 5 I F(ze) 12 + 82(gk.d) (3.50)
go to step (5.d).
(5.c) Lett be such that
Oslldt) | < [1dE) I < (1—865)]d() ]l (3.51)

Replace t by t, Go to step 5a.

(5.d) dr = d, zi41 = zi + di.

The algorithm (3.4) has similar steps as the one introduced by Martinez [47]. In
step (5.a), we are using a new curvilinear search algorithm which is slightly different
from [48].
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Theorem 3.10 The algorithm 8.4 is well-defined.

Proof 3.3 Qur proof is similar to Santos et al. [{8] and corrects the errors in the
original paper. We prove that, if g, # 0, we can reach step (5.d) in a finite number
of iterations. In step 2 of the algorithm, we solve a system of linear equations.
Assuming that the Jacobian of the ezpanded Lagrangian function has full rank, the
system of linear equations always has a unique solution. In step 3, we solve a two-
dimensional subproblem and v is in the positive cone determined by gr and wi. Step

4 does not create any problems. Finally, we verify step 5. Let us write
d = d(t) = t*d, + at(1 — t*)d; (3.52)

where a = %. By definition of d¥ and (3.47), we know that a > 0. By (8.51), we
only need to prove that (3.50) is satisfied when t is small enough.
In fact, by the Mean Value Theorem,

5 I F(e* +d(e) I =3 | F(a) I°= o(z* + €0de)Tde)  (3.59)

where g(z) denotes V(3 || F(z) ||?) and 0 < €(t) < 1.
On the other hand, d(t) is a positive combination of dy and d; in (8.49) and gl d} <
0 and g & < 0. Therefore g d(t) < 0 for t € [0,1].

So, by (8.58)
i (e + ) [P =31 Flon) [P _ glow+ QD) dle) _ gla)Td:
” g1 d(2) oL d(t) o(ze)Tdl
(3.54)

Taking limits on both sides of (3.54), we have
| Pzt dy) P =2 Il Flzo) I _

1 3.55

e (3:59)
Therefore, given 8, € (0,1), there ezists t > 0 such that
LI Flze +d@E) |2 -L | F 2

LIl Fos+di) I =4 | ) IP 556)

gr d(f) -
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for t € (0,£). Thus, using g7 d(£) < 0, we obtain (3.50).
This completes the proof.

Theorem 3.11 Assume that (zi) is generated by algorithm (8.4) Then:

(a) If there ezists ¢ > 0 such that || gi |< c forallk =0,1,2,... andz" € Q isa
limit point of (zi), then J(z*)"F(z") = 0.

(b) Lete > 0. If z € Q :|| F(z) ||I><|| F(z°) ||* is compact, then there ezists k € N
such that || J(zx) T F(zi) |[< e

(c) Let z= be a strict local minimizer of f in Q,e > 0. Then, there ezists ¢, > 0

such that || zr — z~ ||< €.

(d) Ifz" is a strict local minimizer of || F(z) || and an isolated stationary point

in Q, then there ezists € > 0 such that lim z, = z*, whenever || z° — z" ||[<e.

Proof 3.4 Algorithm (8.4) is a particular case of a slight extension of Algorithm
(8.8). In fact, Santos et al. [{8] proved the theorem by changing the inequality
| de I<]| || in (8.51) to || di |< K || &2 || for some constant K. It is clear that
the equations (8.47) and (3.49) and the definition of d. implies that d. € C(dL,d?).
We can also verify that d} satisfies:

TE< 0] gl (3.57)
In fact,
lga di |98 Drg| M| g |I? —
Toell 1T~ Toell NDearll =Nl Nonf LM26 (358

So, (3.57) is proved.
Now, by (8.47),(3.48) and the choice of &2 we have:

e < -6 dZll Nonll- (3.59)
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Hence, the aziom (3.38) of (3.8) is satisfied.
By the definition of di., we have

Mgl < lldll < Mlgl- (3.60)

Hence, by (3.47),(3.48), the aziom (8.89) of (3.3) is also satisfied. Also, by (8.50),
the aziom (3.40) of (8.8) holds. Finally, we prove the inequality

lde | <K|ld| (3.61)
From the ezpression (8.52) for d(t) we have,
d (t) = 2td? + a(1 — 3t*)d}:
Therefore, if y(t) =|| d(¢) ||, we have, for t € [0,1],

Y'(t) = 2d'(t)Td(t) = 2(2td} + a(1l — 3t2)d}) T (t*d2 + at(l — t?)dL)
226327 d2 + 2at?(1 — t?)dL' &2 + at?(1 — 3t2)dL" &2 + a?t(1 — 3t2)(1 — £2)dL " d}]
4% || &2 |2 +[4at?(1 — ¢2) + 2at2(1 — 3¢2)]dL T @2 + 2a%(1 — 3¢2)(1 — t2) || L. ||

< 4| & | +6ad} dZ + 227 || d} ||?
YV 2 ligell U211 IdL l1dL)] 2ligell 14201 [14LI12
S AM g P+ "G e T " el 1
< 4H2 ” 9 ”2 _{__6H:l|alz||2 + 2ﬁ:”9k“2
b 1 1
-_—2
S UM+ + B g |P=Crll g |2
(3.62)
Therefore, for t € [0, 1],
! ‘{3 2
1d(@) [P = ¥(t) < 7(1) + mazaeuly’ ()] <I| € |12 +Cy || gi 12| & ||? +2050
= 1+g) &I
(3.63)

Thus, (3.61) is satisfied with K = /1 + I%and the proof is complete.
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Now, by (3.47), (3.48) and the choice of di we also have:
gidy < —6ulldell llall-

So, the axiom of (3.38) of (3.3) is satisfied.

3.9 Motivation

In this section, we explain the motivation of using curvilinear search direction
similar to one introduced in [48]. We know that d(t) lies in the positive cone
generated by di and d? for all ¢ € [0,1]. On the other hand, we want the direction
to have a negative gradient when the step is infinitesimal. We assume the search
direction is tangent to d' for small step ¢, (i.e. d,(0) = ad}). It is also assumed
that di(1) = d%,di(0) = 0,a > 0. Let h be the orthogonal projection of d? on the
orthogonal complement of the line generated by d}, related to the norm

Il - ”D;‘ (l ”z:lz 2" D7tz for all z € R™).

Therefore,
T e
hoq BDR,
di" D;tdt
But d} = —D,g, hence,
T2
h=d2— Jelkgt
k gl:-dlt k

Each point z in the plane spanned by di,k may be expressed as z = y;d} + y2h.
T

d? corresponds to y; = %af-,yz =1.
k "k



CHAPTER 3. NP PROBLEM FORMULATION 51

A simple curve considered by Martinez [48] has the following form,

T
P={z=yd;+y:h|y2 = (%yl),}’
9k %
and the curve used in algorithm 3.4 has the following form in the coordinate

(y1,92)

1 gl;rdi 3
P={z=yd+yh |y = gle(—yz +y2+ V¥2) }-
k “&

3.9.1 The Implementation

In this section, we explain some of the details of our implementation for the trust

region Algorithm 3.4. The bi-dimensional subproblem

Minimize ” Jr d+ Fp "

st = /\17(1 + /\27T2, ” d ” S A

arising in step 3 of the algorithm (3.4) is solved as follows, where A defines the

trust region radius.

Consider the usual case when 7, and 7, are linearly independent. Let {e,,e;}
be an orthonormal basis of the subspace spanned by {m,m3}, E = (e1,e2). The
above problem can be written as:

Minimize ” Jk T+ Fi “
st. #=E\ (=] < A (3.64)

EX = [61,62] [il ]

since
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Equivalently, the above problem can be written as

Minimize ” Ji EA + F; “
st. J|EA|| £ A (= [M] £ 4)

(since E is orthonormal)

Minimizing the above system is also the same as minimizing

IJeEX + Fell> = (JeEX + F)T(JEX + Fe)
= ATETJJJLEX + 2A\TETJ[FR) + FF:
= ATBA + 20TC + D
Subject to IAll < A.

where:

B =(ETJJJ.E) is a2 x 2 symmetric positive definite matrix since,
E is a n x 2 matrix and J7J is a » x n matrix,
and J is a full rank matrix.

C=(ETJ[F,) is a vector of length 2. Since, J7 is a n x n matrix
and F} is a n vector.

D=F'F, is a scalar constant.

Hence, the minimization problem (3.64) can be considered as a simple quadratic

problem with a quadratic constraint:

Minimize ATBA + 2A7C + D
s.t. Al < A (3.65)
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This problem can be solved in a number of ways. Appendix B describes the
method that we used. There are , however, some better ways to solve this sub-
problem. Williamson (78] for example, studied this case to find all local and global
minima where B is undefined. By global minimizer, we mean a point in the feasible
set where the objective function takes on the absolutely lowest value. Clearly, all
global minimizers are also local minimizers. This approach also breaks down the
analysis into several different cases based primarily on the eigen-decomposition of
the (2 x 2) Hessian B. It is shown that in the degenerate case, all of the global
solutions to problem (3.65) can be determined analytically. This fact is strongly
dependent on the restriction to two dimensions and is the primary reason for the
assertion that finding all of the local solutions to problem (3.65) is computation-
ally inexpensive. In our case, the matrix B is positive definite and hence the local

minimum is also the global minimum.

3.10 Summary

In this chapter, we have studied a method solving constrained optimization prob-
lems based on first order necessary conditions. We have explained that it is possible
to remove the singularity from the penalty based algorithms by expanding the equa-
tions. We have shown that these expanded equations can be used to solve general
nonlinear optimization problems. The special case of bound constraints has been
treated so that we would not need to increase the size of the problem. A new
bi-dimensional trust region with a curvilinear line search has been introduced and
convergence properties have been studied. Details of the implementation for the

solution of bi-dimensional trust region have been shown at the end.



Chapter 4

The Implementation of the

Proposed Method

4.1 Introduction

This chapter is completely devoted to a detailed discussion of the works that have
been completed and discussion of the difficulties arising for solving the systems
of nonlinear equations in Expanded Lagrangian Systems. We test the proposed
method on some small test problems and compare the number of the function
evaluation of the proposed method with the other methods which use an Expanded
Lagrangian Systems. The second example involves a real benchmark problem from
water resources. This application involves a nonlinear objective function but only
linear constraints, however, we will consider a large-scale problem with non-linear

objective function and nonlinear constraints in chapter 6.

