
Université Libre de Bruxelles

Faculté des Sciences

Advances in robust
combinatorial optimization and

linear programming

Martha Salazar Neumann

Supervised by

Prof. Martine Labbé

Année académique 2009-2010

Thèse présentée en vue de l’obtention du titre de Docteur en Sciences



2



Acknowledgments

I would like to express my special gratitude to my supervisor Prof. Martine
Labbé, for her expertise, hard work and attention to details which helped me
enormously in the realisation of my work. I am especially grateful for her
friendly support and encouragements.

My acknowledgments also go to:

Prof. Philippe Vincke who proposed me the exciting topic of this thesis. He
gave me the opportunity to know several people working in robustness.

Prof. Gilles Savard and Prof. Charles Audet of the École Polytechnique de
Montréal who provided the resources to construct the source-code of one of
the algorithms proposed in this thesis.

The research group on robustness organized by LAMSADE labs of the Uni-
versité Paris Dauphine for the interesting seminars, discussions and com-
ments who helped me to broaden my views on robust optimization and im-
prove my results.

Prof. Marc Pirlot who took the time to read some of my preliminary and
final manuscripts and enhanced my work with his comments and advises.

My colleagues from the G.O.M labs and S.M.G. labs, in special Vincent Ho
Lee for his continuous technical assistance and computer-support and Daniele
Catanzaro who helped me to revise the final version of the manuscript.

Prof.Jean Doyen who employed me as an assistant at the course of General
Mathematics at the Faculty of Medicine of the Université Libre de Bruxelles.
This position allowed me to finance the years of research necessary to write
my thesis. His support and friendship and the encouragements of all my
colleagues were a buoy in difficult moments.

Prof. Francis Buekenhout and Prof. Dimitri Leemans who allowed me to
start the DEA at the Mathematics Department of the ULB. They provided
me with knowledges on combinatorial geometry which helped me to have
another view on the problems of my thesis.

All my family and friends in Mexico and Belgium without whose love, con-
tinuous support and encouragements, I would not have finished this thesis.

3



4



Table of Contents

List of Figures v

Introduction 1

I Robust combinatorial optimization 5

1 Robustness: the minimax models and definitions 7

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Problem definition and notation . . . . . . . . . . . . . . . . . 7
1.3 Robust optimization for mixed integer programming . . . . . 10
1.4 Combinatorial problems with interval uncertainty . . . . . . . 12
1.5 The p-elements problem: 1-persistent and 0-persistent vari-

ables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.1 Definition of the problem . . . . . . . . . . . . . . . . 14
1.5.2 The p-elements problem: interval uncertainty . . . . . 15

2 The robust spanning tree problem: compact and convex un-

certainty 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Notation and definitions . . . . . . . . . . . . . . . . . . . . . 18
2.3 The worst minimax regret scenarii for a tree . . . . . . . . . . 20
2.4 Interval uncertainty: 1-persistent and 0-persistent edges . . . 24

3 Two robust path problems: interval uncertainty 28

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Notation and definitions . . . . . . . . . . . . . . . . . . . . . 31
3.3 The uncertain shortest path problem: 1-persistent arcs and

0-persistent arcs and nodes . . . . . . . . . . . . . . . . . . . 34
3.4 The uncertain single-source shortest path problem: T 1-persistent

and T 0-persistent arcs . . . . . . . . . . . . . . . . . . . . . 40

i



ii

3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 45

II Robust linear programming 57

4 Linear programs under uncertainty in the objective function

coefficients 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Problem definition and notation . . . . . . . . . . . . . . . . . 59
4.3 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Robust counterparts of linear programs under uncer-
tainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 Linear programs under interval uncertainty in the ob-
jective function coefficients: the minimax regret model. 65

4.4 Linear problems under convex and compact uncertainty . . . 65
4.4.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Linear problems under polyhedral uncertainty . . . . . . . . . 69
4.5.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.2 Linear problems under interval uncertainty . . . . . . . 71

4.6 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.7 Polynomial cases . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7.1 Polynomial cases under interval uncertainty . . . . . . 78
4.8 An exact algorithm . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8.1 Numerical results . . . . . . . . . . . . . . . . . . . . . 89

5 Robustness in linear programming and the center location

problem 95

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Models and notations . . . . . . . . . . . . . . . . . . . . . . . 96
5.3 Useful properties . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.1 Polyhedral gauges and block norms . . . . . . . . . . . 99
5.3.2 Some properties of R

n under block norms and gauges . 100
5.4 The minimax regret linear problem when all uncertainty in-

tervals contain the origin in their interior . . . . . . . . . . . . 103
5.4.1 The 1-center problem under the w-block norms . . . . 103
5.4.2 The 1-center problem under polyhedral gauges . . . . . 106

5.5 The minimax regret linear program when some uncertainty
intervals do not contain the origin in its interior . . . . . . . . 108
5.5.1 1-center problem under the regret function . . . . . . . 108
5.5.2 Robust information, 0-persistent variables and prepro-

cessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



iii

5.5.3 Numerical results . . . . . . . . . . . . . . . . . . . . . 118

Conclusion and extensions 120

Bibliography 128



iv



List of Figures

3.1 1-persistent arcs algorithm . . . . . . . . . . . . . . . . . . . 37
3.2 Non necessary condition to 1-persistent arcs . . . . . . . . . . 38
3.3 T 1-persistent arcs algorithm . . . . . . . . . . . . . . . . . . 42
3.4 T 0-persistent and 0-persistent arcs algorithm . . . . . . . . . 44
3.5 Classification of arcs . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 The function Rmax . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Convergence of the algorithm for nw = 50 and matrix density

0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Visibility region from the point x1 . . . . . . . . . . . . . . . . 99
5.2 B(v, r0) where v = (0, 0), r0 = 1, [c1, c1] = [−3, 5] and [c2, c2] =

[−1, 2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3 Region D(v, r0) where v = (0, 0), r = 1 and [c1, c1] = [c2, c2] =

[1, 2], and D(0, 1)∞ . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4 a) The polytope P = {x = (x1, x2) ∈ R

2 : 1
4
x1−x2 ≥ 0 and −

x1 − 4x2 ≥ −8} and b) the region D((0, 0), 1) where R(x) ≤ 1
corresponding to the product of intervals [−1, 1] × [−3,−2] . . 112

5.5 Polyhedron P = {x ∈ R3 : x1 +x2 +8x3 ≥ 10, x1 +8x2 +x3 ≥
10, 8x1 + x2 + x3 ≥ 10, x1 + x2 + x3 ≥ 10, x ≥ 0 } . . . . . . 113

5.6 Polyhedron P = {x ∈ R3 : −x1−2x2−2x3 ≥ −20, −2x1−x2−
2x3 ≥ −20, −2x1−2x2−x3 ≥ −20, x1 +2x2 +3x3 ≥ 6, x ≥ 0
} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.7 Percentage of 0-persistent variables, for n = 70 . . . . . . . . . 119
5.8 Percentage of 0-persistent variables, for M = 2n . . . . . . . . 120
5.9 0-persistent variables, cj and cj chosen between −M and 2n ,

∆ = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.10 Detail of Figure 5.9 when M is close to 0 . . . . . . . . . . . . 124

v



vi



Introduction

The construction of models that protect against uncertainty in the data, such
as variability of the information, imprecision, lack of knowledge, is one of the
major challenges in robust optimization.

Uncertainty affects several areas, ranging from transportation to telecom-
munications, to finance and to inventory management. For example, the
problem of maximizing the future value of an investment portfolio is a clas-
sical case where uncertainty arises in finance and since profitability rates are
uncertain, we face a linear program with uncertain objective function. In
telecommunication networks, the model of a network is generally made using
a weighted digraph in which the costs of arcs are associated with the trans-
mission delays. Since such transmission delays are in general uncertain, a
number of shortest path problems with uncertainty in the arc costs have to
be solved to route the communications. We refer the reader to Roy (2007)
for a larger view on robust optimization.

Uncertainty may concern different parts of an optimization problem,
namely: the coefficients of the objective function, constraints or both. More-
over, the uncertainty set can be modeled in several ways, such as compact and
convex subsets of R

n, polytopes, Cartesian products of intervals, ellipsoids,
and so on.

One of the possible approaches to face optimization problems where un-
certainty occurs is to consider a worst case analysis, such as that proposed
by Kouvelis and Yu (1997). The motivation for this approach is that we
would like to find a solution that is relatively good in each of the possible
realizations of the parameters (called scenarii) including the worst case sce-
nario. More precisely, this consists in looking for the best solution in the
worst case situation. An example of such an approach is, the problem of
finding a solution with the smallest worst case regret. In this case, solving a
problem under uncertainty is translated into finding a solution that, in terms

1



2

of the objective function value, deviates the least from the optimal solution
in all cases. Such a solution is called minimax regret solution.

Under interval uncertainty, the minimax regret versions of many polyno-
mially solvable combinatorial optimization problems are NP-hard, see Aissi
(2005). Hence, in solving these problems, the challenge to reduce the solu-
tion space becomes an important issue. In this context, to know when an
element of the problem, represented by a variable, is always or never part of
an optimal solution for all realization of data, (1-persistent and 0-persistent
variables respectively), constitutes a way to reduce the size of the problem.
For instance, in project management, a project can be modeled by a directed
acyclic graph where arcs represent activities. The arc lengths denote times
to complete individual activities and the longest path from the start node s
to the end node t provides the time necessary to complete the whole project.
If the task activity times are uncertain, the challenge is to determine a set of
activities that will always or never lie on the longest path. This information
is useful to preprocess the problem by removing the 0-persistent variables
and setting the 1-persistent variables equal to 1. One of the main goals of
the thesis is to investigate these issues for some combinatorial optimization
problems under uncertainty.

We also investigate the minimax regret version of linear programming
problems under polyhedral uncertainty in the objective function coefficients
and we give an algorithm to find an exact solution. We study the geometry
of minimax regret version of linear programming problems under interval
uncertainty in the objective function coefficients, we test our algorithm in
this case and we give conditions under which we can discard the variables
that take the value zero in each optimal solution (0-persistent variables).

In Part I we study combinatorial optimization problems under uncer-
tainty. Specifically, we consider the minimax regret versions of the p-elements,
the minimum spanning tree and the shortest path problems. We investigate
the problem of finding the 1-persistent and 0-persistent variables for such
problems under interval uncertainty and we give preprocessing procedures
that reduce considerably the size of the minimax regret formulations.

In Chapter 1 we give a short literature survey concerning robust op-
timization for mixed integer programming. We introduce the notions of
uncertain combinatorial optimization problem, robust solution, 0-persistent,
1-persistent variables and we illustrate these notions with the p-elements
problem under interval uncertainty.



3

In Chapter 2 we study the minimum spanning tree problem under com-
pact and convex uncertainty. We present localization results for scenario
yielding the largest regret for a tree and in the case of interval uncertainty
we give characterizations of 1-persistent and 0-persistent edges leading to
recognition algorithms.

In Chapter 3 we study the uncertain versions of the shortest path problem
that consists in finding a path of minimum weight connecting two specified
nodes 1 and m, and the single-source shortest path problem, i.e., the problem
of finding shortest paths from a fixed node 1 to every nodes of the graph.
We consider both of them on finite directed graphs where arcs lengths are
nonnegative intervals. In the context of the uncertain shortest path problem,
we give sufficient conditions for a node to be never on a shortest path from 1
to m and sufficient conditions for an arc to be always or never on a shortest
path from 1 to m.

For the uncertain single-source shortest path problem, we give sufficient
conditions (i) for an arc (k, r) to be always on an optimal solution and (ii) for
an arc to never be on an optimal solution. Based on these results, we present
polynomial time recognition algorithms that we use to preprocess a given
graph with interval uncertainty prior to the solution of the minimax regret
problem. In order to test our preprocessing procedure, we propose a mixed
integer programming formulation to solve the minimax regret single-source
shortest path problem. We show by numerical experiments that such pre-
processing procedures vastly reduce the time needed to compute a minimax
regret solution.

In Part II we deal with the minimax regret linear programming problem
under uncertainty in the objective function.

In Chapter 4 we investigate the properties of the minimax regret lin-
ear programming problem under compact and convex uncertainty and under
polyhedral uncertainty. We give an alternative proof to the one given by
Averbakh and Lebedev (2005) for the NP-hardness of the maximum regret
problem under interval uncertainty. We present special cases when the max-
imum regret and the minimax regret problems are polynomially solvable.
Under polyhedral uncertainty, we give an algorithm to find an exact solution
to the minimax regret problem and we discuss the numerical results obtained
on a large number of randomly generated instances.

Chapter 5, is devoted to the relations between the continuous 1-center
problem in location theory and the minimax regret linear programming prob-



4

lem when the objective function coefficients are subject to interval uncer-
tainty. Specifically, we describe the underlying geometry of this last problem,
we generalize some results in location theory and we give conditions under
which some variables can be removed. Finally, we test these conditions on
randomly generated instances and present the conclusions.



Part I

Robust combinatorial

optimization

5



6



Chapter 1

Robustness: the minimax

models and definitions

1.1 Introduction

The input data of many combinatorial problems may be not known with
certainty in real applications. Consider for instance, the design of a commu-
nication network where routing delays on links are uncertain. It is desirable
to construct a configuration that protects the network against the worst pos-
sible scenario.

Combinatorial optimization under uncertainty deals with these kinds of
problems and to know when a decision variable is 1-persistent or 0-persistent,
i.e., when an element of the problem, represented by a variable is always or
never part of an optimal solution for all realization of data, constitutes a
useful information. In the case of interval uncertainty, these entities can
be used for instance to preprocess a given uncertain combinatorial problem
removing the 0-persistent variables and setting the 1-persistent ones equal
to 1. We illustrate these notions with the p-elements problem under interval
uncertainty and we give characterizations of the 0-persistent and 1-persistent
variables by providing polynomial algorithms to find such variables.

1.2 Problem definition and notation

Combinatorial optimization problems is a class of optimization problems
where the variables are binary.

7



8

Consider the class of Combinatorial Optimization Problems COP:

minimize
∑

i∈I

cixi,

subject to x ∈ X ⊆ {0, 1}n,

where I = {1, . . . , n}. Assume that the coefficients of the objective function
are uncertain. We shall call this class of problems Uncertain Combinato-
rial Optimization Problems UCOP and we shall denote by c the vector of
uncertain objective function coefficients.

In this thesis we model uncertainty using the concept of scenario. A
scenario is an assignment of possible values to each uncertain parameter of
the problem. We denote by S the set of all possible scenarii and by D the
set of all possible values for the uncertain coefficients, which we shall call
uncertainty set. For each s ∈ S, we shall denote by cs = (cs1, . . . c

s
n) ∈ D the

vector corresponding to scenario s, where csi is the value of the coefficient i
in that scenario. In this case, to each cs ∈ D corresponds a deterministic
combinatorial optimization problem:

minimize
∑

i∈I

csixi,

subject to x ∈ X ⊆ {0, 1}n.

We denote by X∗(s) the set of all optimal solutions of the problem for
the scenario s and by x∗s a generic element of X∗(s).

To evaluate a solution x ∈ X under the scenario s, we use a function
f : X × D → R : (x, cs) → f(x, cs). In this work, we assume that this
function is linear,

f(x, cs) =
∑

i∈I

csixi.

An optimal solution x∗s corresponding to scenario s satisfies

f(x∗s, cs) = min
x∈X

f(x, cs).

There are several ways to face a UCOP. Kouvelis and Yu (1997) present
the state of the art in robust discrete optimization, various definitions of ro-
bustness in optimization problems under uncertainty, and a large list of open
problems. Specifically, the authors suggest the following three definitions of
robustness (robust solutions).



9

Definition 1.1 We call the minimax problem, the problem to find a solution
xa ∈ X such that

max
cs∈D

f(xa, c
s) = min

x∈X
max
cs∈D

f(x, cs),

and its optimal solution xa a minimax solution.

Definition 1.2 Consider the function

Rmax : X → R : x→ Rmax(x)

Rmax(x) = max
cs∈D

(

f(x, cs) − f(x∗s, cs)
)

.

Given a solution x ∈ X, we call the value Rmax(x) the maximum regret of x.
The optimization problem called minimax regret problem consists in finding
a solution y ∈ X such that

Rmax(y) = min
x∈X

Rmax(x),

where y is called a minimax regret solution of the uncertain combinatorial
problem.

Definition 1.3 The relative robust solution xr is such that

max
cs∈D

f(xr, c
s) − f(x∗s, cs)

f(x∗s, cs)
= min

x∈X
max
cs∈D

f(x, cs) − f(x∗s, cs)

f(x∗s, cs)
.

Definition 1.4 A minimax worst scenario for a solution x is a scenario in
which f(x, cs) is maximum.

Definition 1.5 A worst minimax regret scenario for a solution x is a sce-
nario in which f(x, cs) − f(x∗s, cs) is maximum.

Bertsimas et al. (2005) study the “persistency” of a decision variable, i.e.,
the probability that it is part of an optimal solution and give a model to com-
pute the persistency of a decision variable in discrete optimization problems
under probabilistic information on the objective coefficients. Inspired by this
idea, we shall introduce the following definitions.

Definition 1.6 A variable xi is 0-persistent if xi = 0 for all optimal solu-
tions x of the problem and for all scenarii.

Definition 1.7 A variable xi is 1-persistent if xi = 1 for all optimal solu-
tions of the problem and for all scenarii.



10

The following definitions can be found in Yaman et al. (2001) in the
context of the robust minimum spanning tree problem.

Definition 1.8 A solution x ∈ X is a weak solution if it is an optimal
solution for some scenario.

Definition 1.9 A variable xi is a weak variable if there exists a weak solu-
tion x for which xi = 1.

Definition 1.10 A variable xi is a strong variable if, for each scenario,
there exists an optimal solution for which xi = 1.

In the last years considerable research has been developed in robust opti-
mization and several papers have focused on mixed integer programming and
on combinatorial optimization under uncertainty. In order to give an idea of
the different techniques to face a robust optimization problem and the several
ways under which uncertainty can be modeled, we shall give a short literature
survey concerning robust optimization for mixed integer programming. Lit-
erature surveys concerning robust versions of three combinatorial problems,
the p-elements problem, the minimum spanning tree and the shortest path
problems, shall be given in Chapters 1 to 3. Complexity results and approxi-
mation algorithms for other robust combinatorial optimization problems can
be found in Aissi (2005). For a survey concerning minimax and minimax
regret combinatorial optimization problems, see Aissi et al. (2009).

1.3 Robust optimization for mixed integer pro-

gramming

Let c, l, u be n-vectors, let A be an m× n matrix, and b be an m-vector. We
consider the following deterministic mixed integer programming on a set of
n variables, the k first of which are integer:

minimize cx

subject to Ax ≤ b

l ≤ x ≤ u

xi ∈ Z i = 1, . . . , k.

Bertsimas and Sim (2003) propose a robust formulation of mixed integer
programming problems for the case where both, the data in the constraints
and the coefficients of the objective function are subject to uncertainty. When



11

ROBUST MIXED INTEGER PROGRAMMING
ELLIPSOIDAL AND INTERVAL UNCERTAINTY SETS

Minimax regret
Algorithms & heuristics Theory & complexity

c with Averbakh (2000) Averbakh (2000)

interval Kasperski and Zielinski (2004) Kasperski and Zielinski (2004)

uncertainty Aissi (2005) Aissi (2005)

Other robust counterparts
Algorithms & heuristics Theory & complexity

c with

ellipsoidal Bertsimas and Sim (2004a) Bertsimas and Sim (2004a)

uncertainty

A,b,c with

interval Bertsimas and Sim (2003) Bertsimas and Sim (2003)

uncertainty

c with Bertsimas and Sim (2003) Bertsimas and Sim (2003)

interval Atamturk (2006) Atamturk (2006)

uncertainty Averbakh (2000) Averbakh (2000)

Table 1.1: Robust mixed integer programming with ellipsoidal or interval
uncertainty sets.

only the coefficients of the objective function are uncertain and the problem
is a 0-1 optimization problem on n variables, Bertsimas and Sim (2003)
consider a UCOP where each cj ∈ [cj, cj + dj], dj ≥ 0, and propose the
following robust formulation,

minimize cx+ max
{J :J⊆I,|J |≤Γ}

∑

j∈J

djxj (RF)

subject to x ∈ X ⊆ {0, 1}n,

where I = {1, . . . , n}. In this model a robust solution, is a solution that mini-
mizes the maximum cost when at most Γ of the objective function coefficients
are allowed to change. The parameter Γ controls the level of robustness in
the objective function. Additionally Bertsimas and Sim (2003) propose an
algorithm for the special case of the robust network flow. It solves the robust
counterpart by solving a polynomial number of nominal minimum cost flow
problems in a modified network.

Atamturk (2006) introduces alternative formulations to robust mixed 0-1
programming with interval uncertain objective coefficients



12

min
ψ,x

{ψ : ψ ≥ cx, x ∈ X for all c ∈ B},

where X ⊆ {0, 1}n and B = {c ∈ R
n : πc ≤ π0, a ≤ c ≤ a+ g}, is a rational

polytope defined by bounds a, a+g and πc ≤ π0 is a “budget constraint” rep-
resenting the allowed uncertainty in the objective coefficients. They present
computational experiments for the proposed formulations. Averbakh (2000)
proposes a general approach for finding minimax regret solutions for a class
of combinatorial problems with interval uncertain objective function coeffi-
cients. The approach is based on reducing a problem with uncertainty to
a number of problems without uncertainty. Kasperski and Zielinski (2004)
consider a similar class of problems and present a polynomial time approxi-
mation algorithm for them.

Bertsimas and Sim (2004a) deal with robust discrete optimization un-
der ellipsoidal uncertainty sets. It is shown that the robust counterpart of
a discrete optimization problem with correlated objective function data is
NP-hard even though the original problem is polynomially solvable. For un-
correlated data and identically distributed data, it is proved that the robust
counterpart retains the complexity of the original problem. Table 1.1 presents
a classification of the different works on robust mixed integer programming.

1.4 Combinatorial problems with interval un-

certainty

In this section we shall show that, under interval uncertainty for the minimax
and the minimax regret versions of combinatorial optimization problems, it
is possible to discard the 0-persistent variables and set the 1-persistent ones
equal to 1. This fact is a direct consequence of the following two results.

Theorem 1.1 [Aissi (2005)] Let x be a minimax regret solution for a UCOP

and suppose that D =
∏

i∈I

[

ci, ci
]

, where I = {1 . . . n}. Then x is a weak

solution.

Proof. Assume that x ∈ X is not weak. Let x′ be another solution which is
optimal when coefficients cs

′

are such that

cs
′

i =

{

ci if xi = 0,
ci if xi = 1.



13

Then, for any scenario, it holds that

f(x, cs) − f(x′, cs) =
∑

i∈I

csixi −
∑

i∈I

csix
′
i =

∑

i∈{j∈I|xj=1, x′j=0}

csixi −
∑

i∈{j∈I|x′j=1, xj=0}

csix
′
i ≥

∑

i∈{j∈I|xj=1, x′j=0}

cixi −
∑

i∈{j∈I|x′j=1, xj=0}

cix
′
i =

∑

i∈I

cs
′

i xi −
∑

i∈I

cs
′

i x
′
i = f(x, cs

′

) − f(x′, cs
′

).

Since x is not weak and x′ is optimal with coefficient vector cs
′

, we have

∑

i∈I

cs
′

i xi = f(x, cs
′

) > f(x′, cs
′

) =
∑

i∈I

cs
′

i x
′
i

and thus f(x, cs) > f(x′, cs) for all scenarii s. Now consider the worst mini-
max regret scenario s0 for the solution x′. Then, we have

Rmax(x
′) =

∑

i∈I

cs0i x
′
i −

∑

i∈I

cs0i x
∗s0
i <

∑

i∈I

cs0i xi −
∑

i∈I

cs0i x
∗s0
i ≤ Rmax(x).

Hence, x cannot be a minimax regret solution. �

A corresponding result can be derived for the minimax solutions. The
proof of it, being straightforward, is omitted.

Theorem 1.2 Consider a UCOP where D =
∏

i∈I

[

ci, ci
]

. Let s′ be the sce-

nario for which the coefficients cs
′

i = ci for all i ∈ {1, . . . , n}. The set of all
optimal solutions X∗(s′) of the problem

minimize cs
′

x

subject to x ∈ X ⊆ {0, 1}n,

coincides with the set of minimax solutions. In particular, every minimax
solution is a weak solution.

In the case of interval uncertainty, Theorems 1.1 and 1.2 imply that we
can restrict to search for minimax and minimax regret solutions to the set of
weak solutions. Hence, we can discard the 0-persistent variables and set the
1-persistent ones equal to 1.



14

1.5 The p-elements problem: 1-persistent and

0-persistent variables

In this section, we shall consider the p-elements problem, i.e., given m ele-
ments each one endowed with a real number representing its cost, the problem
consists in determining p elements out of m with the smallest sum of costs.
An optimal solution to this problem is given by a set of p elements with the
smallest associated costs and can be solved in O(m) time in the deterministic
case, see Averbakh (2001) or Cormen et al. (1991). It is trivial when the data
are fixed, but is not so when the data are not known with certainty. The
minimax regret p-elements problem has been studied by Averbakh (2001) in
the case where the associated costs ci take any value in an interval

[

ci, ci
]

. He
has presented an algorithm that solves this problem in O((min{p,m−p})2m)
time. In the same paper, Averbakh (2001) shows that the problem is NP-
hard in the case of an arbitrary finite set of scenarii. To the best of our
knowledge, there are only two minimax regret combinatorial optimization
problem that has been proved to be polynomial in the case of interval uncer-
tainty, the minimax regret interval p-elements problem and minimax regret
min cut interval problem, see Aissi et al. (2008).

