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Preface

Convex programming unifies and generalizes least squares (LS), linear programming (LP), and

quadratic programming (QP). It has received considerable attention recently for a number of rea-

sons: its attractive theoretical properties; the development of efficient, reliable numerical algorithms;

and the discovery of a wide variety of applications in both scientific and non-scientific fields. Courses

devoted entirely to convex programming are available at Stanford and elsewhere.

For these reasons, convex programming has the potential to become a ubiquitous numerical

technology alongside LS, LP, and QP. Nevertheless, there remains a significant impediment to its

more widespread adoption: the high level of expertise in both convex analysis and numerical algo-

rithms required to use it. For potential users whose focus is the application, this prerequisite poses

a formidable barrier, especially if it is not yet certain that the outcome will be better than with

other methods. In this dissertation, we introduce a modeling methodology called disciplined convex

programming whose purpose is to lower this barrier.

As its name suggests, disciplined convex programming imposes a set of conventions to follow when

constructing problems. Compliant problems are called, appropriately, disciplined convex programs,

or DCPs. The conventions are simple and teachable, taken from basic principles of convex analysis,

and inspired by the practices of experts who regularly study and apply convex optimization today.

The conventions do not limit generality; but they do allow the steps required to solve DCPs to be

automated and enhanced. For instance, determining if an arbitrary mathematical program is convex

is an intractable task, but determining if that same problem is a DCP is straightforward. A number

of common numerical methods for optimization can be adapted to solve DCPs. The conversion of

DCPs to solvable form can be fully automated, and the natural problem structure in DCPs can be

exploited to improve performance.

Disciplined convex programming also provides a framework for collaboration between users with

different levels of expertise. In short, disciplined convex programming allows applications-oriented

users to focus on modeling, and—as they would with LS, LP, and QP—to leave the underlying

mathematical details to experts.
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Chapter 1

Introduction

Convex programming is a subclass of nonlinear programming (NLP) that unifies and generalizes least

squares (LS), linear programming (LP), and convex quadratic programming (QP). This generaliza-

tion is achieved while maintaining many of the important, attractive theoretical properties of these

predecessors. Numerical algorithms for solving convex programs are maturing rapidly, providing

reliability, accuracy, and efficiency. A large number of applications have been discovered for convex

programming in a wide variety of scientific and non-scientific fields, and it seems clear that even

more remain to be discovered. For these reasons, convex programming arguably has the potential to

become a ubiquitous technology alongside LS, LP, and QP. Indeed, efforts are underway to develop

and teach it as a distinct discipline [29, 18, 122].

Nevertheless, there is a significant impediment to the more widespread adoption of convex pro-

gramming: the high level of expertise required to use it. With mature technologies such as LS, LP,

and QP, problems can be specified and solved with relatively little effort, with at most a very basic

understanding of the computations involved. This is not the case with general convex programming.

That a user must understand the basics of convex analysis is both reasonable and unavoidable; but

in fact, a much deeper understanding is required. Furthermore, a user must find a way to transform

his problem into one of the many limited standard forms; or, failing that, develop a custom solver.

For applications-oriented users—users whose focus is on a particular application, and not on the

underlying mathematics—these requirements constitute a formidable barrier to the use of convex

programming, especially if it is not yet certain that the outcome will be any better than with other

methods. The purpose of the work presented here is to lower this barrier.

In this dissertation, we introduce a new modeling methodology called disciplined convex pro-

gramming. As the term “disciplined” suggests, the methodology imposes a set of conventions that

one must follow when constructing convex programs. The conventions are simple and teachable,

taken from basic principles of convex analysis, and inspired by the practices of those who regularly

study and apply convex optimization today. Conforming problems are called, appropriately, disci-

plined convex programs, or DCPs. These conventions, we hasten to say, do not limit generality; but

1



2 CHAPTER 1. INTRODUCTION

they do allow much of the manipulation and transformation required to analyze and solve convex

programs to be automated. For example, the task of determining if an arbitrary NLP is convex is

both theoretically and practically intractable; the task of determining if it is a disciplined convex

program is straightforward. In addition, the transformations necessary to convert disciplined convex

programs into solvable form, as well as the reverse transformations required to recover valuable dual

information, can be fully automated.

A novel aspect of this work is a new way to define a function or set in a modeling framework:

as the solution of a convex program. We call such a definition a graph implementation because it

exploits the properties of epigraphs and hypographs of convex and concave functions, respectively.

The benefits of graph implementations are numerous; most significant is their ability to support

nondifferentiable functions without the loss of reliability or performance traditionally associated

with them. Because a wide variety of useful convex programs involve nondifferentiable functions,

this support is of considerable practical benefit.

We have created a modeling framework called cvx that implements in software the key principles

of the disciplined convex programming methodology, in order to prove their feasibility and usefulness.

The system is built around a specification language that allows DCPs to be specified in a natural

mathematical form. The components of the system address key tasks such as verification, conversion

to standard form, and construction of an appropriate numerical solver. It is our genuine hope that

cvx will prove useful not only for applications-oriented users wishing to create and solve models, but

also as a platform for advanced research in convex programming algorithms and applications. In

the final chapter of this dissertation we suggest areas of advanced study where the cvx framework

could be used effectively.

The remainder of this chapter begins with some motivation for this work, by examining how

current numerical methods can be used to solve a simple, common convex program. Next, we present

brief introductions to convex programming and modeling frameworks. The chapter concludes with

a synopsis of the dissertation and a brief notational comment.

1.1 Motivation

To illustrate the complexities of practical convex programming, let us examine how to solve a basic

and yet common problem: the unconstrained norm minimization

minimize f(x) , ‖Ax− b‖ A ∈ R
m×n b ∈ R

m. (1.1)

We will examine several choices of the norm ‖ · ‖. For simplicity, we assume that m ≥ n, that A has

full rank, and that A and b are partitioned by rows as follows:

AT , [a1 a2 . . . am] bT , [b1 b2 . . . bm]. (1.2)
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1.1.1 The Euclidean norm

The most common choice of the norm is certainly the `2 or Euclidean norm,

f(x) , ‖Ax− b‖2 =
√∑m

i=1(a
T
i x− bi)

2. (1.3)

In this case, (1.1) is easily recognized as a least squares problem, which as its name implies is often

presented in an equivalent quadratic form,

minimize f(x)2 = ‖Ax− b‖22 =
∑m

i=1(a
T
i x− bi)

2. (1.4)

The solution x satisfies the linear equation x = (AT A)−1AT b, which can be solved using a Cholesky

factorization of AT A, or more accurately using a QR or SVD factorization of A [74]. A number of

software packages to solve least squares problems are readily available; e.g., [6, 111].

1.1.2 The Manhattan norm

For the `1 or Manhattan norm

f(x) , ‖Ax− b‖1 =

m∑

i=1

|aT
i x− bi|, (1.5)

there is no analytical solution to (1.1); but a solution can be obtained from the LP

minimize ~1T v

subject to −v ≤ Ax− b ≤ v
(v ∈ R

m). (1.6)

It is not difficult to solve (1.6) in practice because efficient and reliable LP solvers are widely available.

In fact, one is included with virtually every piece of spreadsheet software sold [63].

1.1.3 The Chebyshev norm

Similarly, for the `∞ or Chebyshev norm,

f(x) , ‖Ax− b‖∞ = max
i=1,2,...,m

|aT
i x− bi|, (1.7)

a solution can also be determined from an appropriate LP:

minimize q

subject to −q~1 ≤ Ax− b ≤ q~1
(q ∈ R). (1.8)

Again, this problem can be easily solved using readily available LP software.
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1.1.4 The Hölder norm

Now consider the Hölder or `p norm

f(x) , ‖Ax− b‖p =

(
m∑

i=1

|aT
i x− bi|p

)1/p

. (1.9)

Newton’s method

When p ≥ 2, f(x) is twice differentiable everywhere except when Ax = b. This condition is not likely

to be encountered in practical norm minimization problems, so we may consider applying Newton’s

method directly. In fact, let us minimize instead the related function

g(x) , f(x)p =

m∑

i=1

|aT
i x− bi|p, (1.10)

which produces the same solution x but simplifies the calculations somewhat, and eliminates the

nondifferentiability at Ax = b. The iterates produced by Newton’s method are

x(k+1) = x(k) − αk

(
∇2g(x(k))

)−1

∇g(x(k))

= x(k) − αk

p− 1
(AT W (k)A)−1AT W (k)(Ax(k) − b)

=

(
1− αk

p− 1

)
x(k) +

αk

p− 1
arg min

w̄

∥∥∥(W (k))1/2(Aw̄ − b)
∥∥∥

2

(1.11)

where x0 = 0, k = 1, 2, 3, . . . , and we have defined

W (k) , diag(|aT
1 x(k) − b1|p−2, |aT

2 x(k) − b2|p−2, . . . , |aT
mx(k) − bm|p−2). (1.12)

The quantities αk ∈ (0, 1] are either fixed or determined at each iteration using a line search tech-

nique. Notice how the Newton computation involves a (weighted) least squares problem: in fact, if

p = 2, then Wk ≡ I, and a single iteration with α1 = 1 produces the correct solution. So the more

“complex” `p case simply involves solving a series of similar least squares problems—a resemblance

that turns up quite often in numerical methods for convex programming.

An important technical detail must be mentioned here. If one or more of the residuals aT
i x(i)−bi

are zero, the matrix W (k) (1.12) is singular, and ∇2g(x) = AT W (k)A can therefore be singular as

well. If mÀ n and A has full column rank, this is not likely—but care must be taken nonetheless to

guard for the possibility. A variety of methods can be considered to address the issue—for example,

adding a slight damping factor εI to either W (k) or ∇2g(x).

Newton’s method is itself a relatively straightforward algorithm, and a number of implementa-

tions have been developed; e.g., [117]. These methods require that code be created to perform the
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computation of the gradient and Hessian of the function being minimized. This task is eased some-

what by automatic differentiation packages such ADIC [86] or ADIFOR [20], which can generate

derivative code from code that simply computes a function’s value.

A better approach

For 1 < p < 2, Newton’s method cannot reliably be employed, because neither f(x) nor g(x) , f(x)p

is twice differentiable whenever any of the residuals are zero. An alternative that works for all

p ∈ [1,+∞) is to apply a barrier method to the problem. A full introduction to barrier methods is

beyond the scope of this text, so we will highlight only key details. The reader is invited to consult

[124] for a truly exhaustive development of barrier methods, or [29] for a gentler introduction.

To begin, we note that the solution to (1.1) can be obtained by solving

minimize ~1T v

subject to |aT
i x− bi|p ≤ vi i = 1, 2, . . . ,m.

(1.13)

To solve (1.13), we construct a barrier function φ : R
n×R

m → (R∪+∞) to represent the inequality

constraints [124]:

φ(x, v) ,





∑m
i=1− log(v

2/p
i − (aT

i x− bi)
2)− 2 log vi (x, v) ∈ Int S

+∞ (x, v) 6∈ Int S

S ,
{

(x, v) ∈ R
n × R

m | |aT
i x− bi|p ≤ vi, i = 1, 2, . . . ,m

}
.

(1.14)

The barrier function is finite and twice differentiable whenever the inequality constraints in (1.13)

are strictly satisfied, and +∞ otherwise. This barrier is used to create a family of functions gµ

parameterized over a quantity µ > 0:

gµ : R
n × R

m → (R ∪+∞), gµ(x, v) , ~1T v + µφ(x, v). (1.15)

It can be shown that the minimizing values of gµ(x, v) converge to the solution of the original problem

as µ→ 0. A practical barrier method takes Newton steps to minimize gµ(x, v), decreasing the value

of µ between iterations in a manner chosen to ensure convergence and acceptable performance.

This approach is obviously significantly more challenging than our previous efforts. As with the

Newton method for the p ≥ 2 case, code must be written (or automatic differentiation employed) to

compute the gradient and Hessian of gµ(x, v). Furthermore, the authors are unaware of any readily

available software implementing a general-purpose barrier method such as this. Several custom

solvers, at least one employing a barrier method, have been designed specifically for the p-norm

minimization problem (e.g., [171]), but applications-oriented users are not likely to know of them.

In §2.8, we provide yet another alternative, in which the problem is converted to a smooth
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nonlinear program. The conversion itself is not obvious, nor is it foolproof. Thus the point remains

that the `p case is the most difficult option to solve thus far.

1.1.5 An uncommon choice

Given a vector w ∈ R
m, let w[|k|] be the k-th element of the vector after it has been sorted from

largest to smallest in absolute value:

|w[|1|]| ≥ |w[|2|]| ≥ · · · ≥ |w[|m|]|. (1.16)

Then let us define the largest-L norm as follows:

‖w‖[|L|] ,

L∑

k=1

|w[|k|]| (L ∈ {1, 2, . . . ,m}). (1.17)

Solving (1.1) using this norm produces a vector x that minimizes the sum of the absolute values of

the L largest residuals. It is equivalent to the `∞ case for L = 1 and the `1 case for L = m, but for

1 < L < m this norm produces novel results.

It may not be obvious that (1.17) is a norm or even a convex function, but it is indeed both. It is

probably even less obvious how this problem can be solved. But in fact, a solution can be obtained

from the following LP:

minimize ~1T v + Lq

subject to −v − q~1 ≤ Ax− b ≤ v + q~1

v ≥ 0

(v ∈ R
m, q ∈ R). (1.18)

This LP is only slightly larger than the ones used for the `1 and `∞ cases. The result is known—

see, for example [129]—but not widely so, even among those who actively study optimization. We

provide a more detailed development of the largest-L norm in §2.9.

1.1.6 The expertise barrier

The conceptual similarity of these problems is obvious, but the methods employed to solve them

differ significantly. Several numerical algorithms are represented: least squares, linear programming,

Newton’s method, and a barrier method. In most cases, transformations are required to produce

an equivalent problem suitable for numerical solution. These transformations are not likely to be

obvious to an applications-oriented user whose primary expertise is not optimization. As a result,

those wishing to solve a norm minimization problem may, out of ignorance or practicality, restrict

their view to norms for which solution methods are widely known, such as `2 or `1—even if doing

so compromises the accuracy of their models. This might be understandable for cases like, say, `1.5,
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minimize norm_inf( A x - b );

parameters A[m,n], b[n];

variable x[n];

include "norms.cvx";

minimize norm_p( A x - b, p );

parameters A[m,n], b[n], p >= 1;

variable x[n];

include "norms.cvx";

minimize norm_largest( A x - b, L );

parameters A[m,n], b[n], L in #{1,2,...,n};

variable x[n];

include "norms.cvx";

Figure 1.1: cvx specifications for the Chebyshev, Hölder, and largest-L cases.

where the computational method employed is quite complex. But the true computational complexity

may be far less severe than it seems on the surface, as is the case with the largest-L norm.

Even this simple example illustrates the high level of expertise needed to solve even basic convex

optimization problems. Of course, the situation worsens if more complex problems are considered.

In Chapter 2 we introduce constraints on x that eliminate analytical solutions for the `2 case and

prevent the use of a simple Newton’s method for the `p case.

Stated positively: if the process of specifying and solving these problems could be simplified,

modelers would be free to create more accurate and more complex models.

1.1.7 Lowering the barrier

In Figure 1.1, cvx specifications for three of the problems presented here are given. In each case, the

problem is in its original form; no transformations described above have been applied in advance to

convert them into solvable form. Instead, the models utilize the functions norm_inf, norm_p, and

norm_largest for the `∞, `p, and largest-L norms, respectively. The definitions of these functions

have been stored in a separate file norms.cvx and are referred to by an include command. (For

illustration, the models in Figure 1.1 take advantage of features in the cvx language that have been

planned but not yet implemented. See §5.1 for versions of these problems implemented using the

current version of cvx.)

In most modeling frameworks, function definitions consist of code to compute their values and

derivatives. This method is not useful for the norms used here, because they are not differentiable.

Graph implementations, which we describe in §3.5, provide a necessary alternative. For now, it is

enough to know that they effectively describe the very transformations illustrated in §1.1.1-§1.1.5
above. For example, the definitions for the norm_inf and norm_largest provide the information

necessary to convert their respective problems into LPs. The definition for norm_p includes a barrier

function for its epigraph, which can be used to construct a barrier method for that problem.
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So neither disciplined convex programming nor the cvx framework actually eliminates the trans-

formations needed to solve these convex programs. But they do allow the transformations to be

encapsulated within function definitions: that is, hidden from the user and performed without that

user’s intervention. The definitions are easily shared among users, suggesting a natural, collaborative

environment where those with advanced expertise in convex programming can share their knowledge

with less experienced modelers in a practical way. Therefore, the task of solving convex programs

can be appropriately returned to experts, freeing applications-oriented users to focus confidently on

creating and solving models.

1.2 Convex programming

A mathematical program is an optimization problem of the form

PMP: minimize f(x)

subject to gi(x) ≤ 0 i = 1, 2, . . . , ng

hj(x) = 0 j = 1, 2, . . . , nh

x ∈ X

(1.19)

or one that can be readily converted into this form. The vector x is the problem variable drawn from

a set X ⊆ R
n. We will assume that X ≡ R

n for all of the problems considered here. The function

f : X → R is the objective function, and the relations gi(x) ≤ 0 and hj(x) = 0 are the inequality

and equality constraints, respectively. [76, 29]. In some contexts, including ours, the functions are

permitted to be extended-valued ; that is, obtaining the values ±∞.

Solving PMP (1.19) involves making determinations such as the following:

• Feasibility : Determine if PMP is feasible; that is, if there exists at least one feasible point x ∈ X

that satisfies the constraints. Otherwise, we say that the problem is infeasible.

• Optimality : Find the optimal value f∗ of PMP—the infimum of f(x) taken over all feasible

points x—and, if possible, an optimal point x∗ that achieves it; i.e., f(x∗) = f∗. By convention,

f∗ = +∞ if PMP is infeasible, and f∗ = −∞ if PMP is unbounded. An optimal point need not

exist, even if f∗ is finite—and if one does exist, it need not be unique.

• Sensitivity : Determine how the optimal value responds to perturbations in the constraints.

Typically these determinations are not expected to be made exactly, but rather to within predefined

numerical tolerances. For example, instead of finding an optimal point x∗, we may find a near-

optimal point x̄ that is provably close to optimal; e.g., satisfying f(x̄)− f ∗ ≤ ε.

Certain special cases of (1.19) receive considerable dedicated attention. By far the most common
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is the linear program (LP), for which the functions f , gi, hj are all affine; e.g.,

minimize cT x

subject to Ax = b

x ≥ 0

=⇒
f(x) , cT x

hj(x) , aT
j x− bj j = 1, 2, . . . ,m

gi(x) , −xi i = 1, 2, . . . , n.

(1.20)

Quadratic programs (QPs) and least-squares problems can be expressed in this form as well. The

class of nonlinear programs (NLPs) includes nearly all problems that can be expressed in the form

(1.19) with X ≡ R
n, although generally there are assumptions made about the continuity and/or

differentiability of the objective and constraint functions.

A convex program (CP) is yet another special case of (1.19): one in which the objective function

f and inequality constraint functions gi are convex, and the equality constraint functions hj are

affine. A function f : R
n → (R ∪+∞) is convex if it satisfies

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y) ∀x, y ∈ R
n, α ∈ (0, 1). (1.21)

The set of CPs is a strict subset of the set of NLPs, and includes all LPs, convex QPs (i.e., QPs for

which the Hessian ∇2f is positive semidefinite), and least-squares problems. Several other classes of

CPs have been identified recently as standard forms. These include semidefinite programs (SDPs)

[159], second-order cone programs (SOCPs) [103], and geometric programs (GPs) [49, 7, 144, 52, 95].

The work we present here applies to all of these special cases as well as to the general class of CPs.

The practice of modeling, analyzing, and solving CPs is known as convex programming. In this

section we provide a survey of convex programming, including its theoretical properties, numerical

algorithms, and applications.

1.2.1 Theoretical properties

A comprehensive theory of convex analysis was developed by the 1970s [142, 146], and advances

have continued since [84, 85, 18, 29]. From this work we know that several powerful and practical

theoretical conclusions can be drawn once it is established that a mathematical program is convex.

The most fundamental of these is that for CPs, local optima are guaranteed to be global. Put another

way, if local optimality can somehow be demonstrated (for example, using KKT conditions), then

global optimality is assured. Except in certain special cases, no similar guarantees can be made for

nonconvex NLPs. Such problems might exhibit multiple local optima, so an exhaustive search would

be required to prove global optimality—an intractable task.

Convex programming also has a rich duality theory that is very similar to the duality theory

that accompanies linear programming, though it is a bit more complex. The dual of a CP is itself a

CP, and its solution often provides interesting and useful information about the original, or primal,

problem. For example, if the dual problem is unbounded, then the primal must be infeasible. Under

certain conditions, the reverse implication is also true: if the primal is infeasible, then its dual must
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be unbounded. These and other consequences of duality facilitate the construction of numerical

algorithms with definitive stopping criteria for detecting infeasibility, unboundedness, and near-

optimality. In addition, the dual problem provides valuable information about the sensitivity of the

primal problem to perturbations in its constraints. For a more complete development of convex

duality, see [142, 107].

Another important property of CPs is the provable existence of efficient algorithms for solving

them. Nesterov and Nemirovsky proved that a polynomial-time barrier method can be constructed

for any CP that meets certain technical conditions [123]. Other authors have shown that problems

that do not meet those conditions can be embedded into larger problems that do—effectively making

barrier methods universal [176, 107, 178].

Note that the theoretical properties discussed here, including the existence of efficient solution

methods, hold even if a CP is nondifferentiable—that is, if one or more of the constraint or objective

functions is nondifferentiable. The practical ramifications of this fact are discussed in §1.2.4.

1.2.2 Numerical algorithms

The existence of efficient algorithms for solving CPs has been known since the 1970s, but it is only

through advances in the last two decades that this promise has been realized in practice. Much

of the modern work in numerical algorithms has focused on interior-point methods [174, 143, 168].

Initially such work was limited to LPs [90, 139, 75, 94, 112, 116, 60], but was soon extended to

encompass other CPs as well [123, 124, 5, 89, 125, 167, 8, 120]. Now a number of excellent solvers

are readily available, both commercial and freely distributed.

Below we provide a brief survey of solvers for convex programming. We have separated them

into two classes: those that rely on standard forms, and those that rely on custom code.

Standard forms

Most CP solvers are designed to handle certain prototypical problems known as standard forms.

In other words, such solvers handle a limited family of problems with a very specific structure, or

obeying certain conventions. The least squares problem and the LP are two common examples; we

list several others below. These solvers trade generality for ease of use and performance.

It is instructive to think of the collection of standard form solvers as a “toolchest” of sorts. This

toolchest is reasonably complete, in that most CPs that one might encounter can be transformed

into one (or more) of these standard forms. However, the required transformations are often far

from obvious, particularly for an applications-oriented user.

Smooth convex programs Several solvers have been designed to solve CPs in standard NLP

form (1.19), under the added condition that the objective function f and inequality constraint

functions gi are smooth—that is, twice continuously differentiable—at least over the region that the
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algorithm wishes to search. We call such problems smooth CPs; conversely, we call CPs that do not

meet this criteria nonsmooth CPs.

Software packages that solve smooth CPs include LOQO [162], which employs a primal/dual

interior-point method, and the commercial package MOSEK [118], which implements the homoge-

neous algorithm. These solvers generally perform quite well in practice. Many systems designed

for smooth nonconvex NLPs will often solve smooth CPs efficiently as well [36, 68, 119, 69, 44, 35,

163, 127, 31, 37, 17, 70, 58, 153]. This is not surprising when one considers that these algorithms

typically exploit local convexity when computing search directions.

One practical difficulty in the use of smooth CP or NLP solvers is that the solver must be able to

calculate the gradient and Hessian of the objective and constraint functions at points of its choosing.

In some cases, this may require the writing of custom code to perform these computations. Many

modeling frameworks (see §1.4) simplify this process greatly by allowing functions to be expressed

in natural mathematical form and computing derivatives automatically (e.g., [59, 30]).

Conic programs An entire family of standard forms that have become quite common are the

primal and dual conic forms

minimize cT x

subject to Ax = b

x ∈ K
or

maximize bT y

subject to AT y + z = c

z ∈ K∗

(1.22)

in which the sets K and K∗ are closed, convex cones (i.e., they satisfy αK ≡ K and αK∗ ≡ K∗ for

all α > 0). The most common conic form is the LP, for which K = K∗ is the nonnegative orthant

K = K∗ = R
n
+ , {x ∈ R

n | xj ≥ 0, j = 1, . . . , n } . (1.23)

It can be shown that virtually any CP can be represented in conic form, with appropriate choice of K
or K∗ [124]. In practice, two conic forms (besides LP) dominate all recent study and implementation.

One is the semidefinite program (SDP), for which K = K∗ is an isomorphism of the cone of positive

semidefinite matrices

Sn
+ ,

{
X = XT ∈ R

n×n | λmin(X) ≥ 0
}

. (1.24)

The second is the second-order cone program (SOCP), for which K = K∗ is the Cartesian product

of one or more second-order or Lorentz cones,

K = Qn1 × · · · × QnK , Qn , { (x, y) ∈ R
n × R | ‖x‖2 ≤ y } . (1.25)

SDP and SOCP receive this focused attention because many applications have been discovered for

them, and because their geometry admits certain useful algorithmic optimizations [126, 78, 155,

54, 73, 107, 134]. Publicly available solvers for SDP and SOCP include SeDuMi [148], CDSP [22],
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SDPA [65], SDPT3 [158], and DSDP [16]. These solvers are generally quite efficient, reliable, and

are entirely data-driven: that is, they require no external code to perform function calculations.

Geometric programs Another standard form that has been studied for some time and has gen-

erated renewed interest recently is the geometric program (GP). The GP is actually a bit of a unique

case, in that it is in fact not convex—but a simple transformation produces an equivalent problem

that is convex. In convex form, the objective and inequality constraint functions obtain a so-called

“log-sum-exp” structure; for example,

f(x) , log
M∑

i=1

eaT
i x+bi ai ∈ R

n, bi ∈ R, i = 1, 2, . . . ,M. (1.26)

GPs have been used in various fields since the late 1960s [49]. In convex form they are smooth CPs,

and recent advances in algorithms have greatly improved the efficiency of their solution [95].

Custom code

There are instances where a CP cannot be transformed into one of the standard forms above—or

perhaps the transformations cannot be determined. An alternative is to use one of the methods that

we list here, which are universal in the sense that they can, in theory, be applied to any CP. The

cost of this universality is that the user must determine certain mathematical constructions, and

write custom code to implement them.

Barrier methods A barrier method replaces the inequality constraint set

S , {x ∈ R
n | gi(x) ≤ 0, i = 1, . . . , ng } (1.27)

with a twice differentiable convex barrier function φ : R
n → R satisfying domφ = IntS, producing

a modified problem

minimize f(x) + µφ(x)

subject to hj(x) = 0 j = 1, 2, . . . , nh

(1.28)

where µ is a scalar parameter. Each iteration of a barrier method performs Newton minimization

steps on (1.28) for a particular value of µ. Under mild conditions, solutions to this modified problem

converge to that of the original problem as µ → 0. A complete development of barrier methods,

including proofs of universality and performance, as well as a number of complete algorithms, is

given in [124].

There are several practical roadblocks to the use of a barrier method. First of all, the author

knows of no publicly-available, general-purpose barrier solver; someone wishing to use this technique

would have to write their own. Even if a barrier solver is found, the user must supply code to
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compute the value and derivatives of the barrier function. Furthermore, determining a valid barrier

function is not always trivial, particularly if the inequality constraints are nondifferentiable.

Cutting plane methods A localization or cutting-plane method such as ACCPM [135] replaces

the inequality constraint set S (1.27) with a cutting-plane oracle: a construct that, given a point

x 6∈ S, returns a separating hyperplane between x and S. These methods require the computation of

subgradient information from each of the functions f and gi, and the user is expected to supply code

to compute this information. The primary advantage of these methods is their immediate support

for nondifferentiable functions. However, their performance is usually inferior to the other methods

mentioned here, though they often lend themselves to distributed computation.

1.2.3 Applications

A wide variety of practical applications for convex programming have already been discovered, and

the list is steadily growing. Perhaps the field in which the application of convex programming is

the most mature and pervasive is control theory; see [50, 24, 25, 39, 114] for a sample of these

applications. Other fields where applications for convex optimization are known include

• robotics [141, 32, 80];

• pattern analysis and data mining, including support vector machines [149, 181, 137, 166, 91];

• combinatorial optimization and graph theory [105, 3, 28, 71, 62, 55, 92, 177, 183, 108, 46, 57,

56, 81];

• structural optimization [2, 10, 15, 12, 13, 182, 88, 14, 11, 93];

• algebraic geometry [133, 97, 99, 98];

• signal processing [87, 170, 66, 147, 151, 165, 47, 152, 4, 51, 106, 145, 64, 156, 61, 154, 115, 109,

130, 48, 131, 43, 9, 67, 172, 164, 157, 180];

• communications and information theory [23, 100, 41, 138, 79, 150, 1];

• networking [19, 21];

• circuit design [160, 161, 83, 42, 82, 26];

• quantum computation [45];

• neural networks [132];

• chemical engineering [140];

• economics and finance [72, 175].
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This list, while large, is certainly incomplete, and excludes applications where only LP or QP is

employed. A list including LP and QP would be significantly larger; and yet convex programming

is of course a generalization of these technologies.

One promising source of new applications for convex programming is the extension and en-

hancement of existing applications for linear programming. An example of this is robust linear

programming, which allows uncertainties in the coefficients of an LP model to be accounted for

in the solution of the problem, by transforming it into a nonlinear CP [103]. This approach pro-

duces robust solutions more quickly, and arguably more reliably, than using Monte Carlo methods.

Presumably, robust linear programming would find application anywhere linear programming is

currently employed, and where uncertainty in the model poses a significant concern.

Some may argue that our prognosis of the usefulness of convex programming is optimistic, but

there is good reason to believe the number of applications is in fact being underestimated. We

can appeal to the history of linear programming as precedent. George Dantzig first published his

invention of the simplex method for linear programming in the 1947; and while a number of military

applications were soon found, it was not until 1955-1960 that the field enjoyed robust growth [40].

Certainly, this delay was in large part due to the dearth of adequate computational resources; but

that is the point: the discovery of new applications accelerated only once hardware and software

advances made it truly practical to solve LPs.

Similarly, then, there is good reason to believe that the number of applications for convex pro-

gramming will rise dramatically if it can be made easier to create, analyze, and solve CPs.

1.2.4 Convexity and differentiability

As mentioned in §1.2.2, many solvers for smooth (nonconvex) NLPs can be used effectively to solve

many smooth CPs. An arguable case can be made that the advance knowledge of convexity is

not critical in such cases. Dedicated solvers for smooth CPs do provide some advantages, such as

reliable detection of infeasibility and degeneracy; see, for example, [178]. But such advantages may

not immediately seem compelling to those accustomed to traditional nonlinear programming.

In the nonsmooth case, the situation is markedly different. Nondifferentiability poses a signifi-

cant problem for traditional nonlinear programming. The best methods available to solve nondif-

ferentiable NLPs are far less accurate, reliable, or efficient than their smooth counterparts. The

documentation for the GAMS modeling framework “strongly discourages” the specification of nons-

mooth problems, instead recommending that points of nondifferentiability be eliminated by replacing

them with Boolean variables and expressions [30], thereby converting a nondifferentiable NLP to

mixed-integer NLP (MINLP). But doing so is not always straightforward, and introduces significant

practical complexities of a different sort.

In contrast, there is nothing in theory that prevents a nonsmooth CP from being solved as effi-

ciently as a smooth CP. For example, as mentioned in §1.2.1, the proof provided by Nesterov and
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Nemirovsky of the existence of barrier functions for CPs does not depend on smoothness consid-

erations. And nonsmooth CPs can often be converted to an equivalent smooth problem with a

carefully chosen transformation—consider the `∞, `1, and largest-L norm minimization problems

presented in §1.1. Of course, neither the construction of a valid barrier function nor the smoothing

transformation is always (or even often) obvious.

One might ask: just how often are the CPs encountered in practice nonsmooth? We claim that it

is quite often. Non-trivial SDPs and SOCPs, for example, are nonsmooth. Common convex functions

such as the absolute value and most norms are nonsmooth. Examining the current inventory of

applications for convex programming, and excluding those that immediately present themselves as

LPs and QPs, smoothness is the exception, not the rule.

Thus a convex programming methodology that provides truly practical support for nonsmooth

problems is of genuine practical benefit. If such a solution can be achieved, then the a priori

distinction between convexity and nonconvexity becomes far more important, because the need to

avoid nondifferentiability remains only in the nonconvex case.

1.3 Convexity verification

Given the benefits of a priori knowledge of convexity, it follows that it would be genuinely useful to

perform automatic convexity verification: that is, to determine whether or not a given mathematical

program is convex. Unfortunately, in general, this task is at least as difficult as solving nonconvex

problems: that is, it is theoretically intractable. Every practical approach to the problem necessarily

involves a compromise of generality, reliability, automation, or some combination thereof:

• generality : the approach supports only a well-defined subset of convex programs.

• reliability : the approach fails to make conclusive determinations in some cases.

• automation: the approach requires at least some assistance from the user.

The approach taken in disciplined convex programming is no exception here. In this section, we

introduce a number of other approaches, each involving a different set of these compromises.

1.3.1 Smooth NLP analysis

An ambitious approach to convexity detection for smooth nonlinear programs has been developed

by Crusius [38] and Orban and Fourer [128]. The former has been refined and integrated into

a commercial offering [121, 63]; the latter is part of a larger effort to analyze and classify many

types of structure found in mathematical programs, not just convexity. While these systems were

developed independently, and each includes unique features, they are similar enough in concept and

operation that we discuss them together here.

These systems proceed in two stages. In the first, the constraints are analyzed using interval

methods and other techniques to collect bounds on the feasible region. The process is iterative in
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nature: information from one constraint often allows tighter bounds to be computed from other

constraints. This stage continues until the bounds can no longer be improved.

In the second stage, key subexpressions of the objective and constraint functions are analyzed

to determine if they are convex over this approximate feasible region. This is accomplished by

symbolically differentiating the expressions and bounding the values of their Hessians. As with any

symbolic differentiation system, the systems are limited to those functions contained in a library

with relevant derivative information. But in both cases, the library is reasonably large; and, in the

Crusius case, relatively easy to expand.