94
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4.2 Proposed Method (PM)

Having described the necessary material, such as Expanded Lagrangian Function
and the proposed trust region algorithm, we are now able to synthesize together
and introduce the proposed method (PM). From now on, we assume that we have
a feasible starting point which is at least inside the feasible region for inequality
constraints. However, there are different alternatives to find a feasible point either
inside or at least close to the feasible region. This is crucial because of the term
In(g;(z)) in the penalized objective function. One strategy is to use an uncon-

strained optimization technique to minimize the loss function
[(9(z) — 2roe)~]"[(g(z) — 2r0e)”] (4.1)

where (9(z) — 2roe)™ = {(g1(2) — 2r0)", . .. (gp(z) — 2r0)~} and (gi(=) — 2ro)~ =
min{(g:(z) — 2r0),0},(¢ = 1,...,p) to produce a point close to or in the interior of
the feasible region for the inequality constraints. If the approximate solution of this
problem is not feasible or is feasible but very close to the boundary of the feasible
region, then a barrier function shift can be introduced in the following way: Choose
€ > 0 and define §; by
0 if  gi(T)>e
0 = € if 0<giz)<e€ (4.2)
e—gi(Z) if @(z)<0
where 7 is the point obtained from the minimization of the loss function. Now we
have g;(Z) +6: > e>0, (i =1,...,p), and we use the shifted penalty function
P
P(z,r) = f(z) + k(z)Th(z)/(2r) — Y _(In(gi(z) + rd:/70) (43)
=1
which is well-defined at »+ = ry and z = z°. Having obtained an approximate

answer z° from the unconstrained optimization technique, we add a homotopy to
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the equation VL = 0 in order to account for a moderate value of VP. Thus given

z°, we switch to the following expanded system:
VL - (r/ro)VP(z%re) = 0
h+rA =0 (4.4)
M(g +1rd/rq) —re 0,

where L = f — R"A — g"p, M = diag(p), p = (p1,---,1p)7 , and A° = h(z%)/rq
and p® = ro/g(z°). We define the quantity By = (1 + |A|? + [p[2)*/? at each step
of the iteration, if this quantity becomes large, say of the order 10° or larger, we

switch to the following system:

(VL — (42 /r0)VP(z%,70) =

h+7A =

F(z,7) = { (4.5)

0
0
M(g + poT8/ro) —Fpje = 0
| #3 + (el + 1A -5 =0

where L = pof —h"A — g"p, M = diag(p), p = (p1,...,pp)", ¥ = 7/po. At
(z, A, g;7)=(z°, A%, % 1), where (z°, A%, u% 1o) is the solution obtained from the
first switch to the system (4.4), we have a solution of the system (4.5) given
by (z, A, u, po; 7) = (2% A% u% 1;7), and where S, is defined and fixed by Gy =
(1 +[X°F + [u13)*/?

4.3 Trust Region Method

The set of parameterized nonlinear equations (4.5) explained can be solved in a
number of ways. A Continuation method is used by Poore and Al-Hassan [58]

to keep track of the path as r tends to the prescribed limit. Lundberg [42] used
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the same approach to solve some highly nonlinear test problems and his results
indicate that continuation methodology performs reasonably well comparing with
some current methods. However, for the test problems from the book of Hock and
Schittkowski [30](results described next) it seems that the continuation method
does not seem to be competitive and this motivated us to use a trust region based
algorithm as the method is well known to be a reasonable alternative to solving

nonlinear equations.

4.4 Test Results

We compare the performance of three algorithms PENCON, LOSCON and TR-ELF
that solve the expanded Lagrangian systems with some other relevant methods in
Table (4.2). The implementation of PENCON uses the quadratic penalty-log bar-
rier function. Since an initial point satisfying strict inequality in the inequality con-
straint g > 0 is required for the log barrier function, Poore and Al-Hassan [60, 42]
first use the loss function (g~)" g to generate a point Z at which g(£) > 0 or is at
least close to the feasible region {z : g(z) > 0} and then introduce a shift § so that
g(z) + é > 0. Then a quasi-Newton method with a BFGS update is used to mini-
mize the penalty function P(z,r) = f(z)+h" (z)h(z)/(2r) — 7 In(gi(z) + rd;/r°)
at some value of the penalty parameter, say o, in which the problem is reasonably
well conditioned. A quadratic-cubic line search and an Armijo stopping criterion
[14], modified to maintain feasibility (g(z) + & > 0), have been used to globalize
the quasi-Newton method. Once the minimization problem is solved, continuation
techniques are used to track the solution to optimality at r = 0. The initial value of
ro = .1 has been used in the numerical experiments reported in Table (4.2) under

the heading PENCON where scaling has not been used. Additional information
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can be found in [58].

The implementation that uses the quadratic penalty-loss function is called LOSCON.
Since the loss function is an exterior penalty function, an initial feasible point for
the inequality constraints is not required. At the end of the unconstrained optimiza-
tion phase, expanded systems (4.4) or (4.5) is used and only the active inequality
constraints as equality constraints are treated thereafter. The implementation of
TR-ELF uses quadratic penalty-loss function to find a feasible solution close to the
boundary or inside the feasible region and then it switches to expanded Lagrangian
function (4.5) and uses the trust region algorithm (3.4) to solve the system of non-
linear equations arising in the Expanded Lagrangian System. The two dimensional
subproblem arises in step three of algorithm (3.4) is solved based on the method in
appendix (B). Several standard test problems from the book by Hock and Schit-
tkowski [30] are solved using a variety of codes in addition to PENCON, LOSCON
and TR-ELF. These codes, along with the corresponding authors and methods, are
given in Table (4.1).

A comparative summary of the number of function evaluations for various codes
and problem sets is presented in Table (4.2). The function evaluation counts for
the codes other than PENCON and LOSCON are taken from [41]. Consistent with
those function evaluation counts, they count the evaluation of a p-dimensional vec-
tor as p function evaluations; however, they do not count upper and lower bounds
on variables since they are handled directly in the code and the gradient evalua-
tions of linear constraints are counted only once. In particular, the n-dimensional
gradient of a scalar function is counted as n function evaluations. The approxima-
tion of the Hessian of the Lagrangian in the continuation phase is based on finite

differences [14].

The bottom row of Table (4.2) shows a ranking obtained by assigning one to
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Table 4.1: The Summary of Codes Compared

Code # | Code Name | Author Method

I TR-ELF Sadjadi & Ponnambalam | Expanded-Trust Region

II PENCON | Al-Hassan, Poore Penalty-continuation

III LOSCON Lundberg et al. Loss function-continuation
IV VF02AD Powell Quadratic approximation

\" OPRQP Bartholomew-Biggs Quadratic approximation

V1 GRGA Abadie Generalized reduced gradient
VII VF01A Fletcher Multiplier

IIX FUNMIN | Kraft Multiplier

IX FMIN Kraft, Lootsma Penalty
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Table 4.2: The Summary of Function Evaluation

Prob. I II Imm | 1Iv v vi | vII | IIX | IX
HS5 65 4 23 24 23 86 48 46 234
H10 49 | 124 | 97 50 128 | 678 | 282 | 556 | 689
Hi2 | 125 [ 210 | 99 72 184 | 277 | 442 | 578 | 362
Hi4 | 137 | 156 | 140 | 44 149 | 108 | 226 | 774 | 887
H26 | 411 - 541 | 152 | 210 | 444 | 1560 | 2276 | 622
H27 | 1016 | - 292 | 200 | 346 | 1714 | 435 | 960 | 556
H29 | 192 | 375 | 310 | 104 | 206 | 646 | 421 | 482 | 414
H34 | 1017 | 427 | 321 | 75 | 291 | 346 | 619 | *** | 2483

H39 | 164 - 805 | 195 | 411 | 2557 | 1110 | 1638 | 2295
H40 | 514 - 526 | 120 | 300 |2099 | 800 | 1724 | 2912
H43 | 219 | 509 [ 590 | 240 | 220 | 1580 | 448 | 1032 | 1949
H50 | 830 | 161 - 144 | 160 | 190 | 248 | 432 | 720

H55 | 173 | 211 - 14 84 *r® | wE® 12737 | 4767

H65 | 211 | 148 | 209 | 44 | 3942 | 249 | 308 | 2520 | 374
H78 | 249 | 189 [ 873 | 72 | 204 | 578 | 416 | 912 | 1304
H100 | 510 | 1563 | - 200 | 400 | 854 | 944 | 6500 | 3362

Ave. | 3.56 | 4.17 | 3.69 | 1.31 | 3.125 | 6.27 | 5875 | 7 7.31

Ave.: The Average Rank I.The Proposed Method *** Indicates a Failure
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the lowest function evaluation count, two to next, etc., for each problem, and then
averaging the ranks over all problems. In case of a failure, the failed codes are all
given the ranks plus one of the successful code having the largest function evalu-
ation count. Table (4.2) summarizes the number of function evaluation counts for
inequality and equality constrained problems. As we can verify, TR-ELF performs
the best among the first three codes which are penalty based algorithms. The code
VF02AD of Powell comes first in comparison with all different codes and the rea-
son is quite clear. These problems are relatively simple and many are very close to
quadratic programming problems. It is also clear that these test problems are all
small and they cannot demonstrate the performance of the proposed method (PM)
for general large-scale nonlinear programming. In order to be consistent with the
theme of this research, the numerical test problem should be fairly representative
of large-scale hydro-power system in which the problem is characterized by high

dimensionality, nonlinearity and non-convexity.

The numerical problem used by Hiew [29] has five reservoirs with nonlinear and
non-convex objective function that maximizes energy production. This problem
appears to be most suitable as a benchmark or test problem. It has a simplistic but
representative layout (comprising reservoirs in series and parallel) and a nonlinear,
non-convex objective function. The number of reservoirs is not too large but is
adequate for the purposes of algorithm evaluations. Figure (4.1) demonstrates the
layout of hydro-power generation problem and the connections between all five

reservoirs.
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Figure 4.1: System Data for the Five-Reservoir Problem
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4.5 General Description of The Five-Reservoir

Problem

The five-reservoir problem has a tree-like layout configuration. Physical character-
istics of this system are summarized in Table (4.3) and the inflows to this system
are given in Table (4.4). The objective function is the maximization of total energy
generation over an operation time span of 12 months at 15-day discretization. The

mathematical definition of the objective function is given by :

t=23 i=5

max Z Z ;04 (1 — e™BiSi™y (4.6)

t=1 i=1
where S} and Of are the storages and the outflows of reservoir i at time period ¢

and a and 3 are numerical constants.