1.5.1 Definition of the problem

Let E be a finite set of cardinality m. The p-elements problem consists in
picking p elements out of E with the smallest sum of costs. In this problem,
for a fixed p < m =| E |, we define

Xp(E) = {W ⊂ 2E : |W | = p},

as the set of all subsets of E with cardinality p. That is, Xp(E) is the set of
all feasible subsets of E . We can identify Xp(E) with the subset of vectors of
dimension m with exactly p coordinates equal to 1, i.e.,

X = {x ∈ {0, 1}m :
∑

i∈I

xi = p}.

where I is the set of indices I = {1, . . .m}. If ci represents the cost associated
to element i, the problem can be formulated as follows

min
x∈X

∑

i∈I

cixi.

We call this version of the p-elements problem, where the costs are fixed,
the deterministic case. However, in the following, we shall consider the case



15

in which the costs are not known with certainty. Let S be the set of scenarii
for the values of the elements of E and let D be the uncertainty set.

1.5.2 The p-elements problem: interval uncertainty

In this subsection we shall consider the p-elements problem under interval un-
certainty. We shall give characterizations of the 0-persistent and 1-persistent
variables and an algorithm to find such variables. But first we shall give
some other definitions.

Definition 1.11 Assume that D =
m
∏

i=1

[

ci, ci
]

. Let

E−(k) = {i ∈ E : ci < ck}

E+(k) = {i ∈ E : ci > ck}

E=(k) = {i ∈ E : i 6= k and ∃s ∈ S such that csi = csk}.

Remark that E=(k) ∪ E−(k) ∪ E+(k) ∪ {k} = E .

Theorem 1.3 Suppose that D =
m
∏

i=1

[

ci, ci
]

. The element k is 1-persistent

if and only if | E=(k) ∪ E−(k) |< p.

Proof. Let k be an element of E such that, | E=(k) ∪ E−(k) |< p, then for
all s ∈ S, all minimum p-elements sets contain an element of E+(k) ∪ {k},
and then we must choose the element k. Thus for all s ∈ S, and for all
x∗s ∈ X∗(s), k ∈ x∗s, thus k is a 1-persistent element. Now if k is such
that |E=(k) ∪ E−(k)| ≥ p, by definition of E=(k) and E−(k) there exists a
scenario s′ ∈ S such that cs

′

j ≤ cs
′

k for all j ∈ E=(k) ∪ E−(k). Hence under
the scenario s′ there exists a minimum p-elements set which does not contain
the element k and then k is not a 1-persistent element. �

Theorem 1.4 Suppose that D =
m
∏

i=1

[

ci, ci
]

. The element k is 0-persistent

if and only if | E−(k) |≥ p.

Proof. If k is a 0-persistent element, for all s ∈ S, and for all x∗s ∈ X∗(s),
k /∈ x∗s. This implies that for all s ∈ S, x∗s ⊆ E−(k), hence | E−(k) |≥ p.
Now suppose that k is such that | E−(k) |≥ p. By definition of E−(k), we
know that for all s ∈ S all minimum p-elements sets of E are included in
E−(k), thus do not contain the element k and k is a 0-persistent element. �



16

The last two theorems allow us to derive algorithms to find all the 1-
persistent and 0-persistent elements.

Algorithm to find the 0-persistent elements

1. For each k ∈ E obtain the set E−(k) = {i ∈ E : ci < ck}.

2. Compute | E−(k) |.

3. If | E−(k) |≥ p, k is a 0-persistent element, otherwise k is not 0-
persistent.

Algorithm to find the 1-persistent elements

1. For each k ∈ E obtain the set E−(k) = {i ∈ E : ci < ck}.

2. Obtain the set E=(k) = {i ∈ E : i 6= k and ∃s ∈ S such that csi = csk}

3. Compute | E=(k) ∪ E−(k) |.

4. If | E=(k) ∪E−(k) |< p, k is a 1-persistent element, otherwise k is not
1-persistent.

For each k ∈ E , the problem of finding the sets E−(k) and E=(k) can be
solved in O(m) time. Since we have m elements, the above algorithms find
the 1-persistent variables and the 0 -persistent variables in O(m2) time each
one of them. Since the complexity of Averbakh’s algorithm is O((min{p,m−
p})2m), if p is of the same order of m, the presented preprocessing can be
useful.



Chapter 2

The robust spanning tree

problem: compact and convex

uncertainty

2.1 Introduction

In this chapter, we consider the uncertain minimum spanning tree problem
where edge costs belong to a compact and convex subset of R

m. Theoret-
ical results about this problem are given. We establish localization results
for scenarii yielding the largest regret for a tree. Characterizations of 1-
persistent and 0-persistent edges for the spanning tree problem under inter-
val uncertainty are also given and polynomial time recognition algorithms
are proposed. Such characterizations are based on the topology of the graph
combined with the structure of the uncertainty set. These results have been
developed with the goal to reduce the time to compute a robust minimum
spanning tree and have been published in Salazar-Neumann (2007a).

In the literature, several papers about the robust versions of the minimum
spanning tree problem can be found. Kouvelis and Yu (1997) prove that in
the case of discrete uncertainty, the minimax minimum spanning tree problem
is NP-hard for a bounded number of scenarii and strongly NP-hard for an
unbounded number of scenarii and the minimax regret minimum spanning
tree is NP-hard for a bounded number of scenarii. Aissi (2005) shows that
this last problem is strongly NP-hard for an unbounded number of scenarii,
see Table 2.1.

The minimax minimum spanning tree problem with interval uncertainty
is polynomial, see Yaman et al. (2001), while the minimax regret minimum
spanning tree problem with interval uncertainty is NP- complete, see Aron

17



18

THE MINIMUM SPANNING TREE PROBLEM
DISCRETE UNCERTAINTY SET

Minimax regret
Algorithms & Theory and

heuristics complexity
MST Aissi (2005) NP-hard

U bounded Kouvelis and Yu (1997)
strongly NP-hard

MST Kouvelis and Yu (1997)
U unbounded Aissi (2005)

Minimax
Algorithms & Theory and

heuristics complexity
MST Aissi (2005) NP-hard

U bounded Kouvelis and Yu (1997) Kouvelis and Yu (1997)
MST strongly NP-hard

U unbounded Kouvelis and Yu (1997) Kouvelis and Yu (1997)

Table 2.1: The minimum spanning tree problem: discrete uncertainty set.

and Hentenryck (2004). Averbakh and Lebedev (2004), prove that this prob-
lem is NP-hard even if all intervals of uncertainty are equal to [0, 1] and they
prove that this problem is polynomially solvable in the case where the num-
ber of edges with uncertain lengths is fixed or is bounded by the logarithm
of a polynomial function of the total number of edges, see Table 2.2.

Recently, Montemanni (2006), Montemanni and Gambardella (2005a)
and Aissi (2005) present relaxation procedures to solve minimax regret com-
binatorial problems in the case of interval uncertainty. Yaman et al. (2001),
give a mixed integer programming formulation for the minimax regret span-
ning tree problem with interval uncertainty and show that characterizations
of strong edges and 0-persistent edges can be useful for pre-processing this
mixed integer programming. Montemanni and Gambardella (2005b) provide
a branch and bound algorithm to solve the minimax regret spanning tree
problem under interval uncertainty.

2.2 Notation and definitions

Let G be a finite, connected and undirected graph, we denote by V (G) and
E(G) the set of vertices and edges respectively. We suppose that |V (G)| = n,



19

THE MINIMUM SPANNING TREE PROBLEM
INTERVAL UNCERTAINTY

Minimax regret
Algorithms & Theory and

heuristics complexity
Branch and bound

Montemanni and Gambardella (2005b) NP-complete
Montemanni (2006) Aron and Hentenryck (2004)
Yaman et al. (2001) Averbakh and Lebedev (2004)

Kasperski and Zielinski (2004) polynomial cases
approximation algorithm

Minimax
Algorithms & Theory and

heuristics complexity
algorithm polynomial

Yaman et al. (2001) Yaman et al. (2001)

Table 2.2: The minimum spanning tree problem: interval uncertainty set.

|E(G)| = m. Consider the following combinatorial problem called minimum
spanning tree problem Given G and cost ci associated with each edge i ∈
E(G), we want to find a connected subgraph G′ of G which contains all
its vertices and whose cost

∑

i∈E(G′) ci, is minimum. It is clear that such a
subgraph is a tree, that is to say, is connected and acyclic. SinceG′ is assumed
to be connected, and its cost is minimum, none of its edges can be removed
without destroying its connectivity. A subgraph of G, which contains all of
its vertices is called a spanning subgraph. A spanning subgraph of G which
is a a tree is called a spanning tree of G. A minimum spanning tree can be
obtained, in the deterministic case, in time O(min{n2,mlogn}) using Prim’s
algorithm or in time O(mlogm) using Kruskal’s algorithm, see Cormen et al.
(1991).

We denote by T (G) the set of spanning trees of G. For T ∈ T (G), we
denote by E(T ) the set of edges of T . Let S be the set of scenarii for the
costs of edges of G and let D be the uncertainty set. We shall assume that
D is a compact and convex subset of R

n.

We denote by T ∗(G, s) the set of minimum spanning trees of G for the
scenario s and by T ∗s a generic element of T ∗(G, s). For a scenario s ∈ S, we

denote by s(k, t) the scenario for which (c
s(k,t)
1 , . . . c

s(k,t)
k , . . . c

s(k,t)
m ) = cs + tek,

where t ∈ R and ek is the kth canonical vector in R
m.



20

If T is a tree of G and D is a compact and convex subset of R
m, then for

each tree the minimax best and worst scenarii are on the border of D. Since
the worst scenario for a tree T is a solution of the problem

max
cs∈D

∑

i∈E(T )

csi

then if D is a polytope, we can find the minimax worst scenario for a tree in
polynomial time.

Consider the functions

r : T (G) ×D → R : (T, cs) → r(T, cs)

r(T, cs) = max
T ′∈T (G)

(

f(T, cs) − f(T ′, cs)
)

= f(T, cs) − f(T ∗s, cs).

For any T in T (G), we shall call the value

Rmax(T ) = max
cs∈D

(

f(T, cs) − f(T ∗s, cs)
)

,

the maximum regret for the tree T . If T̃ ∈ T (G) is such that

Rmax(T̃ ) = min
T∈T (G)

Rmax(T ),

then we call T̃ a minimax regret minimum spanning tree.
We observe that for a fixed tree T ∈ T (G) the function r becomes the

function

rT : D → R : cs → rT (cs)

rT (cs) = f(T, cs) − f(T ∗s, cs).

Thus we can also write the maximum regret of T as

Rmax(T ) = max
cs∈D

rT (cs).

2.3 The worst minimax regret scenarii for a

tree

In order to give the location of the worst and best minimax regret scenarii
for a tree (Theorem 2.3), we shall first study the properties of the functions
cs → f(T ∗s, cs) and rT .



21

Theorem 2.1 If T ∗s denotes an optimal tree of G for the scenario s then
the functions cs → f(T ∗s, cs), and rT are continuous and piecewise linear
over D.

Proof. The function cs → f(T ∗s, cs) is such that

f(T ∗s, cs) = min
T∈T (G)

f(T, cs)

since the number of spanning trees of G is finite, this function is the minimum
of a finite number of linear functions and then is continuous. For a fixed T the
function cs → f(T, cs) is linear thus rT is the difference of a linear function
and a piecewise linear function. Hence rT is continuous and piecewise linear.

�

In order to study the differentiability of cs → f(T ∗s, cs) and rT consider
the following lemma.

Lemma 2.1 Let t > 0, and let cs ∈ D such that cs(k,−t) ∈ D. If T0 ∈
T ∗(G, s) and k ∈ E(T0), then T0 ∈ T ∗(G, s(k,−t)). Moreover k ∈ E(T ) for
all T ∈ T ∗(G, s(k,−t)).

Proof. We have f(T0, c
s(k,−t)) = f(T0, c

s) − t ≤ f(T, cs) − t ≤ f(T, cs(k,−t))
for all T ∈ T (G). This implies that T0 ∈ T ∗(G, s(k,−t)). If there exists
T1 ∈ T ∗(G, s(k,−t)) such that k /∈ E(T1), then

f(T1, c
s(k,−t)) = f(T1, c

s) ≥ f(T0, c
s) = f(T0, c

s(k,−t)) + t

Therefore T1 /∈ T ∗(G, s(k,−t)) and we have a contradiction. �

Now we shall define the subset Ω ofD for which all neighborhoodB(cs, δ) =
{c ∈ R

m : |c − cs| < δ} of cs ∈ D contains points cs1 , cs2 ∈ B(cs, δ)
such that T ∗s1 ∈ T ∗(G, s1) but T ∗s1 is not optimal on the scenario s2 and
T ∗s2 ∈ T ∗(G, s2) but T ∗s2 is not optimal on the scenario s1.

Definition 2.1 Let Ω =
m
⋃

k=1

Ω(k) where

Ω(k) = {cs ∈ D : ∃ T1, T2 ∈ T ∗(G, s), and t > 0 such that

(cs(k,t) ∈ D, T1 ∈ T ∗(G, s(k, t)), and T2 /∈ T ∗(G, s(k, t))) or

(cs(k,−t) ∈ D, T2 ∈ T ∗(G, s(k,−t)) and T1 /∈ T ∗(G, s(k,−t)))}.



22

We remark that, by Lemma 2.1, k /∈ E(T1) and k ∈ E(T2). For each
k ∈ E(G) we can also describe Ω(k) as follows

Ω(k) = {cs ∈ D : ∃ T1, T2 ∈ T ∗(G, s) and j ∈ E(G) :

k /∈ E(T1), k ∈ E(T2), j ∈ E(T1), j /∈ E(T2) and c
s
k = csj}

We observe that if Ω = ∅, then for all cs ∈ D there exists a neighborhood
B(cs, t) of cs, such that for all cso ∈ B(cs, t)

⋂

D, T ∗(G, s) = T ∗(G, so) and
this implies that there exists a minimum spanning tree for all realizations of
edges costs (a permanent tree for S, see Yaman et al. (2001)) .

Theorem 2.2 For all T ∈ T (G) the functions cs → f(T ∗s, cs) and rT are
differentiable over D \ Ω. Moreover for all cs ∈ Ω both functions are not
differentiable in cs.

Proof. If cs ∈ D \Ω there exists a neighborhood B(cs, t) of cs such that for
all cso ∈ B(cs, t)

⋂

D, T ∗(G, s) = T ∗(G, so), then cs → f(T ∗s, cs) and rT are
differentiable over B(cs, t)

⋂

D and then over D \ Ω.
In order to prove that for all cs ∈ Ω, cs → f(T ∗s, cs) is not differentiable

on cs we shall prove that ∂f(T ∗s,cs)
∂ck

does not exist. By definition

∂f(T ∗s, cs)

∂ck
=

lim
h→0

f(T ∗s(k,h), cs + hek) − f(T ∗s, cs)

h

Let k ∈ I such that Ω(k) 6= ∅ and let T1, T2 ∈ T ∗(G, s) and j ∈ E(G) such
that k /∈ E(T1), k ∈ E(T2), j ∈ E(T1), j /∈ E(T2) and csk = csj . Then if h < 0
by Lemma 2.1, T2 ∈ T ∗(G, s(k, h)) and

lim
h→0−

f(T2, c
s + hek) − f(T2, c

s)

h
=

lim
h→0−

h

h
= 1.

If h > 0, since T1 ∈ T ∗(G, s) and k /∈ E(T1) then

lim
h→0+

f(T ∗s(k,h), cs + hek) − f(T ∗s, cs)

h
=

lim
h→0+

f(T1, c
s + hek) − f(T1, c

s)

h
= 0

then cs → f(T ∗s, cs) and rT are not differentiable over Ω. �



23

Lemma 2.2 If D is convex then rT is convex and cs → f(T ∗s, cs) is a con-
cave function.

Proof. Let cs1 , cs2 ∈ D, as D is convex, for all λ ∈ [0, 1] if cs0 = λcs1 + (1 −
λ)cs2 then cs0 ∈ D and then we have

rT (cs0) = f(T, cs0) − f(T ∗s0 , cs0) =
∑

i∈E(T )

cs0i −
∑

i∈E(T ∗s0 )

cs0i =

∑

i∈E(T )

(λcs1i + (1 − λ)cs2i ) −
∑

i∈E(T ∗s0 )

(λcs1i + (1 − λ)cs2i ) =

λ





∑

i∈E(T )

cs1i −
∑

i∈E(T ∗s0 )

cs1i



 + (1 − λ)





∑

i∈E(T )

cs2i −
∑

i∈E(T ∗s0 )

cs2i



 =

λ(f(T, cs1) − f(T ∗s0 , cs1)) + (1 − λ)(f(T, cs2) − f(T ∗s0 , cs2)) ≤

λ (f(T, cs1) − f(T ∗s1 , cs1)) + (1 − λ) (f(T, cs2) − f(T ∗s2 , cs2)) =

λrT (cs1) + (1 − λ)rT (cs2)

hence rT is convex.

f(T ∗so , cso) =
∑

i∈E(T ∗s0 )

cs0i =
∑

i∈E(T ∗s0 )

(λcs1i + (1 − λ)cs2i ) =

∑

i∈E(T ∗s0 )

λcs1i +
∑

i∈E(T ∗s0 )

(1 − λ)cs2i ≥ λf(T ∗s1 , cs1) + (1 − λ)f(T ∗s2 , cs2)

and cs → f(T ∗s, cs) is concave. �

Next theorem gives the location of the worst and best minimax regret
scenarii for a tree when the set of scenarii is a compact and convex subset of
R
n.

Theorem 2.3 Let T a tree of G and D a compact and convex subset of R
m,

then the data instances that correspond to the worst and best minimax regret
scenarii for T are on the boundary ∂D of D and on ∂D

⋃

Ω respectively.

Proof. Straightforward, because rT is a piecewise linear and convex function
defined in a compact and convex set. �



24

2.4 Interval uncertainty: 1-persistent and 0-

persistent edges

In this section we consider the minimum spanning tree problem under inter-

val uncertainty, i.e., D =
m
∏

i=1

[

ci, ci
]

. We provide conditions for an edge to be

always or never on a minimum spanning tree (1-persistent and 0-persistent
edges respectively) for all realization of data. We shall first give some defi-
nitions.

Definition 2.2 Let

B(k) = {(cs1 . . . c
s
k . . . c

s
m) ∈ D : ∃ j ∈ E(G), j 6= k such that csk = csj}

E−(k) = {i ∈ E(G) : ci < ck}

E=(k) = {i ∈ E(G) : i 6= k and ∃s ∈ S such that csi = csk}

Definition 2.3 Let E ′ a nonempty subset of E(G). The subgraph of G whose
vertex set is the set of ends of edges in E ′ and whose edge set is E ′ is called
the subgraph of G induced by E ′ and is denoted by G[E ′].

Remark 2.1 We can remark that G[E−(k)] is not necessarily a connected
subgraph of G, thus for all s ∈ S, G[E(T ∗s) ∩ E−(k)] is a spanning acyclic
subgraph of G[E−(k)] and each connected component of G[E(T ∗s) ∩ E−(k)]
is a spanning tree of a connected component of G[E−(k)], thus for all s ∈
S, G[E(T ∗s) ∩ E−(k)] and G[E−(k)] have the same number of connected
components and for all s, s′ ∈ S, |E(T ∗s) ∩ E−(k)| = |E(T ∗s′) ∩ E−(k)|.

We remark that if Ω(k) = ∅ then k is 1-persistent or k is 0-persistent, if
Ω(k) 6= ∅ then by definition k is a weak edge.

Theorem 2.4 Suppose that D is a Cartesian product of intervals. Then

1. If E−(k) = ∅ then k is weak.

2. If B(k) = ∅ and E−(k) = ∅ then k is 1-persistent.

3. If B(k) = ∅ and there exists s ∈ S such that k ∈ E(T ∗s) then k is
1-persistent.

4. If B(k) = ∅ and there exists s ∈ S such that k /∈ E(T ∗s) then k is
0-persistent.



25

Proof. If E−(k) = ∅ then there exists s ∈ S such that when Kruskal’s
algorithm sorts edges in non-decreasing order of their costs, edge k is in the
first place, then edge k is in a minimum spanning tree of G for the scenario
s ∈ S and then k is a weak edge. If B(k) = ∅ and E−(k) = ∅, for all s ∈ S
the edge k is in the first place, then k is in all minimum spanning tree of G
for all scenario s ∈ S, so k is a 1-persistent edge.

If B(k) = ∅ and there exists s ∈ S such that k ∈ E(T ∗s), then adding
edge k to E(T ∗s)∩E−(k) at the point it was encountered would not have in-
troduced a cycle, then k does not have two extremities in the same connected
component of the subgraph of G induced by edges in E(T ∗s)∩E−(k). By Re-
mark 2.1 for all s′ ∈ S, k does not have two extremities in the same connected
component of the subgraph of G induced by edges in E(T ∗s′)∩E−(k). Since
B(k) = ∅, for all s′ ∈ S Kruskal’s algorithm adds edge k to E(T ∗s′)∩E−(k),
and then k is a 1-persistent edge.

If B(k) = ∅ and there exists s ∈ S such that k /∈ E(T ∗s), then adding edge
k to E(T ∗s) ∩E−(k) at the point it was encountered would have introduced
a cycle, then k joins two vertices in the same connected component of the
subgraph of G induced by edges of E(T ∗s)∩E−(k).Then by Remark 2.1, for
all s′ ∈ S, adding k to E(T ∗s′) ∩ E−(k) we introduce a cycle, and then k is
0-persistent. �

The following result provides a characterization of the 0-persistent edges.

Theorem 2.5 Suppose that D is a Cartesian product of intervals. Edge k
is 0-persistent if and only if k is not a cut edge of the subgraph of G induced
by the edges in E−(k) ∪ {k}.

Proof. If k is 0-persistent for all s ∈ S and for all T ∗s ∈ T ∗(G, s), k /∈
E(T ∗s). This implies that for all s ∈ S adding edge k to E(T ∗s) ∩ E−(k) at
the point it was encountered would have introduced a cycle, so k is not a cut
edge of G[E−(k) ∪ {k}]. Now if k is not a cut edge of G[E−(k) ∪ {k}], k is
contained in a cycle of G[E−(k)∪{k}]. By definition of E−(k) we know that
for all s ∈ S each minimum spanning acyclic subgraph of G[E−(k) ∪ {k}]
does not contain edge k, so for all s ∈ S, k /∈ E(T ∗s) thus k is 0-persistent.

�

The following theorem gives a characterization of the 1-persistent edges.

Theorem 2.6 Suppose that D is a Cartesian product of intervals. Edge k
is 1-persistent if and only if k is a cut edge of the subgraph of G induced by
the edges in E=(k) ∪ E−(k) ∪ {k}.



26

Proof. If k is a cut edge of G[E=(k) ∪ E−(k) ∪ {k}], then for all s ∈ S,
Kruskal’s algorithm must select edge k to form a spanning tree of G and then
for all s ∈ S and for all T ∗s ∈ T ∗(G, s), k ∈ T ∗s, thus k is a 1-persistent edge.
Now if k is not a cut edge of G[E=(k) ∪E−(k) ∪ {k}] then k is contained in
a cycle of G[E=(k) ∪E−(k) ∪ {k}]. By definition of E−(k) and E=(k) there
exists a scenario s′ ∈ S such that cs

′

j ≤ cs
′

k for all j ∈ E=(k) ∪ E−(k). So

there exists a minimum spanning tree T ∗s′ of G which does not contain edge
k and then k is not a 1-persistent edge. �

The last theorems allow us to derive algorithms to find all the 0-persistent
and 1-persistent edges.

Algorithm to find the 0-persistent edges

1. For each k ∈ E(G) obtain the set E−(k) = {i ∈ E(G) : ci < ck}.

2. Construct the subgraph of G induced by edges in E−(k) ∪ {k}.

3. Verify if k is not a cut edge of the subgraph G[E−(k) ∪ {k}].

4. If the answer is yes, k is a 0-persistent edge, otherwise k is not 0-
persistent.

Algorithm to find the 1-persistent edges

1. For each k ∈ E(G) obtain the set E−(k) = {i ∈ E(G) : ci < ck}.

2. Obtain the set E=(k) = {i ∈ E(G) : ∃s ∈ S such that csi = csk}.

3. Construct the subgraph of G induced by edges in E=(k)∪E−(k)∪{k}.

4. Verify if k is a cut edge of the subgraph G[E=(k) ∪ E−(k) ∪ {k}].

5. If the answer is yes, k is a 1-persistent edge, otherwise k is not 1-
persistent.

A consequence of Theorems 1.1 and 1.2, is that for the minimax and
minimax regret minimum spanning tree problems under interval uncertainty,
we can preprocess the problem removing the 0-persistent variables and setting
the 1-persistent ones equal to 1.

For each k ∈ E(G), the problem to find the sets E−(k) and E=(k) can
be solved in O(m) time. Since we have n edges, in the case of interval
uncertainty, the above algorithms find the 1-persistent variables and the 0
-persistent variables in O(m2) time each one of them. Since the minimax



27

regret minimum spanning tree problem is NP-hard, the presented algorithms
can be useful for pre-processing the mixed integer programming presented
by Yaman et al. (2001).