The analysis produces one of three results:

• all Hessians are positive semidefinite over the feasible region: the problem is convex.

• any Hessian is negative definite over the feasible region: the problem is nonconvex.

• otherwise: no conclusive determination can be made.

Note that the third case does not mean that the problem is convex or nonconvex; just that the

system was unable to reach a conclusion.

Limiting the convexity determination to the approximate feasible region allows a number of

problems to be accepted as convex that do not satisfy a strict reading of the definition we give in

§1.2, in which the overall feasible region is not considered when judging the convexity of a constraint.

To illustrate the distinction, consider the trivial problem

minimize x3

subject to x ≥ 0.
(1.29)

In this case, the objective function is clearly not convex. However, it is convex over the interval

enforced by the constraint x ≥ 0, and the Crusius/DrAmpl systems would easily detect this fact.

The problem would be accepted as convex by these systems, but not according to our definition in

§1.2. This more inclusive definition is certainly attractive—as long as numerical methods applied to

such problems are careful to remain within the region where local convexity is assured.

The Crusius/DrAmpl approach represents an impressive combination of computational tech-

niques, and often achieves surprising results by determining convexity where it would not be rea-

sonably expected. For example, the Crusius system successfully concludes that the problem

minimize sin(ex)

subject to 2 log(2x− 1) ≥ x

x3 ≤ 1

(1.30)

is convex [38]—which, to the author at least, seems far from obvious. Nevertheless, the inability of

this approach to reliably make conclusive determinations in all cases limits its usefulness in contexts

where convexity is an advance requirement. It would seem that these systems are most useful when
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convexity is not a strict requirement, but can still be exploited when found. This interpretation

coincides well with the way that the methods are being deployed.

As stated above, both systems are designed to work only with smooth NLPs. Crusius briefly

discusses the nonsmooth case, providing a single example of how a problem can be transformed from

nonsmooth form to smooth form. But he does not address the general problem or propose how this

type of transformation could be automated. The techniques presented in this dissertation could

perhaps be used to extend these methods to certain nonsmooth problems.

1.3.2 Parsing methods

Many modeling frameworks, including AMPL and GAMS, automatically and reliably determine if

a model is a linear program, enabling specialized algorithms to be selected for them automatically

[59, 30]. Similar approaches are employed by modeling tools such as SDPSOL and LMITOOL to

verify SDPs automatically [169, 53].

While we do not know for sure how AMPL, GAMS, and LMITOOL accomplish this task, we

do know that it can be easily performed by a parser, which is the approach SDPSOL takes. In

simple terms, a parser is an algorithm that analyzes the structure of a text file or data structure to

determine if it conforms to a set of pattern rules known as a grammar. For example, to determine

that a mathematical program is an LP, it is necessary to confirm that the numerical expressions

in the objective functions and constraints are affine in the parameters. A set of grammar rules to

codify this might include:

• Variables are trivially affine, as are constant expressions.

• Sums and differences of affine expressions are affine.

• The product of a constant expression and an affine expression is affine.

In a parser grammar, what is not included is as important as what is: for example, the product of

two non-constant affine expressions is not affine. So, for example, if x and y are variables, then the

expression 2 x + 2 y / 3 - y would satisfy the grammar rules and would be confirmed as affine;

but the expression x y + x would not.

It is important to understand that parsing methods rely on an analysis of textual structure,

and by themselves lack any sort of mathematical sophistication or knowledge. This can work quite

well for standard forms like LP and SDP, where textual structure is sufficient to make conclusive

determinations, but for more general problems it can be too limited. For example, a parser can easily

be designed to recognize arbitrary quadratic expressions; but except in limited special cases, it will

not be able to determine if the expression is convex. On the other hand, unlike the mathematically

sophisticated approach in §1.3.1, a parser is deterministic, and can make conclusive determinations

in every case: either a problem obeys the grammar, or it does not. Thus while the class of problems

itself may be limited, true and reliable verification of that problem class is possible.
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1.3.3 Empirical analysis

Yet another alternative is provided by MPROBE [33], a system that employs numerical sampling to

determine empirically the shapes of constraint and objective functions. It will conclusively disprove

linearity or convexity in many cases, but it can never conclusively prove convexity, because doing

so would require an exhaustive search. To be fair, its author makes no claims to that effect, instead

promoting MPROBE as a useful tool for interactively assisting the user to make his own decisions. It

is a powerful tool for that purpose, and it is certainly conceivable that such an interactive approach

could provide a practically sufficient determination of convexity in many cases.

1.4 Modeling frameworks

The purpose of a modeling framework is to enable someone to become a proficient user of a par-

ticular mathematical technology (e.g., convex programming) without requiring that they become

an expert in it (e.g., interior-point methods). It accomplishes this by providing a convenient in-

terface for specifying problems, and then by automating many of the underlying mathematical and

computational steps for analyzing and solving them.

A number of excellent modeling frameworks for LP, QP, and NLP are in widespread use. The

primary benefits of these frameworks include:

• Convenient problem specification. Most modeling frameworks, including including AMPL [59],

GAMS [30], and LINGO [101], are built around a custom modeling language that allows models

to be specified in a text file using a natural mathematical syntax. Other frameworks, such as

What’sBest! [102] and Frontline [63], use spreadsheets as a natural, graphical user interface.

• Standard form detection. Most employ the techniques described in §1.3.2 to differentiate

between LPs, QPs, and NLPs automatically, allowing specialized solvers to be selected.

• Automatic differentiation. Frameworks that support smooth NLPs can compute the derivatives

of the objective and constraint functions for use by the solver.

• Solver control. The frameworks can automatically call the solver, passing it the problem data in

proper form and supplying reasonable default values for the solver’s configuration parameters.

The user can override those parameters or force the use of a particular solver, if desired.

Thanks to these features, modeling frameworks greatly simplify the analysis and solution of LPs,

QPs, and NLPs, and have had a broad and positive impact on the use of optimization in many

application areas. These frameworks are well-suited for solving smooth CPs as well.

A few modeling tools designed for convex programming have been developed, but are limited to

certain standard forms and tailored for particular applications. For example, several tools have been

developed to simplify the specification and solution of semidefinite programs (SDPs) or linear matrix

inequalities (LMIs), including SDPSOL [169], LMITool [53], MATLAB’s LMI Control Toolbox [110],
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maximize entropy( x1, x2, x3, x4 );

subject to a11 x1 + a12 x2 + a13 x3 + a14 x4 = b1;

a21 x1 + a22 x2 + a23 x3 + a24 x4 = b2;

x1 + x2 + x3 + x4 = 1;

parameters a11, a12, a13, a14, b1,

a21, a22, a23, a24, b2;

variables x1 >= 0, x2 >= 0, x3 >= 0, x4 >= 0;

function entropy( ... ) concave;

Figure 1.2: An example CP in the cvx modeling language.

YALMIP [104], and SOSTOOLS [136]. These tools are used by thousands in control design, analysis,

and research, and in other fields as well. Undoubtedly, semidefinite programming would not be so

widely used without such tools, even though efficient codes for solving SDPs are widely available.

We are designing a new modeling framework, called cvx, to support disciplined convex program-

ming, and have already completed a preliminary version which demonstrates the feasibility of the

key principles of the methodology. cvx is built around a modeling language that allows optimization

problems to be expressed using a relatively obvious mathematical syntax. The language shares a

number of basic features with other modeling languages like AMPL or GAMS, such as parameter

and variable declarations, common mathematical operations, and so forth. See Figure 1.2 for an

example of a simple entropy maximization problem expressed in the cvx syntax.

Throughout this dissertation, we illustrate various concepts with examples rendered in the cvx

modeling language, using a fixed-width font (example) to distinguish them. However, because cvx

is still in development, it is possible that future versions of the language will use a slightly different

syntax; and a few examples use features of the language that are planned but not yet implemented.

1.5 Synopsis

The purpose of this dissertation is to introduce disciplined convex programming, and to enumerate

its advantages for both the applications-oriented modeler and the advanced convex optimization

researcher. Several of the specific challenges discussed here are addressed, including automatic

solver selection and construction (1.2.2), support for nonsmooth problems (1.2.4), and automatic

convexity verification (1.3). These challenges are in fact advances toward a larger goal of unification.

There are no less than seven commonly recognized standard forms for convex programming: LS, LP,

QP, SDP, SOCP, GP, and smooth CP. Some are special cases of others; for example, SDP can be used

to represent LS, LP, QP, and SOCP, though with some compromise in efficiency. Deciding which

form best suits a given application is not always obvious; and for some applications, no standard

form is suitable, and only a custom form will suffice. Thus a primary goal of disciplined convex

programming is to eliminate the need for modelers to perform such classification themselves.

Chapter 2 extends the motivation provided in §1.1 by adding equality and bound constraints to

the norm minimization problem (1.1). For each norm we determine a full solution to the problem,
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including numerical proofs of infeasibility and optimality. The aim of the development is to illustrate

how solutions can be obtained using readily available numerical software. The chapter demonstrates

that the task is genuinely feasible, but in many cases requires a significant amount of transformation

and manipulation, just as in §1.1. This chapter provides further illustration of the expertise gap

currently present in convex programming, and therefore of the challenges and opportunities that

disciplined convex programming seeks to address.

Chapter 3 introduces the disciplined convex programming methodology in detail, from the per-

spective of the modeler: that is, the rules and conventions that must be followed to construct DCPs.

We show that disciplined convex programming does not sacrifice generality; and we defend the no-

tion that its design in fact supports the practices of those who regularly study and solve convex

optimization problems today. Of particular note is §3.5, in which the concept of a graph implemen-

tation is introduced. Graph implementations are key to the support of nonsmooth convex programs.

The chapter also shows how the conventions that DCPs follow simplify the verification of convexity.

Chapter 4 studies the analysis and solution of disciplined convex programs. Three primary

challenges are identified and solved: conversion to canonical (i.e., solvable) form, numerical solution,

and recovery of dual information. In each case, we find that the conventions imposed by disciplined

convex programming provide opportunities for automation and efficiency. We use concrete examples

from the cvx modeling framework to illustrate the feasibility of the approaches taken.

Chapter 5 provides concluding remarks, including a summary of the results presented and a

discussion of areas of promising future study and development.

1.6 Conventions

In this dissertation, we have chosen to follow the lead of Rockafellar [142] and adopted the extended-

valued approach to defining convex and concave functions with limited domains; e.g.,

f : R→ (R ∪+∞), f(x) =





+∞ x < 0

x1.5 x ≥ 0
(1.31)

g : R→ (R ∪ −∞), g(x) =




−∞ x ≤ 0

log x x > 0
(1.32)

Using extended-valued functions simplifies many of the derivations and proofs. Still, we will on

occasion use the dom operator to refer to the set of domain values that yield finite results:

dom f = {x | f(x) < +∞} = [0,+∞) (1.33)

dom g = {x | g(x) > −∞} = (0,+∞) (1.34)



Chapter 2

Motivation

2.1 Introduction

In this chapter, we expand the exercise undertaken in §1.1 by considering the constrained norm

minimization problem

P: minimize f(x) , ‖Ax− b‖
subject to l ≤ x ≤ u

Cx = d

(2.1)

The optimization variable is the vector x ∈ R
n, and the parameters are the quantities

A ∈ R
m×n, b ∈ R

m, l ∈ R
n, u ∈ R

n, C ∈ R
p×n, d ∈ R

p (2.2)

and a norm ‖ · ‖ : R
m → [0,+∞). We consider the same set of norms ‖ · ‖ that we used in §1.1. We

say that P is solved once the following determinations are made:

• Feasibility. Determine if P is feasible; that is, find at least one point x ∈ R
n that satisfies the

constraints l ≤ x ≤ u and Cx = d, or prove that such a point does not exist.

• Optimality. If P is feasible, find a value x that satisfies the constraints and that comes within

a provable tolerance ε > 0 of minimizing ‖Ax− b‖.

• Sensitivity. If P is feasible, determine how the minimum norm would change if small changes

were made to the values of b, l, u, and d.

Our goal is to illustrate how someone with an understanding of convex optimization—but without

the ability or desire to implement numerical algorithms—can solve P. Specifically, we assume that

said person has access to a modeling framework such as AMPL [59] or GAMS [30] tied to a single

prototypical solver—that is, a hypothetical solver chosen to represent the capabilities of common,

readily available software packages.

21
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We begin by providing a general analysis of P, in the process providing a concrete numerical

definition for each of the three determinations listed above. We then introduce the prototypical

solver, describing its capabilities, its input format, and the results it returns. Then, for each norm

‖ · ‖, we describe in detail how to solve P. Specifically, we describe in detail the transformations

required to convert P into a form that the solver will accept, and how to map the results that the

solver produces back to the original problem.

While this chapter is primarily a Gedanken (thought) experiment, we hope that the reader will

ultimately agree that it provides a reasonable illustration of the practical intricacies of solving even

a relatively simple convex program such as P.

2.2 Analysis

As in §1.1, we assume that m ≥ n and that A has full rank. We also assume that b 6∈ Range(A), so

Ax 6= b for all x ∈ R
m. In addition, we partition the parameter matrices by rows; i.e.,

A ,




aT
1

aT
2

...

aT
m




b ,




b1

b2

...

bm




l ,




l1

l2
...

ln




u ,




u1

u2

...

vn




C ,




cT
1

cT
2

...

cT
p




d ,




d1

d2

...

dp




. (2.3)

We continue to refer to the quantities aT
i x− bi as the residuals.

2.2.1 The dual problem

Providing a full solution to P requires information from the dual problem, so let us derive it. The

Lagrangian L is

L(x, λl, λu, ν) = f(x) + λT
l (l − x) + λT

u (x− u) + νT (Cx− d), (2.4)

where λl ∈ R
n
+, λu ∈ R

n
+, and ν ∈ R

p are Lagrange multipliers for the constraints x ≥ l, x ≤ u, and

Cx = d, respectively. The dual function g is

g(λl, λu, ν) , inf
x

L(x, λl, λu, ν) = lT λl − uT λu − dT ν −
(

sup
x

(λl − λu − CT ν)T x− f(x)

)

= lT λl − uT λu − dT ν − f∗(λl − λu − CT ν)

(2.5)

so the Lagrange dual problem is

maximize g(λl, λu, ν) = lT λl − uT λu − dT ν − f∗(λl − λu − CT ν)

subject to λl, λu ≥ 0.
(2.6)
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The function f∗ : R
n → R ∪+∞ is the conjugate of f .

Lemma 1. The conjugate function f ∗ is given by

f∗(w) = inf
{

bT z | ‖z‖∗ ≤ 1, AT z = w
}

(2.7)

Proof. First let us recall the definition of the dual norm:

‖z‖∗ , sup
‖x‖≤1

xT z ⇐⇒ ‖x‖ = sup
‖z‖∗≤1

xT z (2.8)

The conjugate function is therefore

f∗(w) , sup
x

wT x− f(x) = sup
x

wT x− ‖Ax− b‖

= sup
x

wT x− sup
‖z‖∗≤1

zT (Ax− b) = sup
x

inf
‖z‖∗≤1

wT x− zT (Ax− b)

= sup
x

inf
‖z‖∗≤1

(w −AT z)T x + bT z = inf
‖z‖∗≤1

sup
x

bT z + (w −AT z)T x

= inf
{

bT z | ‖z‖∗ ≤ 1, AT z = w
}

(2.9)

The swap of inf and sup is justified because the optimization problem involved obtains strong duality

via a Slater condition.

Note that f∗ and therefore g are extended-valued:

dom g =
{

(λl, λu, ν) ∈ R
p × R

n × R
m | ∃z AT z = λl − λu − CT ν, ‖z‖∗ ≤ 1

}
. (2.10)

Removing these implicit constraints from the objective and incorporating them into the problem

yields a more practical form for the dual problem:

D: maximize ḡ(λl, λu, ν, z) , lT λl − uT λu − dT ν − bT z

subject to λl − λu − CT ν −AT z = 0

λl, λu ≥ 0

‖z‖∗ ≤ 1

(2.11)

This is the form of the dual that we employ throughout this development.

2.2.2 Definitions

The feasible set FP is the set of feasible points of P; that is, the set of points that satisfy the

constraints of P:

FP , {x ∈ R
n | l ≤ x ≤ u, Cx = d } . (2.12)
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We say that P feasible if FP 6= ∅, and infeasible otherwise. Similarly, the feasible set FD is the set

of feasible points of D; that is, the points that satisfy the constraints of D:

FD ,

{
(λl, λu, ν, z) ∈ R

p × R
n × R

n × R
m
∣∣∣

λl − λu − CT ν −AT z = 0

λl, λu ≥ 0 ‖z‖∗ ≤ 1

}
. (2.13)

The all-zero vector is contained in FD, so we know that D is feasible. Both FD and FP satisfy

constraint qualifications—the former because it is polyhedral, the latter because it has a non-empty

interior. These qualifications ensure strong duality and a number of other useful properties.

The optimal value p∗ of P is

p∗ = inf
x∈FP

‖Ax− b‖. (2.14)

By convention, p∗ = +∞ if P is infeasible. The nonnegativity of the objective function ‖Ax − b‖
ensures that p∗ ≥ 0. The optimal set F̂P is the set of feasible points that achieve the optimal value:

F̂P , {x ∈ FP | ‖Ax− b‖ = p∗ } . (2.15)

A point x∗ ∈ F̂P is called an optimal point of P. Similarly, the optimal value d∗ of D is

d∗ = sup
(λl,λu,ν,z)∈FD

lT λl − uT λu − dT ν − bT z. (2.16)

The all-zero vector produces an objective value of 0, so we know that d∗ ≥ 0. D may also be

unbounded above, in which case d∗ = +∞. The optimal set F̂D is the set of feasible points that

achieve this optimal value:

F̂D ,
{

(λl, λu, ν, z) ∈ FD | lT λl − uT λu − dT ν − bT z = d∗
}

. (2.17)

2.2.3 Feasibility

As mentioned above, the dual problem D is feasible; but P is not necessarily so. A strict theorem

of alternatives can be constructed regarding the feasibility of P.

Lemma 2. P is infeasible (i.e., FP = ∅) if and only if UD 6= ∅, where

UD ,

{
(λl, λu, ν) ∈ R

p × R
n × R

n
∣∣∣

lT λl − uT λu − dT ν > 0

λl − λu − CT ν = 0, λl, λu ≥ 0

}
. (2.18)

Proof. Consider the following primal/dual pair:

Pfeas: minimize 0

subject to l ≤ x ≤ u

Cx = d

Dfeas: minimize lT λl − uT λu − dT ν

subject to λl − λu − CT ν = 0

λl, λu ≥ 0.

(2.19)
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P is feasible if and only if Pfeas is feasible. Since Dfeas is a feasible linear program, (2.19) is a strongly

dual pair; so Pfeas is feasible if and only if Dfeas is bounded. The feasible set of Dfeas is a cone—that

is, it is closed under positive scalar multiplication—so Dfeas is unbounded if and only if at least one

feasible point has a positive objective—that is, if and only if UD is non-empty.

We call a triple (λl, λu, ν) ∈ UD a certificate of infeasibility for P. If a numerical algorithm encounters

such a point, it may immediately terminate, having obtained conclusive proof of infeasibility.

2.2.4 Optimality

Let us now assume that P is feasible. Given any point x ∈ FP and any point (λl, λu, ν, z) ∈ FD,

the duality gap is the difference between their objective values, and is provably nonnegative:

f(x)− ḡ(λl, λu, ν, z)

= ‖Ax− b‖ − lT λl + uT λu + dT ν + bT z

= ‖Ax− b‖ − lT λl + uT λu + dT ν + bT z + xT (λl − λu − CT ν −AT z)

= ‖Ax− b‖ − zT (Ax− b) (zT (Ax− b) ≤ ‖Ax− b‖‖z‖∗, ‖z‖∗ ≤ 1)

+ (x− l)T λl + (u− x)T λu (l ≤ x ≤ u, λl, λu ≥ 0)

− νT (Cx− d) ≥ 0. (Cx = d).

(2.20)

This establishes the weak duality relationship between P and D, and implies that p∗ ≥ d∗. Thus

feasible dual points establish lower bounds on P, and feasible primal points upper bounds on D.

Specifically, given any x ∈ FP and (λl, λu, ν, z) ∈ FD satisfying f(x)− ḡ(λl, λu, ν, z) = ε,

f(x) = ‖Ax− b‖ ≤ p∗ + ε ḡ(λl, λu, ν, z) ≥ d∗ + ε. (2.21)

We call (x, (λl, λu, ν, z)) a certificate of ε-optimality for P.

In fact, as we have already stated, strong duality is achieved, so the optimal duality gap is zero:

that is, p∗ = d∗. Thus for any ε > 0 there exists a certificate of ε-optimality (x, (λl, λu, ν, z)) ∈
FP ×FD. (In fact, because the optimal sets F̂P and F̂D are non-empty, this holds for ε = 0 as well.)

Numerical algorithms can use this fact to create stopping criteria that guarantee a desired accuracy.

2.2.5 Sensitivity

Let P : (Rn × R
n × R

p × R
m) → (R ∪ +∞) be a function whose value equals the solution to a

perturbed version of P; i.e.,

P (δl, δu, δd, δb) , inf { ‖Ax− b− δb‖ | l + δl ≤ x ≤ u + δu, Cx = d + δd }
= sup

(λl,λu,ν,z)∈FD

(l + δl)T λl − (u + δu)T λu − (d + δd)T ν − (b + δb)T z
(2.22)
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Note that P (0, 0, 0, 0) = p∗, and P (·, ·, ·, ·) = +∞ whenever the given perturbation yields an infea-

sible problem. As the second form makes clear, P is convex, as it is the supremum of a (probably

infinite) set of linear functions.

Now suppose that P (0, 0, 0, 0) < +∞ and (λl, λu, ν, z) ∈ F̂D; then we can calculate

P (δl, δu, δd, δb) = sup
(λ̄l,λ̄u,ν̄,z̄)∈FD

(l + δl)T λ̄l − (u + δu)T λ̄u − (d + δd)T ν̄ − (b + δb)T z̄

≥ (l + δl)T λl − (u + δu)T λu − (d + δd)T ν − (b + δb)T z

= p∗ + δlT λl − δuT λu − δdT ν − δbT z.

(2.23)

So (λl,−λu,−ν,−z) is a subgradient of P (l, u, d, b), and the optimal dual point provides a measure of

sensitivity of the problem to perturbations in the parameter vectors. Of course, exact determination

of an optimal dual point is usually not possible in practice; but for sufficiently small ε, a certificate

of ε-optimality provides a useful approximation.

It is important to note that because (2.23) provides only a lower bound on the perturbed optimal

value, it provides somewhat limited sensitivity information. As long as the original optimal point

x∗ remains feasible in the perturbed problem, then

‖Ax∗ − b− δb‖ ≥ P (δl, δu, δd, δb) ≥ P (0, 0, 0, 0) + δlT λl − δuT λu − δdT ν − δbT z

and a useful range of values is obtained. On the other hand, if x∗ lies outside the new feasible

set, then no upper bound on the increase can be obtained. In particular, if the feasible set for the

perturbed problem is a strict subset of the original—say, if δl ≥ 0 and δu ≤ 0—then the optimal value

must necessarily increase, and (2.23) provides a minimum, but not a maximum, for that increase.

2.2.6 Summary

We are now prepared to provide numerical definitions of the three determinations we listed in the

introduction: feasibility, optimality, and sensitivity. Given numerical values of the parameters, a

specification of the norm ‖ · ‖, and a small numerical tolerance ε, one of the following two certificates

constitutes a complete solution:

• A certificate of infeasibility (λl, λu, ν) ∈ UD satisfying

λl − λu − CT ν = 0 λl, λu ≥ 0 lT λl − uT λu − dT ν > 0 (2.24)

and proving that P is infeasible.

• A certificate of ε-optimality (x, (λl, λu, ν, z)) ∈ FP ×FD satisfying

λl − λu − CT ν −AT z = 0 λl, λu ≥ 0 ‖z‖∗ ≤ 1

f(x)− ḡ(λl, λu, ν, z) = ‖Ax− b‖ − lT λl + uT λu + dT ν + bT z ≤ ε
(2.25)
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and proving that ‖Ax− b‖ − p∗ ≤ ε. The values of λl, λu, ν, and z provide approximate costs

of perturbing l, u, d, and b, respectively, according to formula (2.23).

2.3 The solver

In this chapter, we seek to illustrate the practice of solving P by using existing, readily available

solver software. All such software requires that the problems they solve obey certain conventions,

which invariably requires that the problems be transformed into a compliant form. Much of the

development in the sections below centers around determining such transformations.

A wide variety of packages could be chosen for our task, and surveying them all would be well

beyond the scope of our discussion. Instead we limit our view to a single prototypical solver, one

that represents the capabilities of the majority of such packages. Our solver accepts problems in the

following form:

PNLP: minimize f0(x̄)

subject to fk(x̄) ≤ 0, k = 1, . . . , m̄

C̄x̄ = d̄

(2.26)

We call (2.26) the canonical form for our solver. The problem variables for PNLP are x̄ ∈ R
n̄, and

the parameters include the quantities C̄ ∈ R
p̄×n̄, d̄ ∈ R

p̄, and m̄ + 1 convex, smooth (i.e., twice

continuously differentiable) functions fk : R
n̄ → (R ∪ +∞), k = 0, 1, . . . , m̄.1 The smoothness

requirement is nearly universal among the best performing algorithms for nonlinear optimization,

including the packages LOQO [162] and MOSEK [118]. The exceptions are for specific problem

types that do not apply here. Indeed, it is this smoothness requirement that makes our development

interesting, because it drives the transformations applied to P.

Given a problem specification, the solver will determine solutions to PNLP and its Wolfe dual,

DNLP: maximize f0(x̄) +

m∑

k=1

λ̄kfk(x̄) + ν̄T (C̄x̄− d̄)

subject to ∇f0(x̄) +

m∑

k=1

λ̄k∇fk(x̄) + C̄T ν̄ = 0

λ̄ ≥ 0

(2.27)

The equality constraint allows the objective function to be expressed in the alternate form

f0(x̄)− x̄T∇f0(x̄) +

m∑

k=1

λ̄k(fk(x̄)− x̄T∇fk(x̄))− d̄T ν̄ (2.28)

This form often allows for significant simplification when many of the functions fk are affine, so we

use this alternate form in this chapter. The solver produces one of the following certificates:

1Our liberal use of bars over the variable and parameter names is to differentiate them from similar names used

in P and D.
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• A certificate of infeasibility : a point x̄ and a pair (λ̄, ν̄) satisfying

λ̄ ≥ 0

m∑

k=1

λ̄k∇fk(x̄) + C̄T ν̄ = 0

m∑

k=1

λ̄kfk(x̄) + ν̄T (C̄x− d̄) =

m∑

k=1

λ̄k(fk(x̄)− x̄T∇fk(x̄))− d̄T ν̄ > 0,

(2.29)

proving that PNLP (2.26) is infeasible. If the constraint functions fk are affine, then these

conditions are actually independent of x̄, so x̄ need not be supplied.

• A certificate of ε-optimality : a feasible point x̄ and a pair (λ̄, ν̄) satisfying

λ̄ ≥ 0 ∇f0(x̄) +

m∑

k=1

λ̄k∇fk(x̄) + C̄T ν̄ = 0

−
m∑

k=1

λ̄kfk(x̄) = x̄T∇f0(x̄)−
m∑

k=1

λ̄k(fk(x̄)− x̄T∇fk(x̄)) + d̄T ν̄ ≤ ε,

(2.30)

proving that f0(x̄) is within ε of the optimal value.

Other scenarios are possible as well, such as an unbounded primal problem, but these are the only

two scenarios that occur for the problems we are considering.

Despite the intentional similarity in notation, the dual information returned by the solver for the

Wolfe dual will often be different from the dual information sought for the original problem P. This

is in part due to differences between the Wolfe and Lagrange duals, but primarily because many of

the versions of P we are considering require significant transformation to convert them to canonical

form, and those transformations alter the dual problem as well. So for each of the versions that

we study, we show how to “recover” certificates of infeasibility (2.24) and ε-optimality (2.25) for P
from corresponding certificates (2.29), (2.30) returned by the solver. For applications where dual

information has a useful interpretation, this is an important step.

To solve a problem using this solver, the user must supply numerical values for C̄ and d̄, and

definitions for each of the functions fk, k = 0, 1, . . . , m̄. These definitions can take one of two forms:

• If fk is affine or quadratic, the user may supply numerical values for a triple (f̄k, ḡk, H̄k) such

that fk(x̄) ≡ f̄k+ḡT
k x̄+ 1

2 x̄T H̄kx̄. The matrix H̄k must be symmetric and positive semidefinite.

If fk is affine, then H̄k ≡ 0.

• Otherwise, the user must supply executable code—say, written in C or FORTRAN—to compute

the value fk(x̄), gradient ∇fk(x̄), and Hessian ∇2fk(x̄) at any desired point x̄.

The requirement to supply executable code to compute the values and derivatives of nonlinear func-

tions is a common and realistic one for standalone numerical solvers; and it is a requirement that

would prove daunting for many users. Modeling frameworks such as AMPL [59] or GAMS [30]
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address this difficulty by providing a modeling language that allows the objective and constraint ex-

pressions to be written in a pseudo-mathematical syntax, and computes the derivatives automatically

using symbolic differentiation methods.

Each of the sections §2.4-§2.9 is devoted to a single choice of the norm ‖ · ‖, and proceeds

in a similar, proof-like fashion. First, we introduce the norm and its dual, and describe a set of

transformations used to convert P into canonical form (2.26). Following this, we present the Wolfe

dual (2.27), and prove by construction that certificates of infeasibility and ε-optimality for P can

be recovered from the corresponding certificates for the Wolfe dual. In this way, we have effectively

proven that the problem can be fully solved, as defined in §2.2.6, using our prototypical solver.

2.4 The smooth case

We begin with the Hölder or `p norm for p ≥ 2, the dual of which is also a Hölder norm:

‖w‖ , ‖w‖p =

(
m∑

k=1

|wk|p
)1/p

‖z‖∗ , ‖z‖q =

(
m∑

k=1

|zk|q
)1/q

q ,
p

p− 1
(2.31)

(We consider the p < 2 case in a later section.) This includes as a special case the most popular

choice—the `2 or Euclidean norm, for which ‖z‖∗ = ‖z‖. The norm ‖w‖p is twice differentiable

everywhere except w = 0. Because we have assumed that b 6∈ Range(A), we know that this exception

will not arise, so it is reasonable to solve the problem as if the objective is smooth. This approach

is suggested for `2 problems by Vanderbei, the author of LOQO [162].

The conversion to canonical form (2.26) is rather trivial:

x̄ , x C̄ , C d̄ , d

f0(x) , ‖Ax− b‖p
fk(x) , lk − xk

fk+n(x) , xk − uk

}
k = 1, 2, . . . ,m

(2.32)

Code must be supplied to compute the value and derivatives of the objective function f0(x). Let us

define the following quantities for convenience,

w , Ax− b W , diag(|w1|p−2, |w2|p−2, . . . , |wm|p−2) w̃ , Ww, (2.33)

enabling us to express the derivatives of f0 as follows:

∇f0(x) = ‖w‖1−p
p AT w̃

∇2f0(x) = (p− 1)‖w‖1−p
p AT (W − ‖w‖−p

p w̃w̃T )A

= (p− 1)‖w‖1−p
p AT WA− (p− 1)‖w‖−1

p ∇f0(x)∇f0(x)T .

(2.34)

A C++ code excerpt that uses the BLAS linear algebra library to compute f0 and its derivatives for
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dcopy_( m, b, 1, w, 1 );

dgemv_( "N", m, n, 1.0, A, m, x, 1, -1.0, w, 1 );

f = dnrm2_( m, w, 1 );

dgemv_( "T", m, n, 1.0 / f, A, m, w, 1, 0.0, g, 1 );

dsyrk_( "U", "N", n, m, 1.0 / f, A, m, 0.0, H, n );

dsyr_( "U", n, -1.0 / f, g, 1, H, n );

Figure 2.1: C++ code to compute the value, gradient, and Hessian of f(x) = ‖Ax− b‖2.

the p = 2 case is given in Figure 2.1. (Note that for p = 2, W ≡ I and w̃ ≡ w.) For simplicity we

have given only the computational code, omitting interface and memory management.

By defining λ̄ , [λT
l λT

u ] and noting that

f0(x)− xT∇f0(x) = ‖w‖p − ‖w‖1−p
p xT AT w̃

= ‖w‖p − ‖w‖1−p
p (w + b)T w̃ = −‖w‖1−p

p bT w̃
(2.35)

we may express the Wolfe dual (2.27) as follows:

maximize −‖w‖1−p
p bT w̃ + lT λT

l − uT λu − dT ν

subject to ‖w‖1−p
p AT w̃ − λl + λu + CT ν = 0

λl, λu ≥ 0

(2.36)

The conditions for the solver-generated certificate of infeasibility (2.29) become

λl, λu ≥ 0 − λl + λu + CT ν = 0 lT λu − uT λu − dT ν > 0 (2.37)

These coincide precisely with the conditions given in (2.24) for P.

Similarly, the conditions for the solver-generated certificate of ε-optimality (2.30) become

‖w‖1−p
p AT w̃ − λl + λu + CT ν = 0 λl, λu ≥ 0

‖w‖1−p
p xT AT w̃ − lT λT

l + uT λu + dT ν ≤ ε
(2.38)

Defining z , ‖w‖1−p
p w̃ produces

−λl + λu + CT ν + AT z = 0 λl, λu ≥ 0

zT Ax− lT λT
l + uT λu + dT ν ≤ ε

(2.39)

Note that z satisfies

zT (Ax− b) = ‖w‖1−p
p w̃T w = ‖w‖p = ‖Ax− b‖p

‖z‖q = ‖w‖1−p
p (

∑m
k=1 |w̃k|q)1/q

= ‖w‖1−p
p (

∑m
k=1 |wk|p)(p−1)/p

= 1,
(2.40)
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so the last inequality yields

ε ≥ zT Ax− lT λT
l + uT λu + dT ν

= zT (Ax− b)− lT λT
l + uT λu + dT ν + bT z

= ‖Ax− b‖p − lT λl + uT λu + dT ν + bT z.