Table 4.3: System Data for the Five-Reservoir Problem

Reservoir Number
Description 1 2 3 4 5
Upper bound on storage | 50.0 | 50.0 | 80.0 | 100.0 | 120.0
Lower bound on storage | 5.0 | 5.0 | 8.0 | 10.0 | 15.0
Upper bound on release | 15.0 | 17.0 | 20.0 { 25.0 | 30.0
Lower bound on release | 0.0 | 0.0 | 0.0 | 0.0 0.0
Constant a 15| 1.5 | 1.0 | 1.1 1.2
Constant 8 (x100) 025 .02 | .02 | .05 .01

The above objective function is the exact formula used by Hiew [29] and it is
not clear why 23 periods (as against the expected value of 24) were used with the

first summation. The steady-state equations of the five reservoirs are as follows:
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Table 4.4: Inflow Data for the Five-Reservoir Problem

Reservoir Number
Month | 1 2 3 4 5

1 00 | 00|50 ] 5.07] 00
2 20 |20 (10.0] 5.0 | 5.0
3 2.0 | 2.0 {10.0]| 5.0 | 5.0
4 2.0 | 20 [(10.0 |10.0| 5.0
5 2.0 | 2.0 {20.0|15.0] 10.0
6 20 | 2.0 | 25.0 20.0 | 10.0
7 5.0 | 5.0 | 5.0 | 25.0 | 10.0
8 70 | 7.0 | 5.0 | 25.0 | 15.0
9 7.0 | 7.0 | 5.0 |20.0 | 15.0
10 10.0 | 10.0 | 5.0 | 10.0 | 15.0
11 10.0 { 10.0 | 5.0 | 10.0 | 15.0
12 10.0 [ 10.0 | 5.0 | 15.0 | 15.0
13 70 | 7.0 | 5.0 | 5.0 | 20.0
14 7.0 | 7.0 | 0.0 | 5.0 | 20.0
15 6.0 | 6.0 | 5.0 | 5.0 | 10.0
16 6.0 { 6.0 | 5.0 { 5.0 | 10.0
17 6.0 | 6.0 |10.0 5.0 | 10.0
18 40 | 40 (100 5.0 | 5.0
19 40 | 40 | 5.0 | 1.0 | 5.0
20 4.0 1 40 | 5.0 | 2.0 | 2.0
21 20 | 20 | 5.0 [ 5.0 | 1.0
22 20 { 20 | 5.0 | 5.0 | 1.0
23 1.0 | 1.0 | 5.0 | 0.0 | 1.0
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St = St+1i- 0
Sttt = Si+ i+ 0% - 0%
St = St4+ It -0 vt =1,...,23. (4.7)
St = SE4+IL+ 0+ 0L -0
St o= St+ It + 05— O

Where I} to I} are inflows of reservoir one to reservoir five respectively.

J
The storages and outflows are bounded within a certain bounds as follows:

Minimum Release and Storage Requirement

The low flow requirement on reservoir outflows is accommodated by imposing lower

bounds on the release and storage rates.

O: Z OE.Mt’n
S‘t Z S't.Min.

3

}t=1,2,...,T and 1t =1,2,...,5.

Maximum Release and Storage Requirement

Local control stations have been selected for each reservoir in order to achieve flood
protection in the reaches immediately downstream of the reservoirs during flood

control operations.

' t=12,...,T and 1=1,2,...,5.
The five-reservoir hydro-power optimization problem as defined is typically nonlin-
ear and non-convex. For such a problem, convergence to a global optimum cannot

be guaranteed. A recommended practice is to repeat the solution of the same

problem from different initial solutions and selecting the best of the results.
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This application has been solved by PM and MINOS and the output results of
both methods are summarized in Table (4.5). The numerical results state that the
PM is able to solve the above application with better objective function value than
MINOS. However, this application cannot represent a general nonlinear constrained
optimization problem as there is no nonlinear constraints in this application. The
next chapter explains a case study of water resources management problem in which
the mathematical model consists of nonlinear objective function and nonlinear con-

straints.

Table 4.5: The Results of Optimization

Evaluation Criteria | The Proposed Method | MINOS
Objective Value 2265.935 2155.876

The Objective Function is Maximization.

4.6 Summary

In this chapter, we have presented a new approach to solve the constraint opti-
mization problems. We have tested the performance of PM with some small test
problems. The preliminary results indicate that PM can be considered as an al-
ternative among the other methods. Next chapter, we test the performance of PM

with some applications of water resources problems and compare the results with

LANCELOT project.



Chapter 5

Case Studies

This chapter presents two case studies of engineering problems. A water resource
problem and an investment application will be studied. In both cases the proposed
method (PM) is applied. The first application is inherently very large-scale in
real world and because of general nonlinear and non-convex constraints in this
application we compare the output results with LANCELOT which is designed
for large-scale nonlinear optimization problems. The second case study is used to

illustrate the efficiency of the linear solver used in our proposed method.

5.1 Applications of Water Resources Problem

5.1.1 Introduction

The Great Lakes make up the largest fresh water lake system in the world. Over
32 million Americans and 12 million Canadians live within the boundaries of the

Great Lakes-St.Lawrence River drainage basin. Fluctuations in the water levels of

67
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these lakes affects many of these people, both directly and indirectly. High water
levels are of concern to those who live along the Great Lakes shoreline. These
can combine with other factors, such as storms, to cause serious flood and erosion
damage. Alternatively, low water levels affect shipping, recreational boaters, and
hydroelectric power generation.

We plan to consider a mathematical model of the Great Lakes Water Level Regula-
tion Problem. The objective of the work is to use the proposed method to minimize
both the deviation of water levels from given targets and outflows from target flows

for a given time horizon.

5.2 Background

The Great Lakes consist of Lakes Superior, Michigan, Huron, Erie and Ontario.
Figure (5.1) illustrates the connections between the lakes.

They essentially form a chain of reservoirs with each one draining into the next.
Lake Superior is the uppermost lake and the largest. It drains into Lake Huron
by way of the St. Mary’s River. Lake Michigan, located completely in the United
States, also drains to Lake Huron. The water levels of both Lake Michigan and
Lake Huron are necessarily at the same elevation since both lakes are connected by

the wide and deep Straits of Mackinac.

These Lakes have a water surface area of about 246,000 square kilometers. The
area of the surrounding land and other smaller lakes draining into the Great Lakes
is about 528,000 square kilometers. From Lake Huron, water flows to Lake Erie by
way of the St. Clair River, Lake St. Clair, and the Detroit River. Lake Erie is the
shallowest of the five Great Lakes and second smallest in surface area. Its outflow

is mainly through the Niagara River and into Lake Ontario. Lake Ontario water in
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turn flows into the St. Lawrence River which carries the total outflow of the Great
Lakes some 870 kilometers to the Gulf of St. Lawrence.

The water level in each of the Great Lakes falls or rises according to the amount
of water entering or leaving it. The amount entering a lake includes precipita-
tion falling on the lake, runoff including snow-melt from the surrounding area, and
ground water inflow. The water leaving a lake consists of evaporation from the
lake’s surface, ground water outflow, and outflow at the lake outlet. Water levels
will rise when the amount entering a lake exceeds the amount leaving it. This
happens every spring. The converse is true every fall and winter.

Total outflow into the St.Lawrence River depends on the water level of the middle
lakes (Michigan, Huron and Erie). The higher the level of these lakes, the higher
the total outflow. Low lake levels will bring low outflows. This self-regulating

Figure 5.1: Profile of the Great Lakes, 1985
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feature helps to keep levels on the lakes within certain ranges. However, because
of the large size of the Great Lakes and the limited discharge capacities of their
outflow rivers, extremely high or low levels and flows sometimes persist for some

considerable time even after factors which caused the extremes have changed.

5.3 Factors Affecting the Great Lakes Water Lev-

els

o Natural Factors

There are several natural parameters that affect the Great Lakes water levels

including precipitation, evaporation, ice retardation, and others.

Precipitation or lack of it is the most significant natural cause of long-term
extreme fluctuations in lake levels. The intervals between high and low levels,
and the durations of these highs and lows, can vary widely over a number of

years.

Evaporation has minimum effect on water level during the spring season with
condensation occurring at times when the lakes are cold relative to the air.
It has the maximum effect during the fall season and early winter when the

lake water is warm relative to the air temperatures.

As an ice cover forms on the connecting rivers of the Great Lakes the flow
is reduced because of added surface friction and a reduction in the channel
cross-section area. If the ice cover breaks, ice jams can form causing serious
flooding upstream, ice damages along the shoreline, and greatly reduced flows

downstream.
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¢ Human Factors

Human factors are believed to be the most influencing in the Great Lakes
water regulation. Among these factors are Dredging, Consumptive Uses, and
Regulation.

Dredging is done primarily to maintain adequate depths in shipping lanes for
navigation. Consumptive use is water that is withdrawn and not returned
to the Great Lakes. The amount of consumptive use increases progressively

through the Great Lakes system.

Regulation is one of the most important among the human factors. To regu-
late a lake means to adjust or modify its outflows according to certain rules

in order to bring about more desirable lake levels or outflows.

5.4 Effects of Water Level Fluctuations

5.4.1 Environmental Effects

Water level fluctuations are not necessarily bad. In fact, they form a process which
is natural to the fish and wildlife inhabiting the Great Lakes. Extreme or extended
periods of high and low water levels, however, can compound the effects of natural
lake processes and cause undesirable results. Low water levels or flows, for example,
can aggravate pollution problems in the Great Lakes by reducing their dilution.
Shallow water environments provide important spawning and feeding grounds which
are essential for the maintenance of fish stocks. High lake levels provide more favor-
able fish habitats whereas low levels could dry up spawning and feeding grounds.
Wetlands require fluctuating lake levels to enhance their productivity. Periodic

flooding is necessary to maintain a variety of plant communities at different stages
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and thereby the wetland’s ability to support a diversity of fish and wildlife species.
Long-term lake level fluctuations, on the other hand, generally produce plants com-
munity shifts. Low water conditions generate an invasion of sedge/meadow plants
by shrubs, displacement of emergent vegetation by sedge/meadow, and result in
less open water and associated aquatic communities. High water conditions result

in increased open water aquatic plants, as other communities decrease.

5.4.2 Hydro-Electric Power

Major hydro-electric power generation facilities are located on the Niagara, St.
Lawrence and St. Mary’s Rivers. These facilities use water from the rivers to
generate electric power.

High lake levels bring about high river flows which increase power generation, while
low flows cause reductions in power generation. Electric utilities use coal, oil,
natural gas or nuclear thermal power plants to supplement the power produced by

the hydro plants.

5.5 Problem Formulation

At present, regulation structures exist only on Lakes Superior and Ontario. The
outflow from Lake Superior has been completely regulated, since 1921, at Sault
Ste. Marie, using various control structures, seaway navigation locks and hydro-
power installations. Present regulation procedures call for outflows that maintain a
desirable water level, with respect to long term averages, on both upstream (Lake

Superior) and downstream (Lake Michigan-Huron) lakes. The present regulation
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plan is known as Plan 1977-A. In keeping with the existing level of regulation for
the Great Lakes system, the present study assumes full regulation only for Lakes

Superior and Ontario.

The application of the Great Lakes water regulation has been studied by differ-
ent people previously (See for examples [57, 23, 68]). Fletcher [23] in his stochastic
model introduces a new formulation which can provide the mean and standard de-
viation of the optimal storages and releases over a long period of time. His model,
which consists of highly nonlinear equations, is solved by the SQP method. Be-
cause of the nature of the formulation, the information of the first and the second
derivatives of the equations are not available symbolically, therefore SQP estimates
this information and the results may not reach a high degree of accuracy at the
optimal solution. Seifi [68] uses 90 years of information on inflows as data for his
stochastic formulation. The method minimizes the absolute value of deviation of

outflows and releases from targets by using SLP along with IPM algorithms.

The next section introduces a new general formulation which can provide a
way to determine the steady-state storages and releases for the Great Lakes water

regulation problem.