28



Chapter 3

Two robust path problems:

interval uncertainty

3.1 Introduction

In this chapter, we consider the uncertain versions of the shortest path prob-
lem, that consists in finding a path of minimum length connecting two spec-
ified nodes 1 and m, and the single-source shortest path problem, i.e., the
problem of finding shortest paths from a fixed node 1 to every nodes of the
graph. We consider both of them on finite directed graphs where arc lengths
belong to nonnegative intervals. We allow cycles on the graphs and degen-
erated arc lengths, i.e., the lower and upper bounds of some intervals may
have the same value. These problems have important applications in trans-
portation and telecommunications, where it is not easy to estimate arc costs
exactly. Other applications may be found in Montemanni et al. (2004).

The first problem that we shall consider is the uncertain shortest path
problem on a finite directed graph under interval arc length uncertainties.
Kouvelis and Yu (1997) have studied this problem under discrete uncertainty
and proved that the minimax and minimax regret shortest path problems are
NP-complete for a bounded number of scenarii. Moreover the authors proved
that the problem becomes strongly NP-hard for an unbounded number of
scenarii, see Table 3.1. In this chapter, we model data uncertainty by treating
the arc lengths as non-negative intervals, i.e. each arc length can take any
value in its interval.

Averbakh and Lebedev (2004) proved that the minimax regret problem
under interval uncertainty is NP-hard even if the network is directed, acyclic
and has a layered structure and showed that this problem is polynomially

29



30

THE SHORTEST PATH PROBLEMS
DISCRETE UNCERTAINTY SET

Minimax regret
Algorithms & Theory and

heuristics complexity
SPP Kouvelis and Yu (1997) NP-complete

U bounded Aissi (2005) Kouvelis and Yu (1997)
SPP Kouvelis and Yu (1997) strongly NP-hard

U unbounded Kouvelis and Yu (1997)
Minimax

Algorithms & Theory and
heuristics complexity

SPP Kouvelis and Yu (1997) NP-complete
U bounded Kouvelis and Yu (1997)

SPP Kouvelis and Yu (1997) strongly NP-hard
U unbounded Kouvelis and Yu (1997)

Table 3.1: The shortest path problems: discrete uncertainty set.

solvable in the case where the number of edges with uncertain lengths is fixed
or is bounded by the logarithm of a polynomial function of the total number
of edges. Independently, Zielinski (2004) showed that this problem is NP-
hard and remains NP-hard even when a graph is restricted to be directed,
acyclic, planar and regular of degree three. Thus in solving this problem,
reducing the solution space becomes an important issue.

Karasan et al. (2001) studied the minimax regret shortest path problem
with interval uncertainty. The authors considered acyclic directed graphs
under nonnegative and non-degenerated interval arc length uncertainties and
proposed a mixed integer programming formulation with preprocessing to
solve this problem. Giving a sufficient condition for an arc to never be
on a shortest path from 1 to m, they presented a polynomial procedure to
determine if an arc is of such type. The preprocessing consists of removing
those arcs which are never in the shortest paths. Computational results
showed that preprocessing in such kinds of graphs is efficient.

Montemanni et al. (2004) provided a branch and bound algorithm to
solve the minimax regret path problem under interval uncertainties but they
did not implement the preprocessing proposed by Karasan et al. (2001) be-
cause in practice it can be used only for acyclic layered graphs with small



31

THE SHORTEST PATH PROBLEMS
INTERVAL UNCERTAINTY

Minimax regret
Algorithms & Theory and

heuristics complexity
Branch and bound

Montemanni et al. (2004) NP-hard
Montemanni and Gambardella (2004)
Montemanni and Gambardella (2005a)

Karasan et al. (2001) Zielinski (2004)
Kasperski and Zielinski (2004) polynomial cases
Kasperski and Zielinski (2006) Averbakh and Lebedev (2004)

approximation algorithm
Minimax

Algorithms & Theory and
heuristics complexity

Karasan et al. (2001) polynomial
Karasan et al. (2001)

Table 3.2: The shortest path problems: interval uncertainty set.

width. Montemanni and Gambardella (2004) presented an exact algorithm to
solve the minimax regret path problem under interval uncertainty. Kasperski
and Zielinski (2006) examined the minimax regret shortest path problem in
series-parallel multi-digraphs with interval uncertainty and showed that this
problem is NP-hard. The authors presented a pseudo-polynomial algorithm
to solve the problem, see Table 3.2.

In this chapter we study the problem of detecting nodes and arcs that are
always or never on a shortest path from 1 to m. We consider this problem
on a larger class of directed graphs i.e., we allow cycles on the graph and
degenerated arc lengths. In particular, we extend the results given in Karasan
et al. (2001). We give sufficient conditions for a node to be never on a shortest
path from 1 to m (0-persistent nodes) and sufficient conditions for an arc to
be always or never on a shortest path from 1 to m (1-persistent and 0-
persistent arcs, respectively). These conditions allow us to give polynomial
time algorithms to find 1-persistent arcs and 0-persistent nodes and arcs. We
propose a preprocessing procedure consisting of removing the 0-persistent
nodes and prove by means of computational experiments that our procedure
vastly reduces the overall time to compute a solution of the minimax regret



32

shortest path problem with interval uncertainty.

The second problem that we consider is the minimax regret version of the
single-source shortest path problem. We propose a mixed integer program-
ming formulation for this problem. We give sufficient conditions for an arc
(k, r) to be always (for all realization of data) on all shortest paths from 1
to r (T 1-persistent arcs) and a characterization of arcs that are never on a
shortest paths from 1 to another node of G (T 0-persistent arcs).

We present polynomial time algorithms to find T 1-persistent and T 0-
persistent arcs. Finally we present numerical results that show that the pre-
processing consisting of removing the T 0-persistent arcs, greatly decreases
the time needed to compute a minimax regret solution. These last results
have been published in Salazar-Neumann (2007b).

3.2 Notation and definitions

As in Bondy and Murty (1976), we introduce here some definitions that we
shall prove useful throughout the rest of the chapter. Let G be a finite
directed graph. We denote by V (G) and A(G) the set of nodes and arcs of
G respectively. We suppose that |V (G)| = m and |A(G)| = n. We denote
by (i, j) the arc from node i to node j. If A′ is a nonempty subset of A(G),
the subgraph of G with edge set A(G) \ A′, denoted as G − A′ represents
the subgraph obtained from G by deleting arcs in A′. In a similar way, the
graph obtained from G by adding a set of arcs A′ is denoted by G + A′. If
A′ = {(i, j)} we write G − (i, j) and G + (i, j) instead of G − {(i, j)} and
G+ {(i, j)}. Similarly, if G′ is a subgraph of G and (i, j) ∈ A(G′), we denote
by G′− (i, j) the subgraph obtained from G′ by deleting arc (i, j). If H1 and
H2 are two subgraphs of G, the union H1 ∪H2 is the subgraph with vertex
set V (H1) ∪ V (H2) and arc set A(H1) ∪ A(H2).

Given a digraph G and nonnegative lengths lij associated with each arc
(i, j) ∈ A(G), the deterministic shortest path problem consists of finding
a shortest directed path, denoted as (1,m)-path, connecting two specified
nodes, the origin node 1 and the destination node m in G. The length of a
path is the sum of the lengths of its arcs. An efficient O(|V (G)|2) algorithm
to solve this problem was given by Dijkstra. It finds not only a shortest
(1,m)-path, but shortest paths from 1 to all nodes of G.

In order to construct the uncertain version of this problem, we shall in-
troduce the following concepts and notations. Let S be the set of scenarii



33

for the lengths of arcs of G and let D be the uncertainty set. We denote by
lsij the nonnegative length of arc (i, j) in the scenario s and we shall assume
that D is a Cartesian product of intervals, that is to say, each lsij can take

an arbitrary value in the interval [lij, lij]. We denote by s the scenario for
which for all (i, j) ∈ A(G), lsij = lij and by s the scenario for which for all

(i, j) ∈ A(G), lsij = lij.

We denote by P1(G) the set of all the 1-paths of G connecting the node 1
with another node of G, by P ∗

1 (G, s) the set of all shortest 1-paths of G under
the scenario s, by P1k(G) the set of all (1, k)−paths of G and by P ∗

1k(G, s),
the set of all the shortest (1, k)−paths of G under the scenario s. For a
path p ∈ P1k(G) we denote by A(p) the set of arcs of p. To evaluate a path
p ∈ P1k(G) under the scenario s we use a function

f : P1k(G) ×D → R : (p, ls) → f(p, ls),

defined as
f(p, ls) =

∑

(i,j)∈A(G)

lsijxij,

where

xij =

{

1 if (i, j) ∈ A(p),
0 otherwise.

For the sake of simplicity, we shall denote by lsp the length
∑

(i,j)∈A(G) l
s
ijxij

of path p in the scenario s. In the case where we want to find a shortest
directed path connecting two specified nodes 1 and m, we define

f(p∗s, ls) = lsp∗s = min
p∈P1m(G)

lsp.

In the context of the uncertain version of shortest path problem the fol-
lowing four definitions prove useful, see Karasan et al. (2001).

Definition 3.1 A path is said to be a weak path if it is a shortest path from
1 to m for at least one realization of arc lengths.

Definition 3.2 An arc is a weak arc if it lies on some weak path.

Definition 3.3 An arc is a strong arc if it lies on at least a shortest path
from 1 to m for all scenarii.

Definition 3.4 An arc is a 0-persistent arc if it never lies on a shortest path
from 1 to m for all scenarii.



34

Karasan et al. (2001) call the 0-persistent arcs “non-weak arcs”. Now, we
introduce the following definitions.

Definition 3.5 An arc is a 1-persistent arc if it lies on all shortest path
from 1 to m for all scenarii.

Definition 3.6 A node is a 0-persistent node if it never lies on a shortest
path from 1 to m for all scenarii.

We call a feasible solution of the deterministic single-source shortest path
problem a spanning tree, an optimal solution a shortest path spanning tree of
G and a shortest path from node 1 to another node of G a shortest 1-path.

We denote by T 1(G) the set of all the spanning trees of G, by T ∗
1 (G, s)

the set of all shortest path spanning trees of G under the scenario s and by
T ∗s

1 a generic element of T ∗
1 (G, s). For a spanning tree T ∈ T 1(G) we denote

by A(T ) the set of arcs of T . Given a T ∈ T 1(G), we denote by p1k(T )
the (1, k)-path such that A(p1k(T )) ⊂ A(T ). To evaluate a spanning tree
T ∈ T 1(G) under the scenario s we use the function

f : T 1(G) ×D → R : (T, ls) → f(T, ls),

defined as

f(T, ls) =
∑

k∈V (G)

lsp1k(T ) =
∑

k∈V (G)

∑

(i,j)∈A(G)

lsijx
k
ij,

where

xkij =

{

1 if (i, j) ∈ A(p1k(T )),
0 otherwise.

For the sake of simplicity we shall denote by lsT the value f(T, ls) of a
spanning tree T in the scenario s, and we define

lsT ∗s
1

= f(T ∗s
1 , ls) = min

T∈T 1(G)
f(T, ls) = min

T∈T 1(G)
lsT .

This model coincides with the model of uncertain combinatorial optimiza-
tion problems UCOP considered in Chapter 1, in which to each data instance
cs ∈ D corresponds a deterministic combinatorial optimization problem:



35

minimize
∑

i∈I

csixi,

subject to x ∈ X ⊆ {0, 1}|I|.

Such a correspondence is obtained as follows

I = A(G) × V (G) and D =
∏

(i,j)∈A(G)

[lij, lij].

Definition 3.7 A spanning tree T is said to be a weak spanning tree if it is
a shortest path spanning tree for at least one realization of arc lengths.

Definition 3.8 An arc is a T-weak arc if it lies on some weak spanning tree.

Definition 3.9 An arc (i, j) is a T 1-persistent arc if it lies on all shortest
path spanning trees for all scenarii.

Definition 3.10 An arc (i, j) is a T 0-persistent arc if it never lies on a
shortest path spanning tree for all scenarii.

3.3 The uncertain shortest path problem: 1-

persistent arcs and 0-persistent arcs and

nodes

We shall consider the minimax regret shortest path problem with interval
uncertainty, defined as follows. Given a finite digraph G, assume that the
lengths of the arcs are uncertain and D is a Cartesian product of nonnegative

intervals, D =
∏

i∈A(G)

[

lij, lij
]

. The minimax regret shortest path problem

consists in finding a path p̃ ∈ P1m(G) such that

Rmax(p̃) = min
p∈P1m(G)

Rmax(p) = min
p∈P1m(G)

max
s∈S

(

lsp − min
q∈P1m(G)

lsq

)

.

This definition coincides with the definition of the minimax regret problem
considered in Chapter 1.

Karasan et al. (2001) showed that the worst scenario for a path p ∈
P1m(G) is the scenario in which the lengths of all arcs on p are at upper



36

bound and the lengths of all other arcs at their lower bound. So if we define
the vector y ∈ {0, 1}n as

yij =

{

1 if (i, j) ∈ A(p),
0 otherwise.

The length of arc (i, j) under the worst scenario for p is defined as lij =
lij +(lij − lij)yij. In the same paper authors give the following mixed integer
programming formulation to solve such problem.

min
∑

(i,j)∈A(G)

lijyij − xm

s.t. xj ≤ xi + lij + (lij − lij)yij, ∀(i, j) ∈ A(G)

−
∑

i∈Γ−(j)

yij +
∑

k∈Γ+(j)

yjk = bj, j = 1, 2 . . . ,m,

x1 = 0,

yij ∈ {0, 1}, ∀(i, j) ∈ A(G),

xj ≥ 0, j = 1, 2 . . . ,m,

where
Γ−(j) = {i ∈ V (G) : (i, j) ∈ A(G)},

Γ+(j) = {k ∈ V (G) : (j, k) ∈ A(G)}

and

bj =







1 if j = 1
0 if j 6= 1,m

−1 if j = m

The first constraint ensures that xj is the length of the shortest path from
node 1 to node j in the graph under the scenario defined by y, the second
one that y defines a path from node 1 to node m and the third avoids an
unbounded solution.

In this section we shall suppose that G(V,A) is a finite directed graph,
with origin node 1 and destination node m and that each node j ∈ V (G) is
reachable from node 1.

We shall present a preprocessing procedure that reduces the solution time
taken to solve this formulation. In order to construct our preprocessing
algorithm we present a sufficient condition easy to test for an arc to be 1-
persistent, but we give the following characterization of the 1-persistent arcs.
The proof of it, being straightforward, is omitted.



37

Proposition 3.1 Consider an arc (k, r) such that on the graph G − (k, r)
node m is reachable from node 1. For each s ∈ S let p∗s ∈ P ∗

1m(G, s). Thus
arc (k, r) is a 1-persistent arc of G if and only if for all q ∈ P1m(G− (k, r))
and for all s ∈ S, lsq > lsp∗s.

Theorem 3.1 Let p be a shortest path from 1 to m under scenario s. Let
(k, r) ∈ A(p), and let s′ be the scenario such that, ls

′

ij = lij if (i, j) ∈ A(p),

and ls
′

ij = lij if (i, j) /∈ A(p). If in G−(k, r), node m is reachable from node 1,
let q ∈ P ∗

1m(G− (k, r), s′) be a shortest path from 1 to m under the scenario
s′. If ls

′

q > ls
′

p then the arc (k, r) is 1-persistent.

Proof. Let p be a shortest path from 1 to m under the scenario s and let
(k, r) ∈ A(p). Consider the scenario s′ such that ls

′

ij = lij if (i, j) ∈ A(p), and

ls
′

ij = lij if (i, j) /∈ A(p). Let q a shortest path of G− (k, r) from 1 to m under

the scenario s′. If ls
′

q > ls
′

p then for all p′ ∈ P1m(G− (k, r)) ls
′

p′ ≥ ls
′

q > ls
′

p and
then for all p′ ∈ P1m(G− (k, r))

∑

(i,j)∈A(p′)\A(p)

lij =
∑

(i,j)∈A(p′)\A(p)

ls
′

ij >
∑

(i,j)∈A(p)\A(p′)

ls
′

ij =
∑

(i,j)∈A(p)\A(p′)

lij.

Then, for all s ∈ S

∑

(i,j)∈A(p′)\A(p)

lsij ≥
∑

(i,j)∈A(p′)\A(p)

lij >
∑

(i,j)∈A(p)\A(p′)

lij ≥
∑

(i,j)∈A(p)\A(p′)

lsij

which implies that for all s ∈ S and for all p′ ∈ P1m(G − (k, r)), we have
lsp′ > lsp and for p∗s ∈ P ∗

1m(G, s), lsp′ > lsp ≥ lsp∗s . Hence, (k, r) is a 1-persistent
arc. �

Theorem 3.1 allows us to derive a polynomial time algorithm to find 1-
persistent arcs.

Algorithm to find 1-persistent arcs

1. Apply Dijkstra algorithm to G under scenario s to obtain p, a shortest
path from 1 to m.

2. Choose an arc (k, r) ∈ A(p).

3. Construct the scenario s′ for which ls
′

ij = lij if (i, j) ∈ A(p), and ls
′

ij = lij
if (i, j) /∈ A(p).

4. Apply Dijkstra to G− (k, r) under scenario s′. If there exists a shortest
path q from 1 to m, go to step 5. Otherwise (k, r) is 1-persistent.



38

1 a

m

[1,2]

[4,8]

  [2,2]

[2,5]

[5,6]

1

mb b

2

5

6
8

2

s
_

1

1

a

a

b m

2

4 5

2

s’

G−(1,a)

2

b

1
2

2

a

m

4
5

2

s’

[2,4] 4

4 4

G−(a,m)

Figure 3.1: 1-persistent arcs algorithm

5. Compute ls
′

q and ls
′

p .

6. If ls
′

q > ls
′

p then arc (k, r) is a 1-persistent arc.

7. Go to step 2.

Example 3.1 To clarify the above procedure, we apply it on the first graph
given in Figure 3.1. We set the lengths of all arcs to their upper bounds and
we find a shortest path p from node 1 to node m, we represent such path with
bold lines. We construct the scenario s′ setting the arcs (1, a) and (a,m)
to their upper bounds and the lengths of the remaining arcs to their lower
bounds. We delete arc (1, a) ∈ A(p) and we apply Dijkstra to G − (1, a)
under the scenario s′. Since there exists a shortest path q from 1 to m, we
compute ls

′

q = 7 and ls
′

p = 6. Since ls
′

q > ls
′

p thus arc (1, a) is a 1-persistent
arc. Then we take the second arc (a,m) of p, we delete arc (a,m) ∈ A(p)
and we apply Dijkstra to G− (a,m) under the scenario s′. As there exists a
shortest path q from 1 to m, we compute ls

′

q = 6 and ls
′

p = 6. Since ls
′

q = ls
′

p

we cannot conclude that arc (a,m) is 1-persistent.



39

1 a

m

[1,2]

[4,8]

  [2,2]

[2,5]

[5,6]

1

mb b

2

5

6
8

2

s
_

1

1

a

a

b m

2

4 5

2

s’

G−(1,a)

2

b

1
2

2

a

m

4
5

2

s’

[2,5] 5

5

G

5

Figure 3.2: Non necessary condition to 1-persistent arcs

Example 3.2 In order to show that the condition of Theorem 3.1 is a suf-
ficient but not a necessary condition, we will change to 5 the upper bound
of arc (a,m), see Figure 3.2. We set the lengths of all arcs to their upper
bounds and we find a shortest path p from node 1 to node m, we represent
this path with bold lines. We construct scenario s′ by setting the arcs (1, a)
and (a,m) to their upper bounds and the lengths of the remaining arcs to
their lower bounds. We delete arc (1, a) ∈ A(p) and we apply Dijkstra to
G− (1, a) under the scenario s′. As there exists a shortest path q from 1 to
m, we compute ls

′

q = 7 and ls
′

p = 7. Then ls
′

q = ls
′

p however arc (1, a) is a
1-persistent arc.

From the last theorem, if we replace the arc (k, r) ∈ A(p) for a node
k ∈ V (p) we can obtain a very similar sufficient condition for a node to be
1-persistent. The proof of it, being analogous, is omitted.

Theorem 3.2 Let p be a shortest path from 1 to m under scenario s. Let
k ∈ V (p), and let s′ be the scenario such that, ls

′

ij = lij if (i, j) ∈ A(p), and

ls
′

ij = lij if (i, j) /∈ A(p). If in G − k, node m is reachable from node 1, let
q ∈ P ∗

1m(G − k, s′) be a shortest path from 1 to m under the scenario s′. If
ls

′

q > ls
′

p then the node k is 1-persistent.

The following theorem gives a sufficient condition for a node to be 0-
persistent.



40

Theorem 3.3 Let q be a shortest path from 1 to m under scenario s. Let
k ∈ V (G) \ V (q). Consider the shortest paths p1 and p2 from 1 to k and
from k to m respectively under scenario s. If lsp1 + lsp2 > lsq, then node k is
0-persistent.

Proof. Consider the paths p1, p2 and q described above. Since all p′ ∈
P ∗

1m(G, s) is such that lsp′ ≤ lsq, if lsp1 + lsp2 > lsq, then p1 ∪ p2 is not a shortest
path from 1 to m under the scenario s. Since p1 and p2 are shortest paths
from 1 to k and from k to m respectively, under scenario s, any path p from
1 to m that contains node k is such that lsp ≥ lsp1 + lsp2 . Then for all s ∈ S
and all q∗s ∈ P ∗

1m(G, s)

lsp ≥ lsp ≥ lsp1 + lsp2 > lsq ≥ lsq∗s .

And this implies that for all scenario s ∈ S no one path from 1 to m that
contains node k is a shortest path from 1 to m under s, and then k is a
0-persistent node. �

Algorithm to find 0-persistent nodes

1. Apply Dijkstra algorithm toG under scenario s to obtain shortest paths
from 1 to each node of G. In particular, a shortest path q, from 1 to
m.

2. Choose a node k ∈ V (G) \ V (q).

3. Consider the shortest path p1, from 1 to k under scenario s.

4. Apply Dijkstra algorithm to G under scenario s to obtain a shortest
path p2, from k to m.

5. Compute lsp1 , l
s
p2

and lsq.

6. If lsp1 + lsp2 > lsq. then node k is 0-persistent.

7. Go to step 2.

In the following section, we shall give a sufficient condition for an arc to
be 0-persistent and a polynomial algorithm to detect some of such arcs.



41

3.4 The uncertain single-source shortest path

problem: T 1-persistent and T 0-persistent

arcs

In this section we shall consider the minimax regret single source shortest
path problem with interval uncertainty. In order to give a formulation to this
problem we shall first consider the following formulation for the deterministic
single source shortest path problem.

min
∑

r∈{2...m}

∑

(i,j)∈A(G)

lijy
r
ij

s.t. −
∑

i∈Γ−(j)

yrij +
∑

k∈Γ+(j)

yrjk = brj j = 1 . . . ,m r = 2 . . . ,m

yrij ∈ {0, 1} ∀(i, j) ∈ A(G) r = 2 . . . ,m

where Γ−(j) = {i ∈ V (G) : (i, j) ∈ A(G)}, Γ+(j) = {k ∈ V (G) : (j, k) ∈
A(G)} and for all j = 1 . . . ,m and r = 2 . . . ,m

brj =







1 if j = 1
0 if j 6= 1, r

−1 if j = r.

Hence, we propose the following mixed integer programming formulation
to solve the minimax regret single source shortest path problem with interval
uncertainty.

min
∑

r∈{2...m}

(

∑

(i,j)∈A(G)

lijy
r
ij − xr

)

s.t. xj ≤ xi + lij + (lij − lij)yij, ∀(i, j) ∈ A(G)

−
∑

i∈Γ−(j)

yrij +
∑

k∈Γ+(j)

yrjk = brj , j = 1, 2 . . . ,m, r = 2 . . . ,m,

yrij ≤ yij, ∀(i, j) ∈ A(G), r = 2 . . . ,m,
∑

(i,j)∈A(G)

yij = n− 1,

x1 = 0,

yrij ∈ {0, 1}, ∀(i, j) ∈ A(G), r = 2 . . . ,m,

yij ∈ {0, 1}, ∀(i, j) ∈ A(G),



42

xj ≥ 0, j = 1, 2 . . . ,m,

where Γ−(j), Γ+(j) and brj are as in the last formulation.
The first constraint ensures that xj is the length of the shortest path from

node 1 to node j in the graph under the scenario defined by y. The second
constraint ensures that yr defines a path from node 1 to node r, the third and
fourth constraints ensure that y defines a tree. Finally, the fifth constraint
avoids an unbounded solution.

We shall suppose thatG(V,A) is a finite directed graph, with origin node 1
and each node j ∈ V (G) is reachable from node 1. The following proposition
is a direct consequence of Theorem 3.1 and gives a sufficient condition easy
to test for an arc to be T 1-persistent.

Proposition 3.2 Let T be a shortest path spanning tree under the scenario
s, and let (k, r) ∈ A(T ). Let p ∈ P1r(G) such that A(p) ⊂ A(T ). Let s′ be the
scenario for which ls

′

ij = lij if (i, j) ∈ A(p), and ls
′

ij = lij if (i, j) /∈ A(p). If on
the graph G−(k, r) node r is reachable from node 1, let q ∈ P ∗

1r(G−(k, r), s′)
be a shortest path from 1 to r under the scenario s′. If ls

′

q > ls
′

p then arc (k, r)
is a T 1-persistent arc.

The last result allows us to derive a polynomial time algorithm to find T
1-persistent arcs.

Algorithm to find T 1-persistent arcs

1. Apply Dijkstra algorithm to G under scenario s to obtain T .

2. Choose an arc (k, r) ∈ A(T ).

3. We consider the path p ∈ P1r(G) such that A(p) ⊂ A(T ).

4. Construct the scenario s′ for which ls
′

ij = lij if (i, j) ∈ A(p), and ls
′

ij = lij
if (i, j) /∈ A(p).