(2.41)

So (2.39) and (2.41) coincide with the ε-optimality conditions conditions (2.25) for P. In fact, they

are slightly stricter because ‖z‖q = 1, even though only ‖z‖q ≤ 1 is required. Then (x, (λl, λu, ν, z ,

‖w‖1−p
p w̃)) is a valid certificate of ε-optimality for P.

2.5 The Euclidean norm

For the Euclidean norm, a common alternative is to square the objective function, producing the

modified problem

minimize ‖Ax− b‖22 = (Ax− b)T (Ax− b)

subject to l ≤ x ≤ u

Cx = d.

(2.42)

If a robust smooth CP solver is being employed, there is little reason to perform this transforma-

tion. However, (2.42) is a convex quadratic program, and a wider variety of solvers can handle such

problems; so this form is a natural choice for many without access to more advanced solvers. Fur-

thermore, this transformation simplifies the presentation of the problem to our prototypical solver,

because it allows us to use a numerical representation of the objective function

f0(x) = f̄0 + ḡT
0 x +

1

2
xT H̄0x, f̄0 , bT b, ḡ0 , −2AT b, H̄0 , 2AT A (2.43)

instead of requiring that executable code be supplied to compute it. In all other respects, the

conversion to canonical form matches the previous case (2.32).

If we define λ̄ , [λT
l λu]T as before, and note that

f0(x)− xT∇f0(x) = (Ax− b)T (Ax− b)− 2xT AT (Ax− b) = −(Ax + b)T (Ax− b), (2.44)

then we may express the Wolfe dual (2.27) as follows:

maximize −(Ax + b)T (Ax− b) + lT λT
l − uT λu − dT ν

subject to 2AT (Ax− b)− λl + λu + CT ν = 0

λl, λu ≥ 0.

(2.45)

The certificates of infeasibility produced by the solver for this problem are identical to those obtained

in §2.4; but the certificates of ε-optimality have changed because of the altered objective function.
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The conditions (2.30) become

2AT (Ax− b)− λl + λu + CT ν = 0 λl, λu ≥ 0

2xT AT (Ax− b)− lT λT
l + uT λu + dT ν ≤ ε.

(2.46)

Defining z , 2(Ax− b) produces

−λl + λu + CT ν + AT z = 0 λl, λu ≥ 0

zT Ax− lT λT
l + uT λu + dT ν ≤ ε.

(2.47)

Note that ‖z‖2 = 2‖Ax− b‖2 and zT (Ax− b) = 2‖Ax− b‖22, so the final inequality becomes

ε ≥ zT Ax− lT λT
l + uT λu + dT ν

= zT (Ax− b + b)− lT λT
l + uT λu + dT ν

= 2‖Ax− b‖22 − lT λl + uT λu + dT ν + bT z.

(2.48)

If we introduce a scaled version of these dual variables and of ε,

(λ̃l, λ̃u, ν̃, z̃) , α(λl, λu, ν, z), ε̃ , αε α , 1/(2‖Ax− b‖2), (2.49)

then we find that ‖z̃‖2 = 1 and

AT z̃ − λ̃l + λ̃u + CT ν̃ = 0 λ̃l, λ̃u ≥ 0

‖Ax− b‖2 − lT λ̃l + uT λ̃u + dT ν̃ + bT z̃ ≤ ε̃.
(2.50)

These conditions coincide with the ε-optimality conditions (2.25) for P—except, again, the condition

‖z̃‖2 = 1 is in fact stricter. Thus we have produced a valid certificate of ε̃-optimality for P.

2.6 The Manhattan norm

Another popular choice for the norm ‖ · ‖ is the `1 norm, often called the Manhattan or taxicab

norm. Its dual is the `∞ norm:

‖w‖ , ‖w‖1 ,

m∑

k=1

‖wk‖ ‖z‖∗ , ‖z‖∞ = max
1≤k≤m

|zk|. (2.51)

This norm is not differentiable and cannot easily be made so; a direct method is therefore impossible.

There is, however, a simple and relatively common transformation that allows this problem to be
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solved efficiently. First, let us recognize that

‖w‖1 ≤ v ⇐⇒ ∃w+, w− ≥ 0
w+ − w− = w

~1T (w+ + w−) = v
(2.52)

We can use this equivalence to transform P into a linear program:

P =⇒

minimize v

subject to ‖Ax− b‖1 ≤ v

Cx = d

l ≤ x ≤ u

=⇒

minimize ~1T (w+ + w−)

subject to Ax− b = w+ − w−

Cx = d

l ≤ x ≤ u

w+, w− ≥ 0

(2.53)

The transformation is shown in two steps. The first exploits the equivalence between a function and

its epigraph f(x) , inf { v | (x, v) ∈ epi f } to move the nonlinearity out of the objective function

and into a nonlinear inequality constraint. The second uses (2.52) to replace this constraint with

an alternate form, in this case m + 1 linear equations and 2m nonnegative variables. This two-step

process is duplicated for several of the norms in this chapter.

Because the objective and constraint functions are affine, no code writing is required; and the

conversion to canonical form is relatively simple:

x̄ =




x

w+

w−




f0(x̄) = ~1T (w+ + w−)

fk(x̄) = lk − xk

fk+n(x̄) = xk − uk

}
k = 1, 2, . . . , n

fk+2n(x̄) = −w+,k

fk+2n+m(x̄) = −w−,k

}
k = 1, 2, . . . ,m

C̄ ,

[
A −I I

C 0 0

]
, d̄ ,

[
b

d

]
(2.54)

If we define λ̄ , [λT
l λT

u λT
+ λT

−]T and ν̄ , [νT zT ]T , the Wolfe dual (2.27) becomes

maximize lT λl − uT λu − dT ν − bT z

subject to −λl − λu + CT ν + AT z = 0

~1− λ+ − z = 0

~1− λ− − z = 0

λl, λu, λ+, λ− ≥ 0

(2.55)

The solver-generated certificate of infeasibility (2.29) satisfies

−λl + λu + AT z + CT ν = 0

−λ+ − z = −λ− + z = 0

λl, λu, λ+, λ− ≥ 0

lT λl − uT λu − bT z − dT ν > 0
(2.56)
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The conditions on z, λ+, and λ− reduce as follows:

−λ+ − z = −λ− + z = 0 =⇒ 0 ≤ λ− = z = −λ+ ≤ 0 =⇒ z = λ+ = λ− = 0 (2.57)

Incorporating these results produces the simplified conditions

−λl + λu + CT ν = 0 λl, λu ≥ 0 lT λl − uT λu − dT ν > 0 (2.58)

These coincide precisely with (2.24), so (λl, λu, ν) is a valid certificate of infeasibility for P.

Similarly, the solver-generated certificate of ε-optimality for (2.30) satisfies

−λl + λu + CT ν + AT z = 0

~1− λ+ − z = 0

~1− λ− + z = 0

λl, λu, λ+, λ− ≥ 0

~1T (w+ + w−)− lT λl + uT λu + dT ν + bT z ≤ ε
(2.59)

The conditions on z, λ+, and λ− reduce as follows:

~1− λ+ − z = 0

~1− λ− + z = 0
=⇒ −~1 + λ− = z = ~1− λ+ =⇒ −~1 ≤ z ≤ ~1 =⇒ ‖z‖∞ ≤ 1 (2.60)

Incorporating these results and the fact that ~1T (w+ + w−) ≥ ‖Ax− b‖1 yields

−λl + λu + CT ν + AT z = 0

‖z‖∞ ≤ 1

λl, λu ≥ 0

‖Ax− b‖1 − lT λl + uT λu + dT ν + bT z ≤ ε
(2.61)

which coincides with (2.25); so (x, (λl, λu, ν, z)) is a valid certificate of ε-optimality for P.

2.7 The Chebyshev norm

Another popular choice for the norm ‖ · ‖ is the `∞ norm, often called the Chebyshev or peak norm,

the dual of which is the `1 norm:

‖w‖ , ‖w‖∞ = max
1≤k≤m

|wk| ‖z‖∗ , ‖w‖1 =

m∑

k=1

|wk|. (2.62)

Like the `1 case, this problem can be solved as a linear program. First, let us recognize that

‖w‖∞ ≤ q ⇐⇒ |wk| ≤ q, ∀1 ≤ k ≤ n ⇐⇒ ∃w+, w− ≥ 0
w+ − w− = w

w+ + w− = q~1.
(2.63)
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We can use this equivalence to transform P into a linear program:

P =⇒

minimize q

subject to ‖Ax− b‖∞ ≤ q

Cx = d

l ≤ x ≤ u

=⇒

minimize q

subject to Ax− b = w+ − w−

w+ + w− = q~1

Cx = d

l ≤ x ≤ u

w+, w− ≥ 0.

(2.64)

The nonlinearity has been replaced with 1 free variable, 2m nonnegative variables, and 2m + 1

equations. Conversion to canonical form (2.26) is similar to the `1 case:

x̄ ,




x

q

w+

w−




f0(x̄) , q

fk(x̄) , lk − xk

fk+n(x̄) , xk − uk

}
k = 1, 2, . . . , n

fk+2n(x̄) , −w+,k

fk+2n+m(x̄) , −w−,k

}
k = 1, 2, . . . ,m

C̄ ,




A 0 −I +I

0 −~1 I −I

C 0 0 0


 d̄ =




b

0

d


 .

(2.65)

If we define λ̄ , [λT
l λT

u λT
+ λT

−]T and ν̄ , [νT r zT ]T , the Wolfe dual (2.27) becomes

maximize lT λl − uT λu − dT ν − bT z

subject to −λl − λu + CT ν + AT z = 0

1−~1T r = 0

−λ+ − z + r = 0

−λ− − z + r = 0

λl, λu, λ+, λ− ≥ 0.

(2.66)

The solver-generated certificate of infeasibility (2.29) satisfies

−λl + λu + AT z + CT ν = 0

−~1T r = 0

−λ+ − z + r = 0

−λ− + z + r = 0

λl, λu, λ−, λ+ ≥ 0

lT λu − uT λu − bT z − dT ν > 0.
(2.67)

The conditions on z, λ+, λ−, and r reduce as follows:

~1T r = 0

−λ+ − z + r = 0

−λ− + z + r = 0

=⇒
~1T r = 0

−r ≤ z ≤ +r
=⇒ r = z = λ+ = λ− = 0. (2.68)
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Incorporating these results produces

−λl + λu + AT z + CT ν = 0 λl, λu ≥ 0 lT λl − uT λu − dT ν > 0 (2.69)

which coincides with (2.24); so (λl, λu, ν) is a valid certificate of infeasibility for P.

Similarly, the solver-generated certificate of ε-optimality (2.30) satisfies

−λl + λu + AT z + CT ν = 0

1−~1T r = 0

−λ+ − z + r = 0

−λ− + z + r = 0

λl, λu, λ−, λ+ ≥ 0

q − lT λl + uT λu + dT ν + bT z ≤ ε.
(2.70)

The conditions on z, λ+, λ−, and r reduce as follows:

1−~1T r = 0

−λ+ − z + r = 0

−λ− + z + r = 0

=⇒
~1T r = 1

−r ≤ z ≤ +r
=⇒ ‖z‖1 ≤ 1. (2.71)

Incorporating these results and the fact that q ≥ ‖Ax− b‖∞ yields

−λl + λu + CT ν + AT z = 0

‖z‖1 ≤ 1

λl, λu ≥ 0

‖Ax− b‖∞ − lT λl + uT λu + dT ν + bT z ≤ ε
(2.72)

which coincides with (2.25); so (x, (λl, λu, ν, z)) is a valid certificate of ε-optimality for P.

2.8 The Hölder lp norm

Now we revisit the Hölder or `p norm, this time allowing p < 2:

‖w‖ , ‖w‖p =

(
m∑

k=1

|wk|p
)1/p

‖z‖∗ , ‖z‖q =

(
m∑

k=1

|zk|q
)1/q

q ,
p

p− 1
. (2.73)

The Hölder norm is common in facility location problems, and optimization methods involving such

norms are the subject of considerable independent study; see, for example, [171].

For 1 < p < 2, neither f(x) nor g(x) , f(x)p is differentiable whenever any of the residuals are

zero. A more aggressive transformation is required to eliminate this nondifferentiability and thereby

convert the problem to solvable form. To begin, let us raise the objective to the p power, and rewrite
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the result as follows:

P =⇒
minimize ‖Ax− b‖pp

subject to Cx = d

l ≤ x ≤ u

=⇒

minimize ~1T v

subject to Cx = d

|aT
k x− bk|p ≤ vk, k = 1, 2, . . . ,m

l ≤ x ≤ u.

(2.74)

The quantities |aT
k x− bk|p are not differentiable, but note that if v > 0,

|w̄|p ≤ v̄ ⇐⇒ (w̄2)p ≤ v̄2 ⇐⇒ φp(w̄, v̄) ≤ 0 (2.75)

where

φp : (R× R)→ (R ∪+∞), φp(v̄, w̄) ,





(w̄2)p/v̄ − v̄ v̄ > 0

+∞ v̄ ≤ 0.
(2.76)

It is not difficult to verify that φp is convex and twice differentiable. This result produces the form,

minimize ~1T v

subject to Ax− b = w

Cx = d

φp(vk, wk) ≤ 0, k = 1, 2, . . . ,m

l ≤ x ≤ u.

(2.77)

This transformed problem replaces the nondifferentiable objective with m additional variables and

m smooth nonlinearities. Now if any vk = 0, then the equivalency in (2.75) does not hold, so this

problem is not precisely equivalent to P. However, as we will see, this problem can still be used

to construct solutions for P. This is not surprising if one realizes that interior-point methods will

ensure that v > 0 at all times as a natural consequence, so the equivalency (2.75) does hold in

practice.

The converted problem (2.74) maps to the canonical form as follows:

x̄ ,




x

v

w




f0(x̄) = ~1T v

fk(x̄) = lk − xk

fk+n(x̄) = xk − uk

}
k = 1, 2, . . . , n

fk+2n(x̄) = φ(vk, wk) k = 1, 2, . . . ,m

C̄ ,

[
C 0

]
d̄ ,

[
d
]
. (2.78)

The constraint functions fk+2n(x), k = 1, 2, . . . ,m are nonlinear, so their derivatives must be sup-

plied. These can be determined rather simply from the derivatives of φp,

∇φp(v, w) =

[
−|w|2p/v2 − 1

2p|w|2p−2w/v

]
∇2φp(v, w) =

2|w|2p−2

v

[
(w/v)2 −pw/v

−pw/v p(2p− 1)

]
. (2.79)
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If we define λ̄ , [λT
w λT

l λT
u ]T and ν̄ , [zT ν̃T ]T , and note that

φ(v, w)−
[
v w

]
∇φ(v, w) = |w|2p/v − b + |w|2p/v + v − 2p|w|2p/v

= −2(p− 1)|w|2p/v,
(2.80)

then the Wolfe dual (2.27) becomes

maximize lT λl − uT λu − bT z − dT ν̃ −
m∑

k=1

2(p− 1)λw,k|wk|2p/vk

subject to −λl + λu + CT ν̃ + AT z = 0

1− λw,k(w2p
k /v2

k + 1) = 0

−zk + 2pλw,kw2p−1
k /vk = 0

}
k = 1, 2, . . . ,m

λw, λl, λu ≥ 0.

(2.81)

For infeasible problems, the solver-generated certificate of infeasibility (2.29) satisfies

−λl + λu + CT ν̃ + AT z = 0, λl, λu, λw ≥ 0

−λw,k(|wk|2p/v2
k + 1) = 0

−zk + 2pλw,k|wk|2p−2wk/vk = 0

}
k = 1, 2, . . . ,m

lT λl − uT λu − bT z − dT ν̃ −
m∑

k=1

2(p− 1)λw,k|wk|2p/vk > 0.

(2.82)

It is not difficult to verify that the conditions on λw and z reduce as follows:

−λw,k(|wk|2p/v2
k + 1) = 0 =⇒ λw,k = 0 (2.83)

λw,k = 0, −zk + 2pλw,k|wk|2p−2wk/vk = 0 =⇒ zk = 0. (2.84)

Incorporating these results produces the simplified conditions

−λl + λu + CT ν̃ = 0 λl, λu ≥ 0 lT λl − uT λu − dT ν̃ − bT z > 0 (2.85)

which coincide with (2.24); so (λl, λu, ν̃) is a valid certificate of infeasibility for P.

For feasible problems, the solver-generated certificate of infeasibility (2.30) satisfies

−λl + λu + CT ν̃ + AT z = 0, λl, λu, λw ≥ 0

1− λw,k(|wk|2p/v2
k + 1) = 0

−zk + 2pλw,k|wk|2p−2wk/vk = 0

}
k = 1, 2, . . . ,m

−lT λl + uT λu + bT z + dT ν̃ +
m∑

k=1

vk + 2(p− 1)λw,k|wk|2p/vk ≤ ε.

(2.86)
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Completing this analysis requires three observations. First, the values of λw,k are bounded:

|wk|2p ≤ v2
k, (|wk|2p/v2

k + 1)λw,k = 1 =⇒ 1/2 ≤ λw,k ≤ 1. (2.87)

Second, ‖z‖q may be bounded as follows:

λw,k|wk|2p = (1− λw,k)v2
k, 2pλw,k|wk|2p−2wk = zkvk

=⇒ zk = 2p
√

λw,k(1− λw,k)|wk|p−2wk

=⇒ |zk| = 2p
√

λw,k(1− λw,k)|wk|p−1 ≤ p|wk|p−1

=⇒ ‖z‖2q ≤
m∑

k=1

(p|wk|p−1)q = pq‖w‖pp =⇒ ‖z‖q ≤ p‖w‖p−1
p .

(2.88)

The upper bound on |zk| is possible because the expression
√

λw,k(1− λw,k) achieves a maximum

of 1/2 at λw,k = 1/2. Third, another important quantity may be bounded:

|wk|2p ≤ v2
p, 1− λw,k(|wk|2p/v2

k + 1) = 0

=⇒ vk + 2(p− 1)λw,k|wk|2p/vk = (1 + 2(p− 1)(1− λw,k))vk ≥ pvk ≥ p|wk|p

=⇒ ∑m
k=1 vk + 2(p− 1)λw,k|wk|2p/vk ≥ p‖w‖pp.

(2.89)

Using these results, and noting that w = Ax− b, we may rewrite the final inequality in (2.86) as

ε ≥ −lT λl + uT λu + dT ν̃ + bT z + p‖Ax− b‖pp. (2.90)

Now consider a simple scaling:

(λ̃l, λ̃u, ν̃, z̃) , α(λl, λu, ν, z), ε̃ , αε, α , 1/(p‖Ax− b‖p−1
p ). (2.91)

These scaled quantities satisfy the conditions

−λ̃l + λ̃u + CT ν̃ + AT z̃ = 0, λ̃l, λ̃u ≥ 0, ‖z̃‖q ≤ 1

−lT λ̃l + uT λ̃u + dT ν̃ + bT z̃ + ‖Ax− b‖p ≤ ε̃.
(2.92)

which coincide with (2.25); so (x, (λ̃l, λ̃u, ν̃, z̃)) is a valid certificate for ε̃-optimality for P.

2.9 The largest-L norm

Now let us consider the largest-L norm that we introduced in §1.1.5:

‖w‖[|L|] , |w[|1|]|+ |w[|2|]|+ · · ·+ |w[|L|]|, (2.93)
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where w[|k|] is the k-th element of the vector after it has been sorted in descending order of absolute

value. As already stated, this norm reduces to the `∞-norm when L = 1, and the `1-norm when

L = m. In effect, it defines a “spectrum” of norm minimization problems with the `1 and `∞ norms

at the extremes—one extreme (`1) favoring residual vectors with larger numbers of zero elements,

the other (`∞) favoring residual vectors with more even distribution of values. The `p norm provides

a similar tradeoff between these extremes, except in this case the norms are polyhedral.

The largest-L norm is nondifferentiable, but its polyhedral nature suggests a potential conversion

to LP as with the `1 and `∞ norms. The conversion is not straightforward, however. Consider, for

example, the following “exhaustive” definition:

‖w‖[L] = sup
z∈EL

zT w, EL , { z ∈ R
n | ∑n

k=1 |zk| = L, zk ∈ {−1, 0,+1} } . (2.94)

This expression effectively takes the supremum over all possible combinations of L elements of the

residual. But since |EL| = 2Ln!/L!(n − L)!, creating a separate inequality for each entry is hardly

practical for problems of reasonable size. However, the set EL is finite and the objective function is

linear, so the value of the supremum remains the same when taken over the convex hull; i.e.

‖w‖[L] = sup
z∈Conv EL

zT w = sup
{

wT z | ‖z‖1 ≤ L, ‖z‖∞ ≤ 1
}

. (2.95)

This result makes evident that the dual norm is

‖z‖[L]∗ , max{‖z‖∞, ‖z‖1/L}, (2.96)

and shows that ‖w‖[L] is the optimal value of the convex program

maximize wT e

subject to ‖e‖∞ ≤ 1

‖e‖1 ≤ L.

(2.97)

which can be converted to the linear program

maximize wT e

subject to ~1T e+ = L

−e+ ≤ e ≤ +e+ ≤ ~1.

(2.98)

As a feasible linear program, strong duality is assured, so its dual obtains the same optimal value:

minimize ~1T v + Lq

subject to w+ − w− = w

w+ + w− = v +~1q

w+, w−, v ≥ 0.

(2.99)
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We can now express the sorted value norm minimization problem as a linear program:

minimize ~1T v + Lq

subject to Ax− b = w+ − w−

w+ + w− = v +~1q

l ≤ x ≤ u, v, w+, w− ≥ 0

Cx = d.

(2.100)

This problem is only slightly more complex than the `∞ case—n new nonnegative variables have been

added, and the number of equality constraints and other inequalities remains the same. Representing

this problem in canonical form (2.26) requires

x̄ ,




x

v

q

w+

w−




f0(x̄) = ~1T v + Lq

fk(x̄) = lk − xk

fk+n(x̄) = xk − uk

}
k = 1, 2, . . . , n

fk+2n(x̄) = −vk

fk+2n+m(x̄) = −w+,k

fk+2n+2m(x̄) = −w−,k





k = 1, 2, . . . ,m

C̄ ,




A 0 0 −I +I

0 −I −~1 I I

C 0 0 0 0


 d̄ ,




b

0

d


 .

(2.101)

If we define λ̄ , [λT
l λT

u λT
v λT

+ λT
−]T and ν̄ , [zT rT νT ]T , the Wolfe dual (2.27)

becomes
maximize lT λl − uT λu − dT ν − bT z

subject to −λl − λu + CT ν + AT z = 0

~1− λv − r = 0

L−~1T r = 0

−λ+ − z + r = 0

−λ− + z + r = 0

λl, λu, λv, λ+, λ− ≥ 0.

(2.102)

The solver-generated certificate of infeasibility (2.29) satisfies

−λl + λu + AT z + CT ν = 0

−λv − r = 0

−~1T r = 0

−λ+ − z + r = 0

−λ− + z + r = 0

λl, λu, λv, λ+, λ− ≥ 0

lT λl − uT λu − dT ν − bT z > 0.
(2.103)
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The conditions on z, r, λv, λ+, and λ− reduce as follows:

λv ≥ 0

−λv − r = 0

−~1T r = 0

=⇒ λv = r = 0 =⇒
−λ+ − z = 0

−λ− − z = 0
=⇒ z = λ+ = λ− = 0. (2.104)

Incorporating these results produces

−λl + λu + CT ν = 0 λl, λu ≥ 0 − lT λl + uT λu − dT ν > 0 (2.105)

which coincides with (2.24); so (λl, λu, ν) is a valid certificate of infeasibility for P.

Similarly, the solver-generated certificate of optimality (2.30) satisfies

−λl + λu + AT z + CT ν = 0

−λv − r = 0

−~1T r = 0

−λ+ − z + r = 0

−λ− + z + r = 0

λl, λu, λv, λ+, λ− ≥ 0

~1T v + Lq − lT λl + uT λu + dT ν + bT z ≤ ε.
(2.106)

The conditions on r and λv reduce as follows:

λv ≥ 0

~1− λv − r = 0

L−~1T r = 0

=⇒
max

k
rk ≤ 1

∑
k rk = L.

(2.107)

With this we can reduce the conditions on z, λ+, and λ− as follows:

−λ+ − z + r = 0

−λ− + z + r = 0
=⇒ −r ≤ z ≤ r =⇒

max
k
|zk| = ‖z‖∞ ≤ 1

∑
k |zk| = ‖z‖1 ≤ L

=⇒ ‖z‖[L]∗ ≤ 1. (2.108)

This last step comes from a recognition of the dual norm in (2.96). Using this result and the

recognition that ~1T v + Lq ≥ ‖Ax− b‖[L], yields

−λl + λu + CT ν + AT z = 0

‖z‖[L]∗ ≤ 1

λl, λu ≥ 0

‖Ax− b‖[L] − lT λl + uT λu + dT ν + bT z ≤ ε
(2.109)

which coincides with (2.25); so (x, (λl, λu, ν, z)) is a valid certificate of ε-optimality for P.
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2.10 Conclusion

In this chapter we provided an analysis of a typical norm minimization problem, and considerable

detail on how it can be solved by existing numerical software for a variety of choices of the norm.

In all but the first case, a non-trivial transformation is required to produce an equivalent problem

that can be easily and efficiently solved. Some of those transformations may not necessarily be

obvious to applications-oriented users. Such persons may, out of ignorance or practicality, restrict

their view to norms for which solution methods are more widely known, such as `2 or `∞, even if

doing so compromises the quality of their models.

The transformed versions of the norm minimization problem also present different challenges to

the underlying numerical solvers:

• Linear programs (`∞, `1, sorted value);

• Quadratic programs (`2 in QP form),

• Linearly constrained smooth NLPs (`2 in direct form, `p p ≥ 2);

• Nonlinearly constrained smooth NLPs (`p p ≥ 1).

While we provided a prototypical solver that could handle all of these cases, in practice there is

a definite hierarchy of preference and availability. Software packages for solving LPs and QPs are

ubiquitous, well known, and mature. Promising options do exist for the other cases, but are less

well known and less mature. So again, modelers may restrict their consideration to more common

norms for which they have software that is familiar and simple to use.

The steps required to recover dual information for the original problem from the certificates

generated by the prototypical solver vary in difficulty. In particular, the author spent quite some

time proving the equivalence of the certificates for the `p case in §2.8. Modeling frameworks such as

AMPL and GAMS perform a limited version of this dual recovery for problems that they support,

which are converted internally to a canonical form. But no framework can be expected to take into

account transformations performed in advance by users themselves. Our examples, unfortunately,

demanded this sort of manual pre-processing. To be fair, not every application, nor every user,

requires the use of dual information. But it begs the question: would it be used more frequently if

it were easier to retrieve?

Finally, recall that the first example—the `p, p ≥ 2 case in §2.4—required only trivial transforma-

tions to convert it to canonical form. This was a direct result of the fact that we were able to assume

that the objective function was smooth. Conversely, the reason transformations were required for

the remaining examples was that their objective functions were not smooth. In theory, convex opti-

mization problems need not be differentiable in order for them to be solved efficiently. But as these

examples illustrate, nondifferentiability remains a significant challenge in practice, specifically in the

conversion to solvable form and the recovery of dual information. Disciplined convex programming

provides a solution to this challenge.



Chapter 3

Disciplined convex programming

Disciplined convex programming is a methodology for constructing, analyzing, and solving convex

optimization problems. It is inspired by the practices of those who regularly study and use convex

optimization in research and applications. They do not simply construct constraints and objective

functions without advance regard for convexity; rather, they draw from a mental library of functions

and sets whose convexity properties are already known, and combine and manipulate them in ways

that convex analysis ensures will produce convex results. If it proves necessary to determine the

convexity properties of a new function or set from basic principles, that function or set is added to

the mental library to be reused in other models.

Disciplined convex programming formalizes this strategy, and includes two key components:

• An atom library (§3.2): an extensible collection of functions and sets, or atoms, whose prop-

erties of shape (convex/concave/affine), monotonicity, and range are explicitly declared.

• A ruleset (§3.1), drawn from basic principles of convex analysis, that governs how atoms,

variables, parameters, and numeric values can be combined to produce convex results.

A valid disciplined convex program, or DCP, is simply a mathematical program built in accordance

with the ruleset using elements from the atom library. This methodology provides a teachable

conceptual framework for people to use when studying and using convex programming, as well as

an effective platform for building software to analyze and solve problems.

The ruleset, which we call the DCP ruleset, has been designed to be easy to learn and apply.

As we show in §3.3, the task of verifying that a problem complies to the complexity rules can

be performed in a straightforward and reliable manner. The rules constitute a set of sufficient

conditions to guarantee convexity; any problem constructed in accordance with the convexity ruleset

is guaranteed to be convex. The converse, however, is not true: it is possible to construct problems

that do not obey the rules, but are convex nonetheless. Such problems are not valid DCPs, and

the methodology does not attempt to accommodate them. This does not mean that they cannot be

solved, but it does mean that they will have to be rewritten to comply with the ruleset.

44
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In §3.4, we examine the practical consequences of the restricted approach that disciplined convex

programming adopts. In particular, we provide some examples of some common and useful convex

programs that, in their native form, are not disciplined convex programs. We show that the these

limitations are readily remedied by appropriate additions to the atom library. We argue that the

remedies are, in fact, consistent with the very thought process that disciplined convex programming

is attempting to formalize.

In order to solve DCPs, the functions and sets in the atom library must each be provided with

an implementation, a computer-friendly description of the atom that allows certain calculations

to be performed upon it. The exact calculations depend upon the numerical algorithm employed,

and might include derivatives, subgradients, cutting planes, barrier functions, and so forth. In

§3.5, we describe such implementations in more detail, and introduce a new concept called a graph

implementation. Graph implementations effectively allow functions and sets to be described in terms

of other DCPs. This concept has some genuine tangible benefits, the most important being that

it provides a natural way to define nondifferentiable functions, without the loss in performance

typically associated with them, and without requiring specialized algorithms to be developed.

Much of disciplined convex programming can be understood and practiced at a purely conceptual

level; DCPs can be completely described on paper. But of course, its ultimate purpose is to simplify

the analysis and solution of convex programs via computer. For this reason, in this chapter we

provide examples of various constructs in the cvx modeling language. However, some of the concepts

introduced here have not yet been implemented, so we have made some sensible extensions as well.

For this reason, the examples in this chapter should not be considered authoritative representations

of the language, but rather more like artists’ renditions.

3.1 The ruleset

The DCP ruleset governs how variables, parameters, and atoms (functions and sets) may be com-

bined to form DCPs. DCPs are a strict subset of general CPs, so another way to say this is that

the ruleset imposes a set of conventions or restrictions on CPs. The ruleset can be separated into

four categories: top-level rules, product-free rules, sign rules, and composition rules.

3.1.1 Top-level rules

As the name implies, top-level rules govern the top-level structure of DCPs. These rules are more

descriptive than they are restrictive, in the sense that nearly all general CPs follow these conventions

anyway. But for completeness they must be explicitly stated.

Problem types. A valid DCP can be:

T1 a minimization: a convex objective and zero or more convex constraints;

T2 a maximization: a concave objective and zero or more convex constraints; or
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affine = affine (T4)
convex <= concave or convex < concave (T5)
concave >= convex or concave > convex (T6)
(affine,affine,. . . ,affine) in convex set (T7)

Figure 3.1: Valid constraints.

T3 a feasibility problem: no objective and one or more convex constraints.

A valid DCP may also include any number of assertions; see rule T9.

At the moment, support for multiobjective problems and games has not been developed, but both

are certainly reasonable choices for future work.

Constraints. See Figure 3.1. Valid constraints include:

T4 an equality constraint with affine left- and right-hand expressions.

T5 a less than (<,≤) inequality, with a convex left-hand expression and a concave right-

hand expression;

T6 a greater than (>,≥) inequality, with a concave left-hand expression and a convex

right-hand expression; or

T7 a set membership constraint (lexp1, . . . , lexpm) ∈ cset, where m ≥ 1, lexp1, . . . , lexpm

are affine expressions, and cset is a convex set.

Non-equality (6=) constraints and set non-membership (6∈) constraints are not permitted, because

they are convex only in exceptional cases—and support for exceptional cases is anathema to the

philosophy behind disciplined convex programming.

Constant expressions and assertions.

T8 Any well-posed numeric expression consisting only of numeric values and parameters

is a valid constant expression.

T9 Any Boolean expression performing tests or comparisons on valid constant expres-

sions is a valid assertion.

T10 If a function or set is parameterized, then those parameters must be valid constant

expressions.

A constant expression is a numeric expression involving only numeric values and/or parameters; a

non-constant expression depends on the value of at least one problem variable. Obviously a constant

expression is trivially affine, convex, and concave. Constant expressions must be well-posed, which

for our purposes means that they produce well-defined results for any set of parameter values that

satisfy a problem’s assertions.
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An assertion resembles a constraint, but involves only constant expressions. They are not true

constraints per se, because their truth or falsity is determined entirely by the numerical values sup-

plied for a model’s parameters, before the commencement of any numerical optimization algorithm.

Assertions are not restricted in the manner that true constraints are; for example, non-equality ( 6=)

and set non-membership (6∈) operations may be freely employed. Assertions serve as preconditions,

guaranteeing that a problem is numerically valid or physically meaningful. There are several reasons

why an assertion may be wanted or needed; for example:

• to represent physical limits dictated by the model. For example, if a parameter w represents

the physical weight of an object, an assertion w > 0 enforces the fact that the weight must be

positive.

• to ensure numeric well-posedness. For example, if x, y, and z are variables and a, b, and c are

parameters, then the inequality constraint ax + by + z/c ≤ 1 is well-posed only if c is nonzero;

this can be ensured by an assertion such as c 6= 0 or c > 0.

• to guarantee compliance with the preconditions attached to a function or set in the atom

library. For example, a function fp(x) = ‖x‖p is parameterized by a value p ≥ 1. If p is

supplied as a parameter, then an assertion such as p ≥ 1 would be required to guarantee that

the function is being properly used. See §3.2.1 for information on how such preconditions are

supplied in the atom library.