5.6 Mathematical Formulation

5.6.1 Objective Function

The main objective of regulating the Great Lakes system is to keep the lake levels
close to their long term averages and reduce the total range of fluctuations. The
objective is specified in terms of minimizing the total deviations from the set of

storage and release target values, .;f and c;ﬁ, given by Environment Canada. Several
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factors have been considered to set these target values, including Hydro-power,
Environmental corners, Recreational boating, Commercial navigation, and Riparian
or shore property [7]. In order to have a common basis to compare the effects of
different regulation plans, the historical monthly information of inflows of the Great
Lakes for the period 1900 to 1989 were considered. The objective function in this
study is to minimize the total squared values of the monthly deviations from storage

and release target values based on 90 years of information.

As figure (5.2) illustrates, the Great Lakes are connected together in a serial
sequence. Let s¢ be the Storage of Lake ¢ at time period £ and of be the Outflow of
Lake i at time period t. Qur purpose is to find the best storages and releases of all
Lakes in order to minimize the fluctuation of the water levels and water flows from
their respective target values within a time horizon of T. The objective function

can be defined as:
T 5

min Y Y { (st — s8)7 + (o} - )7} (5.1)

t=1 t=1

where .;f and c;f are target values and are assumed to be given.

5.6.2 Linear Constraints

Let s¢...3{ and o} . ..o} be the storages and the outflows of Lakes superior, Michi-
gan, Huron, Erie and Ontario respectively at time period t. The object is to per-
form the minimization over certain time period (T = 12,24,...,1080). Therefore,
the number of variables involved in the optimization problem is 10T". Let I} be the
water inflow to reservoir ¢ during time period t. The total water available in reser-
voir one during time period ¢ + 1 is equal to the total water storage s} plus inflow
If. Considering the total water outflow of coming out of reservoir during period ¢,

the steady state equations for storage in that reservoir becomes si*! = s + It — of.
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Figure 5.2: Schematic of the Great Lakes System
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The same equations hold for the second reservoir except that the total water inflow

are I3 + o and so on.

st o= si+ -0

S = s+t — o

3;‘“ = 3§+[§+o§—-o§ yt=1,...,T. (5.2)
sitt = st + It + 04— o

st = ss+L+oi—o |

The above equations hold for a given time period t =1to ¢t =T. Once t =T, the

system of equations is reinitialized back to time period ¢t =1, i.e.

3T+1

[ 39

5.6.3 Nonlinear Constraints

With respect to Lakes Michigan, Huron, and Erie, the following discharge equations,
representative of the existing natural channel conditions, are:

‘t

¢ 2
PALIES 0023411(523[4»sutit-'L 543. 4] (4—;33—1&)0-5

4.6

ol = 01280849(—’— 543.4)2(5 — i) t=L...T. (53

oft' = 0.2605000( poois; — 550.11)%2

105 15

5.6.4 Bound Constraints

The storages and the outflows are bounded as follows:
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Minimum Release and Storage Requirement

The low flow requirement on reservoir outflows is accommodated by imposing lower

bounds on the release and storage rates.

}t:l,Z,...,T and 1=1,2,...,5.

Maximum Release and Storage Requirement

Local control stations were selected for each reservoir in order to achieve flood
protection in the reaches immediately downstream of the reservoirs during flood

control operations. Maximum releases and storages are thus:

%

S SF.M az

1

0: SO:M“ .
' t=12,....T and 1 =1,2,...,5.
t

8

5.6.5 Size of the Problem

There are five sets of equality constraints in (5.2) and three sets of nonlinear equa-
tions in (5.3). Therefore, for a total time period T, there are 8T equality constraints
and 20T bound constraints. The number of unknown variables is 5T for outflows

and 5T for storages, for a total of 10T unknown variables.

The problem is challenging for the following reasons,

1. The problem is non-convex.

2. A high accuracy solution is needed because of the scaling problems. For
example, a one-foot change in the level of a large lake releases O(10%) cubic-

feet/month.
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3. The large number of variables possible, depending on the value of T'.

5.7 Numerical Implementation for the Applica-
tion

In this section we present some of the results for the implementation of the PM and
compare them with the results using LANCELOT. We also tried to solve the Great
Lakes problem with GAMS/MINOS, but in almost all cases MINOS cannot find a
feasible solution. We do not report the output performance of GAMS/MINOS in
this section.

All computations were performed in double precision, on a Sun Sparc2 workstation
with FORTRANT7. The target values, s¢ and &} were used as an initial solution.
Existing data on the monthly inflows of the Great Lakes system were used for a
time period of up to 90 years [23]. We have also used the lower bound and upper

bound as initial solution.

In order to have a fair and unbiased comparison between the performance of the
PM versus LANCELOT, the exact first and the second derivatives information are
used for LANCELOT. LANCELOT provides different features to solve problems
under various conditions. Some of these features require access to the Harwell Sub-
routine Library({22]. At the time of our experimental results, we did not have access
to the Harwell Library, therefore, we considered only the best options available di-
rectly through LANCELOT. Table (5.1) summarizes all of the features used for
the output results. The proposed method uses the exact first derivatives and finite

difference with scaling [14] to estimate the information of the second derivatives.

The systems of linear equations in LANCELOT were solved by a semi-band
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Table 5.1: The Features Used in the Implementation of LANCELOT

Description Case One Table (5.2) | Case Two Table (5.2)
The Inner-iteration Subproblem | Exact Approximate

The Cauchy Point Exact Approximate

The Penalty Parameter .1 1

The Trust Region Norm Infinity Norm Two Norm

The Trust Region Radius 1.0 1.0

The Linear Equation Solver Band=4 Band=10

Preconditioned Conjugate Gradient algorithm with band=4 and band=10. The
systems of linear equations in the PM method were solved with the Preconditioned-
Conjugate Gradient algorithm [28] using RCM ordering and Drop-tolerance scheme
[36, 24]. Appendix (A) explains details of the implementations. Due to the existence
of bound constraints in this application, it is quite possible to use the equations
(3.15-3.18) to solve the linear equations as efficiently as possible. We have imple-
mented the equation (3.7) in order to make sure that constraint qualification holds
as z tends to z*. However, we have also tested the equations (3.15-3.18) to show
the impact of the smaller size of linear equations on running time. Appendix (C)
contains a brief description of the algorithm used to provide JTJ in algorithm (3.2)
and (3.4). Figure (5.3) shows the sparsity pattern of J; and JTJ. Figure (a) shows
the nonzero elements of the Jacobian Ji when we use equations (4.5). The direct
implementation of bound constraints as general inequality constraints increases the
size of Jacobian significantly. Figure (b) demonstrates the sparsity pattern of J'J.
The algorithm used for this multiplication needs O(an) computations where a is

the average number of nonzero elements in each row and = is the size of the matrix.
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The results of JTJ may or may not be sparse depending on the pattern of the
matrices multiplied by each other.

We observed that the results of JTJ (Figure(b)) remain sparse and the number
of nonzero elements does not change significantly. Figure (c) shows the direct

implementation of direct Choleskey factorization of J7J.

The algorithm which provides the multiplication of a matrix by its transpose
only uses the nonzero elements in its calculation and the complexity of the compu-
tations is very cheap. However, for general purpose applications, using augmented

equations is suggested as in Chen and Vannelli [9].

Figure (d) demonstrates the sparsity pattern of the Jacobian Ji by eliminating
the bound constraints implicitly. Because the information of bound constraints lies
on diagonal elements of Jacobian by implementing the equations (3.15-3.18), the
result of J; Ji becomes sparser and needs smaller space than direct implementation
of bound constraints as observed on Figure(e). The direct Choleskey factorization

of Ji by its transpose (Figure(f)) has obviously fewer nonzero elements.

We have used n = 107%,8, = 10778, = 10~¢, M = 10°,M = 10~° for our
implementation. For each case, we report:
(T',n,q, Iter.): Time period, the number of variables, the number of equality con-
straints and the total number of iterations needed to reach the convergence criteria
corresponding to the application, respectively.
(|Alec, Objective Func., CPU Time(Sec.)): The maximum violation of equality
constraints, the value of the objective function, and the running time in seconds,
respectively.
Tables (5.2) and (5.3) summarize the results of LANCELOT using two different

features of the software. In both algorithms, the number of iterations does not
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Figure 5.4: Sparsity Patterns for the Reduced ELF.
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increase significantly with the size of problem.

In the output results of case one and case two shown, respectively, in tables

(5.2), and (5.3) we have used the exact first and the second derivative information

on the application.

Table 5.2: The Summary of LANCELOT Output Results (Case One)

T n q | Iter. |hoo Objective Func. CPU(Sec.)
12 120 96 133 | 5.0678D-09 | 1.64780402703858D+06 38.29
24 240 192 | 155 | 4.2935D-11 | 5.06152758271752D+-06 97.98
36 360 288 | 139 | 8.3474D-09 | 7.62169805381109D+-06 177.02
48 480 384 | 119 | 7.6016D-09 | 5.10989159972038D+-06 248.40
60 600 480 | 126 | 2.5078D-09 | 3.68225450202697D+06 339.83
72 720 576 | 108 | 1.4610D-09 | 4.55428167037388D+06 449.51
120 | 1200 | 960 | 118 | 6.6187D-09 | 7.94389155258736D+06 1284.51
240 | 2400 | 1920 | 135 | 2.8412D-09 | 2.19258537107666D+07 | 3975.38
360 | 3600 | 2880 | 162 | 5.9674D-10 | 6.99035224883742D+07 | 11529.61

480 | 4800 | 3840 - - - > 20000
780 | 7800 | 6240 - - - > 20000
1080 | 10800 | 8640 - - - > 20000

Note that different choices for each option may yield different results and this
is an unfortunate reality of all methods. However, it is not always possible to
try all options because, for example, if there are 6 options (see Table (5.1)) with
each options taking even just two possible choices we result with a total of 26 = 64
choices to try! The inner-iteration subproblem for case one (Table (5.2)) was solved

exactly and the exact Cauchy point was used. The band linear equation solver was
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Table 5.3: The Summary of LANCELOT Output Results (Case Two)