5. Apply Dijkstra to G− (k, r) under scenario s′. If there exists a shortest
path q from 1 to r, go to step 6. Otherwise (k, r) is T 1-persistent.

6. Compute ls
′

q and ls
′

p .

7. If ls
′

q > ls
′

p then arc (k, r) is a T 1-persistent arc.

8. Go to step 2.



43

1 a

m

[1,2]

[2,4]

[4,8]

  [2,2]

[2,5]

[5,6]

1

mb b

2

4

5

6
8

2

s
_

1

1

a

a

b m

2

4 5

2

s’2

b

1
2

4

2

a

m

4
5

2

s’

2

G−(a,b) G−(a,m)

Figure 3.3: T 1-persistent arcs algorithm

Example 3.3 To clarify the above procedure, we apply it on the first graph
given in Figure 3.3. We set the lengths of all arcs to their upper bounds and
we find a shortest path spanning tree. We represent this tree T with bold lines.
We choose arc (a, b) and we construct scenario s′ setting the arcs (1, a), and
(a, b) to their upper bounds and the lengths of the remaining arcs to their
lower bounds. We delete arc (a, b) ∈ A(p) and we apply Dijkstra to G− (a, b)
under the scenario s′. Since there exists a shortest path q from 1 to b, we
compute ls

′

q = 5 and ls
′

p = 4. As ls
′

q > ls
′

p then arc (a, b) is a T 1-persistent
arc. Then we take a second arc (a,m) of T , we construct the scenario s′

setting the arcs (1, a), and (a,m) to their upper bounds and the lengths of the
remaining arcs to their lower bounds. We delete arc (a,m) ∈ A(T ) and we
apply Dijkstra to G− (a,m) under the scenario s′. As there exists a shortest
path q from 1 to m, we compute ls

′

q = 6 and ls
′

p = 6. As ls
′

q = ls
′

p then we
cannot conclude that arc (a,m) is T 1-persistent. Similarly, we continue with
arc (1, a).

The following proposition gives a characterization of the T 0-persistent
arcs.

Proposition 3.3 For each s ∈ S, let p∗s ∈ P ∗
1k(G, s). The arc (k, r) is a T

0-persistent arc of G if and only if for each s ∈ S all q ∈ P ∗
1r(G, s), are such



44

that lsq < lsp∗s + lkr.

Proof. Let (k, r) be a T 0-persistent arc of G, then for all p∗s ∈ P ∗
1k(G, s),

p∗s + (k, r) is never a shortest path from 1 to r, thus for all s ∈ S, if q ∈
P ∗

1r(G, s), we have lsq < lsp∗s + lkr. Now, if for all s ∈ S, all q ∈ P ∗
1r(G, s) is

such that lsq < lsp∗s + lkr, then for all p ∈ P1k(G) lsq < lsp∗s + lkr ≤ lsp + lskr, then
each path from 1 to r that uses arc (k, r) is never a shortest path from 1 to
r for the scenario s ∈ S, and then arc (k, r) is T 0-persistent. �

Karasan et al. (2001) showed that the problem of deciding whether an
arc is never on shortest path is NP-complete, the proof consists in modifying
the proof of NP-completeness given by Chanas and Zielinski (2003) in the
case of the longest path problem. The following theorem gives a sufficient
condition easy to test for an arc to be a T 0-persistent.

Theorem 3.4 Let T be a shortest path spanning tree under the scenario s
and let (k, r) ∈ A(G) \ A(T ). Let p ∈ P1k(G) such that A(p) ⊂ A(T ). If for
q ∈ P ∗

1r(G, s) l
s
q < lsp + lkr, then (k, r) is a T 0-persistent arc.

Proof. Let T be a shortest path spanning tree under the scenario s and
let p ∈ P1k(G) such that A(p) ⊂ A(T ), then p is a shortest path from 1
to k under the scenario s. If for (k, r) ∈ A(G) \ A(T ), and q ∈ P ∗

1r(G, s),
lsq < lsp + lkr then for all scenarii s, if q∗s ∈ P ∗

1r(G, s) and p∗s ∈ P ∗
1k(G, s),

lsq∗s ≤ lsq < lsp + lkr ≤ lsp∗s + lkr,

and Proposition 3.3 implies that (k, r) is a T 0-persistent arc. �

Since all the T 0-persistent arcs are 0-persistent, the last results allow us
to derive polynomial time algorithms to find T 0-persistent and 0-persistent
arcs.

Algorithm to find T 0-persistent and 0-persistent arcs.

1. Delete all arcs of the form (j, 1).

2. Apply Dijkstra algorithm to G under scenario s to obtain T .

3. Choose an arc (k, r) ∈ A(G) \ A(T ).

4. Consider the path p ∈ P1k(G), such that A(p) ⊂ A(T ).

5. Apply Dijkstra to G under scenario s to obtain q a shortest path from
1 to r.



45

1 a

m

[1,2]

[2,4]

[4,8]

  [2,2]

[2,5]

[5,6]

1

mb b

2

1

1

a

a

b m

4

2

b

1
2

4

2

a

m

_ s
1

5
4

2

2

5

 6

(k,r)=(1,b)(k,r)=(b,a)  

T

5

2

5

4

1 a

b m

(k,r)=(b,m)  

q q

q

2

8

s
_ s

_

6

s
_2

Figure 3.4: T 0-persistent and 0-persistent arcs algorithm

6. Compute lsq.

7. If lsq < lsp + lkr then arc (k, r) is T 0-persistent and then 0-persistent.
Otherwise, go to step 3.

8. Delete arc (k, r) and go to step 2.

Example 3.4 To clarify the above procedure, we apply it on the first graph
given in Figure 3.4. We set the lengths of all arcs to their lower bounds and
we find a shortest path spanning tree from node 1 to all nodes of G. We
represent this tree T with bold lines. We choose arc (b, a) 6∈ A(T ) and we
consider a path p ∈ P1b(G) such that A(p) ⊂ A(T ). We apply Dijkstra to G



46

mb

1 a

[1,2]

[5,6]
[4,8]

[2,4]

[2,5]

[2,2]

Weak arc

 T 0−persistent arc 
(then 0−persistent)

1−persistent arc

T 1−persistent but

not 1−persistent arc.

Figure 3.5: Classification of arcs

under scenario s to obtain a shortest path q from 1 to a, we compute lsq = 2,
lsp = 3 and lba = 4. Since lsq < lsp + lba, (b, a) is T 0-persistent and thus 0-
persistent. We delete arc (b, a) and we take a second arc (1, b) 6∈ A(T ). We
consider a path p ∈ P11(G) such that A(p) ⊂ A(T ) and a shortest path q from
1 to b under the scenario s. We compute lsq = 4, lsp = 0 and l1b = 5. Since
lsq < lsp + l1b, arc (1, b) is T 0-persistent and we delete it. Finally we choose
arc (b,m) 6∈ A(T ) and we consider a path p ∈ P1b(G) such that A(p) ⊂ A(T ).
We consider a shortest path q from 1 to m under the scenario s. We compute
lsq = 6, lsp = 3 and lbm = 2. Since lsq ≥ lsp + lba we cannot conclude that arc
(b,m) is T 0-persistent. The classification of arcs of this graph is given in
Figure 3.5.

3.5 Numerical results

In order to reduce the computing time used to solve the minimax regret
shortest path and the minimax regret single source shortest path problems
with interval uncertainty we propose two different preprocessing procedures
that consist of deleting the 0-persistent nodes for the first problem and the
T 0-persistent arcs for the second problem.

For the minimax regret shortest path, we use the formulation given by
Karasan et al. (2001) coded in Mosel and XPRESS to solve the mixed integer
programming. We first solve the problem with all the nodes in the graph.



47

Then we use the 0-persistent node algorithm given in Section 3.3. to remove
the 0-persistent nodes from the problem, and finally we solve it one more
time. The detection of 0-persistent arcs is very time consuming, thus we do
not include it in our preprocessing.

For the minimax regret single source shortest path problem, we use the
formulation proposed in Section 3.4 coded in Mosel and XPRESS to solve
the mixed integer programming part. We first solve the problem with all the
arcs in the graph. Then we use the T 0-persistent arc algorithm given in
Section 3.4. to remove the T 0-persistent arcs and finally we resolve it one
more time.

Their performances are tested on randomly generated instances, and we
use the cpu time as criteria to compare their performances. All the compu-
tational experiments were made on a 2 CPU Pentium 4 with 3GHz station
under Linux 2.6.22.7-85.fc7 with 2 GB of RAM. The preprocessing algorithms
were coded in C (compiler gcc) and use the LEDA-4.2 library to solve the
shortest path and the single source shortest path problems (Dijkstra algo-
rithm).

We generate the input data as follows. We first generate a random graph
without self-loops nor parallel arcs, with the graph generator of LEDA-4.2.
A graph in this model consists of m nodes and n random edges. A random
edge is generated by selecting a random element (v, w) from the set C of
all m(m − 1) pairs of distinct nodes. Upon selection of a pair (v, w) from
C the pair is removed from C. The second part of the input data are arc
lengths, i.e., upper and lower bounds. We generate this part of input as
Karasan et al. (2001), considering two cases, that is to say, we first generate
a random base case scenario from an uniform distribution between numbers
1 and 20 or between 1 and 100, that is U(1, 20) or U(1, 100) for a given arc.
We denote by c0ij, the value of the base case scenario for arc (i, j). Then,
the lower bounds lij are randomly generated from a uniform distribution
U((1 − d)c0ij), (1 + d)c0ij) where d is a pre-specified number (0 < d < 1).

Then, the upper bounds lij are generated from U(lij + 1, (1 + d)c0ij).

For the minimax regret shortest path problem with interval uncertainty,
we investigate the behavior of the 0-persistent node algorithm used as pre-
processing. Table 3.3 through Table 3.8 show the computational results for
graphs with 150 through 1000 nodes, with different number of arcs, with
deviation parameter 0.3, 0.6, and 0,9 and with uniform distribution U(1, 20)
for Tables 3.3 to 3.5 and U(1, 100) for Tables 3.6 to 3.8. A series contains
10 randomly generated problems with the same number of nodes, percentage
deviation d and number of arcs. We give for each series, the mean value µ and



48

the standard deviation σ of the number of 0-persistent nodes, of the comput-
ing times in seconds taken by the corresponding preprocessing, (given in the
column labeled prep) and of the solution times of the problem before and af-
ter the preprocessing, (given in columns labeled cpu1 and cpu2 respectively).
The time reductions are given in the column labeled reduct and corresponds
to the difference µ(cpu1) − (µ(cpu2) + µ(prep)) divided by µ(cpu1).

Table 3.3 through Table 3.8 show that when the density of the graph
increases, the percentage of the number of 0-persistent nodes decreases for d
equal to 0.6, and 0,9. Contrary to the case when d = 0.3 where the percentage
of 0-persistent nodes seems to be relatively stable for uniform distributions
U(1, 20) and U(1, 100). While the deviation parameter d increases, the num-
ber of 0-persistent nodes decreases. This can be explained as follows. In the
case when d is higher we have less empty intersections between intervals and
thus less 0-persistent nodes. If we compare the results between the base case
U(1, 20) and U(1, 100), the percentage of 0-persistent nodes is higher in the
last case. In conclusion, it appears that the percentage of the 0-persistent
nodes depends on the deviation parameter and then on the interval lengths.

Table 3.3 through Table 3.8 show that, on average, we obtain a time
reduction of 45.69 % for the base case U(1, 20) and 51.97 % for base case
U(1, 100). Hence, our preprocessing can vastly decrease the computing time
to solve the minimax regret shortest path problem.

For the minimax regret single source shortest path problem with interval
uncertainty, we investigate the behavior of the number of the T 1-persistent
and T 0-persistent arcs on digraphs of big size and the cpu time reductions.
The number of arcs, the mean value µ and standard deviation σ of the number
of T 1-persistent and of the T 0-persistent arcs in the graph are reported in
order to compare the numbers (given in the column labeled T1-p and labeled
T0-p respectively). Computing times in seconds spent by the corresponding
preprocessing are given in the column labeled prep. The columns labeled cpu1
and cpu2 corresponds to the solution times of the problem before and after
the preprocessing respectively. The time reductions are given in the column
labeled reduct and corresponds to the difference µ(cpu1)−(µ(cpu2)+µ(prep))
divided by µ(cpu1).

Tables 3.9 and 3.10 present the behavior of the algorithm on problems
with 150 through 300 nodes, with number of arcs equal to 1000 through 5000
with deviation parameter 0.3, 0.6, and 0,9, and with the base case U(1, 20)
and U(1, 100) respectively.

Tables 3.9 and 3.10 show that when the density of the graph increases, the
percentage of the number of T 0-persistent arcs increases as well for d equal
to 0.3, 0.6, and 0,9. Contrary to the percentage of T 1-persistent arcs, that



49

seems to decrease significantly. While the deviation parameter increases, the
number of T 1-persistent and T 0-persistent arcs decreases. If we compare
the results between the base case U(1, 20) and U(1, 100), the percentage of
T 0-persistent and T 1-persistent arcs is higher in the last case.

In conclusion, it appears that also for this problem, the percentage of the
T 1-persistent and T 0-persistent arcs depends on the deviation parameter
and then on the interval lengths. We obtain a time reduction of 62.14 %
for the base case U(1, 20) and 91.62 % for base case U(1, 100). Then the T
0-persistent arc algorithm used as preprocessing can dramatically decrease
the computer time to solve the minimax regret single source shortest path
problem.



50

node d arcs 0-pers prep cpu1 cpu2 reduct
nodes
µ± σ µ± σ µ± σ µ± σ µ

150 0.3 1000 140.20 0.01 0.18 0.04 70.14 %
±7.42 ±0.01 ±0.09 ±0.02

150 0.3 5000 128.00 0.03 0.80 0.09 85.08 %
±22.25 ±0.01 ±0.42 ±0.09

150 0.3 15000 128.20 0.13 1.86 0.09 88.29 %
±17.97 ±0.05 ±0.61 ±0.06

210 0.3 1000 195.70 0.04 0.31 0.15 41.45 %
±14.70 ±0.01 ±0.15 ±0.04

210 0.3 5000 189.50 0.18 2.88 0.22 86.04 %
±22.65 ±0.07 ±2.39 ±0.20

210 0.3 15000 177.00 0.53 7.99 0.29 89.72 %
±20.29 ±0.19 ±2.78 ±0.12

210 0.3 30000 185.40 0.39 5.24 0.15 89.78 %
±22.88 ±0.14 ±2.04 ±0.12

300 0.3 1000 270.10 0.03 0.29 0.12 46.71 %
±19.89 ±0.01 ±0.10 ±0.02

300 0.3 5000 275.90 0.08 1.32 0.15 82.51 %
±21.78 ±0.03 ±0.83 ±0.04

300 0.3 15000 260.40 0.30 4.19 0.21 87.64 %
±33.25 ±0.11 ±1.93 ±0.12

300 0.3 30000 243.90 0.59 6.26 0.39 84.27 %
±55.68 ±0.21 ±2.12 ±0.54

300 0.3 50000 266.70 0.93 11.20 0.22 89.70 %
±23.67 ±0.33 ±2.28 ±0.11

1000 0.3 10000 960.30 1.12 5.19 1.22 54.89 %
±47.23 ±0.40 ±1.64 ±0.10

1000 0.3 50000 940.50 4.04 21.30 1.25 75.16 %
±53.94 ±1.42 ±8.85 ±0.09

1000 0.3 250000 897.40 15.69 54.12 2.05 67.22 %
±110.27 ±5.52 ±4.95 ±1.76

Average reduction 75.91 %

Table 3.3: 0-persistent nodes algorithm for base case U(1, 20) for d = 0.3.



51

node d arcs 0-pers prep cpu1 cpu2 reduct
nodes
µ± σ µ± σ µ± σ µ± σ µ

150 0.6 1000 107.80 0.01 0.23 0.07 64.30 %
±24.00 ±0.01 ±0.11 ±0.04

150 0.6 5000 112.60 0.03 0.75 0.10 82.88 %
±22.95 ±0.01 ±0.30 ±0.06

150 0.6 15000 91.00 0.13 2.48 0.95 56.46 %
±60.83 ±0.05 ±0.85 ±1.18

210 0.6 1000 174.30 0.05 0.63 0.17 64.41 %
±30.59 ±0.02 ±0.33 ±0.09

210 0.6 5000 130.50 0.15 2.75 1.06 55.99 %
±77.33 ±0.06 ±1.57 ±1.62

210 0.6 15000 136.40 0.51 6.44 1.43 69.93 %
±59.23 ±0.20 ±1.95 ±1.86

210 0.6 30000 83.60 0.39 5.46 2.47 47.67 %
±58.47 ±0.14 ±0.75 ±2.14

300 0.6 1000 251.89 0.03 0.30 0.13 46.84 %
±30.82 ±0.01 ±0.13 ±0.03

300 0.6 5000 161.70 0.08 1.61 0.82 43.90 %
±88.45 ±0.03 ±0.77 ±1.33

300 0.6 15000 199.30 0.30 3.88 0.93 68.34 %
±87.15 ±0.11 ±1.90 ±1.65

300 0.6 30000 162.30 0.59 10.22 3.23 62.60 %
±108.48 ±0.21 ±5.54 ±4.39

300 0.6 50000 181.80 0.93 8.70 2.71 58.11 %
±112.40 ±0.33 ±1.11 ±3.96

1000 0.6 10000 835.40 1.12 6.10 1.36 59.38 %
±111.98 ±0.39 ±1.22 ±0.15

1000 0.6 50000 717.10 4.00 23.22 2.86 70.47 %
±188.72 ±1.41 ±11.20 ±2.50

1000 0.6 250000 315.70 15.91 70.82 45.66 13.07 %
±340.30 ±5.61 ±9.97 ±31.97

Average reduction 57.62 %

Table 3.4: 0-persistent nodes for base case U(1, 20) for d = 0.6.



52

node d arcs 0-pers prep cpu1 cpu2 reduct
nodes
µ± σ µ± σ µ± σ µ± σ µ

150 0.9 1000 85.40 0.01 0.25 0.16 29.09 %
±55.79 ±0.01 ±0.21 ±0.24

150 0.9 5000 0.67 0.02 0.83 0.82 -2.25 %
±0.58 ±0.02 ±0.30 ±0.31

150 0.9 15000 0.00 0.13 3.63 3.67 -4.69 %
±0.00 ±0.05 ±1.37 ±1.41

210 0.9 1000 95.60 0.02 0.38 0.24 32.94 %
±56.89 ±0.01 ±0.14 ±0.18

210 0.9 5000 22.10 0.05 0.93 0.86 2.46 %
±61.60 ±0.02 ±0.17 ±0.31

210 0.9 15000 28.10 0.21 3.70 3.38 3.10 %
±59.95 ±0.08 ±1.44 ±1.97

210 0.9 30000 0.90 0.39 4.96 4.93 -7.32 %
±2.85 ±0.14 ±0.66 ±0.79

300 0.9 1000 112.89 0.03 0.40 0.32 11.89 %
±83.41 ±0.01 ±0.16 ±0.12

300 0.9 5000 28.20 0.08 1.56 1.43 3.51 %
±37.54 ±0.03 ±1.03 ±1.15

300 0.9 15000 12.60 0.30 4.37 3.77 6.80 %
±36.01 ±0.11 ±1.80 ±1.27

300 0.9 30000 0.00 0.59 8.91 8.58 -2.94 %
±0.00 ±0.21 ±4.79 ±3.91

300 0.9 50000 0.00 0.93 11.37 11.32 -7.73 %
±0.00 ±0.33 ±1.47 ±1.42

1000 0.9 10000 243.80 1.13 8.13 5.85 14.12 %
±282.95 ±0.40 ±2.80 ±3.64

1000 0.9 50000 6.30 4.01 30.40 29.57 -10.49 %
±15.16 ±1.41 ±10.47 ±10.23

1000 0.9 250000 0.20 15.69 109.80 110.67 -15.08 %
±0.63 ±5.51 ±18.14 ±18.66

Average reduction 3.56 %

Table 3.5: 0-persistent nodes for base case U(1, 20) for d = 0.9.



53

node d arcs 0-pers prep cpu1 cpu2 reduct
nodes
µ± σ µ± σ µ± σ µ± σ µ

150 0.3 1000 135.00 0.01 0.20 0.05 70.08 %
±10.21 ±0.01 ±0.10 ±0.02

150 0.3 5000 135.80 0.03 0.57 0.06 83.12 %
±7.80 ±0.01 ±0.22 ±0.03

150 0.3 15000 140.90 0.13 1.28 0.05 86.06 %
±6.79 ±0.05 ±0.27 ±0.02

210 0.3 1000 197.56 0.02 0.16 0.06 50.18 %
±9.77 ±0.01 ±0.10 ±0.01

210 0.3 5000 197.90 0.05 0.66 0.07 81.06 %
±9.28 ±0.02 ±0.35 ±0.02

210 0.3 15000 193.00 0.20 1.75 0.09 83.47 %
±9.01 ±0.07 ±0.52 ±0.02

210 0.3 30000 189.20 0.39 4.04 0.12 87.32 %
±14.29 ±0.14 ±0.67 ±0.06

300 0.3 1000 278.75 0.04 0.30 0.15 32.53 %
±16.83 ±0.02 ±0.16 ±0.04

300 0.3 5000 283.40 0.08 0.86 0.13 75.72 %
±12.90 ±0.03 ±0.50 ±0.02

300 0.3 15000 284.80 0.31 1.52 0.13 71.03 %
±10.88 ±0.11 ±0.45 ±0.02

300 0.3 30000 277.80 0.59 3.76 0.17 79.78 %
±25.84 ±0.21 ±1.15 ±0.10

300 0.3 50000 285.10 0.93 7.27 0.14 85.29 %
±13.19 ±0.33 ±1.37 ±0.03

1000 0.3 10000 972.70 1.13 3.96 1.18 41.64 %
±25.87 ±0.40 ±1.58 ±0.04

1000 0.3 50000 915.10 4.00 22.33 1.35 76.02 %
±84.31 ±1.41 ±13.51 ±0.33

1000 0.3 250000 919.80 15.65 53.89 1.49 68.21 %
±70.66 ±5.50 ±4.93 ±0.45

Average reduction 71.43 %

Table 3.6: 0-persistent nodes for base case U(1, 100) for d = 0.3.



54

node d arcs 0-pers prep cpu1 cpu2 reduct
nodes
µ± σ µ± σ µ± σ µ± σ µ

150 0.6 1000 130.10 0.01 0.24 0.06 68.27 %
±17.54 ±0.01 ±0.13 ±0.03

150 0.6 5000 120.10 0.03 0.46 0.10 72.65 %
±31.79 ±0.01 ±0.25 ±0.10

150 0.6 15000 119.00 0.13 1.69 0.15 83.56 %
±22.82 ±0.05 ±0.56 ±0.12

210 0.6 1000 190.60 0.02 0.25 0.08 61.31 %
±11.00 ±0.01 ±0.10 ±0.02

210 0.6 5000 156.20 0.05 0.76 0.21 65.65 %
±57.36 ±0.02 ±0.34 ±0.25

210 0.6 15000 173.20 0.20 1.72 0.13 80.94 %
±23.18 ±0.07 ±0.36 ±0.07

210 0.6 30000 118.20 0.39 4.49 0.87 71.94 %
±49.10 ±0.14 ±0.98 ±0.77

300 0.6 1000 278.40 0.03 0.24 0.11 40.03 %
±15.77 ±0.01 ±0.11 ±0.02

300 0.6 5000 187.10 0.08 1.23 0.39 61.44 %
±99.69 ±0.03 ±0.50 ±0.35

300 0.6 15000 241.40 0.31 2.37 0.34 72.64 %
±64.62 ±0.11 ±1.05 ±0.46

300 0.6 30000 231.10 0.60 4.64 0.38 79.01 %
±55.17 ±0.21 ±0.96 ±0.38

300 0.6 50000 217.70 0.93 7.88 1.14 73.69 %
±87.84 ±0.33 ±1.75 ±1.95

1000 0.6 10000 838.80 1.14 5.40 1.44 52.19 %
±159.16 ±0.40 ±2.30 ±0.40

1000 0.6 50000 636.30 4.02 22.34 4.68 61.09 %
±259.91 ±1.41 ±8.34 ±5.66

1000 0.6 250000 453.00 15.74 60.48 30.34 23.81 %
±364.97 ±5.53 ±4.27 ±29.87

Average reduction 64.55 %

Table 3.7: 0-persistent nodes for base case U(1, 100) for d = 0.6.