• to ensure compliance with the sign rules §3.1.3 or composition rules §3.1.4 below; see those

sections and §3.3 for more details.

The final rule T10 refers to functions or sets that are parameterized; e.g.,

fp : R
n → R, fp(x) = ‖x‖p =

(
n∑

i=1

|xi|p
)1/p

(3.1)

Bp = {x ∈ R
n | ‖x‖p ≤ 1 } (3.2)

and simply states that parameters such as p above must be constant. Of course this is generally

assumed, but we must make it explicit for the purposes of computer implementation.

3.1.2 The product-free rules

Some of the most basic principles of convex analysis govern the sums and scaling of convex, concave,

and affine expressions; for example:

• The sum of two or more convex (concave, affine) expressions is convex (concave, affine).

• The product of a convex (concave) expression and a nonnegative constant expression is convex

(concave).
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• The product of a convex (concave) expression and a nonpositive constant expression, or the

simple negation of the former, is concave (convex).

• The product of an affine expression and any constant is affine.

Conspicuously absent from these principles is any mention of the product of convex or concave

expressions. The reason for this is simple: there is no simple, general principle that can identify the

curvature in such cases. For instance, suppose that x is a scalar variable; then:

• The expression x · x, a product of two affine expressions, is convex.

• The expression x · log x, a product between an affine and a concave expression, is convex.

• The expression x · ex, a product between an affine and a convex expression, is neither convex

nor concave.

For this reason, the most prominent structural convention enforced by disciplined convex program-

ming is the prohibition of products (and related operations, like exponentiation) between non-

constant expressions. The result is a set of rules appropriately called the product-free rules:

Product-free rule for numeric expressions: All valid numeric expressions must be product-

free; such expressions include:

PN1 A simple variable reference.

PN2 A constant expression.

PN3 A call to a function in the atom library. Each argument of the function must be

a product-free expression.

PN4 The sum of two or more product-free expressions.

PN5 The difference of product-free expressions.

PN6 The negation of a product-free expression.

PN7 The product of a product-free expression and a constant expression.

PN8 The division of a product-free expression by a constant expression.

We assume in each of these rules that the results are well-posed; for example, that

dimensions are compatible.

In the scalar case, a compact way of restating these rules is to say that a valid numeric expression

can be reduced to the form

a +

n∑

i=1

bixi +

L∑

j=1

cjfj(argj,1, argj,2, . . . , argj,mj
) (3.3)

where a, bi, cj are constants; xi are the problem variables; and fj : R
mj → R are functions

from the atom library, and their arguments argj,k are product-free expressions themselves. Certain
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special cases of (3.3) are notable: if L = 0, then (3.3) is a simple affine expression; if, in addition,

b1 = b2 = · · · = bn = 0, then (3.3) is a constant expression.

For an illustration of the use of these product-free rules, suppose that a, b, and c are parameters;

x, y, and z are variables; and f(·), g(·, ·), and h(·, ·, ·) are functions from the atom library. Then the

expression

af(x) + y + (h(x, bg(y, z), c)− z + b)/a (3.4)

satisfies the product-free rule, which can be seen by rewriting it as follows:

(b/a) + y + (−1/a)z + af(x) + (1/a)h(x, bg(y, z)c) (3.5)

On the other hand, the following expression does not obey the product-free rule:

axy/2− f(x)g(y, z) + h(x, yb, z, c) (3.6)

Now certainly, because these rules prohibit all products between non-constant expressions, some

genuinely useful expressions such as quadratic forms like x · x are prohibited; see §3.4 for further

discussion on this point.

For set expressions, a similar set of product-free rules apply:

Product-free rules for set expressions: All valid set expressions used in constraints must

be product-free; such expressions include:

PS1 A call to a convex set in the atom library.

PS2 A call to a function in the atom library. Each argument of the function must be a

product-free set expression or a constant (numeric) expression.

PS3 The sum of product-free expressions, or of a product-free expression and a constant

expression, or vice versa.

PS4 The difference between two product-free set expressions, or between a product-free

set expression and a constant expression, or vice versa.

PS5 The negation of a product-free set expression.

PS6 The product of a product-free set expression and a constant expression.

PS7 The division of a product-free set expression by a constant expression.

PS8 The intersection of two or more product-free set expressions.

PS9 The Cartesian product of two or more product-free set expressions.

We also assume in each of these rules that the results are well-posed; for example, that

dimensions are compatible.
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In other words, valid set expressions are reducible to the form

a +
n∑

i=1

biSi +
L∑

j=1

cjfj(argj,1, argj,2, . . . , argj,mj
) (3.7)

where a, bi, cj are constants, and the quantities Sk are either sets from the atom library, or intersec-

tions and/or Cartesian products of valid set expressions. The functions fj : R
mj → R are functions

in the atom library, and their arguments argj,k are product-free set expressions themselves. As we

see in §3.1.3 below, set expressions are more constrained than numerical expressions, in that the

functions fj must be affine.

It is well understood that the intersection of convex sets is convex, as is the direct product of

convex sets; and that unions and set differences generally are not convex. What may not be clear

is why PS8-PS9 are considered “product-free” rules. The link becomes clear if we examine these

rules in terms of indicator functions. Consider, for example, the problem

minimize ax + by

subject to (x, y) ∈ (S1 × S1) ∪ S2

(3.8)

If φ1 : R → R and φ2 : (R × R) → R are convex indicator functions for the sets S1 and S2,

respectively, then the problem can be reduced to

minimize ax + by + (φ1(x) + φ2(y))φ2(x, y) (3.9)

and the objective function now violates the product-free rule. What has occurred, of course, is that

the union operation became a forbidden product.

3.1.3 The sign rules

Once the product-free conventions are established, the sum and scaling principles of convex analysis

can be used to construct a simple set of sufficient conditions to establish whether or not expressions

are convex, concave, or affine. These conditions form what we call the sign rules, so named because

their purpose is to govern the signs of the quantities c1, . . . , cL in (3.3). We can concisely state the

sign rules for numeric expressions in the following manner.

Sign rules for numeric expressions. Given a product-free expression, the following must

be true of its reduced form (3.3):

SN1 If the expression is expected to be convex, then each term cjfj(. . . ) must be convex;

hence one of the following must be true:

• fj(argj,1, argj,2, . . . , argj,mj
) is affine;

• fj(argj,1, argj,2, . . . , argj,mj
) is convex and cj ≥ 0;

• fj(argj,1, argj,2, . . . , argj,mj
) is concave and cj ≤ 0.
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SN2 If the expression is expected to be concave, then each term cjfj(. . . ) must be

concave; hence one of the following must be true:

• fj(argj,1, argj,2, . . . , argj,mj
) is affine;

• fj(argj,1, argj,2, . . . , argj,mj
) is concave and cj ≥ 0;

• fj(argj,1, argj,2, . . . , argj,mj
) is convex and cj ≤ 0.

SN3 If the expression is expected to be affine, then each function fj must be affine, as

must each of its arguments argj,1, argj,2, . . . , argj,mj
.

SN4 If the expression is expected to be constant, then it must be true that L = 0 and

b1 = b2 = · · · = bn = 0.

All function arguments must obey these rules as well, with their expected curvature

dictated by the composition rules (§3.1.4).

For example, suppose that the expression (3.4) is expected to be convex, and that the atom library

indicates that the function f(·) is convex, g(·, ·) is concave, and h(·, ·, ·) is convex. Then the sign

rule dictates that

af(x) convex =⇒ a ≥ 0 (3.10)

(1/a)h(x, bg(y, z), c) convex =⇒ 1/a ≥ 0 (3.11)

Function arguments must obey the sign rule as well, and their curvature is dictated by the compo-

sition rules discussed in the next section. So, for example, if the second argument of h is required

to be convex, then

bg(y, z) convex =⇒ b ≤ 0 (3.12)

It is the responsibility of the modeler to ensure that the values of the coefficients c1, . . . , cL obey

the sign rules; that is, that conditions such as those generated in (3.10)-(3.12) are satisfied. This

can be accomplished by adding appropriate assertions to the model; see §3.3 for an example of this.

There is only one “sign rule” for set expressions:

The sign rule for set expressions. Given a product-free set expression, the following must

be true of its reduced form (3.7):

SS1 Each function fj , and any functions used in their arguments, must be affine.

Unlike the product-free rule for numerical expressions, functions involved in set expressions are

required to be affine. To understand why this must be the case, one must understand how an

expression of the form (3.7) is interpreted. A simple example should suffice; for the L = 0 case,

x ∈ a +

n∑

i=1

biSi ⇐⇒ ∃ (t1, t2, . . . , tn) ∈ S1 × S2 × · · · × Sn x = a +

n∑

i=1

biti (3.13)
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When L > 0, similar substitutions are made recursively in the function arguments as well, producing

a similar result: a series of simple set membership constraints of the form tk ∈ Sk, and a single

equality constraint. Thus in order to ensure that this implied equality constraint is convex, set

expressions (specifically, those used in constraints) must reduce to affine combinations of sets. (Of

course, set expressions used in assertions are not constrained in this manner.)

3.1.4 The composition rules

A basic principle of convex analysis is that the composition of a convex function with an affine

mapping remains convex. In fact, under certain conditions, similar guarantees can be made for

compositions with nonlinear mappings as well. The ruleset incorporates a number of these conditions,

and we have called them the composition rules.

Designing the composition rules required a balance between simplicity and expressiveness. In

[29], a relatively simple composition rule for convex functions is presented:

Lemma 3. If f : R → (R ∪ +∞) is convex and nondecreasing and g : R
n → (R ∪ +∞) is convex,

then h = f ◦ g is convex.

So, for example, if f(y) = ey and g(x) = x2, then the conditions of the lemma are satisfied, and

h(x) = f(g(x)) = ex2

is convex. Similar composition rules are given for concave and/or nonincreasing

functions as well:

• If f : R → (R ∪ +∞) is convex and nonincreasing and g : R
n → (R ∪ −∞) is concave, then

f ◦ g is convex.

• If f : R → (R ∪ −∞) is concave and nondecreasing and g : R
n → (R ∪ −∞) is concave, then

f ◦ g is concave.

• If f : R → (R ∪ −∞) is concave and nonincreasing and g : R
n → (R ∪ +∞) is convex, then

f ◦ g is concave.

In addition, similar rules are described for functions with multiple arguments.

One way to interpret these composition rules is that they only allow nonlinear compositions that

can be separated or decomposed. To explain, consider a nonlinear inequality f(g(x)) ≤ y, where f is

convex and nondecreasing and g is convex, thus satisfying the conditions of Lemma 3. Then it can

be shown that

f(g(x)) ≤ y ⇐⇒ ∃z f(z) ≤ y, g(x) ≤ z (3.14)

Similar decompositions can be constructed for the other composition rules as well. Decompositions

serve as an important component in the conversion of DCPs into solvable form. Thus the composition

rules guarantee that equivalency is reserved when these decompositions are performed.

The composition rules suggested by Lemma 3 and its related corollaries are a good start. But

despite their apparent simplicity, they require a surprising amount of care to apply. In particular,
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Figure 3.2: Three different “versions” of f(y) = y2.

the use of extended-valued functions is a necessary part of the lemma and has a subtle impact. For

example, consider the functions

f(y) = y2, g(x) = ‖x‖2 (3.15)

Certainly, h(x) = f(g(x)) = ‖x‖22 is convex; but Lemma 3 would not predict this, because f(y) is

not monotonic. A sensible attempt to rectify the problem would be to restrict the domain of the f to

the nonnegative orthant, where it is non-decreasing. Under the extended-valued valued conventions

we have adopted, this produces the function

f̄(y) =





y2 y ≥ 0

+∞ y < 0
(3.16)

But while f̃ is nondecreasing over its domain, it is nonmonotonic in the extended-valued sense, so

the lemma does not apply. The only way to reconcile Lemma 3 with this example is to introduce

yet another version of f that extends f̄ in a nondecreasing fashion:

¯̄f(y) =





y2 y ≥ 0

0 y < 0
(3.17)

Figure 3.2 provides a graph of each “version” of f . Forcing users of disciplined convex programming

to consider such technical conditions seems an unnecessary complication, particularly when the goal

is to simplify the construction of CPs.

To simplify the use of these composition rules, we begin by recognizing something that seems

intuitively obvious: f need only be nondecreasing over the range of g. We can formalize this intuition

as follows:

Lemma 4. Let f : R → (R ∪ +∞) and g : R
n → (R ∪ +∞) be two convex functions. If f is

nondecreasing over the range of g—i.e., the interval g(Rn)—then h = f ◦ g is convex.
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Proof. Let x1, x2 ∈ R
n and let θ ∈ [0, 1]. Because g is convex,

g(θx1 + (1− θ)x2) ≤ θg(x1) + (1− θ)g(x2) ≤ max{g(x1), g(x2)} (3.18)

The right-hand inequality has been added to establish that

[g(θx1 + (1− θ)x2), θg(x1) + (1− θ)g(x2)] ⊆
[g(θx1 + (1− θ)x2),max{g(x1), g(x2)}] ⊆ g(Rn)

(3.19)

f is therefore nondecreasing over this interval; so

f(g(θx1 + (1− θ)x2)) ≤ f(θg(x1) + (1− θ)g(x2)) (f nondecreasing)

≤ θf(g(x1)) + (1− θ)f(g(x2)) (f convex)
(3.20)

establishing that h = f ◦ g is convex.

This lemma does indeed predict the convexity of (3.15): f is nondecreasing over the interval [0,+∞),

and g(Rn) = [0,+∞), which coincide perfectly; hence, f ◦ g is convex.

And yet this revised lemma, while more inclusive, presents its own challenge. A critical goal for

these composition rules is that adherence can be quickly, reliably, and automatically verified; see

§3.3. The simple composition rules such as Lemma 3 plainly satisfy this condition; be can we do the

same with the more complex rules? We claim that it is simpler than it may first appear. Note that

our example function f(x) = x2 is nondecreasing over a half-line; specifically, for all x ∈ [0,+∞).

This is actually true for any nonmonotonic scalar function:

Lemma 5. Let f : R → R ∪ +∞ be a convex function that is nondecreasing over some interval

F̄ ⊂ R, Int F̄ 6= ∅. Then it is, in fact, nonincreasing over the entire half-line F = F̄ + [0,+∞); i.e.,

F = (Fmin,+∞) or F = [Fmin,+∞). (3.21)

Proof. If F̄ already extends to +∞, we are done. Otherwise, select any two points x1, x2 ∈ F̄ and

a third point x3 > x2. Then

f(x2) ≤ αf(x1) + (1− α)f(x3), α , (x2 − x1)/(x3 − x1)

=⇒ f(x2) ≤ αf(x2) + (1− α)f(x3) =⇒ f(x2) ≤ f(x3).
(3.22)

So f(x3) ≥ f(x2) for all x3 > x2. Now consider another point x4 > x3; then

f(x3) ≤ ᾱf(x2) + (1− ᾱ)f(x4), ᾱ , (x3 − x2)/(x4 − x2)

=⇒ f(x3) ≤ ᾱf(x3) + (1− ᾱ)f(x4) =⇒ f(x4) ≤ f(x3)
(3.23)

So f(x4) ≥ f(x3) for all x4 > x3 > x2; that is, f is nondecreasing for all x > x2 ∈ F̄ .
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In other words, any scalar convex function that is nondecreasing between two points is so over

an entire half-line. So determining whether f is nondecreasing over g(dom g) reduces to a single

comparison between Fmin and infx g(x). For concave or nonincreasing functions, similar intervals

can be constructed:

• f convex, nonincreasing: F = (−∞, Fmax] or F = (−∞, Fmax)

• f concave, nondecreasing: F = (−∞, Fmax] or F = (−∞, Fmax)

• f concave, nonincreasing: F = [Fmin,+∞) or F = (Fmin,+∞)

As we show in §3.2, it is straightforward to include such intervals in the atom library, so that they

are readily available to verify compositions.

The task of determining infx g(x) or supx g(x) remains. In §3.2, we show that function ranges

are included in the atom library for just this purpose, alongside information about their curvature

and monotonicity properties. But often the inner expression g(x) is not a simple function call, but

an expression reducible to the form (3.3):

g(x) = inf
x

a + bT x +
L∑

j=1

cjfj(. . . ) (3.24)

We propose the following heuristic in such cases. Let Xi ⊆ R, i = 1, 2, . . . , n, be simple interval

bounds on the variables, retrieved from any simple bounds present in the model. In addition, let

Fj = fj(R) ⊆ R, j = 1, 2, . . . , L, be the range bounds retrieved from the atom library. Then

g(R) ⊆ a +

n∑

i=1

biXi +

L∑

j=1

cjFj (3.25)

So (3.25) provides a conservative bound on infx g(x) or supx g(x), as needed. In practice, this

heuristic proves sufficient to support the composition rules in nearly all circumstances. In those

exceptional circumstances where the bound is too conservative, and the heuristic fails to detect a valid

composition, a model may have to be rewritten—say, by manually performing the decomposition

(3.14) above. It is a small price to pay for added expressiveness in the vast majority of cases.

Generalizing these composition rules to functions with multiple arguments is straightforward,

but requires a bit of technical care. The result is as follows:

The composition rules. Consider a numerical expression of the form

f(arg1, arg2, . . . , argm) (3.26)

where f is a function from the atom library. For each argument argk, construct a bound

Gk ⊆ R on the range using the heuristic described above, so that

(arg1, arg2, . . . , argm) ∈ G = G1 ×G2 × · · · ×Gm (3.27)
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Given these definitions, (3.26) must satisfy exactly one of the following rules:

C1-C3 If the expression is expected to be convex, then f must be affine or convex, and

one of the following must be true for each k = 1, . . . ,m:

C1 f is nondecreasing in argument k over G, and argk is convex; or

C2 f is nonincreasing in argument k over G, and argk is concave; or

C3 argk is affine.

C4-C6 If the expression is expected to be concave, then f must be affine or concave,

and one of the following must be true for each k = 1, . . . ,m:

C4 f is nondecreasing in argument k over G, and argk is concave; or

C5 f is nonincreasing in argument k over G, and argk is convex; or

C6 argk is affine.

C7 If the expression is expected to be affine, then f must be affine, and each argk is

affine for all k = 1, . . . ,m.

3.2 The atom library

The second component of disciplined convex programming is the atom library. As a concept, the

atom library is relatively simple: an extensible list of functions and sets whose properties of curva-

ture/shape, monotonicity, and range are known. The description of the DCP ruleset in §3.1 shows

just how this information is utilized.

As a tangible entity, the atom library requires a bit more explanation. In cvx, the library is

a collection of text files containing descriptions of functions and sets. Each entry is divided into

two sections: the declaration and the implementation. The declaration is divided further into two

components:

• the prototype: the name of the function or set and the and structure of its inputs.

• the attribute list : a list of descriptive statements concerning the curvature, monotonicity, and

range of the function; or the shape of the set.

The implementation is a computer-friendly description of the function or set that enables it to be

used in numerical solution algorithms. What is important to note here is that the implementation

section is not used to determine whether or not a particular problem is a DCP. Instead, it comes

into play only after a DCP has been verified, when one wishes to compute a numerical solution. For

this reason, we postpone the description of the implementation until §3.5.
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3.2.1 The prototype

A function prototype models the usage syntax for that function, and in the process describes the

number and dimensions of its arguments; e.g.,

function sq( x ); f(x) = x2 (3.28)

function max( x, y ); g(x, y) = max{x, y} (3.29)

Some functions are parameterized; e.g., hp(x) = ‖x‖p. In cvx, parameters are included in the

argument list along with the arguments; e.g.,

function norm_p( p, x[n] ) if p >= 1; hp(x) = ‖x‖p (p ≥ 1) (3.30)

Parameters are then distinguished from variables through the curvature attribute; see §3.2.2 below.

The norm_p example also illustrates the ability to place preconditions on a function’s parameters

using an if construct. To use a function with preconditions, they must somehow enforced—perhaps

by using one or more assertions. For example, norm_p( 2.5, x ) would be verified as valid; but if

b is a parameter, norm_p( b, x ) would not be, unless the value of b could somehow be guaranteed

to be greater than 1; for example, unless an assertion like b > 1 were provided in the model.

Most set prototypes look identical to those of functions:

set integers( x ); A = Z = {. . . ,−2,−1, 0, 1, 2, . . . } (3.31)

set simplex( x[n] ); B = {x ∈ R
n | x ≥ 0,

∑
i xi = 1 } (3.32)

set less than( x, y ); C = { (x, y) ∈ R× R | x < y } (3.33)

Unlike functions, the actual usage of a set differs from its prototype—the arguments are in fact the

components of the set, and therefore appear to the left of a set membership expression: e.g.,

x in integers; x ∈ A (3.34)

y in simplex; y ∈ B (3.35)

(x,y) in less than; (x, y) ∈ C (3.36)

For parameterized sets, there is yet another difference: the parameters are supplied in a separate

parameter list, preceding the argument list: e.g.,

set ball_p( p )( x[n] ) if p >= 1; Bp(x) = {x ∈ R
n | ‖x‖p ≤ 1 } (p ≥ 1) (3.37)

This parameter list remains on the right-hand side of the constraint along with the name of the set:

z in ball p( q ); z ∈ Bq (3.38)
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3.2.2 Attributes

As we saw in §3.1, the DCP ruleset depends upon one or more pieces of information about each

function and set utilized in a DCP. For sets, it utilizes just one item:

• shape: specifically, whether or not the set is convex.

For functions, a bit more information is used:

• curvature: whether the function is convex, concave, affine, or otherwise.

• monotonicity : whether the functions are nonincreasing or nondecreasing; and over what sub-

sets of their domain they are so.

• range: the minimum of convex functions and the maximum of concave functions.

The cvx framework allows this information to be provided through the use of attributes: simple text

tags that allow each of the above properties to be identified as appropriate.

Shape

For sets, only one attribute is recognized: convex. A set is either convex, in which case this attribute

is applied, or it is not. Given the above four examples, only integers is not convex:

set integers( x ); (3.39)

set simplex( x[n] ) convex; (3.40)

set less than( x, y ) convex; (3.41)

set ball p( p )( x[n] ) convex if p >= 1; (3.42)

Sets that are not convex are obviously of primary interest for DCP, but non-convex sets may be

genuinely useful, for example, for restricting the values of parameters to realistic values.

Curvature

Functions can be declared as convex, concave, or affine, or none of the above. Clearly, this last

option is the least useful; but such functions can be used in constant expressions or assertions. No

more than one curvature keyword can be supplied. For example:

function max( x, y ) convex; g(x, y) = max{x, y} (3.43)

function min( x, y ) concave; f(x, y) = min{x, y} (3.44)

function plus( x, y ) affine; p(x, y) = x + y (3.45)

function sin( x ); g(x) = sin x (3.46)
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By default, a function declared as convex, concave, or affine is assumed to be jointly so over all of

its arguments. It is possible to specify that it is so only over a subset of its arguments by listing

those arguments after the curvature keyword; for example, the function

function norm_p( p, x[n] ) convex( x ) if p >= 1; hp(x) = ‖x‖p (p ≥ 1) (3.47)

is convex only in its second argument x. This convention allows parameterized functions to be

declared: arguments omitted from the list are the parameters of the function and must be constant.

Disciplined convex programming allows only functions that are globally convex or concave to be

specified as such. For example, the simple inverse function

f : R→ R, f(x) , 1/x (x 6= 0) (3.48)

is neither convex nor concave, and so cannot be used to construct a DCP. However, we commonly

think of f as convex if x is known to be positive. In disciplined convex programming, this under-

standing must be realized by defining a different function

fcvx : R→ R, f(x) ,





1/x x > 0

+∞ x ≤ 0
(3.49)

which is globally convex, and can therefore be used in DCPs. Similarly, the power function

g : R
2 → R, g(x, y) , xy (when defined) (3.50)

is convex or concave on certain subsets of R
2, such as:

• convex for x ∈ [0,∞) and fixed y ∈ [1,∞).

• concave for x ∈ [0,∞) and fixed y ∈ (0, 1];

• convex for fixed x ∈ (0,∞) and y ∈ R

In order to introduce nonlinearities such as x2.5 or x0.25 into a DCP, there must be appropriate

definitions of these “restricted” versions of the power function:

fy : R→ R, fy(x) =





xy x ≥ 0

+∞ x < 0
(y ≥ 1) (3.51)

gy : R→ R, gy(x) =





xy x ≥ 0

−∞ x < 0
(0 < y < 1) (3.52)

hy : R→ R, hy(x) = yx (y > 0) (3.53)

Thus the disciplined convex programming approach forces the user to consider convexity more care-

fully. We consider this added rigor an advantage, not a liability.
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Monotonicity

The monotonicity of a function with respect to its arguments proves to be a key property ex-

ploited by the ruleset. For this reason, the cvx atom library provides the keywords increasing,

nondecreasing, nonincreasing, or decreasing in each of its arguments. Each argument can be

given a separate declaration:

function exp( x ) convex increasing; f(x) = ex (3.54)

The ruleset does not treat strict monotonicity specially; so, for example, the attributes increasing

and nondecreasing are effectively synonymous, as are decreasing and nonincreasing.

There is one somewhat technical but critical detail that must be adhered to when declaring a

function to be monotonic. Specifically, monotonicity must be judged in the extended-valued sense.

For example, given p ≥ 1, the function

function pow_p( p, x ) convex( x ) if p >= 1; fp(x) =





xp x ≥ 0

+∞ x < 0
(3.55)

is increasing over its (real-valued) domain. However, in the extended-valued sense, the function is

nonmonotonic, so fp cannot be declared as globally monotonic.

As suggested in §3.1.4, the cvx atom library allows conditions to be placed on monotonicity. So,

for example, f̃p(x) is, of course, nondecreasing over x ∈ [0,+∞), suggesting the following declaration:

function pow_p( p, x ) convex( x ) if p >= 1, increasing( x ) if x >= 0; (3.56)

Multiple declarations are possible: for example, the function f(x) = x2 is both nonincreasing over

x ∈ (−∞, 0] and nondecreasing over x ∈ [0,+∞):

function sq( x ) convex, decreasing if x <= 0, increasing if x >= 0; (3.57)

Each argument of a function with multiple inputs can be given a separate, independent mono-

tonicity declaration. For example, f(x, y) = x− y is increasing in x and decreasing in y:

function minus( x, y ) affine increasing( x ) decreasing( y ); (3.58)

Range

A function definition can include a declaration of its its range, using a simple inequality providing

a lower or upper bound for the function. For example,

function exp( x ) convex, increasing, >= 0; f(x) = ex (3.59)
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minimize c x;

subject to exp( y ) <= log( a sqrt( x ) + b );

a x + b y = d;

variables x, y;

parameters a, b, c, d;

function exp( x ) convex increasing >= 0;

function sqrt( x ) concave nondecreasing;

function log( x ) concave increasing;

Figure 3.3: The cvx specification for (3.60).

As with the monotonicity operations, the range must be specified in the extended-valued sense, so

it will inevitably be one-sided: that is, all convex functions are unbounded above, and all concave

functions are unbounded below.

3.3 Verification

In order to solve a problem as a DCP, one must first establish that it is indeed a valid DCP—that

is, that it involves only functions and sets present in the atom library, and combines them in a

manner compliant with the DCP ruleset. A proof of validity is necessarily hierarchical in nature,

reflecting the structure of the problem and its expressions. To illustrate the process, consider the

simple convex optimization problem

minimize cx

subject to exp(y) ≤ log(a
√

x + b)

ax + by = d

(3.60)

where a, b, c, d are parameters, and x, y are variables. A cvx version of this model is given in

Figure 3.3. Note in particular the explicit declarations of the three atoms exp, log, and sqrt.

Usually these declarations will reside in an external file, but we include them here to emphasize that

every atom used in a model must be accounted for in the atom library.

It is helpful to divide the proof into two stages. The first stage verifies that each of the expressions

involved is product-free. Below is a textual description of this stage. The lines are indented in order

to represent the hierarchy present in the proof. In addition, each line line includes the number of

the rule employed.

cx is product-free, because (PN7)

c is a constant expression(T8)

x is product-free (PN1)

exp(y) is product-free, because (PN3)

y is product-free (PN2)

log(a
√

x + b) is product-free, because (PN3)



62 CHAPTER 3. DISCIPLINED CONVEX PROGRAMMING

a
√

x + b is product-free, because (PN4)

a
√

x is product-free, because (PN7)

a is a constant expression (T8)
√

x is product-free, because (PN3)

x is product-free (PN2)

b is product-free (PN2,T8)

ax + by is product-free, because (PN4)

ax is product-free, because (PN7)

a is a constant expression (T8)

x is product-free (PN1)

by is product-free, because (PN7)

b is a constant expression (T8)

y is product-free (PN1)

d is product-free (PN2)

The second stage proceeds by verifying the top-level, sign, and composition rules in a similarly

hierarchical fashion:

The minimization problem is valid if a ≥ 0, because (T1)

The objective function is valid, because (T1)

cx is convex (SN1)

The first constraint is valid if a ≥ 0, because (T1)

exp(y) ≤ log(a
√

x + b) is convex if a ≥ 0, because (T5)

exp(y) is convex, because (SN1)

exp(y) is convex, because (C1)

exp(·) is convex and nondecreasing (atom library)

y is convex (SN1)

log(a
√

x + b) is concave if a ≥ 0, because (SN2)

log(a
√

x + b) is concave if a ≥ 0, because (C4)

log(·) is concave and nondecreasing (atom library)

a
√

x + b is concave if a ≥ 0, because (SN2)
√

x is concave, because (C4)
√· is concave and nondecreasing (atom library)

x is concave (SN2)

The second constraint is valid, because (T1)

ax + by = d is convex, because (T4)

ax + by is affine (SN3)

d is affine (SN3)

It can be quite instructive to view this proof of validity graphically. Figure 3.4 presents an expression

tree of the problem (3.60), annotated with the relevant rules verified at each position in the tree.
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Figure 3.4: An expression tree for (3.60), annotated with applicable convexity rules.

The verification process is guaranteed to yield one of three conclusions:

• valid : the rules are fully satisfied.

• conditionally valid : the rules will be fully satisfied if one or more additional preconditions on

the parameters are satisfied.

• invalid : one or more of the convexity rules has been violated.

In this case, a conclusion of conditionally valid has been reached: the analysis has revealed that an

additional condition a ≥ 0 must satisfied. If this precondition were somehow assured, then the proof

would have conclusively determined that the problem is a valid DCP. One simple way to accomplish

is to add the assertion a >= 0 to the problem. If, on the other hand, we were to do the opposite

and add an assertion a < 0, the sign rule SN2 would be violated; in fact, the expression a
√

x + b

would be verifiably convex.

The task of verifying DCPs comprises yet another approach to the challenge of automatic con-

vexity verification described in §1.3. Like the methods used to verify LPs and SDPs, a certain

amount of structure is assumed via the convexity rules that enables the verification process to pro-

ceed in a reliable and deterministic fashion. However, unlike these more limited methods, disciplined

convex programming maintains generality by allowing new functions and sets to be added to the

atom library. Thus disciplined convex programming provides a sort of knowledgebase environment

for convex programming, in which human-supplied information about functions and sets is used to

expand the body of problems that can be recognized as convex.
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maximize - x1 log( x1 ) - x2 log( x2 ) - x3 log( x3 ) - x4 log( x4 );

subject to a1 x1 + a2 x2 + a3 x3 + a4 x4 = b;

x1 + x2 + x3 + x4 = 1;

parameters a1, a2, a3, a4, b;

variables x1 >= 0, x2 >= 0, x3 >= 0, x4 >= 0;

function log( x ) concave nondecreasing;

Figure 3.5: An entropy maximization problem.

maximize log( exp( a11 x1 + x12 x2 + a13 x3 - b1 ) +

exp( a21 x1 + a22 x2 + a23 x3 - b2 ) );

subject to log( exp( a31 x1 + a32 x2 + a33 x3 - b3 ) +

exp( a41 x1 + a42 x2 + a43 x3 - b4 ) <= 0;

a51 x1 + a52 x2 + a53 x3 = b5;

parameters a11, a12, a13, b1, a21, a22, a23, b2,a31, a32, a33, b3,

a41, a42, a43, b4, a51, a52, a53, b5;

variables x1, x2, x3;

function log( x ) concave nondecreasing;

function exp( x ) convex nondecreasing >= 0;

Figure 3.6: A geometric program in convex form.

3.4 Navigating the ruleset

Adherence to the DCP ruleset is sufficient but not necessary to ensure convexity. It is possible to

construct mathematical programs that are indeed convex, but which fail to be DCPs because one or

more of the expressions involved violate the ruleset. In fact, it is quite simple to do so: for example,

consider the entropy maximization problem

maximize −∑n
j=1 xj log xj

subject to Ax = b

~1T x = 1

x ≥ 0

(3.61)

where x ∈ R
n is the problem variable and A ∈ R

m×n and b ∈ R
m are parameters; and log(·) is

defined in the atom library. A cvx version of this problem, with (m,n) = (2, 4), is given in Figure 3.5.

The expression xj log xj violates the product-free rule PS6—and as a result, (3.61) is not a DCP,

even though it is a well-known CP. Alternatively, consider a geometric program in convex form,

minimize log
∑m0

i=1 exp(aT
0ix + b0i)

subject to log
∑mi

i=1 exp(aT
kix + bki) ≤ 0 k = 1, 2, . . . ,M

A(M+1)x + b(M+1) = 0

(3.62)

where x ∈ R
n is the problem variable, the quantities

A(k) = [ak1 ak2 . . . akmk
]T ∈ R

mk×n b(k) = [bk1 bk2 . . . bkmk
]T ∈ R

mk (3.63)
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maximize entr( x1, x2, x3, x4 );

subject to a1 * x1 + a2 * x2 + a3 * x3 + a4 * x4 = b;

x1 + x2 + x3 + x4 = 1;

parameters a1, a2, a3, a4, b;

variables x1 >= 0, x2 >= 0, x3 >= 0, x4 >= 0;

function entr( ... ) concave;

Figure 3.7: An entropy maximization problem, expressed as a DCP.

for k = 1, 2, . . . ,M + 1 are parameters; and both log(·) and exp(·) are defined in the atom library.