T n q | Iter. oo Objective Func. CPU(Sec.)
12 120 96 150 | 7.1526D-10 | 1.64780402953180D+06 26.57
24 240 | 192 | 151 | 1.1638D-10 | 5.06152758271459D+06 79.78
36 360 | 288 | 156 | 4.9823D-11 | 7.62169807336225D+06 128.03
48 480 | 384 | 147 | 6.6827D-10 | 5.10989161127648D+06 195.74
60 600 | 480 | 176 | 1.4361D-10 | 3.68225450258231D+06 225.58
72 720 | 576 | 152 | 4.2414D-10 | 4.55428167123117D+06 257.60
120 | 1200 | 960 | 128 | 1.4559D-10 | 7.94389155417452D+06 540.94
240 | 2400 | 1920 | 165 | 6.8326D-10 | 2.19258537116613D+07 1646.40
360 | 3600 | 2880 | 180 | 7.8691D-10 | 6.99035224884159D+07 | 2893.45
480 | 4800 | 3840 | 208 | 3.2690D-10 | 1.44810992658323D+08 | 4459.62
780 | 7800 | 6240 | 228 | 2.5818D-10 | 2.80880817723112D+08 | 8638.31
1080 | 10800 | - - - - -
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applied with band=4. We used the same exact first and the second derivative
information for Case two (Table (5.3)) while the inner-iteration subproblem as well
as the Cauchy point were estimated approximately. Case two seems to perform
better than case one in terms of the CPU time. There does not seem to exist so
much difference between the final solutions of cases one and two. However, case two,
uses the approximation technique to estimate the solution of subproblems and the
Cauchy point solves the problem faster than the case one. This is on the contrary
to what we expect and what has been observed in the past mostly for small test
problems. When both cases have solved the problems, the results of the case one
and two indicate that the approximate methods may solve a large-scale problem
much faster than using exact techniques and there would not be much difference
between the final solutions in each case! Tables (5.4) and (5.5) summarize the
performance of the PM using Martinez 's Method and the New Curvilinear Search.
There does not seem to exist so much difference between the PM with the new

curvilinear search and the Martinez’s modified algorithm.
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Table 5.4: The Summary of the PM Using Martinez s Method
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T n q | Iter. [h]oo Objective Function | CPU(Sec.)
12 120 96 37 | 1.0152D-10 | 1.6907769855525D+06 34.33
24 240 | 192 | 40 | 1.6051D-10 | 4.9336389910904D+06 88.52
36 360 288 | 43 | 1.6553D-10 | 7.4270041154615D+-06 162.43
48 480 | 384 | 37 | 3.7778D-10 | 4.9604809581912D +06 199.57
60 600 | 480 | 28 | 4.8885D-11 | 3.6445097860100D+06 165.25
72 720 | 576 | 30 | 4.0898D-11 | 4.6076288095819D+06 218.17
120 | 1200 | 960 | 30 | 8.3986D-11 | 7.8517482607172D+06 417.11
240 | 2400 [ 1920 | 45 | 6.0794D-09 | 2.1904356973965D+07 923.66
360 | 3600 |2880 | 45 | 2.6613D-09 | 6.9515123414487D+07 | 3852.65
480 | 4800 | 3840 | 43 | 1.7833D-09 | 1.4276484327877D+08 | 4027.45
780 | 7800 | 6240 | 56 | 1.2790D-09 | 2.7703483527993D+08 | 10319.35
1080 | 10800 | 8640 | 55 | 1.9947D-09 | 3.4458742946506D+08 | 18322.80
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Table 5.5: The Summary of the PM Using the New Curvilinear Search

T n q | Iter. |A]oo Objective Function | CPU(Sec.)
12 120 | 96 | 41 | 1.0152D-10 | 1.6907769855525D+06 38.98
24 240 | 192 | 39 | 1.7857D-10 | 4.9336389910904D-+06 85.49
36 360 | 288 | 35 | 5.7943D-10 | 7.4270041154615D-+06 123.06
48 480 | 384 | 37 | 9.1802D-11 | 4.9604809581912D+06 200.16
60 600 | 480 | 28 | 4.88853E-11 | 3.6445097860100D+06 163.08
72 720 | 576 | 30 | 4.08988E-11 | 4.6076288095819D-+06 215.10
120 | 1200 | 960 30 | 8.3986D-11 | 7.8517482607172D+06 416.38
240 | 2400 | 1920 | 29 | 6.07940E-11 | 2.1904356973965D+07 923.42
360 | 3600 | 2880 | 45 | 2.6613D-09 | 6.9515123414487D+07 | 3852.65
480 | 4800 | 3840 | 58 | 4.5452D-09 | 1.4276484327877D+08 | 7567.43
780 | 7800 | 6240 | 58 | 4.5429D-09 | 2.7703483527993D+08 | 10443.95
1080 | 10800 | 8640 | 53 | 1.0093D-09 | 3.4458742946506D+08 | 19845.60
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We also applied the linear equation solver with band=10 in case one in order
to see whether providing a better preconditioner can improve the results. The
results are summarized in table (5.6) and as we can see that not only there is no
improvement on CPU time but some of the problems originally solved with Band=4

could not be solved. This may be due to ill-conditioning of the dense preconditioner.

Table 5.6: The Summary of LANCELOT Output Results (Case One & Band=10)

T n q | Iter. |~ oo Objective Func. CPU(Sec.)
12 | 120 96 226 | 2.4760D-10 | 1.64780402941704D--06 81.09
24 | 240 | 192 | 176 | 9.4758D-11 | 5.06152758271241D+06 253.13
36 | 360 | 288 | 172 | 6.2688D-10 | 7.62169807334174D+06 424.92
48 | 480 | 384 | 180 | 5.9067D-11 | 5.10989161121162D+06 630.19
60 | 600 | 480 | 165 | 3.5412D-10 | 3.68225450263722D+06 1090.94
72 | 720 | 576 | 137 | 5.8894D-10 | 4.55428167124033D+-06 959.24
120 | 1200 | 960 | 157 | 1.1516D-10 | 7.94389155418159D+06 | 2345.08
240 | 2400 | 1920 - - - >7200
360 | 3600 | 2880 | 171 | 6.0901D-10 { 6.99035224884034D+07 | 23096.87

The proposed method (Table (5.5)) seems to perform reasonably well, especially
for larger sizes of test problems. The main reason for the PM performing somewhat
better than LANCELOT could be the iterative solver used in the PM. In our
opinion, choosing an efficient preconditioner may have a dramatic effect on running

time when using LANCELOT and in future these may be implemented.

Table (5.7) summarizes the results of the PM when we only use equations (3.15-

3.18) in our implementation. The results show that although the use of equations
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(3.15-3.18) reduces the size of the linear system solved significantly, the CPU time

does not reduce correspondingly. This is due to the increase in the number of

iterations. We compared the difference between the final objective function values

Table 5.7: The Summary of the Proposed Method Using (3.15-3.18)

T n q | Iter. |Rloo Objective Function | CPU(Sec.)
12 120 96 32 1.1835D-10 | 1.6907769855525D+-06 26.38
24 240 | 192 | 38 | 1.7800D-10 | 4.9336389910904D+06 81.18
36 360 288 | 50 1.6419D-10 | 7.4270041154615D+06 161.69
48 480 384 | 38 1.0331D-08 | 4.9604809581912D+06 162.20
60 600 480 | 36 | 4.5162D-11 | 3.6445097860100D+06 194.37
72 720 576 | 35 5.5536D-11 | 4.6076288095819D+06 237.21
120 | 1200 | 960 | 37 1.5112D-10 | 7.8517482607172D+06 429.80
240 | 2400 | 1920 | 40 1.6719D-09 | 2.1904356973965D+07 964.27
360 | 3600 | 2880 | 45 | 8.62259E-08 | 6.9515123414487D+07 1845.33
480 | 4800 | 3840 | 64 | 3.01857E-07 | 1.4276484181949D+08 | 3578.69
780 | 7800 6240 | 79 | 1.29112E-07 | 2.7703483491521D+08 | 7937.04
1080 | 10800 | 8640 | 60 | 8.55041E-08 | 3.4458737468797D+08 | 8014.03

of both LANCELOT and the PM. The PM provides a better final solution in terms
of the lower values on the objective functions compared to LANCELOT in most
cases. Table (5.8) summarizes the output results of LANCELOT and the PM.
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Table 5.8: The Summary of LANCELOT Output Results Versus the PM

LANCELOT®| LANCELOT?®| Proposed Method(PM)¢| Difference 4
T n CPU(sec.) CPU(sec.) CPU(sec.)
12 120 38.29 26.57 38.98 261 %
24 240 97.98 79.78 85.49 -2.53%
36 360 177.02 128.03 123.06 -2.55%
48 480 248.40 195.74 200.16 -2.92%
60 600 339.83 225.58 163.08 -1.03%
72 720 449.51 257.60 215.10 1.17%
120 | 1200 1284.51 540.94 416.38 -1.16%
240 | 2400 3975.38 1646.40 923.42 -0.1%
360 | 3600 11529.61 2893.45 3852.65 -0.56%
480 | 4800 - 4459.62 7567.43 -1.41%
780 | 7800 - 8638.31 10443.95 -1.37%
1080 | 10800 - - 19845.60 -
®Case One.
®Case Two.

¢ The Proposed Method (PM).
4The Difference Between the Objective Function of LANCELOT and the Proposed
Method (PM) in Percent (i.e. 2M=LANCLEOT , 1),

Negative numbers indicate better results for the PM.
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Tables (5.9) and (5.10) present results for the PM, using different initial solutions

and various time periods.

Table 5.9: The Summary of the PM Using Lower Bound Values as Initial Solution

T n q | Iter. [hoo Objective Func. CPU(Sec.)
12 120 96 51 | 1.12795E-08 | 1.6907769805211D+06 40.22
24 240 | 192 | 44 | 2.01567E-07 | 4.9336386538520D+06 92.04
36 360 | 288 | 51 | 8.72546E-11 | 7.4270041157663D+06 134.26
48 480 | 384 | 50 | 2.53336E-07 | 4.9604158344990D+-06 199.74
60 600 | 480 | 30 | 5.42911E-10 | 3.6445097862928D+06 149.31
72 720 576 30 | 2.09462E-09 | 4.6076288086282D+06 176.65
120 | 1200 | 960 | 35 | 7.66953E-10 | 7.8517482603868D+06 354.95
240 | 2400 | 1920 | 33 | 2.76344E-08 | 2.1904356983034D+07 715.90
360 | 3600 | 2880 | 45 | 2.52750E-07 | 6.9515137064238D+07 | 1494.25
480 | 4800 | 3840 | 85 | 1.10144E-06 | 1.4276483269624D+08 | 2746.08
780 | 7800 | 6240 | 85 | 8.35798E-06 | 2.7703486826814D+08 | 6513.32
1080 | 10800 | 8640 | 60 | 5.30675E-07 | 3.4458743269553D+08 | 6190.02
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Table 5.10: The Summary of the PM Using Upper Bound Values as Initial Solution

T n q | Iter. |h]oo Objective Func. CPU(Sec.)
12 120 96 29 | 1.71868E-08 | 1.6907769773364D+06 40.36
24 240 192 29 | 2.01085E-07 | 4.9336386537935D+06 54.27
36 | 360 | 288 | 49 | 1.01360E-08 | 7.4270040902692D-+06 116.22
48 | 480 | 384 | 42 | 1.48196E-08 | 4.9604158295162D+06 156.79
60 | 600 | 480 | 28 | 5.06813E-09 | 3.6445097839904D+06 135.51
72 | 720 | 576 | 32 | 2.43659E-09 | 4.6076288082882D+06 131.49
120 | 1200 | 960 | 35 | 4.06146E-11 | 7.8517482607455D+06 269.07
240 | 2400 | 1920 | 33 | 2.73114E-08 | 2.1904356983217D+07 | 585.36
360 | 3600 | 2880 | 51 | 2.32730E-07 | 6.9515137063238D+07 | 1484.25
480 | 4800 | 3840 | 50 | 1.21906E-06 | 1.4276483163087D+08 | 3173.14
780 | 7800 | 6240 | 79 | 1.87226E-06 | 2.7703482931493D+08 | 9028.64
1080 | 10800 | 8640 | 60 | 4.28139E-07 | 3.4458740123190D+08 | 8865.68
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Table 5.11: The Summary of the PM Using Different Initial Solutions.