55

node d arcs 0-pers prep cpu1 cpu2 reduct
nodes
µ± σ µ± σ µ± σ µ± σ µ

150 0.9 1000 98.60 0.01 0.25 0.10 56.55 %
±44.34 ±0.01 ±0.11 ±0.10

150 0.9 5000 22.30 0.03 0.76 0.63 13.96 %
±26.64 ±0.01 ±0.42 ±0.46

150 0.9 15000 48.90 0.13 1.91 1.16 32.34 %
±54.41 ±0.05 ±0.64 ±0.98

210 0.9 1000 134.80 0.02 0.27 0.15 38.85 %
±71.99 ±0.01 ±0.19 ±0.12

210 0.9 5000 54.70 0.05 0.71 0.44 31.31 %
±55.75 ±0.02 ±0.26 ±0.28

210 0.9 15000 69.20 0.20 1.98 1.11 33.99 %
±78.29 ±0.07 ±0.77 ±0.88

210 0.9 30000 22.10 0.39 4.53 4.33 -4.34 %
±60.53 ±0.14 ±1.69 ±2.33

300 0.9 1000 215.60 0.03 0.35 0.18 40.50 %
±57.55 ±0.01 ±0.13 ±0.07

300 0.9 5000 66.20 0.09 1.20 1.02 8.16 %
±98.14 ±0.03 ±0.61 ±0.72

300 0.9 15000 61.80 0.31 2.10 1.50 14.13 %
±79.63 ±0.11 ±0.66 ±0.98

300 0.9 30000 66.30 0.59 4.48 2.79 24.64 %
±73.19 ±0.21 ±0.93 ±1.77

300 0.9 50000 114.90 0.93 7.74 4.06 35.56 %
±110.62 ±0.33 ±1.93 ±4.13

1000 0.9 10000 262.10 1.15 6.87 5.52 2.90 %
±325.49 ±0.40 ±2.16 ±3.38

1000 0.9 50000 20.70 4.05 25.10 24.13 -12.25 %
±30.92 ±1.42 ±5.33 ±6.03

1000 0.9 250000 0.50 15.78 95.70 96.57 -17.39 %
±1.58 ±5.55 ±15.75 ±15.54

Average reduction 19.93 %

Table 3.8: 0-persistent nodes for base case U(1, 100) for d = 0.9.



56

node d arcs T 1-p T 0-p prep cpu1 cpu2 reduct
µ µ µ µ µ µ
±σ ±σ ±σ ±σ ±σ

150 0.3 1000 49.90 730.60 0.12 145.49 5.80 95.92 %
±27.07 ±142.92 ±0.08 ±144.17 ±1.73

150 0.3 3000 37.10 2475.60 0.44 413.44 107.23 73.96 %
±7.22 ±45.12 ±0.16 ±275.79 ±130.88

210 0.3 3000 53.60 2312.90 0.84 1289.67 245.39 80.91 %
±7.00 ±68.67 ±0.30 ±1215.30 ±465.09

210 0.3 5000 41.80 4158.10 1.37 1395.26 1102.28 20.90 %
±4.29 ±36.16 ±0.48 ±378.36 ±1184.96

300 0.3 3000 80.00 2086.70 3.49 9606.14 4318.03 55.01 %
±12.29 ±130.70 ±1.25 ±14935.25 ±11316.86

150 0.6 1000 34.80 512.80 0.18 395.11 105.12 73.35 %
±7.18 ±52.52 ±0.09 ±455.38 ±106.96

150 0.6 3000 15.40 2130.30 0.44 2393.54 2147.44 10.26 %
±4.22 ±90.96 ±0.16 ±2017.30 ±3918.79

210 0.6 3000 19.00 1805.20 0.85 31001.67 5148.69 83.39 %
±4.06 ±112.25 ±0.30 ±51141.26 ±5099.80

210 0.6 5000 14.00 3393.00 1.39 25770.30 6855.08 73.39 %
±6.07 ±295.58 ±0.49 ±32469.95 ±7657.60

300 0.6 3000 32.10 1555.10 3.25 26077.07 12325.37 52.72 %
±6.90 ±149.10 ±1.50 ±20217.62 ±17585.84

150 0.9 1000 11.90 372.90 0.14 1639.65 592.94 63.83 %
±6.67 ±230.40 ±0.08 ±1290.91 ±538.35

Average reduction 62.14 %

Table 3.9: T 0-persistent arcs for base case U(1, 20) for d = 0.3, 0.6, 0.9



57

node d arcs T 1-p T 0-p prep cpu1 cpu2 reduct
µ µ µ µ µ µ
±σ ±σ ±σ ±σ ±σ

150 0.3 1000 81.00 776.10 0.14 75.45 3.39 95.32 %
±29.54 ±81.36 ±0.08 ±49.43 ±0.46

150 0.3 3000 73.80 2715.30 0.46 281.12 3.96 98.43 %
±7.15 ±19.22 ±0.16 ±124.58 ±0.38

210 0.3 3000 105.60 2587.30 1.16 715.24 15.54 97.66 %
±18.47 ±57.27 ±0.64 ±376.20 ±8.71

210 0.3 5000 98.30 4575.00 1.73 1549.75 17.02 98.79 %
±18.20 ±55.11 ±0.94 ±870.85 ±12.86

300 0.3 3000 138.10 2450.10 1.48 1189.85 41.52 96.39 %
±49.59 ±221.13 ±0.78 ±674.11 ±37.37

150 0.6 1000 39.00 670.70 0.12 167.15 21.17 87.26 %
±22.07 ±177.97 ±0.08 ±118.54 ±16.34

150 0.6 3000 41.10 2520.70 0.45 698.79 38.81 94.38 %
±12.60 ±98.81 ±0.16 ±424.09 ±38.47

210 0.6 3000 37.20 2183.70 0.84 1642.36 223.60 86.33 %
±14.63 ±151.64 ±0.30 ±1045.07 ±137.78

210 0.6 5000 39.60 4167.00 1.74 6296.83 335.82 94.64 %
±20.91 ±273.62 ±0.96 ±11600.60 ±358.38

300 0.6 3000 59.00 1958.70 2.08 12191.55 1160.61 90.46 %
±17.31 ±128.93 ±1.13 ±12131.10 ±935.60

150 0.9 1000 24.00 515.70 0.14 1379.07 345.32 74.95 %
±10.50 ±180.25 ±0.08 ±1756.24 ±635.51

150 0.9 3000 5.50 1859.90 0.44 18890.67 2845.62 84.93 %
±4.48 ±309.68 ±0.16 ±24551.49 ±3159.62

Average reduction 91.62 %

Table 3.10: T 0-persistent arcs for base case U(1, 100) for d = 0.3, 0.6, 0.9



58



Part II

Robust linear programming

59



60



Chapter 4

Linear programs under

uncertainty in the objective

function coefficients

4.1 Introduction

Uncertainty in linear programming may concern coefficients of the objective
function, constraints or both. In this thesis we focus on linear programming
under uncertainty in the objective function coefficients. We consider the
minimax regret approach and we model the uncertainty set, first as a compact
and convex subset of R

n, then as a polytope, and finally as a Cartesian
product of intervals.

A variety of business applications can be modeled as linear programs
under uncertainty on the objective function coefficients, see Kouvelis and
Yu (1997). As an example, Vallin (2007) presents an investment problem
under budgetary constraint and supposes that the profitability rates of the
investments are uncertain.

In Section 4.2, we define the minimax regret problem associated to a un-
certain objective linear programming problem, and we give some definitions
and notations. In Section 4.3, we present a literature survey on uncertain lin-
ear programming. In Section 4.4, we study the case when the uncertainty set
is compact and convex and give some properties of the problem. In Section
4.5, we formulate the problem under polyhedral and under interval uncer-
tainty. In Section 4.6 we provide an alternative proof of the NP-hardness
of the minimax regret linear programming problem with interval uncertain

61



62

objective function coefficients, to the one given by Averbakh and Lebedev
(2005). In Section 4.7, we present special cases when the maximum regret
and the minimax regret problems are polynomially solvable. In Section 4.8,
we propose an algorithm to find an exact solution when the set of possible
values for the uncertain coefficients is a polytope. Finally, we discuss its
numerical results in the cases of polyhedral and interval uncertainty.

4.2 Problem definition and notation

Consider the class of linear programs LP

minimize cx (4.1)

s.t. Ax ≥ b

x ≥ 0.

Assume that the coefficients of the objective function are uncertain. We
shall call this class of problems Uncertain Objective Linear Programming
Problems (UOLPP) and we shall denote by c, the n dimensional vector of
uncertain objective function coefficients. We assume that the matrix A ∈
R
m×n and the vector b ∈ R

m are fixed and we suppose that the polyhedron
P = {x ∈ R

n : Ax ≥ b, x ≥ 0} is nonempty and bounded. We denote by
V (P ) the set of vertices of P .

We shall model uncertainty using the concept of scenario. A scenario is
an assignment of possible values to each uncertain coefficient of the problem.
We denote by S the set of all scenarii and by D the set of all possible values
for the uncertain coefficients, which we shall call uncertainty set. For each
s ∈ S, we shall denote by cs = (cs1, . . . c

s
n) ∈ D the vector that corresponds

to scenario s, where csi is the value of the coefficient i in that scenario.

In this case, to each cs ∈ D corresponds a deterministic linear program-
ming problem

minimize csx (4.2)

s.t. Ax ≥ b

x ≥ 0.

We denote by X ∗s(P ) the set of all optimal solutions to the problem for
the scenario s and by x∗s a generic element of X ∗s(P ).

One possible approach to face a UOLPP is to consider a worst case anal-
ysis. This consists in looking for the best solution in the worst case situation.



63

In this approach there are no probabilities associated with the scenarii. Kou-
velis and Yu (1997) suggest various definitions of robustness in linear pro-
gramming under uncertainty. In particular, the problem to find a solution
xa ∈ P that minimize the maximum total cost,

max
cs∈D

csxa = min
x∈P

max
cs∈D

csx,

is called minimax problem. Another approach is to find a solution with the
smallest worst case relative regret, that is, a solution xr ∈ P that, in terms of
the objective function value, have the least worst percentage deviation from
the optimal solution in all cases, i.e.,

max
cs∈D

csxr − csx∗s

csx∗s
= min

x∈P
max
cs∈D

csx− csx∗s

csx∗s
.

An optimal solution to that problem will be called a minimax relative regret
solution.

In this chapter, we consider the problem of finding a solution with the
smallest worst case regret, that is, a solution that, in terms of the objective
function value, deviates the least from the optimal solution in all cases. More
precisely, consider the function

Rmax : P → R : x→ Rmax(x),

where
Rmax(x) = max

cs∈D
max
x′∈P

(csx− csx′) = max
cs∈D

(csx− csx∗s).

Given a solution x ∈ P , we call the value Rmax(x) the maximum regret of x.
The optimization problem called minimax regret problem consists in finding
y ∈ P such that

Rmax(y) = min
x∈P

Rmax(x),

where y is called a minimax regret solution to the uncertain objective linear
programming problem.

A minimax worst scenario for a solution x is a scenario in which csx, the
cost of this solution, is maximum. A worst minimax regret scenario for a
solution x is a scenario in which csx− csx∗s, i.e., the difference between the
cost of the solution x and the cost of an optimal solution in this scenario, is
maximum.

For a scenario s ∈ S, we denote by s(k, t) the scenario for which the co-

efficients of the objective function are such that (c
s(k,t)
1 , . . . c

s(k,t)
k , . . . c

s(k,t)
n ) =

cs + tek, where t ∈ R and ek is the kth canonical vector in R
n.



64

4.3 Literature survey

In the last years, considerable research has been devoted to continuous op-
timization under uncertainty, in particular on robust linear optimization. In
order to give an idea of the different techniques useful to face a uncertain
linear programming problem, we shall present here a survey of the literature.
Specifically, we discuss several ways under which uncertainty can be modeled,
complexity results, and approximation algorithms.

4.3.1 Robust counterparts of linear programs under

uncertainty

Soyster (1973) proposed a linear optimization model to face uncertainty in
the constraint coefficients of a linear program whose objective function must
be maximized. Specifically, the author considered the model,

maximize cx

subject to
n

∑

j

Ajxj ≤ b ∀Aj ∈ Kj, j = 1, . . . n

x ≥ 0,

where Aj is the jth column vector of the matrix A of uncertain coefficients
and the uncertainty sets Kj are convex. This model constructs a solution
that is feasible for all possible realizations of data that belong to a convex
set. However, this approach finds solutions that are considered as over-
conservative by several authors, because it provides a maximum protection
level against infeasibilities, see for example Bertsimas and Sim (2004b).

To address this over-conservatism of the robust solutions, Ben-Tal and
Nemirovsky (1999) Ben-Tal and Nemirovsky (1998) Ben-Tal and Nemirovsky
(2000) and independently El-Ghaoui and Lebret (1997) El-Ghaoui et al.
(1998) proposed models under the assumption that the coefficients of the
constraint matrix vary in ellipsoidal uncertainty sets and presented a num-
ber of algorithms to solve such linear optimization problems.

Ben-Tal et al. (2004) considered a uncertain linear program with uncer-
tainty in the coefficients of the constraints and in the objective function. In
this model, values of a subset of variables must be determined before the re-
alization of the uncertain parameters (“non-adjustable variables”), while the



65

Minimax regret linear optimization
Algorithms & heuristics Theory and complexity

Inuiguchi and Sakawa (1995)IU strongly
Inuiguchi and Sakawa (1996)IU NP-hard

c ∈ D Mausser and Laguna (1999)IU Averbakh and Lebedev (2005)
Mausser and Laguna (1998)IU △ properties CCU

△ algorithm PU △ properties IU
△ algorithm IU △ polynomial cases PU

△ preprocessing IU △ polynomial cases IU
polynomial

c ∈ D reducible to LP Mausser and Laguna (1999)
finite Mausser and Laguna (1998)

Other robust counterparts
Algorithms & heuristics Theory and complexity

Ben-Tal and Nemirovsky (1998) Ben-Tal and Nemirovsky (1998)
A ∈ D Ben-Tal and Nemirovsky (1999) Ben-Tal and Nemirovsky (1999)
b ∈ D Ben-Tal and Nemirovsky (2000) Ben-Tal and Nemirovsky (2000)

El-Ghaoui and Lebret (1997) El-Ghaoui and Lebret (1997)
El-Ghaoui et al. (1998) El-Ghaoui et al. (1998)

Bertsimas and Sim (2004b) Bertsimas and Sim (2004b)
Soyster (1973) Soyster (1973)

A, b, Bertsimas and Sim (2004b) Ben-Tal et al. (2004)
c ∈ D Bertsimas and Sim (2004b)

* LP algorithm * polynomial
Soyster (1973) Soyster (1973)

A ∈ D Ben-Tal and Nemirovsky (1998) Ben-Tal and Nemirovsky (1998)
Ben-Tal and Nemirovsky (1999) Ben-Tal and Nemirovsky (1999)
Ben-Tal and Nemirovsky (2000) Ben-Tal and Nemirovsky (2000)
El-Ghaoui and Lebret (1997) El-Ghaoui and Lebret (1997)

El-Ghaoui et al. (1998) El-Ghaoui et al. (1998)
Bertsimas and Sim (2004b) Bertsimas and Sim (2004b)

* Soyster ⇒polynomial
c ∈ D Soyster (1973)

Bertsimas and Sim (2004b) Bertsimas and Sim (2004b)
c ∈ D * reducible to LP *polynomial
finite
A ∈ D * reducible to LP * polynomial
finite

The following notation mean *: Absolute robustness, △: In this work, IU:
interval uncertainty, PU: polyhedral uncertainty, CCU: compact and convex
uncertainty.

Table 4.1: Linear optimization under uncertainty.



66

values of the other variables can be chosen after the realization (“adjustable
variables”).

Bertsimas and Sim (2004b) presented an approach to solve linear opti-
mization problems under interval uncertainty affecting the coefficients of the
constraints and the coefficients of the objective. This situation reduces to
the case when the objective function is not subject to uncertainty. The re-
duction consists in maximizing z and including the constraint z − cx ≤ 0
into Ax ≤ b. The robust counterpart given in Bertsimas and Sim (2004b) is

maximize cx (4.3)

subject to
∑

j

aijxj

+ max
{Si∪{ti}:Si⊆Ji,|Si|=⌊Γi⌋,ti∈Ji−Si}

{
∑

j∈Si

âijyj + (Γi − ⌊Γi⌋)âitiyti} ≤ bi ∀i (∗)

−yj ≤ xj ≤ yj ∀j

l ≤ x ≤ u

y ≥ 0.

In this model Ji represent the set of indices corresponding to the uncer-
tain coefficients appearing in the i-th constraint, denoted by aij. The authors
assume that such coefficients aij take values according to a symmetric distri-
bution in the interval [aij − âij, aij + âij]. For every i, the parameter Γi, not
necessarily integer, takes values in the interval [0, |Ji|]. The model controls
the level of conservatism in the solution by supposing that only a subset of
the coefficients of cardinality at most Γi are allowed to change for each con-
straint. In order to explain the role of the constraint (*), we first give the
formulation corresponding to the maximum protection level, that is, when
there are |Ji| uncertain coefficients affecting the i-th constraint. Consider the
model

maximize cx (4.4)

subject to
∑

j

aijxj +
∑

j∈Ji

âijyj ≤ bi ∀i

−yj ≤ xj ≤ yj ∀j ∈ Ji

l ≤ x ≤ u



67

y ≥ 0,

since âij ≥ 0 ∀i and ∀j ∈ Ji, the second constraint to problem (4.4) implies
that

aijxj + âijxj ≤ aijxj + âijyj ∀i ∀j ∈ Ji

and
aijxj − âijxj ≤ aijxj + âijyj ∀i ∀j ∈ Ji.

Since aij ∈ [aij − âij, aij + âij],

aij − âij ≤ aij ≤ aij + âij,

thus if xj ≥ 0,
aijxj − âijxj ≤ aijxj ≤ aijxj + âijxj,

otherwise
aijxj − âijxj ≥ aijxj ≥ aijxj + âijxj,

in both of cases that implies that aijxj ≤ aijxj + âijyj for all i, j ∈ Ji, and
∑

j

aijxj ≤
∑

j

aijxj +
∑

j∈Ji

âijyj ≤ bi ∀i,

thus the first constraint of problem (4.4) protects against all constraints
violations. Now if we suppose that at most Γi coefficients are allowed to
change for each constraint, we have the following formulation,

maximize cx

s.t.
∑

j

aijxj +
∑

j∈Si

âijyj + (Γi − ⌊Γi⌋)âitiyti ≤ bi

∀Si ∪ {ti} : Si ⊆ Ji, |Si| = ⌊Γi⌋, ti ∈ Ji − Si, ∀i

−yj ≤ xj ≤ yj ∀j

l ≤ x ≤ u

y ≥ 0.

and we can replace the first set of constraints of this last problem by

∑

j

aijxj + max
{Si∪{ti}:Si⊆Ji,|Si|=⌊Γi⌋,ti∈Ji−Si}

{
∑

j∈Si

âijyj +(Γi−⌊Γi⌋)âitiyti} ≤ bi ∀i

that protects against constraints violations caused by data perturbations.
The authors proved that this approach leads to a robust formulation with
the same complexity as the original problem and thus can by directly applied
to optimization problems with 0-1 variables. Table 4.1 shows a classification
of all these results and the results obtained in Chapter 4 and 5.



68

4.3.2 Linear programs under interval uncertainty in

the objective function coefficients: the minimax

regret model.

The problem of minimizing the maximum regret for linear programs under
interval uncertainty affecting the coefficients of the objective function has
been first addressed by Inuiguchi and Sakawa (1995). They proposed an
enumerative approach that requires finding all solutions that are optimal
for any extreme cost vector. Inuiguchi and Sakawa (1996), made use of a
branch-and-bound procedure instead of enumeration. Mausser and Laguna
(1998) proposed a new formulation for this problem and a solution algorithm.
Specifically, at each iteration, it solves a linear program to generate a candi-
date solution and a mixed integer program (MIP) to find the corresponding
maximum regret. Computational results are presented. Mausser and Laguna
(1999) presented a heuristic for the MIP and discuss its performance.

Averbakh and Lebedev (2005) proved that the minimax regret linear pro-
gramming problem with interval uncertain objective function coefficients is
strongly NP-hard.

4.4 Linear problems under convex and com-

pact uncertainty

Consider the minimax regret version of a UOLPP where, the uncertainty set
D is a convex and compact set in R

n. In this context, we can define the
function

r : P ×D → R : (x, cs) → r(x, cs)

r(x, cs) = max
x′∈P

(csx− csx′) = csx− csx∗s,

and we observe that for a fixed x ∈ P the function r becomes a function
rx : D → R : cs → rx(c

s), where rx(c
s) = csx − csx∗s. Then we can also

write the maximum regret of x as

Rmax(x) = max
cs∈D

rx(c
s).

So, in order to study the maximum regret functionRmax, we shall first analyze
the properties of the function rx.

4.4.1 Properties

In order to localize the worst and best minimax regret scenarii for a fixed
x ∈ P we shall study the properties of the function rx in the case of a compact



69

and convex uncertainty set.

Lemma 4.1 The function rx is continuous and piecewise linear.

Proof. The function cs → csx∗s is such that

csx∗s = min
x′∈V (P )

csx′,

since the number of vertices of the polyhedron P is finite, this function is the
minimum of a finite number of linear functions and is thus piecewise linear.
Since

rx(c
s) = csx− csx∗s = csx− min

x′∈V (P )
csx′,

thus rx is the difference of a linear function and a piecewise linear function,
hence rx is continuous and piecewise linear. �

Lemma 4.2 The function rx is convex.

Proof. Let cs1 , cs2 ∈ D. Since D is convex, for all λ ∈ [0, 1], cs0 = λcs1 +
(1 − λ)cs2 ∈ D and thus

rx(c
s0) = (λcs1 + (1 − λ)cs2)x− (λcs1 + (1 − λ)cs2)x∗s0 =

λ(cs1x− cs1x∗s0) + (1 − λ)(cs2x− cs2x∗s0) ≤

λ(cs1x− cs1x∗s1) + (1 − λ)(cs2x− cs2x∗s2) = λrx(c
s1) + (1 − λ)rx(c

s2),

hence rx is convex. �

In order to study the differentiability of the function rx, we consider the
following definition.

Definition 4.1 Let Ω =
n

⋃

k=1

Ω(k) where

Ω(k) = { cs ∈ D : ∃ y, w ∈ X ∗s(P ) and t ≥ 0 such that

(cs(k,t) ∈ D, y ∈ X ∗s(k,t)(P ) and w 6∈ X ∗s(k,t)(P )) or

(cs(k,−t) ∈ D, w ∈ X ∗s(k,−t)(P ) and y 6∈ X ∗s(k,−t)(P )) }.

The set Ω can be geometrically interpreted as the set of instance data
cs ∈ D for which X ∗s(P ) is a face of dimension at least one of the polytope
P .

In the following lemma we prove that Ω is exactly the set of instance data
where the function rx is not differentiable.



70

Lemma 4.3 For all x ∈ P the function rx is differentiable over D \ Ω.
Moreover for all cso ∈ Ω, rx is not differentiable on cso.

Proof. If cs ∈ D \Ω, then there exists a neighborhood B(cs, t) = { c ∈ R
n :

| c − cs |< t} of cs such that for all cso ∈ B(cs, t)
⋂

D, X ∗s(P ) = X ∗so(P ),
then rx is differentiable over B(cs, t)

⋂

D and then over D \ Ω.
Let k ∈ {1, . . . , n} such that Ω(k) 6= ∅, then there exist cs ∈ Ω(k) and

y, w ∈ X ∗s(P ) such that for all t ≥ 0, if cs(k,t) ∈ D then y ∈ X ∗s(k,t)(P ) and
w /∈ X ∗s(k,t)(P ) and if cs(k,−t) ∈ D, w ∈ X ∗s(k,−t)(P ) and y /∈ X ∗s(k,−t)(P ).
Under these conditions we observe that yk 6= wk.

In order to prove that for all cs ∈ Ω(k), rx is not differentiable on cs we
shall prove that ∂rx

∂ck
(cs) does not exist.

By definition

∂rx
∂ck

(cs) = lim
h→0

rx(c
s(k,h)) − rx(c

s)

h
.

If h < 0 and if cs(k,h) ∈ D then w ∈ X∗
s(k,h)(P ) and y /∈ X ∗s(k,h)(P ).

Then,

lim
h→0−

rx(c
s(k,h)) − rx(c

s)

h
= lim

h→0−

(cs(k,h)x− cs(k,h)x∗s(k,h)) − (csx− csx∗s)

h
.

Since cs(k,h)w = csw + hwk and cs(k,h)x = csx+ hxk,

lim
h→0−

(csx+ hxk) − (csw + hwk) − (csx− csw)

h
lim
h→0−

hxk − hwk
h

= xk − wk.

If h > 0 and if cs(k,h) ∈ D then y ∈ X ∗s(k,h)(P ) and

lim
h→0+

rx(c
s(k,h)) − rx(c

s)

h
= lim

h→0+

(cs(k,h)x− cs(k,h)x∗s(k,h)) − (csx− csx∗s)

h
.

Since cs(k,h)y = csy + hyk and cs(k,h)x = csx+ hxk, then

lim
h→0+

(csx+ hxk) − (csy + hyk) − (csx− csy)

h
lim
h→0+

hxk − hyk
h

= xk − yk,

and this implies that ∂rx
∂ck

(cs) does not exist and thus rx is not differentiable
over Ω. �



71

Next theorem gives the location of the worst and best minimax regret
scenarii for x ∈ P when the set of scenarii is compact and convex. In the
case where D is a Cartesian product of intervals the problem was studied by
Inuiguchi and Sakawa (1995).

Theorem 4.1 Let x ∈ P , if D is a compact and convex subset of R
n of

dimension at least one, then the data instances that correspond to the worst
and best minimax regret scenarii for x are on the boundary ∂D of D and on
∂D ∪ Ω respectively.

Proof. This property holds true since, because rx is a piecewise linear and
convex function defined in a compact and convex set. �

Corollary 4.1 If D is a polytope, the maximum regret of x ∈ P can be
calculated as

Rmax(x) = max
cs∈V (D)

rx(c
s) = max

cs∈V (D)
{csx− csx∗s} = max

cs∈V (D)
{csx− min

x′∈V (P )
csx′}.

Proof. By Theorem 4.1, the maximum regret of a x ∈ P is

Rmax(x) = max
cs∈∂D

rx(c
s) = max

cs∈∂D
{csx− csx∗s} = max

cs∈∂D
{csx− min

x′∈V (P )
csx′}.