An example cvx model of this problem is given in Figure 3.6. This problem satisfies the product-

free rules, but the objective function and inequality constraints fail either the sign rule SN1 or the

composition rule C4, depending on how you verify them. But of course, (3.62) is a CP.

These violations do not mean that the problems cannot be solved as disciplined convex programs,

just that they must be rewritten in a compliant manner. The simplest way to do so is to add new

functions to the atom library that encapsulate the offending nonlinearities:

fentr : R
n → (R ∪ −∞), fentr(x) ,

n∑

j=1

f̄(xj), f̄(xj) ,





−xj log xj xj > 0

0 xj = 0

−∞ xj < 0

(3.64)

flse : R
n → R, flse(y) = log

n∑

j=1

eyj . (3.65)

Using these functions, we can rewrite both problems as DCPs; (3.61) as

maximize fentr(x)

subject to Ax = b

~1T x = 1

x ≥ 0

(3.66)

and the GP (3.62) as

minimize flse(A
(0)x + b(0))

subject to flse(A
(k)x + b(k)) ≤ 0, i = 1, 2, . . . ,M

A(M+1)x + b(M+1) = 0.

(3.67)

cvx versions of these problems are given in Figures 3.7 and 3.8, respectively.

The ability to extend the atom library as needed has the potential to be taken to an inelegant

extreme. For example, consider the problem

minimize f0(x)

subject to fk(x) ≤ 0, k = 1, 2, . . . ,m
(3.68)
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maximize lse( a11 * x1 + x12 * x2 + a13 * x3 - b1,

a21 * x1 + a22 * x2 + a23 * x3 - b2 );

subject to lse( a31 * x1 + a32 * x2 + a33 * x3 - b3,

a41 * x1 + a42 * x2 + a43 * x3 - b4 ) <= 0;

a51 * x1 + a52 * x2 + a53 * x3 = b5;

parameters a11, a12, a13, b1, a21, a22, a23, b2,a31, a32, a33, b3,

a41, a42, a43, b4, a51, a52, a53, b5;

variables x1, x2, x3;

function lse( ... ) convex nondecreasing;

Figure 3.8: A geometric program in convex form, expressed as a DCP.

where the functions f0, f1, . . . , fm are convex. One way to cast this problem as a DCP would

simply be to add all m + 1 of the functions to the atom library. The convexity rules would then

be satisfied rather trivially; and yet this would probably require more, not less, effort than a more

traditional NLP modeling method. In practice, however, the functions fk are rarely monolithic,

opaque objects. Rather, they are constructed from components such as affine forms, norms, and

other known functions, combined in ways consistent with the principles of convex analysis captured

by the DCP ruleset. It is those functions that are suitable for addition into the atom library.

Once an atom is defined and implemented, it can be freely reused across many DCPs. The atoms

can be shared with other users as well. The effort involved in adding a new function to the atom

library, then, is significantly amortized. A collaborative hierarchy is naturally suggested, wherein

more advanced users can create new atoms for application-specific purposes, while novice users can

employ them in their models without regard for how they were constructed.

We argue, therefore, that (3.61) and (3.62) are ideal examples of the kinds of problems that

disciplined convex programming is intended to support, so that the DCP ruleset poses little practi-

cal burden in these cases. While it is true that the term −xj log xj violates the product-free rules,

someone interested in entropy maximization does not consider this expression as a product of non-

linearities but rather as a single, encapsulated nonlinearity—as represented by the function fentr.

In a similar manner, those studying geometric programming treat the function flse as a monolithic

convex function; it is irrelevant that it happens to be the composition of a concave function and a

convex function. Thus the addition of these functions to the atom library coincides with the intuitive

understanding of the problems that employ them.

Still, the purity of the convexity rules prevents even the use of obviously convex quadratic forms

such as x2 + 2xy + y2 in a model. It could be argued that this is impractically restrictive, since

quadratic forms are so common. Indeed, an extension of the convexity rules to include quadratic

forms is worthy of consideration. But in many cases, a generic quadratic form may in fact represent

a quantity with more structure or meaning. For example, traditionally, the square of a Euclidean

norm ‖Ax + b‖22 might be converted to a quadratic form

‖Ax + b‖2 = xT Px + qT x + r, P , AT A, q , AT b, r , bT b (3.69)
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But within a DCP, this term can instead be expressed as a composition:

‖Ax + b‖2 = f(g(Ax + b)), f(y) , y2, g(z) , ‖z‖2 (3.70)

In disciplined convex programming, there is no natural bias against (3.70), so it should be preferred

over the converted form (3.69) simply because it reflects the original intent of the problem. So we

argue that support for generic quadratic forms would be at least somewhat less useful than in a

more traditional modeling framework. Furthermore, we can easily support quadratic forms with the

judicious addition of functions to the atom library, such as the function f(y) = y2 above, or a more

complex quadratic form such as

fQ : R
n → R, fQ(x) = xT Qx (Q º 0). (3.71)

Thus even support for quadratic forms is a matter of convenience, not necessity.

3.5 Implementing atoms

In §1.2.2, we enumerated a variety of numerical methods for solving CPs. Many of those methods

can be readily adapted to solve DCPs, as we shall see in Chapter 4. For now, it is sufficient to know

that each of these methods performs certain computations involving each of the atoms (functions

and sets) they encounter in problems they solve. As we briefly introduced in §3.2, the purpose of the

implementation of an atom is to provide the means to perform these calculations. In this section,

we provide a more detailed description of atom implementations, once again using the cvx modeling

language to illustrate our examples.

Disciplined convex programming and the cvx modeling framework distinguish between two dif-

ferent types of implementations:

• a simple implementation, which provides traditional calculations such as derivatives, subgra-

dients and supergradients for functions; and indicator functions, barrier functions, and cutting

planes for sets; and

• a graph implementation, in which the function or set is defined as the solution to another DCP.

The computations supported by simple implementations should be quite familiar to anyone who

studies the numerical solution of optimization problems. To the best of our knowledge, however,

the concept of graph implementations is new, and proves to be an important part of the power and

expressiveness of disciplined convex programming.

In cvx, an implementation is surrounded by curly braces, and consists of a list of key/value

pairs with the syntax key := value. See Figures 3.9 and 3.10 for examples. It is also possible for

an implementation to be constructed in a lower-level language like C, but we do not consider that

feature here.
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3.5.1 Simple implementations

Any continuous function can have a simple implementation. Simple function implementations use

the following key := value entries:

• value: the value of the function.

• domain_point: a point on the interior of the domain of the function; the origin is assumed if

this is omitted.

• For differentiable functions:

– gradient: the first derivative.

– Hessian (if twice differentiable): the second derivative.

• For nondifferentiable functions:

– subgradient (if convex): a subgradient of a function f at point x ∈ dom f is any vector

v ∈ R
n satisfying

f(y) ≥ f(x) + vT (y − x) ∀y ∈ R
n (3.72)

– supergradient (if concave): a supergradient of a function g at point x ∈ dom g is any

vector v ∈ R
n satisfying

g(y) ≤ g(x) + vT (y − x) ∀y ∈ R
n (3.73)

It is not difficult to see how different algorithms might utilize this information. Almost every method

would use value and domain_point, for example. A smooth CP method would depend on the entries

gradient and Hessian to calculate Newton search directions. A localization method would use the

entries gradient, subgradient, and supergradient to compute cutting planes.

Any set with a non-empty interior can also have a simple implementation. Simple set implemen-

tations use the following key := value entries:

• interior_point: a point on the interior of the set.

• indicator: an expression returning 0 for points inside the set, and +∞ for points outside it.

• At least one, but ideally both, of the following:

– barrier: a reference to a convex, twice differentiable barrier function for the set, declared

separately as a function atom with a direct implementation.

– oracle: a cutting plane oracle for the set. Given a set S ⊂ R
n, the cutting plane oracle

accepts as input a point x ∈ R
n; and, if x 6∈ S, returns a separating hyperplane; that is,

a pair (a, b) ∈ R
n × R satisfying

aT x ≤ b, S ⊆
{

y | aT y ≥ b
}

(3.74)
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function min( x, y ) concave, nondecreasing {

value := x < y ? x : y;

supergradient := x < y ? ( 1, 0 ) : ( 0, 1 );

}

set pos( x ) convex {

interior_point := 1.0;

indicator := x < 0 ? +Inf : 0;

oracle := x < 0 ? ( 1, 0 ) : ( 0, 0 );

barrier := neglog( x );

}

function neglog( x ) convex {

domain_point := 1.0;

value := x <= 0 ? +Inf : - log( x );

gradient := - 1 / x;

Hessian := 1 / x^2;

}

Figure 3.9: Simple implementations.

If x ∈ S, then the oracle returns (a, b) = (0, 0).

Figure 3.9 presents several examples of simple implementations. Again, we do not wish to document

the cvx syntax here, only illustrate the feasibility of this approach. Note that the set pos has both

a barrier function and a cutting plane generator, allowing it to be used in both types of algorithms.

3.5.2 Graph implementations

A fundamental principle in convex analysis is the very close relationship between convex and concave

functions and convex sets. A function f : R
n → (R ∪+∞) is convex if and only if its epigraph

F = epi f = { (x, y) ∈ R
n × R | f(x) ≤ y } (3.75)

is a convex set. Likewise, a function g : R
n → R ∪+∞ is concave if and only if its hypograph

G = hypo g = { (x, y) ∈ R
n × R | g(x) ≥ y } (3.76)

is a convex set. These relationships can be expressed in reverse fashion as well:

f(x) = inf { y | (x, y) ∈ F } (3.77)

g(x) = sup { y | (x, y) ∈ G } (3.78)

A graph implementation of a function is effectively a representation of the epigraph or hypograph of

a function, as appropriate, as a disciplined convex feasibility problem (top-level rule T3). The cvx

framework supports this approach by allowing epigraphs or hypographs to be represented in key :=

value pairs epigraph and hypograph, respectively.
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function abs( x ) convex, >= 0 {

value := x < 0 ? -x : x;

epigraph := { -abs <= x <= +abs; }

}

function min( x, y ) concave, nondecreasing {

value := x < y ? x : y;

supergradient := x < y ? ( 1, 0 ) : ( 0, 1 );

hypograph := { min <= x; min <= y; }

}

function entropy( x ) concave {

value := x < 0 ? -Inf : x = 0 ? 0 : - x log( x );

hypograph := { ( x, y ) in hypo_entropy; }

}

set simplex( x[n] ) convex {

constraints := { sum( x ) = 1; x >= 0; }

}

Figure 3.10: Graph implementations.

For a simple example, consider the absolute value function f(x) = |x|, the epigraph of which is

epi f = { (x, y) | |x| ≤ y } = { (x, y) | − y ≤ x ≤ y } (3.79)

In Figure 3.10, we show how this epigraph is represented in cvx. Notice that the name of the function

abs is used to represent the epigraph variable.

The primary benefit of graph implementations is that they provide an elegant means to define

nondifferentiable functions. The absolute value function above is one such example; another is the

two-argument minimum g(x, y) = min{x, y}. This function is concave, and its hypograph is

hypo g = { (x, y, z) ∈ R× R× R | z ≤ x, z ≤ y } (3.80)

Figure 3.10 shows how the function min represents this hypograph in cvx. Notice that this function

has a simple implementation as well—allowing the underlying solver to decide which it prefers to

use. Of course, both abs and min are rather simple, but far more complex functions are possible.

For example, graph implementations can be constructed for each of the norms examined in §1.1.

A subtle but important instance of nondifferentiability occur in functions that are discontinu-

ous at the boundaries of their domains. These functions require special care as well, and graph

implementations provide that. For example, consider the scalar entropy function

f : R→ R, f(x) ,





−x log x x > 0

0 x = 0

−∞ x < 0

(3.81)
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This function is smooth over the positive interval, but it is discontinuous at the origin. This discon-

tinuity causes difficulties for some numerical methods [96]. Using the hypograph

hypo f = cl { (x, y) ∈ R× R | x > 0, − x log x > y } , (3.82)

these difficulties can be solved. In Figure 3.10, we show the definition of a function entropy that

refers to a set hypo_entropy representing this hypograph. We have chosen to omit the implemen-

tation of this set here, but it would certainly contain a definition of the barrier function

φ : R× R→ (R ∪+∞), φ(x, y) =




− log(−y − x log x)− log x (x, y) ∈ Int epi f

+∞ otherwise
(3.83)

[124], as well as an oracle to compute cutting planes a1x + a2y ≤ b, where

(a1, a2, b) ,





(0, 0, 0) (x, y) ∈ hypo f

(−1, 0, 0) x < 0

(log(y/2) + 1, 1, y/2) x = 0, y > 0

(log x + 1, 1, x) x > 0

(3.84)

Graph implementations can also be used to unify traditional, inequality-based nonlinear pro-

gramming with conic programming. For example, consider the maximum singular value function

f : R
m×n → R, f(X) = σmax(X) =

√
λmax(XT X) (3.85)

This function is convex, and in theory could be used in a disciplined convex programming framework.

The epigraph of f is

epi f =
{

(X, y) ∈ R
m×n × R | σmax(X) ≤ y

}

=

{
(X, y)

∣∣∣∣∣

[
yI X

XT yI

]
∈ Sm+n

+ , y ≥ 0

}
(3.86)

where Sm+n
+ is the set of (m + n) × (m + n) positive semidefinite matrices. For someone who is

familiar with semidefinite programming, (3.86) is probably quite familiar. Burying this construct

within an implementation in the atom library, however, enables people who are not comfortable

with semidefinite programming to take advantage of its benefits in a traditional NLP-style problem.

Graph implementations are possible for sets as well, using a single key := value pair constraints,

which contains the set described as a disciplined convex feasibility problem (again, top-level rule

T3). There are several reasons why this might be used. For example, graph implementations can be

used to represent sets with non-empty interiors, such as the set of n-element probability distributions

S =
{

x ∈ R
n | x ≥ 0, ~1T x = 1

}
(3.87)
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A cvx version of this set is given in Figure 3.10. Graph implementations can also be used to

represent sets using a sequence of smooth inequalities so that smooth CP solvers can support them.

For example, the second-order cone

Qn = { (x, y) ∈ R
n × R | ‖x‖2 ≤ y } (3.88)

can be represented by smooth inequalities as follows:

Qn = cl
{

(x, y) ∈ R
n × R | xT x/y − y ≤ 0, y > 0

}
(3.89)

The concept of graph implementations is based on relatively basic principles of convex analysis.

And yet, an applications-oriented user—someone who is not expert in convex optimization—is not

likely to be constructing new atoms with graph implementations. Indeed they are not likely to be

constructing new simple implementations either. Thankfully, they do not need to build them in

order to use them. The implementations themselves can be built by those with more expertise in

such details, and shared with applications-oriented users. As the development of the cvx framework

continues, its authors will build a library of common and useful functions; and we hope that others

will do so and share them with the community of users.

In §4.2.3, we show how graph implementations are used when solving problems. In short, their

DCP representations are incorporated into the models that call them, not unlike an inline function

in C++. Graph implementations are algorithm agnostic, in that any numerical method for convex

programming can utilize graph implementations. So algorithms that do not “natively” support non-

differentiable functions or sets with non-empty interiors can do so using of graph implementations.

3.6 Conclusion

We have introduced a new methodology for constructing convex programs called disciplined convex

programming. The key components of the methodology are an extensible atom library of functions

and sets with known properties of shape, monotonicity, and range; and a ruleset that governs

how atoms may be combined with parameters, variables, and numeric constants to construct valid

constraints and objective functions. Disciplined convex programs are a strict subset of convex

programs, and yet the extensibility of the atom library ensures that this subset is representative:

that is, that all finite-dimensional convex programs can be expressed in disciplined form.

An important feature of disciplined convex programming is the concept of graph implementations

for functions and sets. Graph implementations allow functions and sets to be expressed in terms of

other disciplined convex programs, and expand the class of functions and sets that can be practically

represented in a modeling framework; in particular, nondifferentiable (convex and concave) functions

are fully supported, as are (convex) sets with non-empty interiors. As a result, the modeler is free

to disregard details such as nondifferentiability when constructing disciplined convex programs.



Chapter 4

Solving disciplined convex

programs

In the previous chapter, we introduced the disciplined convex programming methodology as a tool

for constructing convex programs. In this chapter, we discuss how disciplined convex programs can

be solved. As depicted in Figure 4.1, the task can be divided into four stages:

• verification of adherence to the DCP ruleset (§3.3);

• canonicalization; that is, conversion to a solvable form (§4.2);

• numerical solution (§4.3); and

• post processing ; that is, recovering primal and dual information for the original model from

the solution to the canonicalized problem (§4.2.4).

We have already addressed the first of these stages in the previous chapter. There it was shown

that the conventions enforced by disciplined convex programming replaced the intractable problem of

determining if a nonlinear program is convex with a simpler, automatable task: verifying compliance

to the DCP ruleset. In this chapter, we examine the remaining three stages of the solution process,

and find that disciplined convex programming provides significant opportunities for simplification,

automation, and improvement as well.
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Figure 4.1: The DCP workflow.
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4.1 The canonical form

A canonical form is a prototypical problem that represents an entire class of problems for the

purposes of study or numerical solution. For example, much of the study of linear programming

involves the so-called primal and dual canonical forms,

minimize cT x maximize bT y

subject to Ax = b subject to AT y ≤ c.

x ≥ 0

(4.1)

A canonical form must be universal, in that every problem in the class it represents must be equiv-

alent to a problem in canonical form. Indeed, all linear programs can be represented using either

of the canonical forms in (4.1). (When we use the term equivalent here, we rely on an informal but

practical definition given in [29]: two problems are equivalent if a solution to one readily yields a

solution to the other, and vice versa.)

4.1.1 Our choice

We propose a single canonical form for disciplined convex programs:

PDCP: minimize cT x + d

subject to Ax = b

x ∈ S.

(4.2)

The problem variable is x ∈ R
n, and the parameters are A ∈ R

m×n, b ∈ R
m, c ∈ R

n, d ∈ R, and a

convex set S ⊂ R
n. Corresponding forms for maximization and feasibility logically follow:

maximize −cT x− d

subject to Ax = b

x ∈ S

find x ∈ R
n

such that Ax = b

x ∈ S,

(4.3)

but the maximization can be solved as a minimization simply by negating the objective, and the

feasibility problem by selecting c = 0, d = 0. So we focus on the minimization problem above.

If S , R
n
+ and d = 0, the primal LP form in (4.1) is recovered—and this was not accidental. But

it is the structure of the set S that distinguishes this canonical form from (4.1) or other canonical

forms for mathematical programming. S is the Cartesian product of one or more sets Sk; i.e.,

S = S1 × S2 × · · · × SL, Sk ⊆ R
nk , k = 1, . . . , L,

∑L
k=1 nk , n. (4.4)

The sets Sk, which we call the nonlinearities of the problem, are drawn from one of five categories:

• a group of free variables: Sk , R
nk ;
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• a group of nonnegative variables: Sk , R
nk

+ = {x ∈ R
nk | xj ≥ 0, j = 1, 2, . . . , nk };

• an epigraph nonlinearity : Sk , epi f =
{

(u, v) ∈ R
nk−1 × R | f(u) ≤ v

}
, where f is a convex

function from the atom library;

• a hypograph nonlinearity : Sk , hypo g =
{

(u, v) ∈ R
nk−1 × R | g(u) ≥ v

}
, where g is a

concave function from the atom library;

• a set nonlinearity : Sk is a convex set from the atom library.

(We hope the reader will forgive that the term “nonlinearity” is somewhat of a misnomer in the first

two cases.) As we see in §4.3, numerical algorithms place further restrictions upon the nonlinearities.

It should be clear that PDCP is a valid disciplined convex program, but it adopts a number of

conventions not shared by the larger class of DCPs:

• The objective function is affine.

• There are no linear inequalities, except for simple nonnegative variables.

• There are no nonlinear inequalities, except for epigraph/hypograph nonlinearities.

• Each nonlinearity is atomic, which means three things:

– it involves only a single function or set from the atom library;

– each argument is a simple variable—i.e., no affine combinations;

– each variable appears exactly once across all nonlinearities.

The effects of the nonlinearities are coupled through the equality constraints Ax = b.

The atomic property of the nonlinearities is the defining structural characteristic of the DCP canon-

ical form, and has significant practical consequences that we explore in this chapter.

We often find it useful to consider two alternate forms for (4.2). First, let us partition x, A, and

c to coincide with the Cartesian structure of S:

x ,




x(1)

x(2)

...

x(L)




A ,

[
A(1) A(2) . . . A(L)

]
c ,




c(1)

c(2)

...

c(L)




. (4.5)

This produces what we call the partitioned form for PDCP:

PDCP: minimize
∑L

k=1 cT
(k)x(k) + d

subject to
∑L

k=1 A(k)x(k) = b

x(k) ∈ Sk k = 1, 2, . . . , L.

(4.6)
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Some analysis requires the selection of a specific combination of nonlinearities. When that occurs

we use this example:

minimize cT
x x + cT

z z + cT
u u + cT

v v + d

subject to Axx + Azz + Auu + Avv = b

z ≥ 0

fk(u(k)) ≤ vk, k = 1, 2, . . . , N.

(4.7)

The problem variables are

x ∈ R
nx , z ∈ R

nz , u ∈ R
nu , v ∈ R

N

u ,

[
uT

(1) uT
(2) . . . uT

(N)

]T
u(k) ∈ R

nf,k , k = 1, 2, . . . , N (
∑

k=1 nf,k , nu)
(4.8)

and the functions fk : R
nf,k → R, k = 1, 2, . . . , N are convex. It is not difficult to see that, with

a simple rearrangement of the variables, this problem is a DCP in canonical form with nx free

variables, nz nonnegative variables, and N epigraph nonlinearities epi fk.

4.1.2 The dual problem

The dual problem figures into much of our analysis so let us introduce it here. The exact form

depends upon the specific structure of the nonlinearities, so let us use (4.7) above. The Lagrangian

is
L(x, z, u, v, y, s, λ) = cT

x x + cT
z z + cT

u u + cT
v v + d

− yT (Axx + Azz + Auu + Avv − b)− sT z −∑N
k=1 λk(vk − fk(u(k))),

(4.9)

where y ∈ R
m, s ∈ R

nz , and λ ∈ R
N are Lagrange multipliers for the equality constraints, the

nonnegative variables, and the nonlinear inequalities, respectively. The Lagrange dual problem is

maximize g(y, s, λ) , infx,z,u,v L(x, z, u, v, y, s, λ)

subject to s ≥ 0, λ ≥ 0,
(4.10)

where g(y, s, λ) is the dual function. Eliminating the primal variables yields

maximize bT y + d−∑N
k=1 λkf∗

k (λ−1
k p(k))

subject to cx −AT
x y = 0

cz −AT
z y = s

cu,k −AT
u,ky = −p(k)

}
k = 1, 2, . . . , N

cv,k −AT
v,ky = λk

z ≥ 0, λ ≥ 0,

(4.11)

where f∗
k is the conjugate function for fk; i.e.,

f∗ : R
n → (R ∪+∞), f∗

k (p) , sup
u

pT u− fk(u), (4.12)
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and new variables p(k) ∈ R
nf,k , k = 1, 2, . . . , N have been defined for convenience. Because the

functions f∗
k may be extended-valued, additional constraints p(k) ∈ λk dom f∗

k , k = 1, 2, . . . , N are

implied here as well. If the functions fk are differentiable, then the Wolfe dual

maximize bT y + d +
∑N

k=1 λk(fk(u(k))− uT
(k)∇fk(u(k)))

subject to cx −AT
x y = 0

cz −AT
z y = s

cu,k −AT
u,ky = −λk∇fk(u(k))

}
k = 3, 4, . . . , L

cv,k −AT
v,ky = λk

z ≥ 0, λ ≥ 0

(4.13)

provides more explicit conditions for dual feasibility.

Given a feasible primal point (x, z, u, v) and a feasible dual point (y, s, λ), the duality gap

η(x, z, u, v, y, s, λ) is the difference between the primal and dual objectives. This quantity is provably

nonnegative:

η(x, z, u, v, y, s, λ) = cT
x x + cT

z z + cT
u u + cT

v v − bT y −∑N
k=1 λkf∗

k (p(k))

= sT z +
∑N

k=1 λk(vk − uT
(k)p(k))−

∑N
k=1 λkf∗

k (p(k))

≥ sT z +
∑N

k=1 λk(vk − fk(u(k))) ≥ 0.

(4.14)

The duality gap cannot be exactly determined from the primal and feasible dual points unless the

conjugates are computed exactly, or if u satisfies the equality constraints of the Wolfe dual (if

applicable). In such cases, the duality gap is exactly

η̂(x, z, u, v, y, s, λ) , sT z +

N∑

k=1

λk(vk − fk(u(k))). (4.15)

This quantity is often called the surrogate duality gap [29] and is sometimes employed in numerical

methods, even when η 6= η̂. Strong duality is not assured unless one has a constraint qualification

such as the appropriate Slater condition,

∃(x, z, u, v) Axx + Azz + Auu + Avv = b, z ≥ 0, fk(u(k)) < v(k), k = 1, 2, . . . , N. (4.16)

Without such a qualification, it is possible for the duality gap to be bounded away from zero.

4.2 Canonicalization and dual recovery

We call the process of finding a problem in canonical form equivalent to a given DCP canonicalization.

Closely tied to canonicalization is dual recovery, the recovery of dual information for the original

DCP given dual information computed for its canonical form.
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One can think of canonicalization as the application of a series of equivalency-preserving trans-

formations to a DCP. We can divide these transformations into three groups:

• linearization (§4.2.1): removing nonlinear functions from inequality constraints and objective

functions, and adding slack variables to convert inequalities to equalities;

• set decomposition (§4.2.2): converting set membership constraints into equality constraints

and atomic nonlinearities;

• graph expansion (§4.2.3): replacing a function or set with its graph implementation, as directed

by the requirements of a solver.

Of course, there are more trivial reformatting issues as well, such as moving all variable expressions

to the left-hand sides of equality constraints, and all constant expressions to the right. We do not

address them here because they lack significant mathematical consequence.

With the exception of the use of slack variables, these canonicalization operations are largely

unique to disciplined convex programming. In §4.2.1-§4.2.3, we describe these operations more

thoroughly. It is important to note that many of the transformations assume adherence to the

DCP ruleset; that is, the ruleset provides sufficient conditions to guarantee the equivalency of these

transformations. Put another way, once a problem has been verified as a DCP, canonicalization may

be applied automatically and mechanically, without further verification of equivalency.

In §4.2.4, we examine the issue of dual recovery. We claim that canonicalization has a rela-

tively benign effect on dual information, and a straightforward process recovers Lagrange multiplier

information for the original problem.

4.2.1 Linearization

Linearization involves three tasks: removing nonlinearities from objective functions and inequality

constraints; insuring that nonlinearities are atomic; and adding slack variables as needed to eliminate

linear inequalities. It is the first task that gives this operation its name.

To illustrate this first task, suppose that x ∈ R
n is a variable, a, b ∈ R

n, and c ∈ R
L are

parameters, and fj , j = 1, 2, . . . , L are convex functions from the atom library; and consider the

nonlinear inequality

a + bT x +

L∑

j=1

cjfj(argj,1, argj,2, . . . , argj,mj
) ≤ 0. (4.17)

The quantities argj,i are expressions whose exact form is not relevant here—except that they obey

the DCP ruleset. The reader may recognize the left-hand side of (4.17) from (3.3), the prototypical

form for all numeric expressions in DCPs, as dictated by the no-product rules (§3.1.2). Because the

functions fj are convex, the sign rules (§3.1.3) dictate that c ≥ 0. Then (4.17) is equivalent to the

system of L + 1 inequalities

a + bT x + cT y ≤ 0 fj(argj,1, argj,2, . . . , argj,mj
) ≤ yj , j = 1, 2, . . . , L. (4.18)
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where y ∈ R
L are new variables created just for this purpose. Adding a slack variable z ∈ R to the

linear inequality yields the result,

a + bT x + cT y + z = 0 z ≥ 0 fj(argj,1, argj,2, . . . , argj,mj
) ≤ yj , j = 1, 2, . . . , L. (4.19)

The equivalence of (4.19) to (4.17), under the stated conditions that the functions fj are convex

and c ≥ 0, should be obvious. However, this example does illustrate the point made above concerning

the dependence of these conversion steps on adherence to the DCP ruleset. The preservation of

equivalency in the transformation of (4.17) to (4.19) depends upon the adherence to the sign rules—

i.e., the fact that c ≥ 0. But since compliance to the ruleset is verified before canonicalization starts,

there is no need to check the signs of the elements of c at all.

To linearize an objective function, one can simply move the nonlinearity into an inequality

constraint using the classic epigraph conversion, and linearize that constraint. But it is not difficult

to see that the conversion process can be applied directly to the objective function; e.g.,

minimize a + bT x +
L∑

j=1

cjfj(·) =⇒ minimize a + bT x + cT y

subject to fj(·) ≤ yj , j = 1, 2, . . . , L.
(4.20)

This first task generates new nonlinearities of the form fj(·) ≤ tj (or fj(·) ≥ tj , if fj is concave).

These expressions will not always be atomic, and may therefore require further transformation.

For example, suppose that f , g are convex functions, x, y, z are problem variables, and A, b are

parameters. Then the constraint

f(Ax + b) ≤ y (4.21)

is not atomic because the function argument is a not simple variable. Similarly, the constraints

f(y) ≤ z g(x) ≤ y (4.22)

are not atomic because both refer to the same variable y. In each instance, the remedy involves

creating additional variables and adding equality constraints to produce equivalent results:

w1 = Az + b f(w1) ≤ y (4.23)

w2 = y f(y) ≤ z g(x) ≤ w2. (4.24)

These transformations do not depend upon adherence to the DCP ruleset for equivalence.

A more challenging case arises when we are confronted with a nonlinear composition such as

f(g(x)) ≤ y. In a DCP, such compositions can only occur under the conditions established by the

rules in §3.1.4. In this case, f must be nondecreasing over the input range g(dom g), allowing us to

establish the following equivalence.

Lemma 6. Suppose that f : R → (R ∪ +∞) and g : R
n → (R ∪ +∞) are convex functions, and f
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is nondecreasing over g(dom g); that is, they satisfy composition rule C1 in §3.1.4. Then

f(g(x)) ≤ y ⇐⇒ ∃w1, w2 f(w1) ≤ y, g(x) ≤ w2, w1 = w2 (4.25)

Proof. First, assume the left-hand side is true; then the right-hand side is satisfied with w1 = w2 =

g(x). Now assume that the right-hand side is true; then

f(w1) ≤ y < +∞ =⇒ w1 ∈ dom f. (4.26)

Furthermore, Lemma 5 ensures that f is nondecreasing over a half-line that includes g(dom g) and

extends to +∞. Since g(x) ≤ w2, this half-line must include w as well. Therefore,

g(x) ≤ w2 =⇒ f(g(x)) ≤ f(w2) = f(w1) ≤ y =⇒ f(g(x)) ≤ y. (4.27)

In other words, the monotonicity of f , guaranteed in advance by the DCP ruleset, allows the

expression f(g(x)) ≤ y to be decomposed into an equivalent set of canonicalized constraints as

given in (4.25). Equivalencies for other compositions can also be established:

f convex, nonincreasing; g concave: f(g(x)) ≤ y ⇐⇒ f(w1) ≤ y, g(x) ≥ w2, w1 = w2; (4.28)

f concave, nondecreasing; g concave: f(g(x)) ≥ y ⇐⇒ f(w1) ≥ y, g(x) ≥ w2, w1 = w2; (4.29)

f concave, nonincreasing; g convex: f(g(x)) ≥ y ⇐⇒ f(w1) ≥ y, g(x) ≤ w2, w1 = w2. (4.30)

We emphasize again that the combinations of convexity, concavity, and monotonicity stated here

form sufficient conditions under which these decompositions are equivalent. All disciplined convex

programs satisfy those conditions, but not all general convex programs do.

Linearization is a naturally recursive process, because the arguments to functions in nonlinear

expressions may be themselves require linearization. It is most efficient for implementation purposes

to proceed in a “bottom-up” fashion, by canonicalizing function arguments first, and then handling

the top-level expressions in nonlinear inequalities and objective functions. Here is a full statement

of this “bottom-up” linearization process:

Linearization. Given a scalar expression that conforms to the DCP ruleset, and can

therefore be expressed in the form

a + bT x +

L∑

j=1

cjfj(argj,1, argj,2, . . . , argj,mj
), (4.31)

linearization proceeds as follows: for each j = 1, 2, . . . , L,

1. Apply this linearization process to each of the arguments argj,1, argj,2, . . . , argj,mj
,

so that each argument argj,k is now affine.
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2. Perform the following for each j = 1, 2, . . . , L for which fj is convex or concave:

(a) Replace the function call fj(·) in (4.31) by a new temporary variable vj .

(b) Create mj new equality constraints uj,k = argj,k, k = 1, 2, . . . ,mj .

(c) Create a new constraint containing fj :

• if fj is convex, a new epigraph nonlinearity fj(u1, u2, . . . , umj
) ≤ vj ;

• if fj is concave, a new hypograph nonlinearity fj(u1, u2, . . . , umj
) ≥ vj ;

3. If the original expression (4.31) was either

• the left-hand side of a less-than (≤) inequality, or

• the right-hand side of a greater-than (≥) inequality,

add a new slack variable z ≥ 0 to it, converting the constraint to an equality (=).

To illustrate this process, let us apply it to the nonlinear inequality

exp(y) ≤ log(a
√

x + b) (4.32)

found in the example problem (3.60); x, y are variables, and a, b are parameters. This expression

obeys the DCP ruleset only if a ≥ 0, so we assume this is the case. The first function reference we

encounter is exp(y), which linearizes rather simply:

exp(y) =⇒ t2, exp(t1) ≤ t2, t1 = y, (4.33)

producing the intermediate result

t1 = y
t2 ≤ log(a

√
x + b)

exp(t1) ≤ t2.
(4.34)

For the next function log(a
√

x + b), the argument a
√

x + b must be linearized first:

a
√

x + b =⇒ at4 + b,
√

t3 ≥ t4, t3 = x (4.35)

log(at4 + b) =⇒ t6, log(t5) ≥ t6, t5 = at4 + b. (4.36)

Thus the nonlinear inequality has been reduced to t2 ≤ t6. Adding a slack variable to convert it to

an equality, and performing some rearrangement, we arrive at the final result:

t2 − t6 + t7 = 0

−y + t1 = 0

−x + t3 = 0

at4 − t5 = −b

exp(t1) ≤ t2
√

t3 ≥ t4

log(t5) ≥ t6

t7 ≥ 0.