Target Value Lower Bound Upper Bound

T n Obj. Fnc. | CPU Obj. Fnc. | CPU Obj. Fnc. | CPU
12 120 1.69D+6 | 38.98 1.69D+6 | 40.22 1.69D+6 | 40.36
24 240 4.93D+6 | 85.49 4.93D+6 | 92.04 493D+6 | 54.27
36 360 7.42D+6 | 123.06 7.42D+6 | 134.26 | 7.42D+6 | 116.22
48 480 4.96D+6 | 200.16 4.96D+6 | 199.74 |4.96D+6 | 156.79
60 600 3.64D+6 | 163.08 3.64D+6 | 149.31 |3.64D+6 | 135.51
72 720 4.60D+6 | 215.10 4.60D+6 | 176.65 |4.60D+6 | 131.49
120 | 1200 | 7.85D+6 | 416.38 7.85D+6 | 354.95 | 7.85D+6 | 269.07
240 | 2400 |2.19D+7 | 923.42 2.19D+7 | 715.90 |2.19D+7 | 585.36
360 | 3600 |6.95D+7 | 3852.65 | 6.95D+7 | 1494.25 | 6.95D+7 | 1484.25
480 | 4800 | 1.42D+8 | 7567.43 | 1.42D+8 | 2746.08 | 1.42D+8 | 3173.14
780 | 7800 | 2.77D+8 | 10443.95 | 2.77TD+8 | 2746.08 | 2.77D+8 | 3173.14
1080 | 10800 | 3.45D+8 | 19845.60 | 3.45D+8 | 6190.02 | 3.45D+8 | 6853.26
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5.8 Short Term Optimization, (Discussion)

To determine the optimal amount of water to be stored and released over a long
period of time, we employ a rolling horizon procedure. Having used the PM, a
Great Lakes water levels’ regulation scenario is established using a short term op-
timization procedure based on the derived optimal releases and storages from Lake
Superior to Lake Ontario for the historical information of up to 90 years. The short
term procedure tries to find the optimal outflows and storages in every month by
considering the information of the next twelve months each time. As a result, an
optimization problem with 120 variables and 96 constraints has to be solved for each
month of the entire 90 years. In other words, we start to solve the Great Lakes
problem to get the optimal releases and storages for the month of January, 1900
based on the information of the whole year of 1900. Having obtained the optimal
policy of 57 to S5 and O7 to Oj for the month of January, the time horizon is rolled
from January to February to find the optimum releases and outflows for the month
of February by considering the period of February, 1900 to February, 1901, and
so on. Figure (5.5) compares the results of using the PM in a direct optimization
versus the short term optimization technique. The results indicate that in the long
term, both methods can reduce the fluctuation of water significantly. The short
term optimization technique seems to perform better in terms of having smaller
values for the objective function. Figure (5.5) also shows that, in long term, short

term optimization scheme can minimize the fluctuation of water significantly.

In summary, the results indicate that the approach based on the formulation
developed in this research can provide the capability of deriving satisfactory esti-
mates of the Great Lakes levels’ statistics, based on the preferences relating to lake

levels for the interest group considered.



CHAPTER 5. CASE STUDIES 95

The Comparison of Short Term Versus Direct Optimization
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Figure 5.5: The Performance of Short Term Optimization With Direct Optimiza-

tion.
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5.9 The Comparison of the Optimal Policy from
PM Versus Past Operations

We have compared the optimum values of the objective function (5.1) obtained from
the PM and compared the results with what was implemented in practice from the
year of 1900 to 1973 [7]. These compartive results are shown in Figures (5.6),
(5.7) and (5.8). Figure (5.6) demonstrates the performance of the PM versus Past
Operations for the available data. As the figure indicates, the optimal policy could
potentially improve performance as shown in Figure (5.7). Lastly, Figure (5.8)
compares average objective function values of past operations with the optimal
policy from the PM. Once again it is clear that the policy from the PM is about
40% better than the results of past operations in the long run, although in our case

we have had the benefit of hindsight!
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Figure 5.6: The Performance of Optimal Policy Versus Past Operations
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Figure 5.7: The Comparative Performance of the Optimal Policy
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Figure 5.8: The Performance of the Optimal Policy Versus Past Operations
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The next section explains the other example of optimization from economics
which involves the minimization of a quadratic objective function and linear in-

equality and equality constrains.
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5.10 An Investment Application

5.10.1 Introduction

In this section, an application from the field of financial engineering is presented.
The main objective is to provide a practical and efficient method to solve some of
the problems arising in this field. These applications can be generally formulated in
quadratic form. This class of problem has already been well studied by others [77].
The main concern of this section is to show that the proposed method can also be

applied to these kinds of problems and that the linear solver used is efficient.

The following section is organized as follows. We first introduce the parameters
which are involved in the context of an investment. We then introduce the mathe-
matical model of a typical portfolio problem. Finally, we explain the approach used

to solve the problem.

5.10.2 Investment Definition

An investment can be defined in different ways and it may involve many aspects.
It may involve putting money into bonds, common stocks, real estate, mortgages
and oil ventures. It may involve speculating in bull markets or selling short in bear
markets. It may involve puts and calls, rights, warrants, convertibles, financial
futures, money market funds, commercial paper, Treasury bills and notes, gold,
silver, commodities, or mutual funds. And, it may result in accumulation of wealth

or dissipation of resources.
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5.10.3 The Investment Process and Risk

Individual investors and professional money managers must decide on their in-
vestment objectives and then select from possible investment alternatives. The
investment challenge involves certain fundamental choices. As part of controlling
risks, decisions must be made on the selection of complementary assets so that
a portfolio will provide a mix with an attractive rate of return balanced against

acceptable risk.

Another criteria that determines an investment success is the time horizon.
The choice of short-term, intermediate, or long-term investments can result in an
advantageous return or lock the investor into a no-win situation. After a suitable
amount of time, there should be a performance assessment. Investment decision

making in all its phases is continuous.

5.10.4 Expectation

People with different ages may have different expectations from their investment.
For example, a newly married couple, a middle-aged professional, and a retiree
have different expectations for the return on their investment. These differences
may also exist among institutional investors, pension funds, mutual funds, insurance
companies, etc. Even people (or institutions) in similar circumstances may be ad-
venturous or conservative investors. Age, lifestyle, and personality help determine
the choice of an investment. Studies on the investment psychology of individuals
indicate that most people are risk averse. At the same time about 50 percent of
them, by owning only one or two stocks, have portfolios that are risky because they

are un-diversified.
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Throughout the next section we formulate a mathematical model in order to

maximize these expectations and minimize the risk involved in investment.

5.11 Efficient Portfolios

Let us assume we want to invest in n different assets. Here assets may involve in any
kinds of investment such as stocks, bonds, etc, but we assume that there is no short-
selling on the market for these assets. Let ¢; denote the expected return on asset
t, ¢ = 1,...,n and o;; denote the covariance between assets z and j, j < 7,7 < =n.

Let

c=(c1,.--,¢a)' and C = [oy]. (5.4)

C is called the covariance matrix for the assets and is symmetric positive semidef-
inite. Let z; denote the proportion of wealth to be invested in asset 7 and let
z = (£1,...,Z,)". In terms of z, the expected return of the portfolio ¢, and the

variance of the portfolio o2 are given by

¢, =c'z and ol = z' Crz. (5.5)

Let A= (1,1,...,1)7; i.e., A is n vector of ones. Since the components of z are
proportions, they must sum to one; i.e., ATz = 1 . The constraint ATz = 1 is

usually called the budget constraint.

The goal is to choose a value for z which gives a large value for ¢, and a small
value for a:. These two goals tend to be in conflict. Suppose we have two portfolios,

both having the same expected return but the first having a small variance and the
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second having a large variance. The first portfolio is obviously more attractive
because the second has more risk for the same expected return. This is the key

idea behind H. Markowitz’s definition of an efficient portfolio.

Definition 5.1 A portfolio is efficient if for a fized c,, there is no other portfolio

which has a smaller variance a:.

Definition (5.1) implies that a portfolio is efficient if for fixed ¢,, 07 is minimized.

Thus the efficient portfolios are solutions of the optimization problem
min{z' Cz|c'z = ¢,,ATz = 1} (5.6)

In (5.6), ¢, is to vary over all possible values. For each value of ¢,, we will, in
general, get a different efficient portfolio. The mathematical structure of (5.6) is
that of minimizing a quadratic function subject to linear equality constraints, the
first of which is parametric (the parameter being c;). Thus (5.6) is a parametric

quadratic programming problem.

There is an alternative (and equivalent) definition of an efficient portfolio. Sup-
pose we have two portfolios both having the same variance but the first having a
large expected return and the second having a small expected return. The first
portfolio is more attractive because it gives a higher expected return for the same

risk as the second portfolio.

Definition 5.2 A portfolio is efficient if for fized o2, there is no other portfolio
with a larger c,.

Definition (5.2) implies that a portfolio is efficient if for fixed a':, ¢p is maximized.
Using Definition (5.2), the efficient portfolios are the optimal solutions for

max{c z|z"Cz = a:,ATz =1} (5.7)
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Note that (5.7) has a linear objective function, a quadratic equality constraint and

a linear equality constraint.

There is a third optimization problem which also produces efficient portfolios.
It is a somewhat more convenient formulation than (5.6), (5.7). Let t be a scalar

parameter and consider the problem
1
min{—tc'z + Ez:TC:clAT:z: =1} (5.8)

The intuition behind (5.8) is as follows. For ¢ > 0, the parameter ¢ balances how
much weight is placed on the maximization of ¢"z (equivalently, the minimization
of —cTz) and the minimization of z7Cz. If t = 0, (5.8) will find the minimum vari-
ance portfolio. As ¢t becomes very large, the linear term in (5.8) will dominate and
portfolios will be found with higher expected returns at the expense of variance.
Finally, We assume that all variables are restricted by positive upper and lower
bounds. (i.e. 0 <! < z < u). It is possible to show that each of the optimiza-
tion problems (5.6), (5.7) and (5.8) are equivalent in the sense that their optimal

solutions, as all of the three parameters c,, 2 and ¢ are varied, are identical (46, 4].