If D is a polytope, the maximum value can always be reached in a vertex of
D, hence

Rmax(x) = max
cs∈V (D)

{csx− min
x′∈V (P )

csx′},

see Figure 4.1 �

Let us now study the function Rmax that gives the maximum regret of a
point x ∈ P .

Lemma 4.4 If D is a convex and compact subset of R
n, the function Rmax

is convex.

Proof. Let P = {x ∈ R
n : Ax ≥ b, x ≥ 0}, a nonempty polytope, since P

is a convex set, for all λ ∈ [0, 1] and all x, y ∈ P , λx + (1 − λ)y ∈ P and by
definition we have the following equality

Rmax(λx+ (1 − λ)y) = max
cs∈D

{cs(λx+ (1 − λ)y) − csx∗s}.

Let cs1 ∈ D such that

Rmax(λx+(1−λ)y) = cs1(λx+(1−λ)y)−cs1x∗s1 = λcs1x+(1−λ)cs1y−cs1x∗s1 ,



72

 

Figure 4.1: The function Rmax

since cs1x∗s1 = λcs1x∗s1 + (1 − λ)cs1x∗s1

Rmax(λx+ (1 − λ)y) = λcs1x+ (1 − λ)cs1y − λcs1x∗s1 − (1 − λ)cs1x∗s1 =

λ(cs1x− cs1x∗s1) + (1 − λ)(cs1y − cs1x∗s1) ≤ λRmax(x) + (1 − λ)Rmax(y),

hence Rmax is a convex function. �

From the last lemma, it follows that a point that minimizes the maximum
regret can be located in the interior of the polytope P . We observe that due
to Corollary 4.1, in the case where D is a polytope the proof of the last
lemma is easier. Since the number of vertices of D is finite, by Lemmas 4.1
and 4.2, Rmax is the maximum of a finite number of convex and piecewise
linear functions. Hence, Rmax is convex and piecewise linear function.

4.5 Linear problems under polyhedral uncer-

tainty

In this part we consider the case when the uncertainty set is a nonempty
polytope of the form D = {c ∈ R

n : ctE ≤ et, c ≥ 0}, where E ∈ R
n×p

and e ∈ R
p. We give an exact algorithm to find an optimal solution to

the minimax regret problem in the case of polyhedral uncertainty. Finally,
we present numerical experiments and we discuss the performance of the
algorithm.



73

4.5.1 Formulation

In the case when the uncertainty set D is a polytope, the minimax regret
problem associated to the UOLPP, can be formulated as a bilevel program-
ming problem.
Bilevel MinMaxR problem

min
x

n
∑

j=1

csj(xj − yj) (4.5)

s.t. Ax ≥ b

x ≥ 0

cs, y ∈ Argmax
cs,y

n
∑

j=1

csj(xj − yj)

s.t. Ay ≥ b

y ≥ 0

cs ∈ D.

The second level of this problem is the maximum regret problem.

max
cs,y

n
∑

j=1

csj(xj − yj) (4.6)

st Ay ≥ b

y ≥ 0

cs ∈ D.

The minimax regret and the maximum regret problems can be reformulated
as follows

min z (4.7)

s.t. cs(x− y) ≤ z, ∀ y ∈ P, ∀cs ∈ D,

Ax ≥ b

x ≥ 0,

and

min z (4.8)

s.t. cs(x− y) ≤ z, ∀ y ∈ P, ∀cs ∈ D,



74

respectively. Consequences of Corollary 4.1 are the following formulations to
the maximum regret and minimax regret problems under polyhedral uncer-
tainty.

MaxR polyhedral problem

min z (4.9)

s.t. csx− z ≤ csy, ∀ y ∈ V (P ), ∀cs ∈ V (D).

MinMaxR polyhedral problem

min z (4.10)

s.t. cs(x− y) ≤ z ∀ y ∈ V (P ) ∀cs ∈ V (D) (∗∗)

Ax ≥ b

x ≥ 0,

where P = {x ∈ R
n : Ax ≥ b, x ≥ 0} is a polytope, V (P ) is the set of

vertices of P and V (D) is the set of vertices of the polytope D = {c ∈ R
n :

ctE ≤ et, c ≥ 0}.

4.5.2 Linear problems under interval uncertainty

If we assume that D is a Cartesian product of intervals, i.e., D =
∏n

i=1

[

ci, ci
]

and ci ≤ ci, the maximum regret and the minimax regret problems under
interval uncertainty can be formulated in the following way.

MaxR interval problem

min z (4.11)

s.t. csx− z ≤ csy, ∀ y ∈ V (P ),

∀cs = (cs1, . . . , c
s
j , . . . , c

s
n), with csj ∈ {cj, cj}, j = 1 . . . n.

and the minimax regret problem as

MinMaxR interval problem

min z (4.12)

s.t. cs(x− y) ≤ z, ∀ y ∈ V (P ),

∀cs = (cs1, . . . c
s
j , . . . , c

s
n), with csj ∈ {cj, cj}, j = 1 . . . n,

Ax ≥ b,

x ≥ 0.

We denote by s the scenario for which for all i = 1 . . . n, csi = ci and by s
the scenario for which for all i = 1 . . . n, csi = ci.



75

4.6 Complexity

The following definition can be found for instance, in Bertsimas and Tsitsiklis
(1997).

Definition 4.2 Given a polyhedron P ⊂ R
n, the separation problem is to:

a) Either decide that x ∈ P , or
b) Find a vector d such that d′x < d′y for all y ∈ P .

In problems with exponentially many constraints, if we can solve the
separation problem for a family of polyhedra in polynomial time then we
can also solve the linear optimization problem in polynomial time, see e.g.
Bertsimas and Tsitsiklis (1997). In the context of our problem this means
that if we can solve the maximum regret problem in polynomial time then
we can also solve the minimax regret problem in polynomial time.

The minimax regret problem under interval uncertainty was shown to
be strongly NP-hard, see Averbakh and Lebedev (2005). Hence, the maxi-
mum regret problem under interval uncertainty and the minimax regret and
the maximum regret problems under polyhedral uncertainty are implicitly
strongly NP-hard. The following proof to the NP-hardness of the maxi-
mum regret problem under interval uncertainty can be seen as an alternative
though weaker result. The proof of this result allowed us to identify some
polynomial cases that we shall present in the following section. We first
present decision versions of the maximum regret under interval uncertainty
and the knapsack problems.

MaxR interval problem: Let K ′ ∈ R, ci, ci ∈ R for each i ∈ {1, . . . , n}
such that ci ≤ ci, a m× n matrix A , b ∈ R

m and x ∈ R
n
+ such that Ax ≥ b.

Does there exist c ∈ R
n such that ci ≤ ci ≤ ci for all i ∈ {1, . . . , n} and

y ∈ R
n
+ such that Ay ≥ b and c(x− y) ≥ K ′?

Knapsack problem: Given positive integers aj, wj ∈ Z
+ for each j ∈

{1, . . . , q} and B,K ∈ Z
+ such that

q
∑

j=1

aj ≥ B, does there exist z ∈ {0, 1}q

such that

q
∑

j=1

wjzj ≤ K and

q
∑

j=1

ajzj ≥ B?.

Theorem 4.2 The maximum regret problem is NP-hard.

Proof. We prove that the 0-1 knapsack problem, which is NP-complete,
reduces to MaxR interval problem.



76

Given any instance of the knapsack problem KP, we can construct the
following instance of the MaxR interval problem.

For n = q + 1, A =

[

1 . . . 1
−Iq+1

]

and b =

















B
−a1

.

.
−aq
−B

















, if there exists

y ∈ R
n
+ such that Ay ≥ b, then

q+1
∑

j=1

yj ≥ B, 0 ≤ yj ≤ aj for j = 1, . . . , q and

0 ≤ yq+1 ≤ B.

Set cj = 0 for j ∈ {1, . . . , q}, cq+1 = M (with M >>

q
∑

j=1

wj),

cj = wj for j ∈ {1, . . . , q}, cq+1 = M, xj = 1 for j ∈ {1, . . . , q}, xq+1 = B and

K ′ =

q
∑

j=1

cj −K +BM.

We call this special MaxR interval problem MaxR-KP and we can
rewrite it as follows,

max
c,y

q
∑

j=1

cj(1 − yj) +M(B − yq+1)

st

q+1
∑

j=1

yj ≥ B

0 ≤ yj ≤ aj for j ∈ {1, . . . , q}

0 ≤ yq+1 ≤ B

y ≥ 0

cj ∈ [0, cj]

Let us now show that the knapsack problem has a solution if and only if
there exists a feasible solution to MaxR-KP with value at least K ′. Suppose
that the knapsack problem has a solution z, i.e., there exist z ∈ {0, 1}q such

that

q
∑

j=1

wjzj ≤ K and

q
∑

j=1

ajzj ≥ B. For j ∈ {1, . . . , q} consider the solution

(ỹ, c̃) = (ỹ1, . . . , ˜yq+1, c̃1, . . . , ˜cq+1) such that



77

ỹj =

{

aj if zj = 1
0 if zj = 0.

i.e. ỹj = ajzj,

ỹq+1 = 0 and

c̃j =

{

cj if zj = 0
0 if zj = 1.

Since z is a feasible solution for KP,

q+1
∑

j=1

ỹj =

q
∑

j=1

ỹj =

q
∑

j=1

ajzj ≥ B. By

construction, for all j ∈ {1, . . . , q}, 0 ≤ ỹj ≤ aj and 0 ≤ ỹq+1 ≤ B then (ỹ, c̃)
is a feasible solution to MaxR-KP. Moreover,

q
∑

j=1

c̃j(1 − ỹj) +M(B − ỹq+1) =

q
∑

j=1

c̃j(1 − ajzj) +MB =

q
∑

j=1

cj(1 − zj) +MB =

q
∑

j=1

cj +MB −

q
∑

j=1

cjzj =

q
∑

j=1

cj +MB −

q
∑

j=1

wjzj ≥

q
∑

j=1

cj +MB −K = K ′.

Suppose now that there exists an optimal solution (y∗, c∗) to MaxR-KP
with value at least K ′. Let us now show that we can assume that such a
solution (y∗, c∗) satisfies the following six conditions.

1. c∗j =

{

cj if 0 ≤ y∗j < 1
0 if 1 ≤ y∗j ≤ aj.

this is straightforward.

2. y∗q+1 = 0.

If y∗q+1 > 0 and for some j ∈ {1, . . . , q}, y∗j < aj, we can construct
another solution (y′, c′) such that y′q+1 = y∗q+1− ǫ > 0 and y′j = y∗j + ǫ <
aj.

q
∑

j=1

c′j(1− y′j) +M(B− y′q+1) =

q
∑

j=1

c∗j(1− y∗j − ǫ) +M(B− y∗q+1 + ǫ) >

q
∑

j=1

c∗j(1 − y∗j ) +M(B − y∗q+1)



78

and then y′ has a larger regret.

If all solutions (y∗, c∗) to MaxR-KP are such that y∗q+1 > 0 and y∗j =
aj for all j ∈ {1, . . . , q}, any other the solution y′ such that y′j =

y∗j for all j ∈ {1, . . . , q} and y′q+1 = 0 is feasible because

q+1
∑

j=1

y′j =

q
∑

j=1

aj ≥ B and y′ has a larger regret.

3. Without loss of generality, we may assume that for all j ∈ {1, . . . , q}
such that y∗j ≥ 1, y∗j = aj.

If solution y∗ is such that there exists k ∈ {1, . . . , q} for which 1 ≤
y∗k < ak, then we can construct a solution y′ such that y′k = ak, and for
all j ∈ {1, . . . , q} such that j 6= k, y′j = y∗j . Since c∗k(1 − y∗k) = 0 =
c′k(1 − y′k) the solution y′ has the same regret than y∗.

4. There do not exists an optimal solution (y∗, c∗) such that for some
j ∈ {1, . . . , q}, 0 < y∗j < 1 and for all k ∈ {1, . . . , q} such that k 6= j,
y∗k = ak.

In order to prove that, we first observe that

q
∑

i=1

y∗i 6= B because for all

i ∈ I, ai and B are integers. Then if

q
∑

i=1

y∗i > B, let ǫ > 0 be such

that

q
∑

i=1

y∗i − ǫ ≥ B and let y′ be such that y′j = y∗j − ǫ > 0, and for

all k 6= j, y′k = y∗k. Then c′j(1 − y′j) = cj(1 − y′j) = cj(1 − y∗j + ǫ) >
cj(1 − y∗j ) = c∗j(1 − y∗j ) and y′ has a larger regret.

5. Without loss of generality, we may assume that the solution (y∗, c∗) is
such that, there does not exist two variables, say y∗j and y∗k such that
0 < y∗j < 1 and 0 < y∗k < 1.

If cj < ck, let ǫ > 0 and y′ be such that



79

y′j = y∗j + ǫ < 1 and y′k = y∗k − ǫ ≥ 0, then

c′j(1 − y′j) = cj(1 − y′j) = cj(1 − y∗j − ǫ) = cj(1 − y∗j ) − cjǫ

and

c′k(1 − y′k) = ck(1 − y′k) = ck(1 − y∗k + ǫ) = ck(1 − y∗k) + ckǫ

thus

c′j(1 − y′j) + c′k(1 − y′k) = cj(1 − y∗j ) − cjǫ+ ck(1 − y∗k) + ckǫ >

cj(1 − y∗j ) + ck(1 − y∗k),

hence y′ has a larger regret.

If cj = ck suppose that 0 < y∗j ≤ y∗k < 1 and let ǫ = min{| y∗j − 0 |
, |1 − y∗k|}. Construct a solution y′ such that y′j = y∗j − ǫ, y′k = y∗k + ǫ,
and for all i ∈ {1, . . . , q} such that i 6= j, and i 6= k, y′i = y∗i . Then

c′j(1 − y′j) = cj(1 − y′j) = cj(1 − y∗j + ǫ) = cj(1 − y∗j ) + cjǫ.

For the value of c′j(1 − y′j) + c′k(1 − y′k) we have two cases.

If y′k = y∗k + ǫ < 1

c′k(1 − y′k) = ck(1 − y′k) = ck(1 − y∗k − ǫ) = ck(1 − y∗k) − ckǫ

thus

c′j(1 − y′j) + c′k(1 − y′k) = cj(1 − y∗j ) + cjǫ+ ck(1 − y∗k) − ckǫ =

cj(1 − y∗j ) + ck(1 − y∗k)

hence y′ has the same regret than y∗ and we can replace y∗ for y′.

If y′k = y∗k + ǫ = 1, c′k(1 − y′k) = 0, and then

c′j(1 − y′j) + c′k(1 − y′k) = cj(1 − y∗j ) + cjǫ+ 0 =

cj(1− y∗j )+ cj(1− y∗k) = cj(1− y∗j )+ ck(1− y∗k) = c∗j(1− y∗j )+ c∗k(1− y∗k)

thus y′ has the same regret than y∗ and we can replace y∗ for y′.



80

6. There does not exist two variables, y∗j and y∗k such that 0 < y∗j < 1 and
1 ≤ y∗k < ak.

Let ǫ > 0 be such that y′j = y∗j − ǫ > 0 and y′k = y∗k + ǫ < ak then

0 < c∗j(1 − y∗j ) = cj(1 − y∗j ) < cj(1 − y∗j + ǫ) = cj(1 − y′j) = c′j(1 − y′j)

and 0 = c∗k(1 − y∗k) = c∗k(1 − y∗k − ǫ) = c′k(1 − y′k). thus y′ has a larger
regret.

Given a feasible solution (y∗, c∗) to MaxR-KP with value at least K ′ let

z ∈ {0, 1}q such that zj =

{

0 if y∗j = 0
1 if y∗j = aj

, then

K ′ ≤

q
∑

j=1

c∗j(1 − y∗j ) +MB =

q
∑

j=1

cj(1 − zj) +MB =

q
∑

j=1

cj −

q
∑

j=1

cjzj +MB

since K ′ =

q
∑

j=1

cj−K+BM then −K ≤ −

q
∑

j=1

cjzj, and since cj = wj, then

q
∑

j=1

wjzj ≤ K.

Moreover B ≤

q+1
∑

i=1

yi =

q
∑

i=1

yi =

q
∑

i=1

ajzj. Hence the knapsack problem

has a solution.
Given any instance of the knapsack problem, the instance of MaxR inter-

val problem can be constructed in polynomial time. We then conclude that
the MaxR interval problem is NP-hard. �

4.7 Polynomial cases

In order to identify special cases when the maximum regret and minimax
regret problems under polyhedral uncertainty are polynomial, consider the
following sets.

A1 = {i ∈ I : ∀cs ∈ D csi > 0},
A2 = {i ∈ I : ∀cs ∈ D csi < 0},
A3 = {i ∈ I : ∃cs1 , cs2 ∈ D such that cs1i ≤ 0 and cs2i ≥ 0}.

Clearly I = A1 ∪ A2 ∪ A3 and Ai ∩ Aj = ∅ for i 6= j.



81

Proposition 4.1 If D is a nonempty and bounded polyhedron, if A3 = ∅
and the polyhedron P = {x ∈ R

n : Ax ≥ b, x ≥ 0} is an hyperectangle

P =
n

∏

i=1

[

yi, yi
]

, then the minimax regret is equal to zero and the coordinates

of the minimax regret solution x∗ are

{

x∗i = yi if i ∈ A1

x∗i = yi if i ∈ A2.

Proof. Under these assumptions, the maximum regret for any x ∈ P is

Rmax(x) = max
cs∈D

{

∑

i∈A1

csi (xi − yi) +
∑

i∈A2

csi (xi − yi)

}

≥ 0.

Since x∗ is such that Rmax(x
∗) = 0 it is a minimax regret solution. �

4.7.1 Polynomial cases under interval uncertainty

In this section, we shall study some cases when the minimax regret and
maximum regret problems under interval uncertainty are polynomial.

Consider a nonempty polytope P = {x ∈ R
n : Ax ≥ b, x ≥ 0} and the

hyperectangle Q =
n

∏

i=1

[

yi, yi
]

where yi and yi are optimal solutions to the

problems

maximize yi

subject to Ay ≥ b

y ≥ 0,

and

minimize yi

subject to Ay ≥ b

y ≥ 0,

respectively. Hence P ⊆ Q, and we have the following polynomial cases.



82

Proposition 4.2 If each vertex of P = {x ∈ R
n : Ax ≥ b, x ≥ 0} is a

vertex of Q =
n

∏

i=1

[

yi, yi
]

and D =
n

∏

i=1

[

ci, ci
]

, then the maximum regret is

equal to

Rmax(x) =
n

∑

i=1

ci(xi − yi)

(

yi
yi − yi

)

+ ci(xi − yi)

(

−yi

yi − yi

)

+

−min
y∈P

n
∑

i=1

{

ci

(

yi − xi
yi − yi

)

+ ci

(

xi − yi

yi − yi

)}

yi

and the maximum regret and the minimax regret are polynomially solvable.

Proof. In the case when each vertex of P = {x ∈ R
n : Ax ≥ b, x ≥ 0} is a

vertex of Q =
n

∏

i=1

[

yi, yi
]

, for a fixed x ∈ P the component csi (xi − yi) of the

maximum regret satisfies one of the following conditions:

1. If yi = yi the component csi (xi−yi) of the maximum regret is csi (xi−yi)
and that is maximum for csi = ci.

2. If yi = yi the component csi (xi−yi) of the maximum regret is csi (xi−yi)
and that is maximum for csi = ci.

Thus the maximum regret for a fixed x ∈ P is

max
y∈P

n
∑

i=1

{

ci(xi − yi)

(

yi − yi
yi − yi

)

+ ci(xi − yi)

(

yi − yi

yi − yi

)}

=

n
∑

i=1

{

ci(xi − yi)

(

yi
yi − yi

)

+ ci(xi − yi)

(

−yi

yi − yi

)}

+

max
y∈P

n
∑

i=1

{

ci(xi − yi)

(

−yi
yi − yi

)

+ ci(xi − yi)

(

yi
yi − yi

)}

=

n
∑

i=1

{

ci(xi − yi)

(

yi
yi − yi

)

+ ci(xi − yi)

(

−yi

yi − yi

)}

+

−min
y∈P

n
∑

i=1

{

ci

(

yi − xi
yi − yi

)

+ ci

(

xi − yi

yi − yi

)}

yi,



83

and that can be calculated in polynomial time optimizing over P with cost
coefficients equal to

ci

(

yi − xi
yi − yi

)

+ ci

(

xi − yi

yi − yi

)

hence we can also solve the MinMaxR interval problem in polynomial time.
�

The following result is a particular case of Proposition 4.2, but it is in-
teresting because implies that for interval UCOP problems the maximum
regret for a fixed x can be calculated in polynomial time if and only if the
corresponding COP problem is polynomial.

Corollary 4.2 If all coordinates of each vertex of the polytope

P = {x ∈ R
n : Ax ≥ b, x ≥ 0}

are equal to 0 or 1, and the uncertainty set is

D =
n

∏

i=1

[

ci, ci
]

,

then the maximum regret for a fixed x ∈ P is equal to

Rmax(x) =
n

∑

i=1

cixi − min
y∈P

n
∑

i=1

{

ci(1 − xi) + cixi
}

yi,

and the maximum regret and the minimax regret version can be calculated in
polynomial time.

Proof. This is a direct consequence of Proposition 4.2 �

We study next the sub-case where the polyhedron P is an hyperectangle.
In this case we can give explicitly the value of the minimax regret and the
coordinates of the minimax regret solution.

Proposition 4.3 If the polyhedron P = {x ∈ R
n : Ax ≥ b, x ≥ 0} is an

hyperectangle P =
n

∏

i=1

[

yi, yi
]

and D =
n

∏

i=1

[

ci, ci
]

, then the maximum regret

of x ∈ P is

Rmax(x) =
∑

i∈A1

ci(xi − yi) +
∑

i∈A2

ci(xi − yi)+ (4.13)



84

∑

i∈A3

−cici
ci − ci

(yi − yi) + max
cs∈D

∑

i∈A3

(

xi −
−ciyi + ciyi

ci − ci

)

csi ,

and can be calculated in polynomial time. The minimax regret is equal to

min
x∈P

Rmax(x) =
∑

i∈A3

−cici
ci − ci

(yi − yi),

and the coordinates of the minimax regret solution x∗ are











x∗i = yi if i ∈ A1 = {i ∈ I : ci > 0}
x∗i = yi if i ∈ A2 = {i ∈ I : ci < 0}

x∗i =
−ciyi+ciyi

ci−ci
if i ∈ A3 = {i ∈ I : ci ≤ 0 and ci ≥ 0}.

Proof. In the case when the polyhedron P = {x ∈ R
n : Ax ≥ b, x ≥ 0} is

the hyperectangle P =
∏n

i=1

[

yi, yi
]

, for a fixed x ∈ P a component csi (xi−yi)
of the maximum regret satisfies one of the following conditions:

1. If i ∈ A1, the component of the maximum regret is csi (xi− yi) and it is
maximum for csi = ci.

2. If i ∈ A2 the component of the maximum regret is csi (xi − yi) and it is
maximum for csi = ci.

3. If i ∈ A3 and csi = ci the component of the maximum regret is ci(xi−yi)
and it is maximum for yi = yi.

If i ∈ A3 and csi = ci i ∈ A3 the component of the maximum regret is
ci(xi − yi) and it is maximum for yi = yi.

Then the maximum regret for a fixed x ∈ P is

Rmax(x) = max
y∈P

max
cs∈D

n
∑

i=1

csi (xi − yi) =
∑

i∈A1

ci(xi − yi) +
∑

i∈A2

ci(xi − yi)+

max
cs∈D

∑

i∈A3

{

ci(xi − yi)

(

csi − ci

ci − ci

)

+ ci(xi − yi)

(

ci − csi
ci − ci

)}

=

∑

i∈A1

ci(xi − yi) +
∑

i∈A2

ci(xi − yi)+



85

∑

i∈A3

{

ci(xi − yi)

(

−ci
ci − ci

)

+ ci(xi − yi)

(

ci
ci − ci

)}

+

max
cs∈D

∑

i∈A3

{

ci(xi − yi)

(

csi
ci − ci

)

− ci(xi − yi)

(

csi
ci − ci

)}

=

∑

i∈A1

ci(xi − yi) +
∑

i∈A2

ci(xi − yi)+

∑

i∈A3

−cici
ci − ci

(yi − yi) + max
cs∈D

∑

i∈A3

(

xi −
−ciyi + ciyi

ci − ci

)

csi ,

and that can be calculated in polynomial time optimizing overD =
n

∏

i=1

[

ci, ci
]

with cost coefficients equal to xi −
−ciyi+ciyi

ci−ci
if i ∈ A3 and 0 if i /∈ A3. We

observe that
∑

i∈A1

ci(xi − yi) ≥ 0,
∑

i∈A2

ci(xi − yi) ≥ 0 and

max
cs∈D

∑

i∈A3

(

xi −
−ciyi + ciyi

ci − ci

)

csi ≥ 0.

This last inequality holds because for i ∈ A3 if xi −
−ciyi+ciyi

ci−ci
≥ 0 the max-

imum over cs ∈ D is reached for csi = ci > 0 and if xi −
−ciyi+ciyi

ci−ci
< 0 the

maximum is reached for csi = ci < 0.