(4.37)
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In this case, the original constraint was decomposed into four equality constraints, three atomic

nonlinear inequalities, and one slack variable.

At first, this conversion process may seem inefficient. However, linearization typically results in

very sparse problem structure; by exploiting that structure, much of this apparent added cost can

be recovered. Still, it could be argued that a preferable approach is the one employed in traditional

NLP modeling systems, which is effectively to define a new function

f(x, y) , exp(y)− log(a
√

x + b) (4.38)

and use automatic differentiation to compute its derivatives. There are several reasons why we prefer

the expanded approach. First of all, functions in disciplined convex programming are not required

to be differentiable, so an approach that relies solely on automatic differentiation would not be

feasible. Secondly, decoupling the nonlinearities simplifies the task of finding initial points for many

numerical algorithms in cases where the functions involved have limited domains. For example,

for our example (4.32), care would have to be taken to ensure that x ≥ 0 and x > −b/a; in the

linearized version, it is easier to ensure in (4.37) that t3 ≥ 0 and t5 > 0. Thirdly, even in cases where

automatic differentiation would be possible, we suspect that the added cost of solving the larger

linear system will not be significantly greater than the cost of the automatic differentiation itself,

as long as sparsity can be exploited effectively. After all, the computations involved in automatic

differentiation can be expressed in terms of matrix operations; see, for example, [34, 77].

4.2.2 Set decomposition

Disciplined convex programming allows set membership constraints that involve arbitrary intersec-

tions, Cartesian products, and affine combinations of convex sets. The canonical form requires that

set membership constraints be atomic, so composite expressions must be separated.

The process is straightforward, and several examples should suffice to illustrate it. Suppose that

S1 and S2 are convex sets, a, b are parameters, and x, y are variables. Then Cartesian products are

separated as follows:

(ax + by, y) ∈ S1 × S2 ⇐⇒ ax + by ∈ S1 y ∈ S2, (4.39)

Intersections are separated in a similar fashion:

x ∈ S1 ∩ S2 ⇐⇒ x ∈ S1 x ∈ S2. (4.40)

For affine combinations of sets, we can draw directly from the mathematical definition:

ax + by ∈ 2S1 + 3S2 ⇐⇒ ax + by = 2w1 + 3w2 w1 ∈ S1 w2 ∈ S2, (4.41)

where w1, w2 are new variables. Once the set membership constraints have been separated, steps
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must be taken to ensure that they are atomic, including the creation of new variables and addition

of new equality constraints, if necessary. For example,

Ax + b ∈ S1 =⇒ w1 = Ax + b, w1 ∈ S1 (4.42)

(x, y) ∈ S1, (x, z) ∈ S2 =⇒ w2 = x, (x, y) ∈ S1, (w2, z) ∈ S2. (4.43)

Combining these steps yields a complete description of the set decomposition process:

Set decomposition. Given an expression of the form

(lexp1, lexp2, . . . , lexpm) ∈ S, (4.44)

where lexp1, lexp2, . . . , lexpm are affine numeric expressions and S is a convex set expres-

sion, decomposition proceeds as follows:

1. If S is a single set from the atom library, then replace (4.44) with

lexp1 = u1, lexp2 = u2, . . . , lexpm = um (u1, u2, . . . , um) ∈ S. (4.45)

2. If S = rexp1 × rexp2 × · · · × rexpm, then replace (4.44) with

lexpk ∈ rexpk k = 1, 2, . . . ,m (4.46)

and perform a full set atomization on each of these constraints.

3. If S = rexp1 ∩ rexp2 ∩ · · · ∩ rexpL, then replace (4.44) with

(lexp1, lexp2, . . . , lexpm) ∈ rexpj j = 1, 2, . . . ,m (4.47)

and perform a full set atomization on each of these constraints.

4. If S is an affine combination of sets, then we can assume that m = 1, and S can be

expressed in the form

S = a +

m0∑

i=1

biS0,i +

L∑

j=1

cjfj(Sj,1, Sj,2, . . . , Sj,mj
). (4.48)

Replace (4.44) with

uj,i ∈ Sj,i i = 0, 1, . . . , L, j = 1, 2, . . . ,mi

lexp1 = a +

m0∑

i=1

biu0,i +
L∑

j=1

cjf(uj,1, uj,2, . . . , uj,mj
)

(4.49)

and perform a full set decomposition on each of the expressions uj,i ∈ Sj,i.
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To illustrate this process, suppose that S1, S2, S3 are sets from the atom library and x, y are

variables, and consider the following set membership constraint:

(x, 2x + y) ∈ (S1 × (2S1 + 3S2)) ∩ S3. (4.50)

The outermost operation is an intersection, which is split apart to yield

(x, 2x + y) ∈ S1 × (2S1 + 3S2) (x, 2x + y) ∈ S3. (4.51)

The first set membership constraint is a direct product, which splits apart to yield

x ∈ S1 2x + y ∈ 2S2 + 3S2 (x, 2x + y) ∈ S3. (4.52)

The first and third constraints involve a single set, so each must be made atomic:

t1 = t2 = x t3 = 2x + y t1 ∈ S1 (t2, t3) ∈ S3. (4.53)

Finally, the second expression involves an affine set combination:

2x + y = 2t4 + 3t5 t4 ∈ S1 t5 ∈ S2. (4.54)

So the final result, after some rearrangement, is

x− t1 = 0

x− t2 = 0

2x + y − t3 = 0

2x + y − 2t4 − 3t5 = 0

t1 ∈ S1

(t2, t3) ∈ S3

t4 ∈ S1

t5 ∈ S2

(4.55)

In this case, the original constraint was decomposed into four equality constraints and four atomic

set membership nonlinearities. As with linearization, set decomposition typically produces sparse

results that can be exploited to mitigate the cost of solving a larger problem.

4.2.3 Graph expansion

Graph expansion is the process of replacing the reference to an atom with its graph implementation.

As discussed in §1.1.7, it encapsulates the transformations performed manually in §1.1 and Chapter 2

to convert problems to solvable form. To explain, let us consider the partitioned form (4.6),

minimize
∑L

k=1 cT
(k)x(k) + d

subject to
∑L

k=1 A(k)x(k) = b

x(k) ∈ Sk, k = 1, 2, . . . , L

(4.56)
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and suppose that we are given a graph implementation for the final nonlinearity SL. Let us canoni-

calize that implementation, and express it as follows:

x̄ ∈ SL ⇐⇒
Āz = b̄

z ∈ S̄ , S̄1 × S̄2 × · · · × S̄L̄.
z , P̄

[
x̄

y

]
. (4.57)

The variables y ∈ R
ny are additional variables used in the construction of the graph implementation.

The matrix P̄ is a permutation matrix that reflects any rearrangement of x̄ and y that may be present

in the implementation. Replacing the set SL with this definition yields

PDCP: minimize
∑L

k=1 cT
(k)x(k) + d

subject to
∑L

k=1 A(k)x(k) = b

ĀP̄

[
x(L)

y

]
= b̄

x(k) ∈ Sk, k = 1, 2, . . . , L− 1

P̄

[
x(L)

y

]
∈ S̄ , S̄1 × S̄2 × · · · × S̄L̄.

(4.58)

The graph expansion adds new variables (and possibly rearranges some), adds new equality con-

straints, and substitutes the nonlinearity S(k) for a new set S̄, which may itself be the Cartesian

product of several nonlinearities. No further canonicalization steps are necessary.

In §3.5.2, we claimed that any common numerical algorithm for convex programming can exploit

graph implementations. It should now be clear why this is the case: because expansion occurs before

the algorithm is called. That is not to say, however, that graph implementations should be expanded

without regard for the choice of that numerical algorithm. Atoms may have both simple and graph

implementations, and the best choice depends upon the specific algorithm. For example, a function

could have both a subgradient calculator and a graph implementation; the former would be preferred

for a cutting-plane algorithm, and the latter for other methods. So multiple implementations of the

same atom do not just allow a wider variety of algorithms to be employed, but also allows them to

be represented in the most efficient manner in each case.

For a concrete illustration of graph expansion, let us revisit the problem from Chapter 2, which

yields the following canonical form:

minimize ‖Ax− b‖
subject to Cx = d

l ≤ x ≤ u

=⇒

minimize y

subject to Cx = d f(w) ≤ y

x− z1 = l z1 ≥ 0

x + z2 = u z2 ≥ 0,

Ax− w = b

(4.59)

where y, z1, and z2 are additional variables and f(w) , ‖w‖. This is the final canonical form if a
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cutting-plane algorithm is being used, and the norm function f(w) has a subgradient implementation.

For most other cases, however, a graph implementation will be employed.

Let us consider the `2 and `∞ cases here. For the `2 case, we recognize the equivalency

y > 0, ‖w‖2 ≤ y ⇐⇒ φ(w, y) ≤ 0 =⇒ ȳ = 0, φ(w, y) ≤ ȳ, (4.60)

where φ is a twice-differentiable function

φ : (Rm × R)→ (R ∪+∞), φ(w, y) ,





wT w/y − y y > 0

+∞ otherwise,
(4.61)

The variable ȳ was introduced for canonicalization purposes. Graph expansion yields the DCP,

minimize y

subject to Cx = d z1 ≥ 0

x− z1 = l z2 ≥ 0

x + z2 = u φ(w, y) ≤ ȳ

Ax− w = b

ȳ = 0.

(4.62)

For the `∞ case, the epigraph of f provides the following equivalency:

‖w‖∞ ≤ y ⇐⇒
w = w+ − w−

~1y = w+ + w−

w+, w− ≥ 0, (4.63)

which is already in canonical form. Performing graph expansion yields

minimize y

subject to Cx = d z1 ≥ 0

x− z1 = l z2 ≥ 0

x + z2 = u w+ ≥ 0

Ax− w = b w− ≥ 0

w − w+ + w− = 0

y~1− w+ − w− = 0.

(4.64)

4.2.4 Dual recovery

Because the original problem variables remain in the canonical form, it is straightforward to recover

solutions to the original problem from solutions to the canonical form. However, the canonicalization

process inevitably transforms the dual problem as well. It is not immediately clear how to similarly

obtain dual information—say, certificates of infeasibility or ε-optimality—for the original problem
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given such information for the canonical form. We call this task dual recovery. Thankfully, dual

recovery proves to be reasonably simple, given the canonicalization process described in this chapter.

To see what we mean, consider a simple DCP with a single nonlinear inequality constraint:

P1: minimize qT x

subject to a + bT x +

L∑

j=1

cjfj(x) ≤ 0.
(4.65)

The problem variable is x ∈ R
n, the parameters are a, r ∈ R, b, q ∈ R

n, c ∈ R
L, and the functions

fj(x), j = 0, 2, . . . , L, are all convex. The sign rules dictate that c ≥ 0. Linearization produces the

canonical form
P2: minimize qT x

subject to a + bT x + cT y + z = 0

x̄(j) = x
}

j = 1, 2, . . . , L
fj(x(j)) ≤ yj

z ≥ 0.

(4.66)

Let us compare the dual functions for the original problem P1,

g1(λ) , inf
x

qT x + λ


a + bT x +

L∑

j=1

cjfj(x)


 , (4.67)

and for the canonical form P2,

g2(ν, ν̄, λ̄, s) , inf
x,x̄(1),...,x̄(L),y,z

qT x + ν(a + bT x + cT y + z)− sz

+
L∑

j=1

νT
(j)(x(j) − x) + λ̄j(fj(x(j))− yj).

(4.68)

Lemma 7. g2(ν, ν̄, λ̄, s) ≤ g1(ν).

Proof. Rearranging g2 reveals

g2(ν, ν̄, λ̄, s) = inf
x

qT x + ν(a + bT x) +
L∑

j=1

inf
x̄(j)

ν̄T
(j)(x̄(j) − x) + λ̄jfj(x̄(j))

+
L∑

j=1

inf
yj

(νcj − λ̄j)yj + inf
z

(ν − s)z.

(4.69)

This rearranged version makes plain that g2(ν, ν̄, λ̄, s) = −∞ unless

ν = s, λ̄j = νcj , j = 1, 2, . . . , L. (4.70)
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Clearly g2(ν, ν̄, λ̄, s) ≤ g1(ν) when those conditions are not met. When they are met, g2 reduces to

g2(ν, ν̄, λ̄, s) = inf
x

qT x + ν(a + bT x) +

L∑

j=1

inf
x̄(j)

ν̄T
(j)(x̄(j) − x) + νcjfj(x̄(j)). (4.71)

An upper bound on the infima over x̄(j) is obtained if we select x̄(j) = x, so

g2(ν, ν̄, λ̄, s) ≤ inf
x

f0(x) + ν


a + bT x +

L∑

j=1

cjfj(x)


 = g1(ν). (4.72)

Several conclusions can be drawn from this result. The first is that

g2(ν, ν̄, λ̄, s) > −∞ =⇒ g1(ν) > −∞, (4.73)

which means that any dual feasible point (ν, ν̄, λ̄, s) for the canonicalized problem P2 produces a

dual feasible point λ , ν for the original problem P1. Secondly, given a primal feasible point x and

that same dual feasible point,

qT x− g2(ν, ν̄, λ̄, s) ≥ qT x− g1(ν), (4.74)

which means that g2 is conservative in the duality gap sense: that if ((x, y, z), (ν, ν̄, λ̄, s)) is a

certificate of ε-optimality for P2, then so is (x, λ , ν) for P1. Finally, by selecting q = 0, we see

that this same result proves true for certificates of infeasibility as well. In summary, recovering the

Lagrange multiplier for an inequality constraint simply requires selecting the appropriate Lagrange

multiplier for the corresponding equality constraint in the canonicalized problem.

It is tedious but straightforward to show that this result holds for multiple inequality constraints.

It is also true that the nonlinearities created during the canonicalization process may be manipu-

lated further without affecting the applicability of the above result—as long as those manipulations

preserve equivalency. In other words, the Lagrange information for the nonlinearities themselves

is effectively irrelevant to dual recovery, and therefore need not be computed or preserved by the

numerical algorithm.

4.3 Numerical solution

A variety of methods that can be employed to solve convex programs, including (but not limited to)

barrier, primal-dual, and cutting-plane methods. Each can be adapted to solve DCPs in canonical

form (4.2). In this section, we provide a brief overview of these three aforementioned methods. Our

purpose is not to describe them in detail; such was not a focus of our research. But we do wish

to provide just enough background to introduce the key computations for each method—that is,
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the computations that require the vast majority of time and memory to perform. Examining these

computations will allow us to answer two important questions:

• Under what conditions can a given algorithm solve a DCP? That is, what are the computational

requirements that each method imposes on the DCPs it solves? Each method must be able

to perform certain calculations involving the functions or sets present in the DCP (values,

derivatives, cutting planes, etc.), and those calculations must be present in the atom library.

• How can the problem structure present in DCPs be exploited to achieve the best performance

from these algorithms? Because DCPs are mechanically expanded, they tend to be larger

but more structured (e.g., sparse) than in traditional nonlinear programming methodologies.

Exploiting this structure is essential to retaining attractive performance, and may even enable

additional performance gains to be achieved.

By examining these methods in this manner, we hope to demonstrate convincingly that disciplined

convex programs can indeed be solved effectively, while avoiding detail that is tangential to the focus

of this dissertation.

4.3.1 Barrier methods

Suppose that the set S in PDCP (4.2) has a non-empty interior. A barrier method represents this set

by a convex, twice differentiable barrier function φ : R
n → (R ∪+∞), so named because it is finite

on IntS and +∞ outside of it. Using this barrier, a family of equality-constrained smooth convex

minimization problems can be constructed, parameterized by a scalar µ > 0:

minimize cT x + d + µφ(x)

subject to Ax = b.
(4.75)

If PDCP is strictly feasible and bounded below, then (4.75) has a unique solution x∗(µ) ∈ Int S for

each value of µ > 0; and as µ→ 0, x∗(µ) approaches the solution to the original problem: that is,

cT x∗(µ) + d ≤ p∗ + ϑµ, (4.76)

where p∗ is the optimal value of PDCP, and ϑ > 0 is a known positive constant called the parameter

of the barrier. A barrier method tracks this trajectory of minimizers x∗(µ) while reducing µ in a

controlled fashion. For example:

A barrier method [29]. Given x ∈ Int S, µ > 0, κ > 1, and ε > 0:

1. Using x as the initial point, solve (4.75) using Newton’s method, yielding x∗(µ).

2. Update x← x∗(µ).

3. If ϑµ ≤ ε, quit.
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4. Otherwise, set µ← µ/κ and repeat all steps.

We refer the reader to [124] for an exhaustive study of barrier methods. The requirement that PDCP

be strictly feasible and bounded below is a significant practical limitation; fortunately, developments

in self-dual embedding techniques rectify this problem at negligible additional cost [178].

Barrier methods can, in theory, solve any DCP; the challenge is determining an appropriate

barrier. Each of the five types of nonlinearities discussed in §4.1 admits a barrier φk : R
nk →

(R ∪+∞) under certain conditions:

• Sk = R
nk :

φk(x(k)) , 0 ϑk = 0. (4.77)

• Sk = R
ni

+ :

φk(x(k)) ,




−∑nk

i=1 log x(k),i mini x(k),i > 0

+∞ otherwise
ϑk , nk. (4.78)

• Sk = epi f : if f is convex and twice differentiable, and those derivatives are supplied in the

function’s implementation, then

φk([ u
v ]) ,




− log(v − f(u)) f(u) < v

+∞ f(u) ≥ v
ϑk , 1. (4.79)

• Sk = hypo g: if g is concave and twice differentiable, and those derivatives are be supplied in

the function’s implementation, then

φk([ u
v ]) ,




− log(g(u)− v) g(u) > v

+∞ g(u) ≤ v
ϑk , 1. (4.80)

• Sk is a set atom: if the set Sk is convex and has a non-empty interior, then a barrier function

φk with a known parameter ϑk may be supplied in the set’s implementation.

For a set S , S1 × S2 × · · · × SL whose components Sk meet the above criteria, a barrier function

φ : R
n → (R ∪+∞) and accompanying parameter ϑ can be constructed as follows:

φ(x) , φ1(x(1)) + φ2(x(2)) + · · ·+ φL(x(L)), ϑ , ϑ1 + ϑ2 + · · ·+ ϑL. (4.81)

We say that a DCP in canonical form for which such a barrier exists is barrier-solvable.

The more important question, of course, is: under what conditions is a general DCP barrier-

solvable? The short answer is that a DCP is barrier-solvable if it can be canonicalized into barrier-

solvable form; but an a priori determination is sought here. This can be accomplished by examining

the function and set atoms before canonicalization to see if they meet the right criteria. If all of the
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functions are twice differentiable and all of the sets have predefined barrier functions, then we may

affirmatively conclude that the problem is barrier-solvable. For other functions and sets, we must

examine their graph implementations; and because graph implementations are DCPs themselves, a

precise definition of barrier-solvability is actually recursive:

Barrier-solvable DCPs. A DCP is barrier-solvable if all of the function and set atoms

that it employs are barrier-compatible:

• A function atom is barrier-compatible if:

– it is affine;

– it is convex or concave and twice differentiable, and its implementation makes

those derivatives available; or

– it has a graph implementation that is itself a barrier-solvable DCP.

• A set atom is barrier-compatible if:

– its implementation supplies a barrier function and its accompanying parameter,

implying that the set is convex and has a non-empty interior; or

– it has a graph implementation that is itself a barrier-solvable DCP.

It is important to note that these rules are not statements of theoretical existence; after all, we know

that barrier methods are universal [124]. Instead, they serve as implementation specifications for

the atom library. No atom need be excluded from use in a barrier method if its author is willing

to fully implement it. Specifically, nondifferentiable functions and sets with empty interiors can be

supported by giving them barrier-solvable graph implementations.

The choice of barrier function for a given set is not unique. For example, the function

φ̄k(x(k)) : R
n → (R ∪+∞), φ̄k(x(k)) ,





∑nk

i=1 x−1
(k),i mini x(k),i > 0

+∞ otherwise
(4.82)

is another valid barrier function for the nonnegative orthant Sk ∈ R
n
+. But this barrier will exhibit

different performance in practice, and the original (4.78) is almost always preferred. It is the re-

sponsibility of the authors of atoms to insure that any barrier functions they supply for set atoms

provide good practical performance. In fact, it is entirely possible that the barriers constructed for

smooth functions via (4.79) or (4.80) are not the best choice, so replacements can be proposed using

graph implementations. One desirable property of barrier functions is self-concordance [124], which

can be used to obtain provable convergence and performance bounds for many barrier methods. The

universality of barrier methods is not compromised if self-concordance is enforced.

The key calculation in the barrier method described above is the determination of a Newton

search direction for (4.75), which involves the construction and solution of the linear system

[
∇2φ(x) AT

A 0

][
∆x

y

]
= −

[
rd

rp

]
,

rd , µ−1c +∇φ(x)

rp , Ax− b.
(4.83)
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A linear system with this structure is called an augmented system and occurs often in interior-

point methods for convex programming. It is symmetric but not positive definite, so direct solution

requires an LDLT factorization, where L is lower triangular and D is block diagonal with blocks of

order 1 or 2. The Cartesian structure of S produces a block-diagonal structure in the Hessian matrix

∇2φ(x), as revealed by examining the equivalent linear system for the partitioned form (4.6):




∇2φ1(x(1)) AT
(1)

∇2φ2(x(2)) AT
(2)

. . .
...

∇2φL(x(L)) AT
(L)

A(1) A(2) . . . A(L)







∆x(1)

∆x(2)

...

∆x(L)

ȳ




= −




rd,1

rd,2

. . .

rd,L

rp




rd,k , µ−1c(k) +∇φk(x(k)), k = 1, 2, . . . , L

(4.84)

This block diagonal structure, as well as the sparsity of A, can be exploited to improve the perfor-

mance of the LDLT factorization.

Another kind of structure often occurs in barrier methods, and can be exploited to further

improve performance. The Hessian ∇2φ(x) often obtains the form

∇2φ(x) = P + RQ−1RT (4.85)

where P and Q have far fewer nonzeros than ∇2φ(x), and R has far fewer columns than rows. For

example, the barrier for the epigraph of the Euclidean norm,

φ`2 : R
n × R→ (R ∪+∞), φ`2(u, v) ,




− log(v2 − uT u) ‖u‖2 < v

+∞ ‖u‖2 ≥ v,
(4.86)

has a Hessian with diagonal-plus-rank-one structure:

∇2φ`2(u, v) ,
2

t2 − yT y

[
I 0

0 −1

]
− 2

(t2 − yT y)2

[
y

−t

] [
y −t

]
. (4.87)

It is not difficult to show that this kind of structure can be used to create a new linear system




P AT R

A 0 0

RT 0 −Q







∆x

ȳ

z


 = −




t−1c +∇φ(x)

Ax− b

0


 , (4.88)

which is equivalent to (4.83), and is still symmetric indefinite, but potentially significantly more

sparse. For example, in the case of φ`2 , the unmodified (n + 1) × (n + 1) Hessian ∇2φ`2 is fully

dense, but its expanded version has only 3n + 4 nonzeros. This structure can easily be exploited on
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a block-by-block basis if Cartesian/block-diagonal structure is present as well. Disciplined convex

programming provides a convenient platform to support this type of performance optimization,

because a decomposition of the form (4.85) can be included within the atom library for any barrier

that might benefit from it.

In many contexts—including the solution of LPs in standard form—the (1, 1) block of an aug-

mented system can be assumed to be positive definite. In such cases, it is common to convert the

system to so-called normal equations form, which for (4.83) would yield

(AT∇2φ(x)−1A)y = rp −A∇2φ(x)−1rd, ∆x = −∇2φ(x)−1(rd + AT y). (4.89)

This form is usually preferred for performance reasons. However, for DCPs, the Hessian ∇2φ(x)

cannot be assumed to be positive definite, in part because the diagonal blocks corresponding to

free variables will be identically zero. (Nothing we have specified here requires that other blocks

be positive definite, but that condition can be enforced without unduly limiting generality.) The

“problem” of free variables is not unique to disciplined convex programming, and a variety of other

techniques have been proposed to “handle” them—though some are better suited for interior-point

methods than others [113]. Still, despite this common preference for normal equations, supporting

symmetric indefinite solvers in disciplined convex programming is likely to yield the greatest gains

in terms of exploiting structure.

4.3.2 Primal-dual methods

Primal-dual methods solve smooth convex programs by directly searching for solutions to the prob-

lem’s Karush-Kuhn-Tucker (KKT) conditions. Let us examine how one might be applied to our

example problem (4.7). The KKT conditions for (4.7) are

cx + AT
x y = 0 Axx + Azz + Auu + Avv = b

cz + AT
z y = s ZS = µI

cu + AT
u y = −GT λ FΛ = µI

cv + AT
v y = λ

z, s, λ ≥ 0 fk(u(k)) ≤ vk k = 1, 2, . . . , N

(4.90)

where F , Λ, Z, S, and G are defined as follows:

F = diag(v1 − f1(u(1)), v2 − f2(u(2)), . . . , vN − fN (u(N)))

Λ = diag(λ) Z , diag(z) S , diag(S)

GT ,




∇f1(u(1))

∇f2(u(2))

. . .

∇fN (u(N))




=⇒ GT λ =




λ1∇f1(u(1))

λ2∇f2(u(2))
...

λN∇fN (u(N))




.

(4.91)
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The exact KKT conditions result when µ = 0; but for performance reasons, primal-dual methods

begin with µ > 0 and drive it to zero as the algorithm proceeds. For example:

A primal-dual method [29]. Given κ > 1, ε > 0, and initial primal (x, z, u, v) and dual

(y, s, λ) points satisfying

z, s, λ > 0 fk(u(k)) < v(k) k = 1, 2, . . . , N, (4.92)

1. Set µ← η̂(x, z, u, v, y, s, λ)/(κ(nz + N)).

2. Take a single controlled Newton step toward the solution of (4.90).

3. If the equality constraints are satisfied and η(x, z, u, v, y, s, λ) ≤ ε, quit.

4. Otherwise, repeat all steps.

A number of details are omitted here, such as how to determine the step size for the Newton step.

But as stated, this simple algorithm captures the key calculations. For a more complete introduction

to primal-dual methods, see [29]. The above algorithm assumes that the problem is strictly feasible

and bounded below, but more advanced primal-dual algorithms are not limited in this manner [5].

Because primal-dual methods apply only to smooth problems, DCPs in canonical form must

satisfy two conditions: all epigraph and hypograph nonlinearities must involve twice differentiable

functions; and no set nonlinearities may be used. A DCP is primal-dual-solvable if it can be canon-

icalized to a form that satisfies these conditions. A precise recursive definition is given here:

Primal-dual solvable DCPs. A DCP is primal-dual-solvable if all of the functions and set

atoms that it employs are primal-dual-compatible.

• A function atom is primal-dual compatible if:

– it is affine;

– it is convex or concave and twice differentiable, and its implementation makes

those derivatives available; or

– it has a graph implementation that is itself a primal-dual-solvable DCP.

• A set atom is primal-dual compatible if

– it has a graph implementation that is itself a primal-dual-solvable DCP.

In short, a DCP is primal-dual solvable only if every atom, after full graph expansion, has been

described using linear equations, linear inequalities, and smooth nonlinear inequalities.

The key computation in a primal-dual method is the determination of the Newton search direction

for the KKT conditions, which involves the construction and solution of a symmetric indefinite linear
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system. The structure of the DCP canonical form is directly reflected in that linear system,




AT
x

−I AT
z

H GT AT
u

−I AT
v

G −I −Λ−1F

−I −Z−1S

Ax Az Au Av







∆x

∆z

∆u

∆v

∆λ

∆s

∆y




= −




cx + AT
x y

cz + AT
z y − s

cu + AT
u y + GT λ

cv + AT
v y − λ

µ(Λ−1 − F )~1

µ(Z−1 − S)~1

Axx + Azz + Auu + Avv − b




,

(4.93)

where F , Λ, Z, S, and G are defined in (4.91) above, and H is given by

H ,




λ1∇2f1(u(1))

λ2∇2f2(u(2))

. . .

λN∇2fN (u(N))




. (4.94)

This system is obviously quite sparse, particularly if one accounts for the block structure of G and

H, caused by the independence of the nonlinearities. It is important to note that while the diagonal

blocks −Λ−1F and −Z−1S are nonsingular, there is no similar guarantee about H; nor is it practical

to require it. For example, the function f(x) , − log
∑n

k=1 exk , which occurs quite often in geometric

programming, has a Hessian

∇2f(x) = diag(q)− qqT , q ,
1∑n

k=1 exk

[
ex1 ex2 . . . exn

]T
, (4.95)

which is not strictly convex—for example, ∇2f(x)~1 = 0. Therefore, a combination of block elimina-

tion and sparse symmetric indefinite factorization is likely the best approach to solving (4.93).

4.3.3 Cutting-plane methods

Cutting plane methods take a completely different approach than the previous two options, and

are notable for their native ability to support nondifferentiable functions. A cutting plane method

represents the set S ⊆ R
n with an oracle: a computational construct which, when supplied a point

x ∈ R
n, returns one of two results:

• if x 6∈ S, a cutting plane separating x and S: that is, a pair (q, r) ∈ R
n × R satisfying

qT x ≤ r qT x̄ ≥ r ∀x̄ ∈ S. (4.96)

• if x ∈ S, some sort of indication of this fact—say, by returning (q, r) = (0, 0).
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A cutting plane method to solve PDCP (4.2) feeds a sequence of query points x(i) ∈ R
n, i =

1, 2, . . . ,M , all satisfying Ax(i) = b, to the oracle Φ. Those that fall within S are used to refine an

upper bound on the optimal value p∗ of PDCP:

pu , min
{

cT x(j) + d | x(j) ∈ S, j = 1, 2, . . . ,M
}
≥ p∗. (4.97)

Those that fall outside of S return cutting planes (q(i), ri), which are added to an LP relaxation of

PDCP used to generate lower bounds on p∗:

pl , inf
{

cT x̄ + d | Ax̄ = b, qT
(j)x̄ ≥ rj , j = 1, 2, . . . ,M

}
≤ p∗. (4.98)

If the sequence of query points are chosen carefully, the upper and lower bounds will converge to

the optimal value as M →∞. The following is a highly simplified version of such a method:

A hypothetical cutting-plane method. Given an oracle Φ for the set S and ε > 0, set

(pl, pu)← (−∞,+∞) and proceed:

1. Generate a new query point x satisfying Ax = b.

2. Consult the oracle concerning x, yielding a pair Φ(x) , (q, r).

3. If x 6∈ S (q 6= 0), add the inequality qT x ≥ r to the LP approximation and update

the lower bound pl (4.98).

4. If x ∈ S (q = 0), update the upper bound pu (4.97).

5. Stop if pu − pl ≤ ε.

6. Otherwise, repeat from step 1.

The critical step in this method is the generation of a query point. There are several ways to

accomplish this in a manner that guarantees convergence. One such choice, employed by the analytic

center cutting-plane method (ACCPM) [135], is to select the analytic center x∗ of the set

{
x̄ ∈ R

n | cT x̄ + d ≤ pu, Ax̄ = b, qT
(j)x̄ ≤ rj , j = 1, 2, . . . ,M

}
, (4.99)

which is the optimal point of the equality-constrained smooth convex minimization,

minimize − log(pu − cT x− d)−∑M
j=1 log(qT

(j)x− rj)

subject to Ax = b.
(4.100)

If this point exists (and in practice, steps are taken to ensure that it does), it is unique. It is not

difficult to deduce from (4.100) that cT x∗ +d < pu; so if x∗ ∈ S, the analytic center provides a strict

reduction in the upper bound pu. But in fact, it can also be shown that the quantity

p̄l , (M + 1)(cT x∗ + d)−Mpu (4.101)
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is a lower bound on (4.98), and therefore for the original problem (4.2) as well—whether or not

x∗ 6∈ S. This lower bound can be used instead of the exact bound (4.98), and convergence is still

assured. For more information about ACCPM, consult [135].

As with barrier methods, cutting-plane methods can, in theory, solve any DCP; the challenge is

to construct an oracle Φ. Each of the five types of nonlinearities discussed in §4.1 admits an oracle

Φk : R
nk → R

nk × R under certain limited circumstances:

• Sk = R
nk : since x(k) ∈ Sk always,

Φk(x(k)) ≡ (0, 0). (4.102)

• Sk = R
nk

+ :

Φk(x(k)) ,





(ej , 0) x(k) 6≥ 0

(0, 0) x(k) ≥ 0
j , arg min

j
eT
j x(k), (4.103)

where ej is the jth column of the nk × nk identity vector. In other words, this oracle simply

generates inequalities of the form x(k,j) ≥ 0.

• Sk = epi f : if f must be convex and continuous, and a gradient or subgradient calculation has

been provided in the implementation, then

Φk(u, v) =





(−w, 1) f(u) > v

(0, 0) f(u) ≤ v
w ∈ ∂f(u), (4.104)

where w is a subgradient of f at u.

• Sk = hypo g: if g is concave and continuous, and a gradient or supergradient calculation has

been provided in the implementation, then

Φk(u, v) =





(w,−1) g(u) < v

(0, 0) g(u) ≥ v
w ∈ −∂(−g(u)). (4.105)

where w is a supergradient of g at u.

• Sk is a set atom: if Sk has a non-empty interior, then an oracle may be supplied in the set’s

implementation section.

For a set S , S1 × S2 × · · · × SL whose components Sk meet the above criteria, an oracle Φ : R
n →

R
n × R can be constructed as follows: if x 6∈ S, then

Φ(x) ,







0n1×1

q

0n2×1


 , r




k̄ = inf
{

k | x(k) 6∈ Sk

}
, (q, r) , Φk̄(x(k̄))

n1 ,

k̄−1∑

l=1

nl, n2 ,

L∑

l=k̄+1

nl, .
(4.106)
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In short, this construction recognizes that a cutting plane for any one set Sk serves as a cutting

plane for the entire set S. So it selects the first of the sets for which x(k) 6∈ Sk, and constructs the

cutting plane using that set’s oracle alone.