5.12 Numerical Implementation

The algorithm explained in this section is based on the structure of the application
of portfolio optimization. We consider formulation (5.8). It must be noted that
most portfolio managers would like to have only a limited number of assets in
their baskets, say 50 or 60 different funds. Thus, a typical problem with n =
100 variables, where C is dense, can demonstrate the efficiency of the proposed

algorithm for the worst case scenario in terms of computational complexity.
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(0.0)

Figure 5.9: Risk Free Rate and Market Portfolio
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The implementation of the modified Expanded Lagrangian Function (3.25) has
a few advantages. First of all, the bound constraints do not increase the size of
the problem. Secondly, for a given penalty parameter r at each minor iteration,
only the diagonal elements of the matrix change; so it is enough to perform a full
Choleskey factorization at the beginning of each minor iteration. This factorization
can be used as a preconditioner for the next minor iterations when the Precondi-
tioned Conjugate Gradient algorithm is implemented [47]. Algorithm (3.1) shows a
simple prototype based on the modified Expanded Lagrangian System when ¢ = 1.
This algorithm is coded in MATLAB. We have generated uniform random numbers
U(0,1) for both ¢ and C. The matrix C is considered to be dense. We count for
the average number of conjugate iterations. It is seen that the average number
of conjugate iterations remains almost unchanged as the size of problem increases.

Figure (5.10) shows the summary of the results.
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The Performance of Algorithm 3.1
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Figure 5.10: The Average Number of Conjugate Iterations in Each Minor Iteration.
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5.13 Summary

In this section, we have explained the details of the implementation of the proposed
method (PM) for two different applications. We have shown that the PM is able
to provide an efficient tool to solve the Great Lakes water resource problem over a
long period of time. The preliminary results from portfolio optimization have also
shown that the Expanded Lagrangian Function can be implemented for Quadratic

Programming and we can expect reasonable performance.



Chapter 6

Summary, Conclusions and Future

Research

6.1 Summary

The research has been aimed at the development of a new method to solve the
optimization problems arising in water resources management systems. The new
technique has been tested on some small problems in order to show that the PM
can be considered as an alternative for future research in optimization. However,
based on this limited number of small benchmark problems, it is difficult to draw
a general conclusion for the performance of the PM.

For a large-scale application, the proposed method has been implemented to
find the optimum values of outflows and storages over the long term in a water
resources problem. The research has provided practical tools in order to achieve, in
a reasonable time, the minimum fluctuation of water for the Great Lakes reservoir

system even for the largest possible case. The preliminary test results have also
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indicated that the method can be applied on some simple but dense cases of portfolio

optimization with good results.

Chapter (1) began by outlining the importance of the constrained optimization
in water resources management problems. We explained that many water resources
applications involve optimization problems characterized by high dimensionality,
bad scaling, nonlinearity and non-convexity. These problems need to be solved with
special techniques and algorithms. Chapter (1) continues by explaining that many
large-scale water resources systems often serve multiple objectives and that these
objectives are often in conflict with one another. Operation studies attempt to com-
promise between the different goals. Multi-reservoir operation planning (MROP)
is modeled as a nonlinear, constrained optimization problem with the objective to
determine the optimum storages and outflows of the reservoir over a certain time
period. We have seen that the non-convexity characteristics constitute the primary
difficulty in finding mathematical solution of the MROP problem. Although there
are many methods to deal with these difficulties for small-scale problems, problems
arise for large-scale MROP problems. The chapter introduced the objectives of the

research. The organization of the Dissertation is then described by chapters.

Chapter (2) reviewed deterministic optimization procedures in the fields of linear
programming and nonlinear programming as these are applied to planning and the
real-time operation of multi-reservoir water systems for hydro-power and closely
related purposes. Linear Programming (LP) has been introduced as the most
widely used optimization technique among engineers. For some applications of
water resources problems which have a simple formulation in nature, LP can be
used directly. Two different methods based on piecewise linearization (PL) and the
method based on repeated applications of LP to solve a series of approximated orig-

inal problems called sequential linearization problem (SLP) were introduced. We
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explained that SLP has been the most common method used in the field of reser-
voir operations, especially for the optimization of nomlinear large-scale reservoir

systems, because of its ease of implementation.

Chapter (2) continues by introducing Dynamic Programming (DP) as another
technique applicable to reservoir operation studies. The discrete and continuous
methods of DP along with the advantages and disadvantages of these methods
were explained. A literature review has shown that DP methods are widely used

in deterministic and stochastic water resources management problems.

The chapter reviews the recent applications of water resources management
problems based on direct use of Nonlinear Programming (NLP) techniques. We
have seen that Sequential Quadratic Programming (SQP) is able to perform better
on NLP problems than SLP. The reason is that (SQP) provides a better approxi-
mation of the original problem. We have explained that SQP can solve problems
of small and medium sizes reasonably well. However, our survey has indicated
that there has been little work using SQP for the application of large-scale MROP

problems.

The chapter continues by studying the use of two different software packages,
MINOS and LANCELOT. The research indicated that there has been a number
of applications which have been successfully solved using MINOS. Large and Non-
linear Constrained Extended Lagrangian Optimization Techniques (LANCELOT)
was introduced in this chapter as a reliable software package for solving large-scale
nonlinear optimization problems. LANCELOT is a promising software package for
solving all kinds of nonlinear applications in different fields of Engineering, includ-
ing water resources management. However, the author could not find any other
practical work in the field of water resources management, other than the one in

this research, that has presented solution methodologies for large-scale MROPs.
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Chapter (3) defines the problem statement that is of our concern in this disserta-
tion. The chapter continues the study of traditional Penalty function and explains
that it is possible to remove the singularities arising in the penalty function by
expanding the equation. Some constrained qualification was introduced to insure
that expanded equations do not diverge and also to insure that the optimum point

is a Karush-Kuhn-Tucker point.

Special cases in which we can summarize the problem in a simple form have
been studied. The previous work on the solution of Expanded Lagrangian System
was based on the continuation method. The continuation method is promising on
some highly nonlinear problems. However, it does not perform as expected on some

problems with only a mild degree of nonlinearity.

Chapter (3) continues to study the use of the trust region algorithm to solve
nonlinear equations. One algorithm, based on the concept of linear programming,
minimizes the /;-norm of the linearized vector within an /,-norm trust region. Fi-
nally, this chapter introduced the bi-dimensional trust region algorithm proposed
by Martinez for solving nonlinear equations and then studied two similar curvilin-
ear search direction algorithms. Convergence properties for both algorithms were
proved at the end of the chapter. The chapter ends by describing the detailed
computation of the two dimensional subproblem which arises in the bi-dimensional

trust region algorithm.

Chapter (4) looks at various aspects of the implementation of the proposed
method. The chapter compared the results of the proposed method with the per-
formance of different codes and algorithms for several small test examples. The
results indicate that the proposed method has good potential for solving general

constrained optimization problems.



CHAPTER 6. SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 114

In Chapter (5), the effectiveness of the proposed method is examined by ap-
plying it to the Great Lakes levels’ regulation problem. This five reservoir control
problem involves the consideration of the natural and nonlinear stage-discharge re-
lationships for the three middle lakes, Lakes Michigan-Huron, St-Clair and Erie,
and full control only on Lakes Superior and Ontario. This case study gives some
indication of the robustness of the method proposed in this research. The Great
Lakes problem was solved for up to 90 years of monthly data. The implementation
of LANCELOT on the Great Lakes problem indicates that the proposed method is
able to provide somewhat better results than LANCELOT in terms of lower values
for the objective function and CPU time in most cases. The Great Lakes problem
was solved using different features of LANCELOT. Our experimental results have
shown that providing exact information does not always improve the final solu-
tion. In fact we have obtained a better results using approximate techniques (Case
two) in terms of CPU time. We have shown that the implicit implementation of the
bound constraints on Expanded Lagrangian Function can save a significant amount
of memory and reduce the size of the linear systems solved very significantly but

need not affect CPU time significantly due to changes in the number of iterations.

In addition, the levels and releases of the Great Lakes was simulated over the
long term using a rolling-horizon. The results were compared with the original

objective. It was found that both methods can minimize the fluctuation of water

significantly.

6.2 Conclusions

General Nonlinear Programming has always been considered a challenging area
of research. Today, advances in the field of nonlinear programming methods and
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the availability of fast and large-memory computers have motivated researchers to
persist in this area of study and to provide several reliable software packages for

practitioners.

We have proposed a new algorithm for the solution of large-scale nonlinear
programming optimization arising in the context of water resources problems. The
proposed method was used on a variety of small test problems. The modified Trust
Region algorithm used in this dissertation, theoretically, has the same convergence
properties as the original. It was shown that the proposed method can be practically
used in the Great Lakes system to minimize the fluctuation of water significantly.
Also, it seems that the proposed method can be applied to portfolio optimization.
Based on the preliminary numerical test results of the algorithm, we hope that the
algorithm will prove to be useful in practice for more general large-scale constrained

optimization problems.

6.3 Future Research

Different aspects of research, both in general nonlinear programming and in Ex-
panded Lagrangian Functions need to be explored. We believe there are many
different areas in this field for future research and we would like to suggest some of

them as possible future research areas:

Feasibility. The assumption in using the Expanded Lagrangian Function is that
there is a feasible point for inequality constraints. It was suggested that
one can use a penalty loss function to find a point which is at least close
to the boundary and then switch to an expanded form of the equations by

introducing a shift parameter. This alternative may introduce a singularity
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as the solution z gets close to the optimal solution. Another alternative is to
apply interior point algorithms to a linear or quadratic approximation of the

inequality constraints. This is currently a new open research area.

Penalty Parameter. One of the most sensitive elements of the Expanded La-
grangian Function is the penalty parameter. There have been many sugges-
tions on how to introduce a reasonable choice to reduce the penalty parameter
in each major iteration. The proposed method has reduced the penalty pa-
rameter by a single factor and this is similar to LANCELOT. The main reason
for using this alternative is to have a fair comparison with the output perfor-
mance on our case study problem. However, we believe this is an open area
of research and it is quite possible to improve the efficiency of the proposed

method by choosing a more logical pattern to reduce the penalty parameter.

Special case studies. We have shown that the proposed method can be imple-
mented to solve some special case studies very efficiently. The application
of Portfolio Optimization has demonstrated the capability of the proposed
method for handling of Quadratic Programming. However, we believe that
the structure of the Expanded Lagrangian Function can be used in other

applications of Engineering, Science, etc.

Testing. The proposed method was tested on some benchmark problems. It is ob-
vious that these small test problems cannot demonstrate the robustness and
the efficiency of the proposed method in general. Today, with the availability
of the CUTE library with a different number of test problems, and the avail-
ability of LANCELOT as a competitive alternative to the proposed method,
it is quite possible to have a better evaluation on the performance of the pro-

posed method. However, this is very time consuming project. Another open
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research area is when we do not have the information of the first and second
derivative for some particular problem, or when they may be just too costly
to evaluate analytically. These difficulties can create some new research to
study the convergence of the proposed method when we apply Rank one or
Rank two aigorithms to estimate the derivative in the proposed method.



Appendix A

Preconditioned Conjugate

Gradient Method

Preconditioned conjugate gradient (PCG) methods have recently become popular
for solving large, symmetric, positive definite systems of linear equations. There
are many different preconditioners to improve the efficiency of the traditional con-
Jjugate gradient method. Incomplete Cholesky (ILU) preconditioner is one of these

commonly used preconditioners.