Since
−ciyi+ciyi

ci−ci
is a convex combination of yi and yi and P =

n
∏

i=1

[

yi, yi
]

,

then there exists a x∗ ∈ P such that










x∗i = yi if i ∈ A1 = {i ∈ I : ci > 0}
x∗i = yi if i ∈ A2 = {i ∈ I : ci < 0}

x∗i =
−ciyi+ciyi

ci−ci
if i ∈ A3 = {i ∈ I : ci ≤ 0 and ci ≥ 0},

hence the minimax regret in this case is equal to

min
x∈P

Rmax(x) = min
x∈P

{

∑

i∈A1

ci(xi − yi) +
∑

i∈A2

ci(xi − yi)

}

+

min
x∈P

{

∑

i∈A3

−cici
ci − ci

(yi − yi) + max
cs∈D

∑

i∈A3

(

xi −
−ciyi + ciyi

ci − ci

)

csi

}

=



86

∑

i∈A3

−cici
ci − ci

(yi − yi) = Rmax(x
∗)

and can be calculated in polynomial time. �

In Section 4.4, we have shown that an optimal solution x∗ to the Min-
MaxR problem can be located in the interior of P and in such case x∗ is not
a feasible solution to the minimax regret combinatorial problem.

Clearly, for a fixed x ∈ P and each vertex v of P

max
cs∈D

n
∑

i=1

csi (xi − vi) ≤ Rmax(x)

and then optimizing over D =
∏n

i=1

[

ci, ci
]

each vertex v of P gives a lower
bound for the maximum regret of x ∈ P . Then if V ′ = {y1, y2 . . . yk} ⊂ V (P )
is a finite subset of vertices of P , it holds that

max
y∈V ′

max
cs∈D

n
∑

i=1

csi (xi − yi) ≤ Rmax(x)

and this lower bound to the maximum regret of x ∈ P can be calculated in
polynomial time.

Considering the formulation (4.12) of the MinMaxR interval problem and
a finite subset of constraints csi(x−yi) ≤ z, indexed by I, where csi ∈ {c, c}n

and yi ∈ V (P ), we can construct the following relaxed problem

min z
s.t. Ax ≥ b

x ≥ 0
csi(x− yi) ≤ z i ∈ I.

Let (x, z) a optimal basic feasible solution to the last problem. Since for
all x ∈ P

max
i∈I

csi(x− yi) ≤ max
y∈V (P )

max
cs∈V (D)

cs(x− y) = Rmax(x),

thus

z = max
i∈I

csi(x− yi) = min
x∈P

max
i∈I

csi(x− yi) ≤ min
x∈P

Rmax(x) (4.14)

and
min
x∈P

Rmax(x) ≤ Rmax(x).



87

Hence z and Rmax(x) are lower and upper bounds for the value of the Mini-
Max interval problem respectively.

In the following section, we present an algorithm to solve the minimax
regret problem under polyhedral uncertainty, our algorithm uses the lower
bound of (4.14) at each iteration.

4.8 An exact algorithm

In the case of interval uncertainty, Mausser and Laguna (1998) give an exact
algorithm to solve this problem and Mausser and Laguna (1999) present a
heuristic to solve the minimax regret problem. In this section, we present
an algorithm to find an exact solution to the minimax regret problem under
polyhedral uncertainty, that is, a solver to the problem

min z (4.15)

s.t. cs(x− y) ≤ z, ∀ y ∈ P, ∀cs ∈ D,

Ax ≥ b

x ≥ 0,

in the case when the uncertainty set D is a polytope of the form, D = {c ∈
R
n : ctE ≤ et, c ≥ 0}, where E ∈ R

n×p and e ∈ R
p.

The algorithm at each iteration, solves at optimality a relaxed linear pro-
gram to generate a candidate solution and then it computes a lower bound for
the maximum regret of this candidate either to generate a new cut constraint
or to conclude that this current solution is optimal for the minimax regret
problem. To compute the lower bound for the maximum regret problem we
use a branch and bound algorithm called CBA, given by Alarie et al. (2001),
which makes use of concavity cuts to solve a disjoint bilinear programming
problem. We adapt their implementation to our problem.

The disjoint bilinear programming problem considered by Alarie et al.
(2001), is

max
w,u

κtw − utQw + utδ (4.16)

st Aw ≤ α

utB ≤ βt

w ≥ 0

u ≥ 0.



88

where

κ ∈ R
nw ; α ∈ R

nv ; A ∈ R
nv×nw ; Q ∈ R

nu×nw

δ ∈ R
nu ; β ∈ R

ny ;B ∈ R
nu×ny .

The reduction:

In the case when D = {c ∈ R
n : ctE ≤ et, c ≥ 0}, where E ∈ R

n×p and
e ∈ R

p, the maximum regret of x formulated as

max
cs,y

cs(x− y) (4.17)

s.t. Ay ≥ b

y ≥ 0

cs ∈ D

can be reduced to the problem (4.16), for κ = 0, w = y, u = cs, Q = In
(the identity matrix of size n), δ = x, A = −A, α = −b, B = B, β = e,
nu = nw = n, nv = m and ny = p.

In the case when D =
∏n

j=1

[

cj, cj

]

and cj ≤ cj, without loss of generality,

suppose that there does not exist i ∈ {1, . . . , n} such that ci = ci = 0, (in
such case we can eliminate the term csi (xi − yi) and the variables csi and
yi to the problem (4.17)). The problem (4.17) can be reformulated as a
particular case of problem (4.16), for nu = 2n, nw = n, nv = m and ny = 2n,
κ = 0, w = y, replacing the n variables csj by 2n positive variables ui, on the
following way,

csj =







uj if cj ≥ 0,
−uj if cj ≤ 0,
uj − un+j if cj < 0 < cj.

The matrix Q ∈ R
2n×n is constructed in such a way that for j = 1, . . . , n

and i = 1, . . . , 2n,

Qij =























1 if i = j and cj ≥ 0,
−1 if i = j and cj ≤ 0,
−1 if i = n+ j and cj < 0 < cj,
0 if i = n+ j and cj ≥ 0 or cj ≤ 0,
0 if i 6= j and i 6= n+ j,

and the matrix B ∈ R
2n×2n is for j = 1 . . . 2n and i = 1 . . . 2n, such that



89

Bij =







































1 if i = j ≤ n and (cj ≥ 0 or cj < 0 < cj)
−1 if i = j ≤ n and cj ≤ 0,
1 if i = j > n and cj−n < 0 < cj−n,
0 if i = j > n and cj−n ≥ 0 or cj−n ≤ 0,
1 if i = j − n, j ≥ n+ 1 and cj ≤ 0
−1 if i = j − n j ≥ n+ 1 and cj ≥ 0
0 otherwise

δ = x, A = −A, α = −b, for j = 1, . . . , n, βj = cj and for j = n + 1 . . . 2n
βj = −cj−n. In both of the cases, we can use this branch and bound algorithm
to solve the maximum regret problem.

We can see that in general it is impossible to generate and store the
constraints cs(x − y) ≤ z for all cs ∈ V (D) and for all vertex y of the poly-
hedron P , because the number of variables and vertices can be very large.
Instead of dealing with all these constraints, we shall present an algorithm
that combines the CBA algorithm with a relaxation procedure. The relax-
ation procedure is a well known technique to solve mixed integer problems of
big size (see e.g. Minoux (1983)). We consider a finite subset of constraints
of type csi(x−yi) ≤ z indexed by the set J , where csi ∈ V (D) and yi ∈ V (P )
constructed in the following way. In the case of polyhedral but non interval
uncertainty, we first fix the value of |J |, and then we choose randomly |J | vec-
tors vi ∈ {−1, 1}nw . Then we solve each corresponding linear programming
problem

min vics (4.18)

s.t. cs ∈ D

to obtain solutions csi ∈ V (D). In the case of interval uncertainty, we choose
randomly |J | vectors vi ∈ {0, 1}nw . If vij = 1, we fix csi

j = cj and if vij = 0,
we set csi

j = cj. We solve the corresponding linear programming problems

min csix (4.19)

s.t. Ax ≥ b

x ≥ 0

to obtain optimal solutions yi ∈ V (P ) to each one of these problems and
then we construct a subset of constraints csi(x− yi) ≤ z, indexed by J . We
form the relaxed problem



90

min z (4.20)

s.t. Ax ≥ b

x ≥ 0

csi(x− yi) ≤ z, i ∈ J

which we solve to optimality, finding an optimal basic feasible solution (x, z).
Then we construct the maximum regret problem (4.17) associated to x

max
cs,y

cs(x− y)

s.t. Ay ≥ b

y ≥ 0

cs ∈ D.

To solve the problem (4.17) is the most time consuming part of the al-
gorithm, thus in order to accelerate it, we do not ask to solve the problem
(4.17) to optimality at each iteration. We fix a parameter ρ = 0.0001. If
CBA finds a current solution (csk , yk) such that the value csk(x− yk) is big-
ger that the value of the current relaxed problem z plus ρ one cut is found
and CBA is stopped. We compare the value csk(x− yk) with z and we have
two possibilities.

1. If csk(x−yk) ≤ z then (x, z) is a feasible solution to the original problem
(4.15). Any other feasible solution (x, z) to the problem (4.15) is also
feasible for the relaxed problem (4.20). Therefore by optimality of (x, z)
for the problem (4.20) we have z ≤ z. Then (x, z) is an optimal solution
to the original problem (4.15) and we can terminate the algorithm.

2. If csk(x − yk) > z, then (x, z) is infeasible for the problem (4.15) and
we have found a violated constraint. Then, we add the constraint
csk(x− yk) ≤ z to the relaxed problem (4.20) and continue similarly.

We observe that this algorithm terminates after a finite number of iterations
because the maximum regret problem yields always a solution (csk , yk) such
that yk ∈ V (P ) and csk ∈ V (D). The different steps of the algorithm are as
follows.

Algorithm to solve the MinMaxR polyhedral problem.

Input: P : polytope of constraints; D: the uncertainty set of coefficients,
both of them of dimension n.



91

Output an optimal solution (x∗, z∗) to the minimax regret problem.

Data (polyhedral uncertainty case) A : a n×m matrix; E: a n×p matrix;
b: a m dimensional vector; e: a p dimensional vector.

Data (interval uncertainty case) A : a n×m matrix; b: a m dimensional
vector; c : a n dimensional vector; c : a n dimensional vector.

1. fix the value |J |.

2. fix the value ρ = 0.001.

3. in the case of non interval uncertainty choose vectors v1 ∈ {−1}nw and
v2 ∈ {1}nw . Otherwise go to 6.

4. construct the corresponding problem (4.18).

5. find csi ∈ V (D) solving the problem (4.18). Go to 7.

6. in the case of interval uncertainty choose randomly |J | vectors vi ∈
{0, 1}nw . If vij = 1 csi

j = cj and if vij = 0 csi

j = cj and choose vectors

v|J |+1 ∈ {−1}nw and v|J |+2 ∈ {1}nw and

7. construct the corresponding problem (4.19).

8. find yi ∈ V (P ) solving the problem (4.19).

9. construct the problem (4.20).

10. find an optimal solution (x, z) to problem (4.20).

11. construct the maximum regret problem (4.17) associated to x.

12. reduce the problem (4.17) to the problem (4.16)

13. run algorithm CBA, if CBA finds a current solution (csk , yk) such that
csk(x− yk) > z + ρ, stop CBA.

14. if csk(x− yk) > z, add the cut csk(x− yk) ≤ z to (4.20) and go to 7.

15. if csk(x − yk) ≤ z, we set x = x∗, z = z∗ and stop ( x∗ minimizes the
maximum regret).

16. Return an optimal solution (x∗, z∗).



92

4.8.1 Numerical results

In this section, the algorithm has been tested in the case of polyhedral and
interval uncertainty. Its performance is discussed on randomly generated in-
stances. For the polyhedral uncertainty case the computational experiments
were made on a Pentium II 400MHz station under Linux 2.2.16-SMP with
384 MB of RAM. In the interval uncertainty case, the experiments were made
on a Pentium III 1 GHz station under Linux 2.4.20-60GB-SMP with 1 GB
of RAM. The algorithm was coded in C (compiler gcc) and uses the CPLEX
7.0 library to solve the linear programs.

The mean value µ and the standard deviation σ of the computing time
in seconds and of the number of iterations of 10 randomly generated prob-
lems of density parameter ∆ are given in the columns labeled time and Iter
respectively.

Polyhedral uncertainty

In Tables 4.2 to 4.5, the coefficient nw is the dimension of the space, nv
the number of constraints defining the polytope P and ny is the number of
columns of the matrix B. The number of initial constraints added at the
first iteration is 2, we choose v1 = {−1}nw and v2 = {1}nw . In this case,
the problems were generated using a problem generator similar to the one
proposed by Audet et al. (1999) and Alarie et al. (2001), i.e., to generate a
minimax regret problem

max
c,y

p
∑

j=1

cj(xj − yj)

st Ay ≥ b

ctE ≤ et

y ≥ 0

the elements of the vectors b and e are randomly chosen between -10 and 10.
For each element of the matrix A and E a random number between 0 and 1 is
generated. If the number is less than ∆, then the element is randomly chosen
between -20 and 20, otherwise it is fixed to 0. Some entries are added to the
matrix A in order to ensure that there is no empty line or column. Then, the
additional constraints 1tx ≤ nw and ct1 ≤ ny ensure that the polyhedrons
P = {x ∈ R

n : Ax ≥ b, x ≥ 0} and D = {c ∈ R
n : ctE ≤ et, c ≥ 0} are

bounded.
Table 4.2 presents the behavior of the algorithm on small instances. For

larger problems, Tables 4.3 to 4.5 confirm that the difficulty increases with the



93

0 5 10 15 20 25 30 35 40 45 50
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Number of iterations

O
bj

ec
tiv

e 
va

lu
e

 value of an optimal solution x to the relaxed problem
 
lower bound to the maximum regret of x.
 

Figure 4.2: Convergence of the algorithm for nw = 50 and matrix density 0.5

dim. nw = 10 nv = 20 ny = 20 nw = 20 nv = 40 ny = 40
∆ time Iter time Iter

0.05 µ 0.82 1.22 38.67 6.00
σ 0.85 0.67 69.17 9.15

0.1 µ 1.30 2.22 207.79 11.30
σ 1.53 0.97 396.99 8.76

0.3 µ 13.27 5.90 16.75 16.00
σ 23.05 3.03 13.56 7.35

0.5 µ 81.42 8.30 28.57 15.30
σ 114.34 4.00 32.62 9.24

0.7 µ 74.09 8.00 31.15 16.50
σ 191.04 3.68 39.99 9.63

0.9 µ 227.51 8.30 39.72 16.80
σ 227.94 2.67 28.45 7.10

Table 4.2: Polyhedral uncertainty. Computing time and number of iterations
for nw = 10, 20.



94

dim. nw = 40 nv = 80 ny = 80 nw = 50 nv = 100 ny = 100
∆ time Iter time Iter

0.05 µ 14.76 14.00 41.56 27.40
σ 20.73 10.95 55.95 21.58

0.1 µ 21.08 18.70 91.70 28.60
σ 8.57 5.89 140.37 14.81

0.3 µ 190.18 28.60 221.85 30.30
σ 286.12 18.41 251.18 16.12

0.5 µ 275.21 29.30 345.37 26.20
σ 213.17 12.70 217.15 9.02

0.7 µ 176.00 24.50 600.48 32.70
σ 107.44 9.59 399.16 16.19

0.9 µ 187.40 20.10 441.84 27.90
σ 138.79 10.27 270.38 11.34

Table 4.3: Polyhedral uncertainty. Computing time and number of iterations
for nw = 40, 50.

dimension nw and with the density ∆. Figure (4.2) shows the convergence
of the algorithm for a problem with nw = 50, 100 constraints and matrix
density equal to 0.5.

Interval uncertainty

In Tables 4.6 to 4.8, the algorithm is tested in the case of interval uncertainty.
Its performance is discussed on randomly generated instances. The coefficient
N gives the instance dimensions, N = 3nw where nw is the dimension of the
space and nv is the number of constraints defining the polyhedron P . The
number of initial constraints added to the departure are given in the row
labeled inic. const. In this part, to generate a maximum regret problem we
consider the model

max
c,y

p
∑

j=1

cj(xj − yj)

st Ay ≥ b

y ≥ 0

cj ∈
[

cj, cj
]

,



95

dim. nw = 60 nv = 120 ny = 120 nw = 70 nv = 140 ny = 140
∆ time Iter time Iter

0.05 µ 40.34 34.30 58.13 41.20
σ 21.66 13.91 27.73 15.91

0.1 µ 421.79 47.10 960.06 64.30
σ 592.03 26.98 968.48 30.27

0.3 µ 517.10 37.80 1513.57 51.70
σ 656.39 20.82 906.27 20.49

0.5 µ 737.08 30.30 1274.54 31.40
σ 441.31 9.04 1014.09 12.21

0.7 µ 883.37 30.00 2027.39 36.90
σ 834.80 16.34 923.44 12.03

0.9 µ 1295.93 32.20 2460.89 37.00
σ 715.86 14.14 671.99 12.27

Table 4.4: Polyhedral uncertainty. Computing time and number of iterations
for nw = 60, 70.

dim. nw = 100 nv = 200 ny = 200 nw = 200 nv = 400 ny = 400
∆ time Iter time Iter

0.05 µ 685.00 66.64 15176.68 147.20
σ 1150.79 42.04 6412.55 40.34

0.1 µ 1685.31 62.80 27586.68 89.80
σ 1665.69 33.04 15662.59 29.59

0.3 µ 3645.35 50.90 47802.80 69.00
σ 4305.42 19.60 20362.99 22.01

0.5 µ 3138.10 36.80 47551.20 60.50
σ 1784.10 11.05 27097.19 21.04

0.7 µ 3724.14 34.00 5846.09 55.00
σ 2205.15 13.41 26.34 0.00

0.9 µ 6594.42 36.70 6054.65 30.00
σ 5180.63 14.61 11.59 0.00

Table 4.5: Polyhedral uncertainty. Computing time and number of iterations
for nw = 100, 200.



96

dim. N = 60 nw = 20 nv = 20 N = 90 nw = 30 nv = 30
inic. 3nw + 2 3nw + 2

const.
∆ time Iter time Iter

0.1 µ 4.42s 8.30 10.15s 12.50
σ 2.92s 6.18 4.13s 11.59

0.3 µ 7.97s 13.60 10.93s 9.70
σ 9.29s 8.76 3.19s 5.77

0.5 µ 41.33s 12.40 14.32s 10.90
σ 112.49s 7.18 5.79s 10.38

0.9 µ 6.38s 8.30 17.98s 9.80
σ 2.56s 6.24 7.09s 5.33

Table 4.6: Interval uncertainty. Computing time and number of iterations
for nw = 20, 30

where the elements of the vectors b, c and c are randomly chosen between
-10 and 10 and then if there exists a j for which cj > cj we change the sign of
these elements in order to represent an real interval. For each element of the
matrixA a random number between 0 and 1 is generated. If the number is less
than ∆, then the element is randomly chosen between -20 and 20, otherwise
it is fixed to 0. Some entries are added to the matrix A in order to ensure
that there are no empty lines or columns. Then, the additional constraint
1tx ≤ nw assure that the polyhedron P = {x ∈ R

n : Ax ≥ b, x ≥ 0} is
bounded.

In order to avoid the value z = 0 at the first iteration, in these experi-
ments, we add the constraints cs(x − x∗s) ≤ z and cs(x − x∗s) ≤ z to the
relaxed problem (4.20).

Computing times in seconds are given in the columns labeled time and
the number of iterations appears in the columns Iter.

Table 4.6 presents the behavior of the algorithm on small instances. For
larger problems Tables 4.7 and 4.8 confirm that the difficulty increases with
the dimension nw and with the density ∆. In Table 4.6 to 4.7, we begin
always with 3nw + 2 initial constraints. The above numerical results show
that our algorithm is quite efficient for instances where nw ≤ 200. In the
following chapter we shall present a preprocessing procedure which reduces
considerably the performance of our algorithm in the case of interval uncer-
tainty.



97

dim. N = 210 nw = 70 nv = 70 N = 300 nw = 100 nv = 100
inic. 3nw + 2 3nw + 2

const.
∆ time Iter time Iter

0.5 µ 94.40s 30.20 216.96s 16.10
σ 31.88s 25.80 25.36s 6.92

0.10 µ 90.27s 21.00 264.71s 29.20
σ 24.03s 18.01 72.57s 24.54

0.30 µ 154.51s 38.10 417.02s 38.80
σ 72.53s 37.54 173.29s 27.48

0.50 µ 154.90s 27.00 704.78s 61.40
σ 49.11s 18.62 387.63s 33.14

0.70 µ 209.57s 30.90 472.23s 22.10
σ 134.33s 28.76 130.15s 19.01

0.90 µ 173.53s 14.30 593.56s 27.60
σ 38.61s 7.17 242.26s 20.48

Table 4.7: Interval uncertainty. Computing time and number of iterations
for nw = 70, 100

dim. N = 600 nw = 200 nv = 200
inic. const. 3nw + 2

∆ time Iter
0.05 µ 2299.26s 80.10

σ 1047.16s 86.78
0.10 µ 3109.35s 93.00

σ 1385.90s 77.10
0.30 µ 3662.99s 44.33

σ 977.01s 32.22

Table 4.8: Interval uncertainty. Computing time and number of iterations
for nw = 200



98



Chapter 5

Robustness in linear

programming and the center

location problem

5.1 Introduction

In Chapter 4 we have shown that the minimax regret linear programming
problem under uncertainty in the objective function coefficients is a convex
piecewise linear optimization problem over a polytope. Since in location
theory such kinds of models are frequently used, we present the relations be-
tween the 1-center problem in location theory and the minimax regret linear
programming problem under interval uncertainty in the objective function
coefficients. Such relations allow us to describe the underlying geometry of
this last problem and to prove that we can eliminate the 0-persistent vari-
ables. Finally we give sufficient conditions for a variable to be 0-persistent
and we test these conditions in randomly generated instances.

Given a set A = {a1, . . . , am} of m points or facilities in R
n, the 1-center

problem in R
n under a norm or a gauge γ consists in looking for a point

x ∈ R
n to minimize the maximum “distance” (symmetry is not necessarily

required) defined by the given norm or gauge, to each of the given points.
The “distance” function verifies the properties:

1. γ(x− y) ≥ 0 ∀x, y ∈ R
n.

2. γ(x− y) = 0 ⇔ x = y.

3. γ(x− y) ≤ γ(x− z) + γ(z − y) ∀x, y, z ∈ R
n.

99



100

The minimax objective function corresponds among others, to location
problems of emergency services. This problem can be formulated as

min
x∈Rn

max
aj∈A

{γ(x− aj)}.

One of the goals of this chapter is to describe the underlying geometry of
the minimax regret linear programming problem when the objective function
coefficients are subject to interval uncertainty and to relate that problem with
the 1-center problem. We shall generalize some results in location theory and
in the case when the polytope is full dimensional and all the constraints are
non redundant, we shall give conditions under which some variables can be
eliminated from the problem.

5.2 Models and notations

In this chapter we shall assume thatD is a Cartesian product of intervals, i.e.,
D =

∏n

i=1

[

ci, ci
]

and ci < ci . We shall consider the following formulation
to the minimax regret interval problem (4.12) established in Chapter 4,

MinMaxR interval problem

min z
s.t. cs(x− y) ≤ z, ∀ y ∈ V (P ), ∀cs = (cs1, . . . c

s
j , . . . , c

s
n),

with csj ∈ {cj, cj}, j = 1 . . . n,
Ax ≥ b,
x ≥ 0.

and the following reformulation, consequence of Corollary 4.1

min z (5.1)

s.t. csx− miny∈P c
sy ≤ z ∀csj ∈ {cj, cj}, j = 1, . . . , n,

Ax ≥ b,

x ≥ 0.

Averbakh and Lebedev (2005) proves that the minimax regret linear pro-
gramming problem with interval uncertain objective function coefficients is
strongly NP-hard. However, when the dimension n is fixed the MinMaxR in-
terval problem becomes polynomial. Indeed, the above linear problem (4.12)
contains n+ 1 variables x1, . . . , xn and z. Further, its number of constraints



101

may be exponential but they can be separated in polynomial time. More
precisely, finding an inequality csx − z ≤ csy, that is violated by a current
solution (x, z) amounts to solve the following 2n linear programming prob-
lems:

z∗ = minimize cy

subject to Ay ≥ b

x ≥ 0,

for c ∈
∏n

i=1{ci, ci} and check each time whether z∗ < cx− z.

In this chapter we shall also consider the following relaxation of the Min-
MaxR interval problem:

Relaxed MinMaxR interval problem

min z (5.2)

s.t. cs(x− y) ≤ z ∀ y ∈ V (P )

∀cs = (cs1, . . . c
s
j , . . . , c

s
n), with csj ∈ {cj, cj}, j = 1 . . . n.

Let A = {a1, . . . , am} be a set of m points in R
n and let γ be a norm or

a gauge. The 1-center problem can be reformulated as

1-center problem

minimize z (5.3)

subject to γ(x− aj) ≤ z, j = 1, . . . ,m,

x ∈ R
n.

Introducing a polyhedral feasibility region P = {x ∈ R
n : Ax ≥ b, x ≥ 0},

the 1-center problem under γ with the additional restriction that x ∈ P can
be formulated as the following linear program

Restricted 1-center problem

min z (5.4)

subject to γ(x− aj) ≤ z, j = 1, . . . ,m,

Ax ≥ b,

x ≥ 0.



102

5.3 Useful properties

In this section we present results concerning gauges, norms and convex op-
timization problems. Those results have been used to derive properties of
location problems such as the continuous 1-center. They will also be used
in the sequel of that chapter, namely to show links between the MinMaxR
interval problem and the continuous 1-center.