We say that a DCP in canonical form for which such an oracle exists is cutting-plane-solvable.

The answer to the question of which general DCPs are cutting-plane-solvable is similar to those

given for other methods:

Cutting-plane-solvable DCPs. A DCP is cutting-plane-solvable if all of the functions and

sets that it employs are cutting-plane-compatible:

• A function atom is cutting-plane-compatible if:

– it is affine;

– it is convex and continuous, and its implementation provides a gradient or

subgradient calculation;

– it is concave and continuous, and its implementation provides a gradient or

supergradient calculation;

– it has a graph implementation that is itself a cutting-plane-solvable DCP.

• A set atom is cutting-plane-compatible if:

– it has a non-empty interior, and its implementation provides an oracle;

– it has a graph implementation that is itself a cutting-plane-solvable DCP.

The key computation in ACCPM is the determination of the analytic center (4.100) using an equality-

constrained Newton algorithm. Each Newton step involves the construction and solution of a linear

system of the form [
p̃2ccT + W AT

A 0

][
∆x

y

]
= −

[
p̃c + QR̃~1

Ax− b

]
, (4.107)

where we have defined

Q ,

[
q(1) q(2) . . . q(M)

]
r ,

[
r1 r2 . . . rM

]

p̃ , (pu − cT x− d)−1 R̃ , diag(QT x− r)−1 W , QRQT .
(4.108)

To expose the problem structure, let us first eliminate the rank-one addition p2ccT from the (1, 1)

block, producing the slightly larger system




W c AT

cT −p̃−2 0

A 0 0







∆x

z

y


 = −




QR̃~1

p̃−1

Ax− b


 . (4.109)

Now as (4.106) shows, the vectors q(k) are non-zero only for the rows corresponding to a single

nonlinearity. This means that the matrix W , QR̃QT will be block diagonal. So if we separate the



4.4. CONCLUSIONS 99

cutting planes into bins corresponding to the nonlinearity Sk from which they came,

S̄k ,

{
x ∈ R

nk | qT
(k,j)x ≥ rk,j , j = 1, 2, . . . , Nj

}
, (4.110)

and we define

Q(k) ,

[
q(k,1) q(k,2) . . . q(k,Mk)

]
r(k) ,

[
rk,1 rk,2 . . . rk,Mk

]

R̃(k) , diag(QT
(k)x(k) − r(k))

−1 W(k) , QT
(k)R̃(k)Q(k)

(4.111)

for each k = 1, 2, . . . , L, then the full structure of (4.109) is revealed:




W(1) c(1) AT
(1)

W(2) c(2) AT
(2)

. . .
...

...

W(L) c(L) AT
(L)

cT
(1) cT

(2) . . . cT
(L) −p̃−2

A(1) A(2) . . . A(L)







∆x(1)

∆x(2)

...

∆x(L)

z

y




= −




Q(1)R̃(1)
~1

Q(2)R̃(2)
~1

...

Q(L)R̃(L)
~1

p̃−1

Ax− b




. (4.112)

The arrow structure is similar to that seen for barrier methods (4.88), although the blocks W(k)

in this case may not be sparse. In practice, steps are generally taken to ensure that they are

positive definite, so a normal equation reduction similar to (4.89) can be considered. This structure

also suggests an opportunity to optimize the data handling capabilities of the underlying cutting-

plane method, because the cutting planes for each nonlinearity Sk can be generated and collected

separately—perhaps even by separate processing units.

4.4 Conclusions

The conventions and structure imposed by the disciplined convex programming methodology allow

the solution process to be automated, including the conversion to solvable form and the recovery of

dual information. The canonical form is suitable for solution by any common method for solving

traditional convex optimization problems. And yet, the specific structure obtained by DCPs—

in particular, the Cartesian structure of the nonlinearities, and the likely sparsity of the equality

constraints—can be exploited by code specifically designed for DCPs to improve performance.

In the author’s opinion, barrier methods (especially using self-dual embeddings) and disciplined

convex programming are ideally suited to one another, in that disciplined convex programming allows

the full potential of barrier methods to be realized in practice. In addition, the arrow structure of

(4.84) and (4.112) suggest that an interesting topic for future work would be the design of distributed

methods or decomposition methods to solve DCPs. The Cartesian structure of the nonlinearities

provides a natural division of responsibility for such methods.
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Conclusion

We have introduced a new methodology for convex optimization called disciplined convex program-

ming. This methodology requires that certain conventions be followed when constructing convex

programs. The conventions are easy to learn, do not limit generality, and formalize the practices

of those who already use convex optimization. In return for compliance, the methodology offers a

number of benefits, including:

• Reliable verification. The task of determining if an arbitrary NLP is convex is intractable; the

task of determining if it is a valid DCP is fast and straightforward. The verification process

can even result in a determination of conditional compliance, in which the problem is deemed

valid only if certain additional assertions on the parameters are satisfied.

• Conversion to canonical form. Once a problem has been verified as a DCP, conversion to

canonical form (4.2) can take place quickly and automatically. The canonicalization transfor-

mations can be confidently applied without concern for equivalency, because the verification

process confirms equivalence it in advance.

• Full support for nondifferentiable functions. Graph implementations provide support for non-

differentiable functions without the loss of performance and reliability typically associated with

them. A graph implementation effectively encapsulates an equivalency-preserving transforma-

tion that removes the offending instances of nondifferentiability from the problem. As a result,

any solver designed for general convex programming is enhanced by this support.

• Support for a variety of numerical methods. Primal-dual, barrier, and cutting-plane methods

can all be employed to solve DCPs. Others are probably feasible as well. The structure of the

DCP canonical form lends itself to the study of decomposition methods.

• Significant problem structure. The sparse and block structure of the DCP canonical form

can be exploited to improve the performance of numerical solvers. To be fair, some of that

structure is due to the canonicalization process, and must be exploited if DCPs are to be

100
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solved with performance comparable to other approaches. But DCPs also exhibit additional

structure typically not revealed in these other approaches.

• Collaboration. The atom library provides a natural means for advanced users to create libraries

of functions, sets, and models that can be shared with modelers within an organization or with

the entire user community. Graph implementations allow a much wider variety of functions

and sets to be defined than is possible in a typical value/gradient/Hessian approach.

5.1 Motivation, revisited

In §1.1 and Chapter 2, we presented norm minimization problems as a means to illustrate the

practical complexities of convex programming. In §1.1.7, we suggested that disciplined convex

programming could be used to simplify the task of solving these problems, and presented example

models in the cvx modeling language. As stated there, the examples relied on features of the

modeling language that were not yet implemented. Specifically, those models employed vector and

matrix variables and parameters, while the current version of cvx supports only scalars (see §5.2.1).
Despite this limitation, the current version of cvx can still solve these problems and thereby

demonstrate many of the promised benefits of disciplined convex programming. To show this, we

considered a family of norm minimization problems of the form

minimize ‖Ax− b‖
subject to −~1 ≤ x ≤ ~1.

(5.1)

similar to those studied in Chapter 2. We solved the problem for the `2, `1, `∞, `3.5, and largest-L

norms. The dimensions of the parameters A ∈ R
8×5 and b ∈ R

8 were fixed, and their values were

repeatedly chosen at random until a combination was found that produced “interesting” results—

that is, results that exercised some, but not all, of the bound constraints −~1 ≤ x ≤ ~1 in each case.

The final selections for A and b are provided in (A.2) of Appendix A.

The resulting cvx model, including the numerical data, is given in Figure 5.1. In that figure, the

`2 norm is used; to select the other norms, the first line

minimize norm_2(

must simply be replaced with

minimize norm_1(

minimize norm_inf(

minimize norm_p( 3.5,

minimize norm_largest( 3,

for the `1, `∞, `3.5, and largest-3 cases, respectively. This is the only change required of the model

itself. The norms themselves have been defined in the external file norms.cvx, which is referenced
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minimize norm_2(

a11 * x1 + a12 * x2 + a13 * x3 + a14 * x4 + a15 * x5 - b1,

a21 * x1 + a22 * x2 + a23 * x3 + a24 * x4 + a25 * x5 - b2,

a31 * x1 + a32 * x2 + a33 * x3 + a34 * x4 + a35 * x5 - b3,

a41 * x1 + a42 * x2 + a43 * x3 + a44 * x4 + a45 * x5 - b4,

a51 * x1 + a52 * x2 + a53 * x3 + a54 * x4 + a55 * x5 - b5,

a61 * x1 + a62 * x2 + a63 * x3 + a64 * x4 + a65 * x5 - b6,

a71 * x1 + a72 * x2 + a73 * x3 + a74 * x4 + a75 * x5 - b7,

a81 * x1 + a82 * x2 + a83 * x3 + a84 * x4 + a85 * x5 - b8

);

subject to

-1 <= x1 <= 1; -1 <= x2 <= 1; -1 <= x3 <= 1;

-1 <= x4 <= 1; -1 <= x5 <= 1;

variables

x1, x2, x3, x4, x5;

parameters

a11, a12, a13, a14, a15, a21, a22, a23, a24, a25,

a31, a32, a33, a34, a35, a41, a42, a43, a44, a45,

a51, a52, a53, a54, a55, a61, a62, a63, a64, a65,

a71, a72, a73, a74, a75, a81, a82, a83, a84, a85,

b1, b2, b3, b4, b5, b6, b7, b8;

include "norms.cvx";

Figure 5.1: A norm minimization test problem for the cvx modeling framework.

function norm_largest( L, x1, x2, x3, x4, x5, x6, x7, x8 )

convex( x1, x2, x3, x4, x5, x6, x7, x8 ) >= 0 if L in #[1,8] {

epigraph := {

variables

xp1 >= 0, xm1 >= 0, v1 >= 0, xp2 >= 0, xm2 >= 0, v2 >= 0,

xp3 >= 0, xm3 >= 0, v3 >= 0, xp4 >= 0, xm4 >= 0, v4 >= 0,

xp5 >= 0, xm5 >= 0, v5 >= 0, xp6 >= 0, xm6 >= 0, v6 >= 0,

xp7 >= 0, xm7 >= 0, v7 >= 0, xp8 >= 0, xm8 >= 0, v8 >= 0, q;

norm_largest = v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + L q;

x1 = xp1 - xm1; xp1 + xm1 = q + v1;

x2 = xp2 - xm2; xp2 + xm2 = q + v2;

x3 = xp3 - xm3; xp3 + xm3 = q + v3;

x4 = xp4 - xm4; xp4 + xm4 = q + v4;

x5 = xp5 - xm5; xp5 + xm5 = q + v5;

x6 = xp6 - xm6; xp6 + xm6 = q + v6;

x7 = xp7 - xm7; xp7 + xm7 = q + v7;

x8 = xp8 - xm8; xp8 + xm8 = q + v8;

}

}

Figure 5.2: The entry in the file norms.cvx for the largest-L norm.
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using the include command. Figure 5.2 provides an excerpt of this file, specifically the definition

of the largest-L norm.

In each case, the problem was converted to canonical form and sent to a barrier method designed

and coded by the author. Each required between 29-34 iterations to solve. The solver exploits both

types of structure discussed in §4.3.1; however, because these problems are small, any performance

improvements were not apparent. For the `2, `1, `∞, and largest-3 cases, the results were verified

against solutions computed using the SeDuMi software package [148]; the problems were manually

converted to the canonical form for that solver. For the `3.5 case, we could make no such direct

comparison, but we were able to confirm the correctness of the implementation of the norm_p function

by running it for p = 2.0 and comparing the results to the norm_2 case.

Clearly, the limitation to scalar variables causes both the model in Figure 5.1 and the function

definition in Figure 5.2 to be more complicated than they would otherwise be. Nevertheless, the cur-

rent cvx software demonstrates the feasibility of key principles of the disciplined convex programming

approach, including the feasibility of graph implementations, ruleset verification, canonicalization,

numerical solution, and exploitation of structure.

Shortly after the publication of this dissertation, we will make this software available, including

the above example, for study and testing at the Web site http://www.stanford.edu/∼boyd/cvx/.

Appendix A includes a full sample of the cvx output, specifically for the `3.5 case above. It is far

too long to include here in the main text, as it includes output from each individual stage of the

software, including the ruleset verifier, the canonicalizer, and the numerical solver.

5.2 Future work

Several areas of future work are suggested by this research. We provide a few ideas below, sep-

arated into three categories: improving the cvx framework (§5.2.1), extending disciplined convex

programming (§5.2.2), and advanced applications (§5.2.3). Some will be pursued quite soon.

5.2.1 Improving the cvx framework

Vector and matrix support

As mentioned, the current version of the cvx modeling framework supports only scalar variables and

parameters. As a result, models that involve vectors or matrices must be specified with separate

variables and parameters declared for each element, as was done for the examples in §5.1. The scalar

limitation also limits the effectiveness of the atom library, because it requires that different functions

be declared for different input sizes. The current cvx implementation allows a single function

declaration to handle argument lists of arbitrary length, but only for simple implementations—

for graph implementations, a separate declaration is required for each input size. For example, a

function norm_1 implementing the `1 norm requires a separate declaration for each vector length.
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The next revision of the cvx framework, which will be commenced soon after the publication

of this dissertation, will provide support for vectors, matrices, and even three-dimensional array

objects (to simplify the specification of linear matrix inequalities, for example).

Solvers

The current version of cvx employs a barrier method not unlike what is described in §4.3.1. A

two-phase method has been adopted: the first phase searches for a strictly feasible point to use

as the initial point for the second phase. It is generally reliable and performs well. However, this

algorithm does not handle certain known scenarios, including problems that are feasible but not

strictly feasible. If our goal is to simplify the use of convex programming for applications-oriented

users, this limitation needs to be overcome, so an improved solver is needed. Our initial choice is

to adapt the self-dual embedding work of Zhang [179] to solve DCPs. In addition, there are several

solvers developed by others that we would like to connect to cvx, including MOSEK [118], LOQO

[162], SNOPT [68], and ACCPM [135].

The particular structure of the DCP canonical form (4.6) provides challenges that traditional

solvers must commonly address (e.g., free variables), as well as unique opportunities for performance

optimization. In fact, it may prove that general purpose solvers need some modification to fully

exploit the structure of the DCP canonical form.

Code generation

cvx is a monolithic program that combines model parsing and verification, canonicalization, and

numerical solution into a single program. But one of the potential benefits of disciplined convex

programming is the promise of code generation. Given a disciplined convex programming model in

the cvx language, a code generation system would execute the parsing, verification, and canonical-

ization steps as now; but would then create code for a standalone program or subroutine to complete

the remaining tasks. This code would accept as input the numeric values of the model’s parameters,

and would provide as output the problem solution. This code could be included in an application

without the need for the full cvx machinery.

One of the potential opportunities in code generation is the ability to deduce and exploit some

of a problem’s structure statically—that is, before the code generation process. For example, often

the sparsity pattern of the Newton systems can be determined without knowledge of the actual

numerical values of the parameters; in such cases, a symbolic factorization can be computed in

advance and embedded into the code, providing considerable savings.

Barrier construction

In §4.3.1, we stated that the choice of barrier function for a given set is not unique, and that difference

choices exhibit different theoretical and practical performance. It is the responsibility of the authors

of atoms to insure that any supplied barrier functions achieve good practical performance. Thus of
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particular interest would be any method for the automated construction, verification, or analysis of

barrier functions. Obviously, the work of Nesterov and Nemirovsky in [124] is central here.

5.2.2 Extending disciplined convex programming

Quadratic forms

The DCP ruleset does not permit the specification of polynomials, even simple quadratic forms such

as x^2 + 2 x y + y^2. In §3.4, we claimed that this is less likely to be a hindrance for disciplined

convex programming than for traditional nonlinear programming, because of the former’s direct

support for “quadratic-related” constructs such as Euclidean norms. We also showed how simple it

is to circumvent the restriction.

Nevertheless, it seems reasonable for us to explore the relaxation of the DCP ruleset to allow

quadratic polynomial expressions, particularly once vector and matrix support is added. For exam-

ple, the prototypical product-free form (3.3) could be modified as follows:

a + bT x + xT Qx +

L∑

j=1

cjfj(argj,1, argj,2, . . . , argj,mj
) (5.2)

The sign rules would then be extended to require that Q be positive semidefinite, negative semidef-

inite, or identically zero for convex, concave, and affine expressions, respectively.

A suggestion has been made by Zhang (e.g., [178]) to allow more general sum of squares (SOS)

polynomials. A polynomial p(x) of x ∈ R
n is an SOS if it can be expressed in the form p(x) =

∑m
i=1 q2

i (x), where each qi(x) is a polynomial. SOS polynomials have proven to be an interesting

field of study that is closely related to semidefinite programming [136]. However, the addition of any

new rule to the DCP ruleset must be weighed against the intent of disciplined convex programming;

so the ruleset must remain simple to learn, apply, and verify. It is not clear that SOS polynomials

meet this criteria; simpler quadratic forms such as (5.2), on the other hand, may.

Perspective transformations

A perspective transformation of a function f : R
n → (R ∪+∞) yields a new function

f̃ : (Rn × R)→ (R ∪+∞), f̃(x, y) ,





yf(y−1x) y > 0

+∞ y ≤ 0.
(5.3)

If f is convex, concave, or affine, then is f̃ is also convex, concave, or affine, respectively. Because

the perspective transformation can be applied without exception, it is a good candidate for inclusion

in the DCP ruleset.

The perspective transformation can be quite useful in disciplined convex programming. For
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example, consider the smooth quadratic function f(x) , xT x, and its epigraph

epi f ,
{

(x, y) | ‖x‖22 = xT x ≤ y
}

. (5.4)

This function allows us to bound the squared `2 norm of a vector; but often we wish to bound the

non-squared norm. Performing a perspective transformation on f yields the result

f̃(x, y) = yf(y−1x) = y−1(xT x) (5.5)

if y > 0, and

f̃(x, y) ≤ y ⇐⇒ y−1(xT x) ≤ y ⇐⇒ ‖x‖22 ≤ y2. (5.6)

Thus the smooth function f̃ can be used to represent the epigraph of the `2 norm as a smooth

nonlinear inequality. (The y = 0 case is a technical detail that in practice may be ignored.)

Without the perspective transformation, the function f̃ must be added separately to the atom

library; with it, the existing function f suffices. Thus the perspective transformation increases

the expressiveness of the atom library. It is an advanced operation that model-oriented users may

find difficult to use, but advanced users could employ it in the creation of new functions with

graph implementations, which would benefit all users. On the other hand, adding the perspective

transformation to the DCP would require a modification to the canonical form, and would complicate

the canonicalization process. So the full consequences of such an addition remain to be explored.

Quasiconvexity

A function f : R
n → (R ∪+∞) is quasiconvex if

f(αx + (1− α)y) ≤ max{f(x), f(y)} ∀x, y ∈ R
n, (5.7)

or, equivalently, if its sublevel sets

Sf,α , {x | f(x) ≤ α } (5.8)

are convex. Similarly, a function g is quasiconcave if−g is quasiconvex; and a function h is quasilinear

if it is both quasiconvex and quasiconcave. Not surprisingly, all convex functions are quasiconvex,

but these classes are larger: for example, the concave function f(x) = log x is quasiconvex—in fact,

it is quasilinear, as are all scalar monotonic functions.

A set of rules, consistent with the design goals of disciplined convex programming, can be con-

structed to govern the use of quasiconvex, quasiconcave, and quasilinear functions in convex pro-

grams. For example, constraints of the form

quasiconvex ≤ constant quasiconcave ≥ constant quasilinear = constant (5.9)
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function log( x ) concave quasiconvex nondecreasing {

value := x <= 0 ? -Inf : @log( x );

gradient := 1 / x;

Hessian := 1 / ( x * x );

epigraph := { x <= @exp( log ); }

graph := { x = @exp( log ); }

}

Figure 5.3: An example implementation of the logarithm function with support for quasiconvexity
and quasilinearity.

constrain the variables in a convex manner—that is, the values of the variables that satisfy these

constraints form a convex set. A number of arithmetic operations preserve quasiconvexity, including

but not limited to the following:

• the maximum of quasiconvex expressions is quasiconvex;

• the product of a quasiconvex expression and a nonnegative constant is quasiconvex;

• the composition of a nondecreasing function and a quasiconvex function is quasiconvex; etc.

Interestingly, while maximums of quasiconvex functions are quasiconvex, sums of them are not (in

general), and would therefore be forbidden by a “quasiconvex-capable” DCP ruleset.

Graph implementations provide an elegant means to represent quasiconvex, quasiconcave, and

quasilinear functions. This is not surprising given that a sublevel set is just a slice of the epigraph,

where the epigraph variable is held fixed. For example, suppose that a is a constant, and consider

the constraints

log(x) ≥ a log(x) ≤ a log(x) = a. (5.10)

Of these, only the first is compliant with the current DCP ruleset, but all three constrain x in a

convex manner. A simple transformation of the last two produces compliant results:

log(x) ≥ a x ≤ exp(a) x = exp(a). (5.11)

In cvx, we might represent these transformations in a graph implementation as shown in Figure 5.3.

(The functions @log and @exp refer to the “native” C routines for the logarithm and exponential,

respectively.) Note the use of the attribute quasiconvex to denote quasiconvexity. Similar keywords

quasiconcave or quasilinear would also be available, but are unnecessary in this case, as those

attributes can be deduced from those stated.

Quasiconvex objective functions require a bit more effort to support fully. The simplest case

involves the composition of a monotonic function and a convex function. For example, consider the

convex program

minimize f(g(x))

subject to x ∈ C,
(5.12)
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where f : R → (R ∪ +∞) is nondecreasing but not convex, g : R
n → (R ∪ +∞) is convex, and the

constraint x ∈ C represents an arbitrary collection of valid DCP constraints. The composition rule

stated above dictates that f(g(x)) is quasiconvex. In this case, it is not difficult to see that solutions

to this problem can be obtained by solving a modified problem with f removed; i.e.,

minimize g(x)

subject to x ∈ C.
(5.13)

The more general case is a bit more difficult: consider a problem

minimize h(x)

subject to x ∈ C
(5.14)

where h : R
n → (R ∪+∞) is quasiconvex. Using the common epigraph transformation to move the

objective function into a constraint, i.e.,

minimize y

subject to x ∈ C

h(x) ≤ y,

(5.15)

does not produce convex results, because f(x) ≤ y is not convex. However, given the quasiconvex

extensions discussed above, and assuming that h has been given a graph implementation, (5.15) is

convex if y is fixed, in which case (5.15) is a disciplined convex feasibility problem. We can therefore

solve (5.14) using bisection, at each iteration computing a solution to (5.15) for a fixed value of y.

It seems, then, that the disciplined convex programming methodology would be genuinely im-

proved by adding support for quasiconvexity.

Generalized convexity

In §1.2.2, we introduced the notion of cones—sets that are closed under nonnegative scaling. Given

a closed, convex, solid (IntK 6= ∅) cone K, we can define generalized inequalities ºK, ¹K as follows:

x ºK y ⇐⇒ y ¹K x ⇐⇒ x− y ∈ K. (5.16)

Generalized inequalities retain key properties of standard inequalities, including transitivity and

invariance under nonnegative scaling. The most common cones considered in practice are the non-

negative orthant

R
n
+ = {x ∈ R

n | xi ≥ 0, i = 1, 2, . . . , n } (5.17)

and the cone of positive semidefinite matrices

Sn
+ ,

{
X = XT ∈ R

n×n | λmin(X) ≥ 0
}

. (5.18)



5.2. FUTURE WORK 109

For more information about generalized inequalities, see [29].

The concept of convexity can be extended to generalized inequalities. Given a vector space S, a

function g : R
m → S, and a closed, convex, solid cone K ⊆ S, we say that g is K-convex if

g(αx + (1− α)y) ¹K αg(x) + (1− α)g(y) ∀x, y ∈ R
m, α ∈ (0, 1). (5.19)

Equivalently, a function g is K-convex if and only if its K-epigraph

epiK g , { (x, y) ∈ R
m × S | g(x) ¹K y } = { (x, y) ∈ R

m × S | y − g(x) ∈ K} (5.20)

is a convex set. This generalized epigraph definition makes it clear that K-convexity is entirely com-

patible with convex programming. Incorporating generalized inequalities into convex programming

has been considered by others, including [29, 179]; in the latter case it is called conically ordered

convex programming.

We could consider extending the DCP ruleset to support generalized inequalities. The most

interesting aspect would probably be the extension of the composition rules. For example, a function

f : S → (R ∪+∞) is K-nondecreasing if it satisfies

f(x) ≥ f(y) ∀x ºK y; (5.21)

This definition allows us to construct the following rule: if f is convex and K-nondecreasing and g

is K-convex, then (f ◦ g)(x) = f(g(x)) is convex; and under those conditions, the composition can

be separated for canonicalization purposes as follows:

f(g(x)) ≤ y ⇐⇒ f(z) ≤ y, g(x) ¹K z. (5.22)

Certainly the most likely use of generalized convexity is the manipulation of linear matrix in-

equalities. For example, let Sn be the set of symmetric n × n matrices, and Sn
+ as defined above,

and consider the following functions:

fn : Sn → R, fn(Z) , λmax(Z) gn : R
m×n → Sn, gn(X) , XT X. (5.23)

It is not difficult to verify that fn is convex and Sn
+-nondecreasing, and gn is Sn

+-convex. So the

composition fn ◦ gn

fn ◦ gn : R
m×n → R, (fn ◦ gn)(X) = λmax(X

T X) = σmax(X)2 (5.24)

obeys the extended composition rule; so the constraint fn(gn(X)) ≤ y is a DCP-compliant way to

bound the squared maximum singular value of a matrix. Separating this composition in the manner
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suggested by (5.22) yields the following equivalence:

σmax(X)2 ≤ y ⇐⇒ ∃Z λmax(Z) ≤ y, XT X ¹ Z. (5.25)

Those familiar with linear matrix inequalities may know that this same bound can be achieved using

a single linear matrix inequality,

σmax(X)2 ≤ y ⇐⇒
[

I X

XT yI

]
∈ Sm+n

+ . (5.26)

It would be interesting to determine which of these conversions proves more efficient in practice.

Adding support for generalized inequalities to disciplined convex programming poses two chal-

lenges: finding an elegant way of integrating it into the modeling language, and extending the

canonical form and numerical algorithms to account for them.

5.2.3 Advanced applications

Geometric programming

In §1.2.2 we briefly discussed geometric programs (GPs) as a standard form for convex programming,

and stated that they were a unique case in that they are not convex in their “native” form, but

require a change of variables to convert them into convex form.

Because of the increasing popularity of geometric programming, it seems sensible to provide “na-

tive” support for geometric programming under the disciplined convex programming methodology,

and in the cvx modeling framework in particular. The cleanest way to do so would be to create a

separate parser that accepts geometric programs specified in their native form, verifies their validity,

and converts the problem into a DCP for cvx to solve. On the back end, the software would accept

the results returned by cvx and perform a reverse change of variables to convert the results back to

native form. The dual information must be converted as well.

For a more complete introduction to geometric programming, we refer the reader to [27]. In that

article, the authors introduce a number of useful problem types that are not commonly thought

of as GPs, but can easily be transformed into them. Their work is not dissimilar in spirit to

disciplined convex programming; in fact, it suggests a sort of “disciplined geometric programming”

methodology, consisting of a set of rules that govern the construction of problems that can be quickly

and automatically verified and converted to “canonical” geometric form—and, therefore, to DCPs.

Automatic relaxations of nonconvex problems

Problems that are not convex often admit useful convex approximations or relaxations. For example,

we can define a mixed-integer disciplined convex program (MIDCP) as a problem involving integer

variables that reduces to a DCP when the integer constraints are relaxed. The traditional techniques

to solve mixed-integer linear and nonlinear programs (MILPs and MINLPs) can be easily adapted to
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the disciplined convex programming case. A number of more novel convex relaxations of nonconvex

programs have been studied recently as well. For example, certain problems involving nonconvex

quadratic constraints can be relaxed into semidefinite programs (SDPs); e.g., [173, 21]. These

relaxations often produce surprisingly close approximations.

An interesting topic for future study would be to create a system that would accept certain

classes of nonconvex problems in the cvx modeling language, and automatically generate and solve

convex relaxations of them. The new software would then convert the problem into relaxed form as

a DCP, which the standard DCP system would solve. The primal and dual results would then be

mapped back to the original problem.

5.3 A brief defense—or, there’s nothing like leather

A town fear’d a siege, and held consultation,

Which was the best method of fortification:

A grave skilful mason gave in his opinion,

That nothing but stone could secure the dominion.

A carpenter said, tho’ that was well spoke,

Yet ’twas better by far to defend it with oak.

A currier1 (much wiser than both these together,)

Said; try what you please there’s nothing like leather.

— Daniel Fenning, The Universal Spelling-Book, 1767

We are all inclined to favor the tools with which we have the most expertise. But we would

hope that, unlike the currier, we would recognize when ours are simply not suitable to the task at

hand. Convex programming has the potential to be an incredibly powerful tool: convex programs

are well behaved and can be solved reliably, efficiently, and accurately. Nevertheless, there are many

applications for which no convex model can be found.

Still, there is good reason to be optimistic about the usefulness of convex programming in a new

field of interest. Examining the gamut of known applications for convex programming, we see several

scenarios. For some, a simple, idealized model was chosen as a starting point, then incrementally

improved—while maintaining convexity, of course. For others, the models first presented themselves

as nonconvex, but proved otherwise once a key transformation or change of variables was found.

Still others are in fact approximations or relaxations of nonconvex problems, but useful nonetheless

because the original, nonconvex model cannot be solved in practice.

It seems appropriate, then, to at least attempt similar searches for convexity in new mathematical

programming applications, given the significant theoretical benefits that accrue if successful. The

primary reason not to do so is that the expertise required proves too great. It is the author’s hope

that disciplined convex programming removes this impediment.

1One who prepares tanned animal hides for use.



Appendix A

cvx: An example

In this appendix we provide the full cvx output for the example problem from §5.1,

minimize ‖Ax− b‖3.5

subject to −1 ≤ x ≤ 1
(A.1)

for the following specific values of A and b, respectively:




+1.1991370639 −1.2233383780 −0.0866841750 +0.7887334551 −0.5210075139
−2.5773355744 +0.3032048978 −0.0126202764 −0.5770829494 −0.1553593843
−2.0862702167 −0.7300973691 −0.3458579112 +0.5276343380 −0.0984983465
+0.3861318799 −1.1435702969 +0.9863109678 +1.6716940874 +0.9971702607
−0.8610312724 −1.4131928935 +0.6432561643 +0.8000794868 +0.4344697335
−1.2308076439 −0.5918178669 +2.9199441507 +0.8837869741 −0.0257208688
+2.6415543653 +0.5188876241 −1.2485849488 −0.2241850743 −0.3799341199
−0.9044035801 −1.4928111869 +0.1571147888 +0.2969911629 −0.2423955222


 ,




−2.3302283037
+1.5132101113
+2.3283246440
−2.0469091512
+3.4031789976
−0.9883449326
+0.3454270903
+0.7081227198


 . (A.2)

The original model file is given in Figure 5.1, except that the first line

minimize norm_2

was replaced by

minimize norm_p( 3.5,

in order to select the `3.5 norm. The output listing that is provided in this appendix was generated

by executing a single command,

cvx minnorm.cvx minnorm.dat

where minnorm.cvx and minnorm.dat contain the model and the numerical data, respectively. The

only modifications that have been made to it are to edit it to fit within the margins of the page, and

to break it into the various computational phases to be introduced separately:

• initial parsing (§A.1),

• convexity verification (§A.2),

112
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• canonicalization (§A.3),

• numerical instance generation (§A.4), and

• numerical solution (§A.5).

The purpose of this appendix is primarily to demonstrate the existence and successful operation

of the cvx software, and to simply give an example of its operation. While we do provide some

brief commentary with each section of the listing, we have not attempted to provide a complete and

detailed explanation of it.

A.1 Initial parsing

In this phase, the file minnorm.cvx is read in and the problem is verified against the grammar of

the cvx modeling language. At this point, the cvx program has not yet verified that the problem

obeys the DCP ruleset; that takes place in the second phase.

The included file norms.cvx, containing the definitions of the various norms, has been read in; and

only those functions actually required for this problem have been kept. The function rootperspec

has actually been implemented in C++, and is not shown here, but implements the concave function

fp : R× R→ (R ∪ −∞), fp(s, q) ,





q(s/q)1/p q > 0, s ≥ 0

−∞ otherwise,
(A.3)

which is used in the graph implementation of norm_p, the `p norm. Note also the use of the dollar

signs $1, $2, etc. in the function declarations; these correspond to the first, second, etc. arguments of

the function, respectively. They are an artifact of the processing steps; the actual function definitions

in the file norms.cvx use the actual argument names instead.

CVX: A parser and solver for convex programs

Reading problem file: minnorm.cvx

Files successfully read.