Section one of this appendix briefly describes the Conjugate Gradient (CG)
method. In section two, we explain the description of the Preconditioned Conju-
gate Gradient method and finally the drop-tolerance preconditioner is discussed in

section three.
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A.1 Conjugate Gradient Method

Consider a system of linear equations
Az =b (A.1)

where £, b € R" and A is n X n matrix assumed to be symmetric and positive
definite. It is an easy task to show that the minimum of the quadratic function

¥(z) is identical to answer of this system of linear equations.
U(z) = %zTAz —z'b (A.2)

The minimum value of ¥ is achieved by setting the first derivative of ¥(z) equal
to zero, or equivalently by setting! z = A~'5. Thus, minimizing ¥ and solving

equation (A.l) are equivalent problems.

The method of steepest descent is one method to minimize ¥. At a current
point z. the function ¥ decreases most rapidly in the direction of the negative
gradient

-V¥(z.) =b— Az, =, (A.3)

where 1. is defined as the residual at z.. Now, if this residual is nonzero, then there

exists a positive number 1 such that

U(z. — nre) < ¥(z.). (A.4)

In the steepest descent method, one would move along the negative gradient and
for problems with large condition numbers (ill-conditioned matrices) one is forced

to traverse back and forth across the valley rather than down the valley®. In order

14 is assumed to be nonsingular
2except when —V'¥ coincides with the eigenvector corresponding to the smallest eigenvalue of

the matrix
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to avoid such a problem we switch to another approach called A-Conjugate search

directions.

A.1.1 Conjugate Directions

If A is a symmetric, positive definite matrix, then two nonzero vectors p,¢ € R™ are
conjugate (with respect to A) if p* Aqg = 0. A set of n nonzero vectors p;, . .., p, are
conjugate basis if p; and p; are conjugate for all ¢ # j. (For a detailed description
of these directions see [39]).

A.1.2 Conjugate Gradient Algorithm

The Conjugate gradient method in general is given as [27]:
STEP 1. Initialize z,r and the iteration counter k.

k=0;z,=0;1r,=b;

STEP 2. Do while r < toler and k < ke
k—k+1;
fk=1
P1 < To;
else
Br — Ti_yTho1 fri_yTk—2;
Pr = Tk—1 + BiPr-1;
end
M & T_1T%—1/Pg APk;

T ¢ Ti-1 + NiPr;

e &1k — 1 — 9. Apy;
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end loop
STEP 3. solution z =z, STOP

where r = residual, k = iteration counter, p = search direction, n = step length

and # = ratio of the most recent and previous residual norm.

If exact arithmetic were to be performed then the conjugate gradient method
would require at most n iterations to converge for a problem in R™. This result is

explained in the following theorem.

Theorem A.1 Given the quadratic function ¥, where A is symmetric, positive
definite matriz, then the conjugate gradient iterates of the above algorithm satisfy

Tm = A™1b for some m < n. Moreover,

Proof: See [39] .
Details on the convergence properties of CG methods are discussed in various

texts like the one by Luenberger [39].

Conjugate gradient methods work well on matrices that are either very well
conditioned or have just a few distinct eigenvalues. Unfortunately, matrices in real
world problems (usually) are not well conditioned. Hence, in order to come up with
such problems it is necessary to use preconditioners so that they become easier to

solve.

A.2 Preconditioned Conjugate Gradient method

Preconditioned conjugate gradient method is a modification of the conjugate gradi-

ent method where the matrix of coefficients, A, is preconditioned so that the system
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becomes reasonably well conditioned.

A.2.1 Derivation

Consider the n x n symmetric positive definite linear system Az = b. The idea
behind PCG methods is to apply the regular conjugate algorithm to the transformed

system

Az =% (A.6)
where
A=C'AC™', 2=Cz, b=C-'bandCis symmetric positive definite matrix.

In order to improve the efficiency of the algorithm it is essential to choose C
such that A is well conditioned or has few clustered eigenvalues. Applying the
conjugate gradient to this transformed system results in the PCG algorithm.

A.2.2 PCG Algorithm

The following algorithm [27] solves the linear system Az = b using the method of
conjugate gradients with preconditioner M € R™"

STEP 1. Initialize z, r and the iteration counter k.

k=0;z,=0;r, =0
STEP 2. Do while r < toler and k < kpqz

Solve Mz, = 1,
k—k+1;
fk=1

D1 & 25
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else
B  Tr_1Zk-1/rR_3Zk-2;
Pr « Zi—1 + PrPr-1;
end
T + To_1Zk—1/Pk ADk;
Tk ¢ Tk—1 + MkPr;
e 1tk — 1 — N Ape;
end loop

STEP 3. solution z = z; STOP
A few important observations for this method are:

e The residuals and search directions satisfy
M =0 i#j (A.7)
p; (CT'AC)pi =0 i#£J (A.8)

o The denominators r]_,zx—2 = z]_,Mz;_, never vanish because M is

positive definite.

e For this algorithm to be effective, linear systems of the form Mz =r

must be rapidly solved.

The choice of a good preconditioner can have dramatic effect on the rate of
convergence. There are many preconditioners which have been used and tested.
Selecting the right preconditioner is often a difficult task, since some preconditioners
work better on some classes of problems while others perform better on other classes

of problems.
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A.3 The Use of Drop Tolerances to Preserve Spa-
rsity

One of the main problems associated with the use of preconditioners lies in the
increase in the number of entries due to fill-in [16]. Indeed, the storage of the
matrix factorization often limits the size of problem which can be solved. A simple
way to extend this limit is to remove from the sparsity pattern and also from any
subsequent calculations any entry which is less than some prescribed absolute or
relative tolerance, usually called a drop tolerance. So the idea can be summarized

as keeping any intermediate value satisfies the inequality

laly)] < TOL, (A.9)

or the inequality
o3| < TOL, x mazi|af?], (A.10)

3]
for a preset non-negative value of TOL, or TOL,, then ag?) is dropped from the
sparsity pattern and subsequent consideration. In order to have a useful precondi-
tioner, tolerances have to be set high enough to reduce substantially the number of

entries in the factors.
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The Solution of Trust Region
Subproblem

This appendix explains a method to minimize a quadratic objective function
subject to a quadratic constraint. Section B.1 defines the problem and Section B.2

outlines the algorithm used for solving this problem.

B.1 The Problem

Consider the minimization of a quadratic objective function subject to a simple

constraint with the following form,

Minimize f(z) = z'Cz + 2z7¢

s.t. 'z < &2 (B.1)
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where C is 2 x 2 positive definite matrix, ¢ is a vector of length 2, t is positive
scalar, and z is the vector of length 2, which is being solved for.

B.2 The Algorithm

The system (B.1) is solved in two stages:

Stage 1 Solve the unconstrained quadratic directly by solving the following linear

system obtained from the first order necessary conditions:-

Vf(z)=0 (B-2)

Czr = —c (B.3)

which, for this two-dimensional problem, is equivalent to:

Ci1 C12 Iy C1
C21 C22 I2 C2

Stage 1b Check if the constraint 7z < ¢? is satisfied. If yes then stop,
else; go to stage 2.

Stage 2 This stage is only executed when the constraint is not satisfied at the
unconstrained minimum of the problem solved in stage 1. This implies
that at the minimum of the constrained problem the quadratic constraint

will be active. Therefore, stage 2 involves solving the modified problem:

Minimize z7Cz + 2z7¢
s.t.  h(z) = tz—qu: =0 (B.4)
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This problem is solved using the Lagrange-Newton (SOLVER) method.
Details on this method are covered in many books (see [21], [25]).

The Lagrangian function is given as:
Lz,)) = £°Cz + 227¢c — At*—z"z) (B.5)
V{(z, Ai) is the gradient of the Lagrangian and W (z, Ai) is the Hessian

of the Lagrangian.

In its most straightforward form, the Newton method solves the Lagrange

system:-

Ve(z,)) = 0
h(z) = 0 (B.6)

by solving the linearized version recursively. That is, given z, Ax the new

point Ziy;, Ar+1 is determined from the equations

Vlzi, \) + W(ze, Ae)de + VR(ze)Tye = 0
h(ze) + Vh(z+k)de = 0 (B.7)

by setting zi+1 = Zi + di, Ak+1 = Ak + yr. In matrix form the above

Newton equations are

W(zk, M) Vh(zi)T d — —Ve(zx, Ae)" (B.8)
Vh(z) 0| we —h(z:)

now by adding VA(z)T A to the above equation, the system can be trans-
formed to the form

[W(zk,xk) Vh(z,,)"] [ di ] ) [—Vf(%)T], (B.9)
Vh(zk) 0 /\k+1 —h(a:k)
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where again Ary; = Ax + yi. Solving the above system is very easy espe-
cially since the problem is only two dimensional, making the system (B.9)

a 3 x 3 system of linear equations.

Stage 2b Repeat stage 2 until the gradient of the Lagrangian is approx-

imately equal to zero.



Appendix C

Matrix by matrix products

This appendix briefly describes a simple algorithm to provide a product of two
matrices A and B when both of them are conformable and sparse. For full matrices,
the usual way of computing C is to consider each entry c;; as an inner product of

the i-th row B;, of B and the j-th column A,; of A, that is

Cij = Z bikar; = BisA.;- (C.1)
k

The trouble with this formula for a general sparse matrix is that it is very difficault
to avoid performing multiplications brar; with one or other of the factors having
the value zero. An explicit test for a zero is likely to be equally expensive. For
example, if A is stored by columns and B is stored by rows, column j of A may be
loaded into a full vector and ¢;; may be calculated by scanning the entries of row
¢ of B. This means that all entries of B are scanned for each column of A. If the
sparsity pattern of C is already known, ¢;; need not to be calculated unless it is an
entry, but there are still likely to be many occasions when we multiply an entry of
B by a zero in the full vector.
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None of these unnecessary operations is performed with the outerproduct formula-

tion as a sum of rank-one matrices,
C = E BokAk09 (C'2)
k

which is natural if B is stored by columns and A is stored by rows(note that B
is a column vector and A, is a row vector, so BetAre has the shape of C). If
both matrices are stored by columns, columns j of C may be accumulated as linear

combination of the columns of B by expressing (C.2) in the form
C.j = Z aij.k. (C.3)
k

If both matrices are stored by rows, row ¢ of C may be accumulated as a linear

combination of the rows of A by the formula
Cie = Z birAke, (C4)
k

and the required work is identical to that when A and B are both stored by columns.
An imortant special case is when B = AT, which can arise in the least-squares
problem, in which case C is the normal matrix. If A is stored by rows, we have the

case (C.2) with B, = A[, which yields
C =) Al A (C.5)
k

If A is stored by columns we have the case of (C.1) with B;, = A]; which, in
general, will not very efficient. Indeed it may be perferable to make a copy of A
that is stored by rows. We have used this modification to provide the product of

the Jacobian by its transpose in sparse form.
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