Original specification:

------------------------------------------------------------

parameters

a11, a12, a13, a14, a15, a21, a22, a23, a24, a25, a31, a32, a33, a34,

a35, a41, a42, a43, a44, a45, a51, a52, a53, a54, a55, a61, a62, a63,

a64, a65, a71, a72, a73, a74, a75, a81, a82, a83, a84, a85, b1, b2, b3,

b4, b5, b6, b7, b8;

variables

x1, x2, x3, x4, x5;
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minimize

norm_p( 3, a11 x1 + a12 x2 + a13 x3 + a14 x4 + a15 x5 - b1,

a21 x1 + a22 x2 + a23 x3 + a24 x4 + a25 x5 - b2,

a31 x1 + a32 x2 + a33 x3 + a34 x4 + a35 x5 - b3,

a41 x1 + a42 x2 + a43 x3 + a44 x4 + a45 x5 - b4,

a51 x1 + a52 x2 + a53 x3 + a54 x4 + a55 x5 - b5,

a61 x1 + a62 x2 + a63 x3 + a64 x4 + a65 x5 - b6,

a71 x1 + a72 x2 + a73 x3 + a74 x4 + a75 x5 - b7,

a81 x1 + a82 x2 + a83 x3 + a84 x4 + a85 x5 - b8 );

constraints

-1 <= x1 <= 1;

-1 <= x2 <= 1;

-1 <= x3 <= 1;

-1 <= x4 <= 1;

-1 <= x5 <= 1;

function norm_p( p, x1, x2, x3, x4, x5, x6, x7, x8 )

convex( $1, $2, $3, $4, $5, $6, $7, $8 ) if $0 > 1

{

epigraph := {

variables xp1, xp2, xp3, xp4, xp5, xp6, xp7, xp8, xm1, xm2,

xm3, xm4, xm5, xm6, xm7, xm8, s1, s2, s3, s4, s5, s6, s7, s8;

xp1 >= 0;

xp2 >= 0;

xp3 >= 0;

xp4 >= 0;

xp5 >= 0;

xp6 >= 0;

xp7 >= 0;

xp8 >= 0;

xm1 >= 0;

xm2 >= 0;

xm3 >= 0;

xm4 >= 0;

xm5 >= 0;

xm6 >= 0;

xm7 >= 0;

xm8 >= 0;

x1 = xp1 - xm1;

x2 = xp2 - xm2;

x3 = xp3 - xm3;

x4 = xp4 - xm4;

x5 = xp5 - xm5;

x6 = xp6 - xm6;

x7 = xp7 - xm7;

x8 = xp8 - xm8;

xp1 + xm1 <= rootperspec( p, s1, norm_p );



A.2. RULESET VERIFICATION 115

xp2 + xm2 <= rootperspec( p, s2, norm_p );

xp3 + xm3 <= rootperspec( p, s3, norm_p );

xp4 + xm4 <= rootperspec( p, s4, norm_p );

xp5 + xm5 <= rootperspec( p, s5, norm_p );

xp6 + xm6 <= rootperspec( p, s6, norm_p );

xp7 + xm7 <= rootperspec( p, s7, norm_p );

xp8 + xm8 <= rootperspec( p, s8, norm_p );

s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 = norm_p;

}

}

function rootperspec( p, s, q ) concave( $1, $2 ) nondecreasing( $1 )

nonincreasing( $2 );

------------------------------------------------------------

A.2 Ruleset verification

In this phase, the problem is verified for compliance with the DCP ruleset. The output resembles

the indented proofs given in §3.3. The graph implementation of the function norm_p is verified in

the same manner as the main problem.

Diagnosing convexity:

No errors found.

Convexity analysis:

------------------------------------------------------------

parameters

a11, a12, a13, a14, a15, a21, a22, a23, a24, a25, a31, a32, a33, a34,

a35, a41, a42, a43, a44, a45, a51, a52, a53, a54, a55, a61, a62, a63,

a64, a65, a71, a72, a73, a74, a75, a81, a82, a83, a84, a85, b1, b2, b3,

b4, b5, b6, b7, b8;

variables

x1, x2, x3, x4, x5;

minimize

norm_p( 3, a11 x1 + a12 x2 + a13 x3 + a14 x4 + a15 x5 - b1,

a21 x1 + a22 x2 + a23 x3 + a24 x4 + a25 x5 - b2,

a31 x1 + a32 x2 + a33 x3 + a34 x4 + a35 x5 - b3,

a41 x1 + a42 x2 + a43 x3 + a44 x4 + a45 x5 - b4,

a51 x1 + a52 x2 + a53 x3 + a54 x4 + a55 x5 - b5,

a61 x1 + a62 x2 + a63 x3 + a64 x4 + a65 x5 - b6,

a71 x1 + a72 x2 + a73 x3 + a74 x4 + a75 x5 - b7,

a81 x1 + a82 x2 + a83 x3 + a84 x4 + a85 x5 - b8 ) :: convex;

3 :: constant;

a11 x1 + a12 x2 + a13 x3 + a14 x4 + a15 x5 - b1 :: affine;

a11 x1 :: affine;
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a11 :: constant;

x1 :: affine;

a12 x2 :: affine;

a12 :: constant;

x2 :: affine;

a13 x3 :: affine;

a13 :: constant;

x3 :: affine;

a14 x4 :: affine;

a14 :: constant;

x4 :: affine;

a15 x5 :: affine;

a15 :: constant;

x5 :: affine;

-b1 :: constant;

b1 :: constant;

a21 x1 + a22 x2 + a23 x3 + a24 x4 + a25 x5 - b2 :: affine;

a21 x1 :: affine;

a21 :: constant;

x1 :: affine;

a22 x2 :: affine;

a22 :: constant;

x2 :: affine;

a23 x3 :: affine;

a23 :: constant;

x3 :: affine;

a24 x4 :: affine;

a24 :: constant;

x4 :: affine;

a25 x5 :: affine;

a25 :: constant;

x5 :: affine;

-b2 :: constant;

b2 :: constant;

a31 x1 + a32 x2 + a33 x3 + a34 x4 + a35 x5 - b3 :: affine;

a31 x1 :: affine;

a31 :: constant;

x1 :: affine;

a32 x2 :: affine;

a32 :: constant;

x2 :: affine;

a33 x3 :: affine;

a33 :: constant;

x3 :: affine;

a34 x4 :: affine;

a34 :: constant;

x4 :: affine;

a35 x5 :: affine;
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a35 :: constant;

x5 :: affine;

-b3 :: constant;

b3 :: constant;

a41 x1 + a42 x2 + a43 x3 + a44 x4 + a45 x5 - b4 :: affine;

a41 x1 :: affine;

a41 :: constant;

x1 :: affine;

a42 x2 :: affine;

a42 :: constant;

x2 :: affine;

a43 x3 :: affine;

a43 :: constant;

x3 :: affine;

a44 x4 :: affine;

a44 :: constant;

x4 :: affine;

a45 x5 :: affine;

a45 :: constant;

x5 :: affine;

-b4 :: constant;

b4 :: constant;

a51 x1 + a52 x2 + a53 x3 + a54 x4 + a55 x5 - b5 :: affine;

a51 x1 :: affine;

a51 :: constant;

x1 :: affine;

a52 x2 :: affine;

a52 :: constant;

x2 :: affine;

a53 x3 :: affine;

a53 :: constant;

x3 :: affine;

a54 x4 :: affine;

a54 :: constant;

x4 :: affine;

a55 x5 :: affine;

a55 :: constant;

x5 :: affine;

-b5 :: constant;

b5 :: constant;

a61 x1 + a62 x2 + a63 x3 + a64 x4 + a65 x5 - b6 :: affine;

a61 x1 :: affine;

a61 :: constant;

x1 :: affine;

a62 x2 :: affine;

a62 :: constant;

x2 :: affine;

a63 x3 :: affine;
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a63 :: constant;

x3 :: affine;

a64 x4 :: affine;

a64 :: constant;

x4 :: affine;

a65 x5 :: affine;

a65 :: constant;

x5 :: affine;

-b6 :: constant;

b6 :: constant;

a71 x1 + a72 x2 + a73 x3 + a74 x4 + a75 x5 - b7 :: affine;

a71 x1 :: affine;

a71 :: constant;

x1 :: affine;

a72 x2 :: affine;

a72 :: constant;

x2 :: affine;

a73 x3 :: affine;

a73 :: constant;

x3 :: affine;

a74 x4 :: affine;

a74 :: constant;

x4 :: affine;

a75 x5 :: affine;

a75 :: constant;

x5 :: affine;

-b7 :: constant;

b7 :: constant;

a81 x1 + a82 x2 + a83 x3 + a84 x4 + a85 x5 - b8 :: affine;

a81 x1 :: affine;

a81 :: constant;

x1 :: affine;

a82 x2 :: affine;

a82 :: constant;

x2 :: affine;

a83 x3 :: affine;

a83 :: constant;

x3 :: affine;

a84 x4 :: affine;

a84 :: constant;

x4 :: affine;

a85 x5 :: affine;

a85 :: constant;

x5 :: affine;

-b8 :: constant;

b8 :: constant;

constraints
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-1 <= x1 <= 1 :: bool convex;

-1 <= x1 :: bool convex;

-1 :: constant;

1 :: constant;

x1 :: affine;

x1 <= 1 :: bool convex;

x1 :: affine;

1 :: constant;

-1 <= x2 <= 1 :: bool convex;

-1 <= x2 :: bool convex;

-1 :: constant;

1 :: constant;

x2 :: affine;

x2 <= 1 :: bool convex;

x2 :: affine;

1 :: constant;

-1 <= x3 <= 1 :: bool convex;

-1 <= x3 :: bool convex;

-1 :: constant;

1 :: constant;

x3 :: affine;

x3 <= 1 :: bool convex;

x3 :: affine;

1 :: constant;

-1 <= x4 <= 1 :: bool convex;

-1 <= x4 :: bool convex;

-1 :: constant;

1 :: constant;

x4 :: affine;

x4 <= 1 :: bool convex;

x4 :: affine;

1 :: constant;

-1 <= x5 <= 1 :: bool convex;

-1 <= x5 :: bool convex;

-1 :: constant;

1 :: constant;

x5 :: affine;

x5 <= 1 :: bool convex;

x5 :: affine;

1 :: constant;

function norm_p( p, x1, x2, x3, x4, x5, x6, x7, x8 )

convex( $1, $2, $3, $4, $5, $6, $7, $8 ) if $0 > 1

{

epigraph := {

variables xp1, xp2, xp3, xp4, xp5, xp6, xp7, xp8, xm1, xm2,

xm3, xm4, xm5, xm6, xm7, xm8, s1, s2, s3, s4, s5, s6, s7, s8;

xp1 >= 0 :: bool convex;
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xp1 :: affine;

0 :: constant;

xp2 >= 0 :: bool convex;

xp2 :: affine;

0 :: constant;

xp3 >= 0 :: bool convex;

xp3 :: affine;

0 :: constant;

xp4 >= 0 :: bool convex;

xp4 :: affine;

0 :: constant;

xp5 >= 0 :: bool convex;

xp5 :: affine;

0 :: constant;

xp6 >= 0 :: bool convex;

xp6 :: affine;

0 :: constant;

xp7 >= 0 :: bool convex;

xp7 :: affine;

0 :: constant;

xp8 >= 0 :: bool convex;

xp8 :: affine;

0 :: constant;

xm1 >= 0 :: bool convex;

xm1 :: affine;

0 :: constant;

xm2 >= 0 :: bool convex;

xm2 :: affine;

0 :: constant;

xm3 >= 0 :: bool convex;

xm3 :: affine;

0 :: constant;

xm4 >= 0 :: bool convex;

xm4 :: affine;

0 :: constant;

xm5 >= 0 :: bool convex;

xm5 :: affine;

0 :: constant;

xm6 >= 0 :: bool convex;

xm6 :: affine;

0 :: constant;

xm7 >= 0 :: bool convex;

xm7 :: affine;

0 :: constant;

xm8 >= 0 :: bool convex;

xm8 :: affine;

0 :: constant;

x1 = xp1 - xm1 :: bool convex;
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x1 :: affine;

xp1 - xm1 :: affine;

xp1 :: affine;

-xm1 :: affine;

xm1 :: affine;

x2 = xp2 - xm2 :: bool convex;

x2 :: affine;

xp2 - xm2 :: affine;

xp2 :: affine;

-xm2 :: affine;

xm2 :: affine;

x3 = xp3 - xm3 :: bool convex;

x3 :: affine;

xp3 - xm3 :: affine;

xp3 :: affine;

-xm3 :: affine;

xm3 :: affine;

x4 = xp4 - xm4 :: bool convex;

x4 :: affine;

xp4 - xm4 :: affine;

xp4 :: affine;

-xm4 :: affine;

xm4 :: affine;

x5 = xp5 - xm5 :: bool convex;

x5 :: affine;

xp5 - xm5 :: affine;

xp5 :: affine;

-xm5 :: affine;

xm5 :: affine;

x6 = xp6 - xm6 :: bool convex;

x6 :: affine;

xp6 - xm6 :: affine;

xp6 :: affine;

-xm6 :: affine;

xm6 :: affine;

x7 = xp7 - xm7 :: bool convex;

x7 :: affine;

xp7 - xm7 :: affine;

xp7 :: affine;

-xm7 :: affine;

xm7 :: affine;

x8 = xp8 - xm8 :: bool convex;

x8 :: affine;

xp8 - xm8 :: affine;

xp8 :: affine;

-xm8 :: affine;

xm8 :: affine;

xp1 + xm1 <= rootperspec( p, s1, norm_p ) :: bool convex;
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xp1 + xm1 :: affine;

xp1 :: affine;

xm1 :: affine;

rootperspec( p, s1, norm_p ) :: concave( $1, $2 );

p :: constant;

s1 :: affine;

norm_p :: affine;

xp2 + xm2 <= rootperspec( p, s2, norm_p ) :: bool convex;

xp2 + xm2 :: affine;

xp2 :: affine;

xm2 :: affine;

rootperspec( p, s2, norm_p ) :: concave( $1, $2 );

p :: constant;

s2 :: affine;

norm_p :: affine;

xp3 + xm3 <= rootperspec( p, s3, norm_p ) :: bool convex;

xp3 + xm3 :: affine;

xp3 :: affine;

xm3 :: affine;

rootperspec( p, s3, norm_p ) :: concave( $1, $2 );

p :: constant;

s3 :: affine;

norm_p :: affine;

xp4 + xm4 <= rootperspec( p, s4, norm_p ) :: bool convex;

xp4 + xm4 :: affine;

xp4 :: affine;

xm4 :: affine;

rootperspec( p, s4, norm_p ) :: concave( $1, $2 );

p :: constant;

s4 :: affine;

norm_p :: affine;

xp5 + xm5 <= rootperspec( p, s5, norm_p ) :: bool convex;

xp5 + xm5 :: affine;

xp5 :: affine;

xm5 :: affine;

rootperspec( p, s5, norm_p ) :: concave( $1, $2 );

p :: constant;

s5 :: affine;

norm_p :: affine;

xp6 + xm6 <= rootperspec( p, s6, norm_p ) :: bool convex;

xp6 + xm6 :: affine;

xp6 :: affine;

xm6 :: affine;

rootperspec( p, s6, norm_p ) :: concave( $1, $2 );

p :: constant;

s6 :: affine;

norm_p :: affine;

xp7 + xm7 <= rootperspec( p, s7, norm_p ) :: bool convex;
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xp7 + xm7 :: affine;

xp7 :: affine;

xm7 :: affine;

rootperspec( p, s7, norm_p ) :: concave( $1, $2 );

p :: constant;

s7 :: affine;

norm_p :: affine;

xp8 + xm8 <= rootperspec( p, s8, norm_p ) :: bool convex;

xp8 + xm8 :: affine;

xp8 :: affine;

xm8 :: affine;

rootperspec( p, s8, norm_p ) :: concave( $1, $2 );

p :: constant;

s8 :: affine;

norm_p :: affine;

s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 = norm_p :: bool convex;

s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 :: affine;

s1 :: affine;

s2 :: affine;

s3 :: affine;

s4 :: affine;

s5 :: affine;

s6 :: affine;

s7 :: affine;

s8 :: affine;

norm_p :: affine;

}

}

function rootperspec( p, s, q ) concave( $1, $2 ) nondecreasing( $1 )

nonincreasing( $2 );

------------------------------------------------------------

A.3 Canonicalization

In this stage, the canonical form is generated. This phase’s output is the most difficult to read, but a

couple of comments should prove helpful. First of all, The objects @1, @2, @3, etc. are the additional

variables that have been created during the canonicalization process. Secondly, the double slash

// represents a comment in the cvx modeling language; any text following it is ignored. So in

this listing, the comments are used to show how functions, sets, etc. looked before canonicalization.

Immediately following such comments is the replacement. Sometimes the replacement itself requires

further processing, in which case it is commented out as well.

For example, immediately after the minimize keyword below, the reference to the norm_p func-

tion from the objective function has been commented out. That is because it has been replaced with
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a temporary variable; i.e.,

minimize ‖Ax− b‖3.5 =⇒ minimize t1

‖Ax− b‖3.5 ≤ t1
(A.4)

Of course, at this point, further canonicalization is then performed on the constraint ‖Ax−b‖3.5 ≤ t1

as well, so it too is commented out. In fact, norm_p is replaced with its graph implementation, so

the final result looks quite different from the original problem.

Generating canonical form:

No errors found.

Unrolled problem:

------------------------------------------------------------

parameters

a11, a12, a13, a14, a15, a21, a22, a23, a24, a25, a31, a32, a33, a34,

a35, a41, a42, a43, a44, a45, a51, a52, a53, a54, a55, a61, a62, a63,

a64, a65, a71, a72, a73, a74, a75, a81, a82, a83, a84, a85, b1, b2, b3,

b4, b5, b6, b7, b8;

variables

x1, x2, x3, x4, x5, @1, @2, @3, @4, @5, @6, @7, @8, @9, @10, @11, @12,

@13, @14, @15, @16, @17, @18, @19, @20, @21, @22, @23, @24, @25, @26,

@27, @28, @29, @30, @31, @32, @33, @34, @35, @36, @37, @38, @39, @40,

@41, @42, @43, @44, @45, @46, @47, @48, @49, @50, @51, @52, @53, @54,

@55, @56, @57, @58;

define

@d1 := 3;

minimize

// norm_p( 3, a11 x1 + a12 x2 + a13 x3 + a14 x4 + a15 x5 - b1,

// a21 x1 + a22 x2 + a23 x3 + a24 x4 + a25 x5 - b2,

// a31 x1 + a32 x2 + a33 x3 + a34 x4 + a35 x5 - b3,

// a41 x1 + a42 x2 + a43 x3 + a44 x4 + a45 x5 - b4,

// a51 x1 + a52 x2 + a53 x3 + a54 x4 + a55 x5 - b5,

// a61 x1 + a62 x2 + a63 x3 + a64 x4 + a65 x5 - b6,

// a71 x1 + a72 x2 + a73 x3 + a74 x4 + a75 x5 - b7,

// a81 x1 + a82 x2 + a83 x3 + a84 x4 + a85 x5 - b8 );

@1;

// @1 >= norm_p( 3, a11 x1 + a12 x2 + a13 x3 + a14 x4 + a15 x5 - b1,

// a21 x1 + a22 x2 + a23 x3 + a24 x4 + a25 x5 - b2,

// a31 x1 + a32 x2 + a33 x3 + a34 x4 + a35 x5 - b3,

// a41 x1 + a42 x2 + a43 x3 + a44 x4 + a45 x5 - b4,

// a51 x1 + a52 x2 + a53 x3 + a54 x4 + a55 x5 - b5,

// a61 x1 + a62 x2 + a63 x3 + a64 x4 + a65 x5 - b6,

// a71 x1 + a72 x2 + a73 x3 + a74 x4 + a75 x5 - b7,

// a81 x1 + a82 x2 + a83 x3 + a84 x4 + a85 x5 - b8 );

// ( @d1, @2, @3, @4, @5, @6, @7, @8, @9, @1 ) in epi norm_p;
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// @d1 := 3;

@2 = a11 x1 + a12 x2 + a13 x3 + a14 x4 + a15 x5 - b1;

@3 = a21 x1 + a22 x2 + a23 x3 + a24 x4 + a25 x5 - b2;

@4 = a31 x1 + a32 x2 + a33 x3 + a34 x4 + a35 x5 - b3;

@5 = a41 x1 + a42 x2 + a43 x3 + a44 x4 + a45 x5 - b4;

@6 = a51 x1 + a52 x2 + a53 x3 + a54 x4 + a55 x5 - b5;

@7 = a61 x1 + a62 x2 + a63 x3 + a64 x4 + a65 x5 - b6;

@8 = a71 x1 + a72 x2 + a73 x3 + a74 x4 + a75 x5 - b7;

@9 = a81 x1 + a82 x2 + a83 x3 + a84 x4 + a85 x5 - b8;

@10 >= 0;

@11 >= 0;

@12 >= 0;

@13 >= 0;

@14 >= 0;

@15 >= 0;

@16 >= 0;

@17 >= 0;

@18 >= 0;

@19 >= 0;

@20 >= 0;

@21 >= 0;

@22 >= 0;

@23 >= 0;

@24 >= 0;

@25 >= 0;

@2 = @10 - @18;

@3 = @11 - @19;

@4 = @12 - @20;

@5 = @13 - @21;

@6 = @14 - @22;

@7 = @15 - @23;

@8 = @16 - @24;

@9 = @17 - @25;

// @10 + @18 <= rootperspec( @d1, @26, @1 );

( @26, @1, @34 ) in hyp @rootperspec( @d1 );

@34 = @10 + @18;

// @11 + @19 <= rootperspec( @d1, @27, @1 );

( @27, @52, @35 ) in hyp @rootperspec( @d1 );

@52 = @1;

@35 = @11 + @19;

// @12 + @20 <= rootperspec( @d1, @28, @1 );

( @28, @53, @36 ) in hyp @rootperspec( @d1 );

@53 = @1;

@36 = @12 + @20;

// @13 + @21 <= rootperspec( @d1, @29, @1 );

( @29, @54, @37 ) in hyp @rootperspec( @d1 );

@54 = @1;

@37 = @13 + @21;
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// @14 + @22 <= rootperspec( @d1, @30, @1 );

( @30, @55, @38 ) in hyp @rootperspec( @d1 );

@55 = @1;

@38 = @14 + @22;

// @15 + @23 <= rootperspec( @d1, @31, @1 );

( @31, @56, @39 ) in hyp @rootperspec( @d1 );

@56 = @1;

@39 = @15 + @23;

// @16 + @24 <= rootperspec( @d1, @32, @1 );

( @32, @57, @40 ) in hyp @rootperspec( @d1 );

constraints

@57 = @1;

@40 = @16 + @24;

// @17 + @25 <= rootperspec( @d1, @33, @1 );

( @33, @58, @41 ) in hyp @rootperspec( @d1 );

@58 = @1;

@41 = @17 + @25;

@26 + @27 + @28 + @29 + @30 + @31 + @32 + @33 = @1;

// -1 <= x1 <= 1;

// -1 <= x1;

- 1 + @42 = x1;

@42 >= 0;

// x1 <= 1;

x1 + @43 = 1;

@43 >= 0;

// -1 <= x2 <= 1;

// -1 <= x2;

- 1 + @44 = x2;

@44 >= 0;

// x2 <= 1;

x2 + @45 = 1;

@45 >= 0;

// -1 <= x3 <= 1;

// -1 <= x3;

- 1 + @46 = x3;

@46 >= 0;

// x3 <= 1;

x3 + @47 = 1;

@47 >= 0;

// -1 <= x4 <= 1;

// -1 <= x4;

- 1 + @48 = x4;

@48 >= 0;

// x4 <= 1;

x4 + @49 = 1;

@49 >= 0;

// -1 <= x5 <= 1;
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// -1 <= x5;

- 1 + @50 = x5;

@50 >= 0;

// x5 <= 1;

x5 + @51 = 1;

@51 >= 0;

------------------------------------------------------------

A.4 Numerical instance generation

In this phase, the numerical data is read in, and the actual instance of the problem to be solved is

generated. We have taken the liberty to shave a couple of digits off the numerical values in the first

8 equality constraints in order to keep the text within the margins.

Reading data file: minnorm.dat

Generating numerical instance:

No errors found.

Numerical instance:

------------------------------------------------------------

minimize

@1;

subject to

- 1.19914 x1 + 1.22334 x2 + 0.08669 x3 - 0.78873 x4 + 0.52101 x5 + @2 = 2.33023;

2.57734 x1 - 0.30321 x2 + 0.01262 x3 + 0.57708 x4 + 0.15537 x5 + @3 = -1.51321;

2.08627 x1 + 0.73010 x2 + 0.34586 x3 - 0.52763 x4 + 0.09850 x5 + @4 = -2.32832;

- 0.38613 x1 + 1.14357 x2 - 0.98631 x3 - 1.67169 x4 - 0.99717 x5 + @5 = 2.04691;

0.86103 x1 + 1.41319 x2 - 0.64326 x3 - 0.80008 x4 - 0.43447 x5 + @6 = -3.40318;

1.23081 x1 + 0.59182 x2 - 2.91994 x3 - 0.88379 x4 + 0.02572 x5 + @7 = 0.98835;

- 2.64155 x1 - 0.51889 x2 + 1.24858 x3 + 0.22419 x4 + 0.37993 x5 + @8 = -0.34543;

0.90440 x1 + 1.49281 x2 - 0.15712 x3 - 0.29699 x4 + 0.24240 x5 + @9 = -0.70812;

@2 + @18 - @10 = 0;

@3 - @11 + @19 = 0;

@20 - @12 + @4 = 0;

- @13 + @21 + @5 = 0;

- @14 + @6 + @22 = 0;

- @15 + @7 + @23 = 0;

- @16 + @8 + @24 = 0;

- @17 + @9 + @25 = 0;

- @18 - @10 + @34 = 0;

- @1 + @52 = 0;

- @11 - @19 + @35 = 0;

- @1 + @53 = 0;

- @20 - @12 + @36 = 0;

- @1 + @54 = 0;
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- @13 - @21 + @37 = 0;

- @1 + @55 = 0;

- @14 - @22 + @38 = 0;

@56 - @1 = 0;

- @15 - @23 + @39 = 0;

- @1 + @57 = 0;

- @16 - @24 + @40 = 0;

- @1 + @58 = 0;

- @17 - @25 + @41 = 0;

- @1 + @26 + @28 + @27 + @29 + @30 + @31 + @32 + @33 = 0;

- x1 + @42 = 1;

x1 + @43 = 1;

- x2 + @44 = 1;

x2 + @45 = 1;

- x3 + @46 = 1;

x3 + @47 = 1;

- x4 + @48 = 1;

x4 + @49 = 1;

- x5 + @50 = 1;

x5 + @51 = 1;

( @10, @11, @12, @13, @14, @15, @16, @17, @18, @19, @20, @21, @22, @23, @24,

@25, @42, @43, @44, @45, @46, @47, @48, @49, @50, @51 ) in Rn+;

( @26, @1, @34 ) in hyp rootperspec( 3 );

( @27, @52, @35 ) in hyp rootperspec( 3 );

( @28, @53, @36 ) in hyp rootperspec( 3 );

( @29, @54, @37 ) in hyp rootperspec( 3 );

( @30, @55, @38 ) in hyp rootperspec( 3 );

( @31, @56, @39 ) in hyp rootperspec( 3 );

( @32, @57, @40 ) in hyp rootperspec( 3 );

( @33, @58, @41 ) in hyp rootperspec( 3 );

variables

x1, x2, x3, x4, x5;

temporaries

@10, @11, @12, @13, @14, @15, @16, @17, @18, @19, @20, @21, @22, @23, @24, @25,

@42, @43, @44, @45, @46, @47, @48, @49, @50, @51, @26, @1, @34, @27, @52, @35,

@28, @53, @36, @29, @54, @37, @30, @55, @38, @31, @56, @39, @32, @57, @40, @33,

@58, @41, @2, @3, @4, @5, @6, @7, @8, @9;

------------------------------------------------------------

A.5 Numerical solution

Finally, the numerical solver is called. A two-phase barrier method is employed: the first phase solves

a modified version of the problem to find a strictly feasible point, which is then used to initialize the

second phase of the algorithm. The columns are as follows:

• the iteration number;
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• objective: the current objective value;

• barrier: the value of the barrier function plus objective (see §4.3.1);

• gap target: the duality gap that would be achieved if the Newton method were allowed to

go to completion at this stage of the algorithm.

• primal: the error in the equality constraints;

• dual: the error in the dual feasibility conditions;

• decrement: the current Newton decrement (see [124]);

• L.S. step: the size of the line search step taken.

An asterisk * indicates that the given quantity has fallen to within its target tolerance; and a caret

^ indicates when the Newton decrement is sufficiently small, indicating convergence of the barrier

problem, and prompting a reduction in the gap target. The second phase is complete when the gap

target, the primal feasibility, and either the dual feasibility or the Newton decrement reach their

target tolerances.

Solving problem:

PHASE I gap feasibility L.S.

objective barrier target primal dual decrement step

----------------------------------------------------------------------------

1 +1.0e+000 +1.9e+001 9.8e+000 0.0e+000* 2.8e-001 2.0e+001 32.000

2 +1.0e+000 -7.3e+001 9.8e+000 1.1e-014* 6.6e-001 2.9e+002 0.490

3 -5.1e+000 1.7e-014*

PHASE II gap feasibility L.S.

objective barrier target primal dual decrement step

----------------------------------------------------------------------------

1 +1.6e+001 -9.2e+000 7.3e+001 4.0e-015* 3.0e-001 9.0e-001 1.000

2 +1.6e+001 -9.6e+000 7.3e+001 1.7e-015* 5.7e-002 3.4e-002 1.000

3 +1.6e+001 -9.7e+000 7.3e+001 1.6e-015* 2.7e-003 8.8e-005^ 1.000

4 +1.6e+001 +4.1e+003 7.3e-001 1.3e-015* 1.4e+000 3.8e+005 0.005

5 +9.2e+000 +2.3e+003 7.3e-001 1.6e-015* 1.6e+000 9.5e+004 0.010

6 +5.5e+000 +1.4e+003 7.3e-001 2.1e-015* 1.8e+000 1.7e+004 0.020

7 +4.1e+000 +1.1e+003 7.3e-001 2.3e-015* 1.8e+000 3.4e+003 0.058

8 +3.3e+000 +8.8e+002 7.3e-001 2.2e-015* 1.3e+000 2.0e+002 0.168

9 +3.1e+000 +8.5e+002 7.3e-001 1.6e-015* 8.9e-001 2.4e+001 0.700

10 +3.0e+000 +8.5e+002 7.3e-001 1.3e-015* 2.9e+000 4.7e+000 4.000

11 +3.1e+000 +8.4e+002 7.3e-001 4.3e-015* 5.8e-001 3.6e+000 1.000

12 +3.0e+000 +8.4e+002 7.3e-001 1.3e-015* 7.0e-001 8.1e-001 2.000

13 +3.0e+000 +8.4e+002 7.3e-001 1.8e-015* 1.8e-001 2.0e-001 1.000

14 +3.0e+000 +8.4e+002 7.3e-001 1.4e-015* 2.4e-002 2.7e-003^ 1.000

15 +3.0e+000 +7.7e+004 7.3e-003 7.3e-016* 2.0e+000 2.0e+005 0.007

16 +3.0e+000 +7.6e+004 7.3e-003 1.1e-015* 2.0e+000 1.9e+004 0.028

17 +2.9e+000 +7.5e+004 7.3e-003 1.6e-015* 1.6e+000 2.0e+002 0.168
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18 +2.9e+000 +7.5e+004 7.3e-003 1.5e-015* 1.0e+000 1.2e+001 0.700

19 +2.9e+000 +7.5e+004 7.3e-003 6.9e-016* 1.1e+000 2.0e+000 2.000

20 +2.9e+000 +7.5e+004 7.3e-003 1.1e-015* 1.5e-001 1.2e-001 1.000

21 +2.9e+000 +7.5e+004 7.3e-003 1.5e-015* 1.6e-002 1.3e-003^ 1.000

22 +2.9e+000 +7.5e+006 7.3e-005 1.4e-015* 2.0e+000 1.9e+005 0.010

23 +2.9e+000 +7.5e+006 7.3e-005 1.3e-015* 1.5e+000 1.7e+002 0.240

24 +2.9e+000 +7.5e+006 7.3e-005 1.4e-015* 2.5e-001 1.4e+000 1.000

25 +2.9e+000 +7.5e+006 7.3e-005 7.2e-016* 2.1e-001 4.1e-001 2.000

26 +2.9e+000 +7.5e+006 7.3e-005 1.4e-015* 5.6e-002 4.1e-002 1.000

27 +2.9e+000 +7.5e+006 7.3e-005 1.0e-015* 6.5e-003 4.0e-004^ 1.000

28 +2.9e+000 +7.5e+008 7.3e-007* 8.6e-016* 2.0e+000 1.9e+005 0.010

29 +2.9e+000 +7.5e+008 7.3e-007* 1.5e-015* 1.6e+000 1.8e+002 0.240

30 +2.9e+000 +7.5e+008 7.3e-007* 8.6e-016* 1.2e-001 7.4e-002 1.000

31 +2.9e+000 +7.5e+008 7.3e-007* 3.1e-015* 8.2e-003 2.9e-004 1.000

32 +2.9e+000 +7.5e+008 7.3e-007* 7.6e-015* 3.3e-005 4.2e-007 64.000

33 +2.9e+000 +7.5e+008 7.3e-007* 6.5e-013* 2.1e-003 0.0e+000*

Gap reduced to below relative tolerance

Objective value: 2.94468467408

Variable values:

x1 := -0.696770615848

x2 := -0.999999954181

x3 := -0.846465295022

x4 := -0.999999952577

x5 := 0.999999897447

Temporary values:

@10 := 1.48167743052

@11 := 0.411802980495

@12 := 7.47069104167e-008

@13 := 1.41203220248

@14 := 3.22578402325e-009

@15 := 1.91782222211e-008

@16 := 5.24577794679e-009

@17 := 0.742471406931

@18 := 7.77392503635e-009

@19 := 1.00628868731e-007

@20 := 0.47795152988

@21 := 8.5600873361e-009

@22 := 2.30014866094

@23 := 0.943385832085

@24 := 1.803737348

@25 := 3.09598523271e-008

@42 := 0.303229384152

@43 := 1.69677061585

@44 := 4.58190352402e-008

@45 := 1.99999995418

@46 := 0.153534704978

@47 := 1.84646529502
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@48 := 4.74233096922e-008

@49 := 1.99999995258

@50 := 1.99999989745

@51 := 1.02552818158e-007

@26 := 0.375131406379

@1 := 2.94468467408

@34 := 1.4816774383

@27 := 0.00805363271806

@52 := 2.94468467408

@35 := 0.411803081124

@28 := 0.0125914164181

@53 := 2.94468467408

@36 := 0.477951604587

@29 := 0.324680521907

@54 := 2.94468467408

@37 := 1.41203221104

@30 := 1.40342798043

@55 := 2.94468467408

@38 := 2.30014866417

@31 := 0.0968256756975

@56 := 2.94468467408

@39 := 0.943385851263

@32 := 0.676771891577

@57 := 2.94468467408

@40 := 1.80373735324

@33 := 0.0472021489467

@58 := 2.94468467408

@41 := 0.742471437891

@2 := 1.48167742275

@3 := 0.411802879866

@4 := -0.477951455174

@5 := 1.41203219392

@6 := -2.30014865772

@7 := -0.943385812906

@8 := -1.80373734275

@9 := 0.742471375971
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