Consider a set of k different linear functions gi, i = 1, 2, . . . , k, and let
g(x) = max{g1(x), g2(x), . . . gk(x)}. The problem

OL min
x∈Rn

g(x),

is a piecewise linear and convex optimization problem, that can be solved
by linear programming methods. The OL problem with the additional re-
striction that x ∈ P , where P = {x ∈ R

n : Ax ≥ b, x ≥ 0}, can also be
formulated as the following linear program:

ROL min z
s.t. gi(x) ≤ z for i = 1, 2, . . . k

Ax ≥ b
x ≥ 0.

We denote by ∂P and int(P ), the boundary and the interior of P respec-
tively, by r∗ = minx∈Rn g(x) and by r∗P = minx∈P g(x) the optimal values of
OL and ROL. Further,

X ∗ = {x ∈ R
n : g(x) = r∗}

X ∗
P = {x ∈ R

n : x ∈ P and g(x) = r∗P}.

The following theorem is of interest, see e.g. Nickel and Schobel (1999).

Theorem 5.1 If X ∗∩P = ∅ then X ∗
P ⊆ ∂P . Moreover, for all x ∈ X ∗

P there
exists y ∈ X ∗ such that λx+ (1 − λ)y ∈ X ∗

P if and only if λ = 1.

Nickel (1998) observes that this result can be interpreted as a visibility
property similar to one mentioned by Hansen et al. (1982). In order to put
this more precisely we give the following concept of visibility developed by
Goldman (1963). A point x2 ∈ P is said to be visible from a point x1 6∈ P
if the straight line segment connecting the two points contains no point of
P except x2. A point x2 ∈ P is said to be visible from a set C such that
C ∩ P = ∅ if x2 is visible from some point in C, see Figure 5.1.



103

y
x

 1

x 2

Figure 5.1: Visibility region from the point x1

Then, the last theorem can be interpreted as follows. If there does not
exist an optimal solution to the unrestricted problem OL that is optimal for
ROL then all the optimal solutions of ROL are visible from X ∗.

Since the MinMaxR interval problem has the form of a ROL problem and
Relaxed MinMaxR interval problem has the form of an OL problem, we have
the following two corollaries:

Corollary 5.1 If each optimal solution to the Relaxed MinMaxR interval
problem is infeasible for the MinMaxR interval problem then the set of opti-
mal solutions to the MinMaxR interval problem lies on the boundary of P .
Moreover under these conditions each optimal solution to the MinMaxR in-
terval is visible from the set of optimal solutions to the Relaxed MinMaxR
interval problem.

Corollary 5.2 Suppose that there exists an optimal solution x∗ to the Min-
MaxR interval problem such that x∗ ∈ int(P ) then x∗ is also an optimal
solution of Relaxed MinMaxR interval.

5.3.1 Polyhedral gauges and block norms

Let B0 be a compact convex set in R
n containing the origin in its interior

and let x ∈ R
n. The gauge of x with respect to B0 is defined as

γ(x) := inf{λ > 0 : x ∈ λB0}.

The distance from x to y (symmetry is not necessarily required) is defined
by d(x, y) := γ(y−x). In the case when B0 is a polytope with extreme points
V (B0) = {v̌1, . . . , v̌p}, we can write γ(x) as



104

γ(x) = min{

p
∑

j=1

λj : x =

p
∑

j=1

λj v̌j, λj ≥ 0}

and we shall call n-dimensional diamond of radius r0 with center on the point
a, the set of points B(a, r0) = {x ∈ R

n : γ(x− a) ≤ r0}.
As γ(x) is a convex function, if B0 is symmetric with respect to the origin,

γ defines a norm called block norm denoted by ||.|| and B0 is the corresponding
unit ball, i.e.

B0 = {x ∈ R
n : γ(x) ≤ 1}.

5.3.2 Some properties of R
n under block norms and

gauges

Consider the following property presented in Wendell and Hurter (1973).

Property 5.1 Let ||.|| be a given norm, and let {a1, a2, . . . , am} be an arbi-
trary finite set of points in R

n. Let L be the smallest affine set containing
the points a1, a2, . . . , am. Let x1 ∈ R

n \ L. Then, there exists a point x0 ∈ L
such that ||x0 − ak|| ≤ ||x1 − ak|| for k = 1, . . . ,m.

Wendell and Hurter (1973) show that Property 5.1 guarantees that the
Kuhn’s convex-hull property is true for the 1-center problem under any norm.
Let Conv{a1, . . . , am} denote the convex hull of the points a1, . . . , am.

Theorem 5.2 (Wendell and Hurter (1973)) Assume that for a norm ||.||,
Property 5.1 holds. Then there exists an optimal solution x∗ of the 1-center
problem

minimize z

subject to ||x− ai|| ≤ z, i = 1, . . . ,m,

x = (x1, . . . , xn) ∈ R
n,

such that x∗ ∈ Conv{a1, . . . , am}.

Wendell and Hurter (1973) also prove that Property 5.1 holds true if the
norm is Euclidean or if dim(L) ≤ 1. Further, Hurter et al. (1975) show that,
in general, Property 5.1 does not need to hold.

In order to show that, for the l1 norm in R
n, denoted by ||.||1, neither the

Property 5.1 nor the Theorem 5.2 holds, consider the following example.



105

Example 5.1 In R
3 let a1 = (10, 0, 0) a2 = (0, 10, 0) and a3 = (0, 0, 10).

For x = (0, 0, 0) and for each ai, ||x − ai||1 =
∑3

j=1 |xj − aij| = 10. The

convex hull of these points is Conv{a1, a2, a3} = {x ∈ R
3 : x1 + x2 + x3 =

10, xi ≥ 0} and the smallest affine space containing the points a1, a2, a3, is
L = {x ∈ R

3 : x1 + x2 + x3 = 10}. If we compute an optimal solution to

minimize z

subject to ||x− ai||1 ≤ z, i = 1, . . . , 3,

x1 + x2 + x3 = 10,

xi ≥ 0,

we obtain the point (10
3
, 10

3
, 10

3
) whose objective function value is 40

3
. Hence

neither Theorem 5.2 nor Property 5.1 holds.

However, we can prove that there exists a class of polyhedral gauges in
R
n that satisfies a restriction of Property 5.1, that we shall call Property 5.2,

but first we introduce the following definitions.

Let I ′ ⊆ I = {1, . . . , n} be a subset of indices. An affine set Y is of type
H(I ′), if Y = {x ∈ R

n : xi = ki if i ∈ I ′}, where ki ∈ R is a constant value
associated to i ∈ I ′. Hence, the projection of a point y = (y1, . . . , yn) ∈ R

n

onto Y is ProjY (y) = {x ∈ Y : xj = yj if j 6∈ I ′ and xj = kj if j ∈ I ′}.

Let {e1, e2, . . . en} be the canonical basis of R
n. Let B0 be an non necessar-

ily symmetric but convex polytope in R
n containing the origin in its interior

and defined by the following set of extreme points, V (B0) = {v̌1, . . . , v̌2n},
where v̌2i−1 = wiei and v̌2i = wiei, for all i = 1 . . . n and suppose that
wi < 0 < wi, for all i = 1 . . . n. Since B0 contains the origin in its interior,
we define the [w,w]-polyhedral gauge as

γ(x) = min{
2n
∑

j=1

λj : x =
2n
∑

j=1

λj v̌
j, λj ≥ 0},

and γ(x− y) =
n

∑

i=1

max
νi∈{

1

wi
, 1

wi
}
νi(xi − yi).

Property 5.2 Let γ be a given polyhedral gauge, and let {a1, . . . , am} be a
given set of points in R

n such that there exists a subset I ′ ⊆ I of maximal
cardinality and an affine set Y of type H(I ′) such that each ai ∈ Y . For
each x ∈ R

n, there exists a point y ∈ Y such that γ(y − ai) ≤ γ(x − ai) for
i = 1, . . . ,m, that is to say, y dominates x with respect to a1, . . . , am.



106

Theorem 5.3 Let γ be the [w,w]-polyhedral gauge defined by the following
set of extreme points V (B0) = {v̌1, . . . , v̌2n}, where v̌2i−1 = 1

ci
ei, v̌2i = 1

ci
ei,

and cj < 0 < cj for all j ∈ I. Then γ satisfies Property 5.2.

Proof. Let x ∈ R
n, and consider

γ(x− ai) =
n

∑

j=1

max
csj∈{cj ,cj}

csj(xj − aij).

Since cj < 0 < cj, for all j ∈ I,

max
csj∈{cj ,cj}

csj(xj − aij) ≥ 0.

Now, let y be the projection of x onto the affine set Y , i.e. yj = aij for all
j ∈ I ′ and i = 1, . . . ,m and yj = xj for all j ∈ I\I ′.

Hence, for any ai it holds that

γ(x− ai) =
∑

j∈I′

max
csj∈{cj ,cj}

csj(xj − aij) +
∑

j∈I\I′

max
csj∈{cj ,cj}

csj(xj − aij) ≥

∑

j∈I\I′

max
csj∈{cj ,cj}

csj(yj − aij) = γ(y − ai).

�

However, the next example shows that Property 5.2 does not guarantees
that the Kuhn’s convex-hull property holds.

Example 5.2 In R
4 let a1 = (10, 0, 0, 0), a2 = (0, 10, 0, 0) and a3 = (0, 0, 10, 0).

For x = (0, 0, 0, 0) and for each ai, ||x − ai||1 =
∑4

j=1 |xj − aij| = 10. The

convex hull of these point is Conv{a1, a2, a3} = {x ∈ R
4 : x1 + x2 + x3 =

10, x4 = 0 xi ≥ 0} and the smallest affine set of type H(I ′) containing the
points a1, a2, a3, is Y = {x ∈ R

3 : x4 = 0}. An optimal solution to

minimize z

subject to ||x− ai||1 ≤ z i = 1, . . . , 3

x1 + x2 + x3 = 10

x4 = 0

xi ≥ 0

is the point (10
3
, 10

3
, 10

3
, 0) whose value is 40

3
, hence Property 5.2 holds but the

Kuhn’s convex-hull property does not hold.



107

5.4 The minimax regret linear problem when

all uncertainty intervals contain the ori-

gin in their interior

In this section, we establish a link between 1-center problems and the min-
imax regret linear programming when all the uncertainty intervals contain
the origin in its interior. We shall exploit this link to establish, a localization
result for the set of optimal solutions to the MinMaxR interval problem.

5.4.1 The 1-center problem under the w-block norms

Let B0 be a symmetric polytope in R
n defined by the set of its extreme points

V (B0) = {v̌1, . . . , v̌2n}, where v̌2i−1 = wiei and v̌2i = −wiei. and wi > 0 for
all i = 1, . . . , n. Consider the w-block norm ||.|| defined as

||x|| = min{
2n
∑

j=1

λj : x =
2n
∑

j=1

λj v̌
j, λj ≥ 0}.

||x− y|| =
n

∑

j=1

1

wj
|xj − yj|.

The 1-center problem in R
n under the w-block norm consists in looking

for a point x ∈ R
n which minimizes the largest distance defined by the w-

block norm ||.|| to the m given points a1, . . . , am ∈ R
n. This problem can be

formulated as follows

minimize z

subject to
n

∑

i=1

1

wi
|xi − aji | ≤ z j = 1, . . . ,m,

and also as the following linear program

1-center problem under the w-block norm

minimize z

s.t.
n

∑

i=1

νixi − z ≤
n

∑

i=1

νia
j
i , ∀νi ∈ {

−1

wi
,

1

wi
}, ∀i = 1, . . . , n, ∀j = 1, . . . ,m.

This linear problem has 2nm constraints and n + 1 variables z, x1, . . . , xn.
Therefore, when the dimension n is fixed, it can be solved in O(m) time by



108

the algorithm given by Megiddo (1984). Ward and Wendell (1985) prove that
the size of the 1-center problem under the w-block norm does not depend
on the number of fixed points {a1, . . . , am}. A simple way to show this is by
writing this problem as

minimize z

s.t.
n

∑

i=1

νixi − z ≤ min
j∈{1,...,m}

n
∑

i=1

νia
j
i , ∀νi ∈ {

−1

wi
,

1

wi
},∀i = 1, . . . , n.

Then there are n+1 variables and 2n constraints, regardless of the number
of existing points {a1, . . . , am}.

If we introduce a feasibility region P = {x ∈ R
n : Ax ≥ b, x ≥ 0}, the

1-center problem under the w-block norm γ with the additional restriction
that x ∈ P can be formulated as the following linear program.

Restricted 1-center problem under the w-block norm

minimize z

s.t.
n

∑

i=1

νixi − z ≤ min
j∈{1,...,m}

n
∑

i=1

νia
j
i , ∀νi ∈ {

−1

wi
,

1

wi
}, ∀i = 1, . . . , n.

Ax ≥ b,

x ≥ 0.

Therefore it can solved efficiently when the dimension n is fixed.
Now consider the MinMaxR interval problem in which ci > 0 and ci = −ci

for i = 1, . . . , n,

minimize z (5.5)

s.t.
n

∑

i=1

csi (xi − yi) ≤ z, ∀ y ∈ V (P ),∀csi ∈ {−ci, ci}, i = 1 . . . n,

Ax ≥ b,

x ≥ 0.

Since we can also write it as

minimize z (5.6)

s.t. csx− z ≤ min
y∈V (P )

csy, ∀cs = (csi , . . . , c
s
n), ci ∈ {−ci, ci}, i = 1 . . . n,

Ax ≥ b,

x ≥ 0



109

and its relaxation, the Relaxed MinMaxR interval problem as

minimize z (5.7)

s.t.csx− z ≤ min
y∈V (P )

csy, ∀cs = (csi , . . . , c
s
n), c

s
i ∈ {−ci, ci}, i = 1 . . . n,

thus, when the dimension is fixed, this particular case of the MinMaxR in-
terval problem can be viewed as the restricted 1-center problem in R

n under
the block norm γ defined by the polytope B0 (the unit ball) with extreme
points V (B0) = {v̌1, . . . , v̌2n}, where v̌2i−1 = 1

ci
ei, v̌2i = − 1

ci
ei, and

||x− y|| =
n

∑

i=1

ci|xi − yi| =
n

∑

i=1

max
csi∈{−ci,ci}

csi (xi − yi).

We observe that
n

∑

i=1

max
csi∈{−ci,ci}

csi (xi − yi) =
2n
∑

j=1

λj

and, for all i ∈ {1, . . . , n},

if xi − yj > 0, then λ2i−1 = ci(xi − yi) and λ2i = 0,

if xi − yj ≤ 0, then λ2i−1 = 0 and λ2i = −ci(xi − yi).

The points a1, . . . am are thus the vertices of the feasible region P , which
are optimal for some scenario.

In the case of the l1 norm, Francis et al. (1992) observe that the 1-center
problem under rectilinear distances in two dimensions is equivalent to the
diamond covering problem, which amounts to enclose m given points in the
plane within a diamond of minimum radius. The radius of a diamond is equal
to half the length of the line segment joining opposite vertices. Love et al.
(1988) show that this problem is also equivalent to the problem of enclosing
m known points in the plane within m diamonds of minimum radius, in such
a way that the intersection of all the m diamonds is non-empty.

For fixed dimension, also in the case when ci = −ci, for all i = 1 . . . n
and ci > 0, the MinMaxR interval problem (5.6) in R

n is equivalent to the
problem of enclosingm known points in R

n withinm n-dimensional diamonds
of minimum radius, such that the intersection of all the m diamonds with
P = {x ∈ R

n : Ax ≥ b, x ≥ 0} is nonempty. Similarly, the Relaxed
MinMaxR interval problem (5.7) in R

n when ci = −ci > 0, for all i = 1 . . . n,
is equivalent to the problem of enclosing m points a1, . . . am in R

n within



110

m n-dimensional diamonds of minimum radius, such that the intersection of
all the m diamonds is non-empty and equivalent to enclose m given points
within a diamond of minimum radius.

This is another way to understand why the MinMaxR interval problem
and its relaxation satisfy the visibility property, that is to say, why if each
optimal solution to the Relaxed MinMaxR interval problem (5.7) is infeasible
for the MinMaxR interval problem (5.6), then all the optimal solutions of
MinMaxR interval are visible from the set of optimal solutions of the Relaxed
MinMaxR interval problem. This relation between the Relaxed MinMaxR
interval problem and the 1-center under the w-block norm allows also to
localize an optimal solution.

Proposition 5.1 Suppose that there exists a subset of indices I ′ ⊆ I of
maximal cardinality and an affine set Y of type H(I ′) such that for all cs ∈ D
each optimal solution x∗s to the problem

minimize csx

s.t. Ax ≥ b

x ≥ 0,

belongs to Y . Then there exists an optimal solution x to the Relaxed Min-
MaxR interval problem (5.7) such that x ∈ Y .

Proof. This is a direct consequence of Theorem 5.3. �

This result implies that if all the optimal solutions to the UOLPP (defined
in Chapter 4), for all cs ∈ D belong to Y = {x ∈ R

n : xi = ki if i ∈ I ′},
we can fix in the Relaxed MinMaxR interval problem (5.7) all the variables
xi = ki for which i ∈ I ′.

5.4.2 The 1-center problem under polyhedral gauges

Consider the MinMaxR interval problem when all the intervals
[

ci, ci
]

contain
the origin in its interior. From formulation (5.1) it is clear that such problem
can be viewed as the restricted 1-center problem in R

n under the [w,w]-
polyhedral gauge γ defined by the polytope B0 (the unit ball) with extreme
points V (B0) = {v̌1, . . . , v̌2n}, where v̌2i−1 = 1

ci
ei, v̌2i = 1

ci
ei and the points

a1, . . . am are the vertices of P , which are optimal for some scenario.
When the dimension is fixed, since the MinMaxR interval problem is

polynomial, we may immediately conclude that the 1-center problem under
polyhedral gauges is also polynomial.



111

Since the distance from y to x is defined (remember that symmetry is not
necessarily required) by

d(y, x) = γ(x− y) =
n

∑

i=1

max
csi∈{ci,ci}

csi (xi − yi),

we obtain that
n

∑

i=1

max
csi∈{ci,ci}

csi (xi − yi) =
2n
∑

j=1

λj

where

λ2i−1 = ci(xi − yi) and λ2i = 0 if xi − yi > 0,

λ2i−1 = 0 and λ2i = ci(xi − yi) if xi − yi ≤ 0,

for all i ∈ {1, . . . n}.

We remark that in this case, when all the intervals contain the origin in
its interior the unit ball is bounded, see Figure 5.2.

Similarly to the w-block norm case, in fixed dimension, the particular
MinMaxR (Relaxed MinMaxR) interval problem in R

n when ci < 0 < ci,
for all i = 1 . . . n, is equivalent to the problem of enclosing m known points
in R

n within m n-dimensional diamonds of minimum radius, such that the
intersection of all the m diamonds and P (all the m diamonds) is nonempty.

On the contrary, the Relaxed MinMaxR interval problem with gauges
cannot be viewed as finding a diamond of minimum radius which encloses m
given points because the unit ball is not necessarily symmetric.

Also, as in the case of w-block norms, the set of optimal solutions to the
Relaxed MinMaxR interval problem can have an empty intersection with P .
Hence, given a set {a1, . . . , am} of m points in R

n, the set of optimal solutions
of the 1-center problem under the [w,w]-polyhedral gauge can have an empty
intersection with Conv{a1, . . . , am}, the convex hull of the points.

Finally Theorem 5.3 allows us to localize an optimal solution to the Re-
laxed MinMaxR interval problem on a hyperplane of type H(I ′) in the case
of gauges whose unit ball contains the origin in its interior.

In the following section we shall generalize these concepts in the case
when the set of coefficients D does not necessarily contains the origin in its
interior.



112

(1/5,0)

(0,1/2)

(0,−1)

(−1/3,0)

Figure 5.2: B(v, r0) where v = (0, 0), r0 = 1, [c1, c1] = [−3, 5] and [c2, c2] =
[−1, 2]

5.5 The minimax regret linear program when

some uncertainty intervals do not contain

the origin in its interior

Generalizing some results on location theory, we give here the geometrical
description of the minimax regret problem under interval uncertainty, in the
general case when D does not necessarily contains the origin in its interior.

5.5.1 1-center problem under the regret function

In this section we introduce the 1-center problem under the regret function
and an application of this model. We shall also give the geometrical descrip-
tion of the MinMaxR problem under interval uncertainty in the objective
function coefficients in the general case but first we need the following defi-
nitions.

Given a set of n intervals {
[

c1, c1
]

, . . .
[

cn, cn
]

}, such that ci < ci, for
i = 1, . . . n a point v ∈ R

n, and a scalar r0 ∈ R, consider the polyhedron
D(v, r0) defined as the intersection of the 2n half-spaces cs1x1 + . . . csnxn ≤
r0 +

∑n

i=1 c
s
ivi where csi ∈ {ci, ci}. We call this polyhedron the generalized

n-dimensional diamond of radius r0 centered on the point v.

We remark that in the case when there exists an index i ∈ I for which the
interval

[

ci, ci
]

does not contain the origin in its interior, the n-dimensional



113

diamond is unbounded, see Figure 5.3. Given the polyhedron D(0, 1) asso-
ciated to the intervals

[

c1, c1
]

, . . .
[

cn, cn
]

, and a point x ∈ R
n, the regret of

x with respect to D(0, 1) is defined as

R(x) :=
n

∑

j=1

max
csj∈{cj ,cj}

csjxj,

and the regret from y to x is defined by

R(x− y) :=
n

∑

j=1

max
csj∈{cj ,cj}

csj(xj − yj).

Let R the regret function associated with D(0, 1). The asymptotic cone of R
is defined as

D(0, 1)∞ := {x ∈ R
n : R(x) ≤ 0}

and this set coincides with the closed convex cone determined by the extreme
directions D(0, 1)ext∞ of D(0, 1) (see Hinojosa and Puerto (2003), in the case
of gauges of closed convex sets containing the origin).

D(0, 1)∞ := {x ∈ R
n : y + λx ∈ D(0, 1) ∀y ∈ D(0, 1),∀λ ≥ 0}.

This function verifies the following properties:

1. R(x) = 0 iff x ∈ ∂D(0, 1)∞.

2. R(x) < 0 iff x ∈ D(0, 1)∞ \ ∂D(0, 1)∞.

One can easily see that in general, R(x − y) 6= R(y − x), each point
x ∈ D(0, 1) satisfies R(x) ≤ 1 and D(0, 1) contains the origin. In general,
for each r0 ∈ R, we can define D(v, r0) as the set of points x ∈ R

n such that
R(x− v) ≤ r0.

Let I = {1, . . . n}, then for each pair of points x and y, there exist {λi :
λi ∈ R}i∈I , such that the regret of the point x with respect to the y is

R(x− y) =
n

∑

i=1

max
csi∈{ci,ci}

csi (xi − yi) =
2n
∑

j=1

λj.

For i ∈ I,

λ2i−1 = ci(xi − yi) and λ2i = 0 if xi − yi > 0,

λ2i−1 = 0 and λ2i = ci(xi − yi) if xi − yi ≤ 0.



114

(1/2,0)

(0,1/2)

(0,1)

(1,0)

(0,1)D

Figure 5.3: Region D(v, r0) where v = (0, 0), r = 1 and [c1, c1] = [c2, c2] =
[1, 2], and D(0, 1)∞

Example 5.3 Consider the intervals {[1, 2] , [1, 2]}. Then if v = (0, 0) and
r0 = 1, D((0, 0), 1) is the intersection of the half-spaces: {(x1, x2) ∈ R

2 :
x1 + x2 ≤ 1}, {(x1, x2) ∈ R

2 : x1 + 2x2 ≤ 1}, {(x1, x2) ∈ R
2 : 2x1 + x2 ≤ 1},

and {(x1, x2) ∈ R
2 : 2x1 +2x2 ≤ 1}. This situation is depicted in Figure 5.3.

When the dimension is fixed, the most general case of the MinMaxR
interval problem 4.12 (i.e. in which some uncertainty intervals may do not
contain the origin in its interior) is equivalent to finding the minimum value
r0 ∈ R for which

⋂

y∈V (P )

D(y, r0) ∩ P 6= ∅

Example 5.4 Consider the following problem

min z

s.t. csx− z ≤ min
y∈V (P )

csy, ∀cs ∈ [−1, 1] × [−3,−2]

1

4
x1 − x2 ≥ 0

−x1 − 4x2 ≥ −8



115

where P = {x = (x1, x2) ∈ R
2 : 1

4
x1 − x2 ≥ 0 and − x1 − 4x2 ≥ −8},

see Figure 5.4. The solution to the MinMaxR interval problem is the point
(x1, x2) = (4, 1) of value z = 2.

Given a set A = {a1, . . . , am} of m facilities in R
n, the restricted 1-center

problem under the regret function consists in looking for a point x ∈ P which
minimizes the maximum regret to each of the given points. This problem
can be formulated as

min
x∈P

max
aj∈A

{R(x− aj)}.

An application of this model could be the location of a facility which is
attractive for the demand points A = {a1, . . . , am} but repulsive for some
fundamental directions. For example, such a direction may corresponds to
a river with risk of overflowing and located in the exterior of the city. The
repulsive fundamental directions correspond to the intervals for which ci ≤ 0.

Clearly, when the dimension n is fixed, by formulation (5.1) the MinMaxR
interval and the restricted 1-center problems under a regret function are
equivalent in the sense that the demands points of the restricted 1-center
correspond to the vertices of the polytope P , which are optimal for some
scenario.

5.5.2 Robust information, 0-persistent variables and

preprocessing

Now consider a UOLPP, where P = {x ∈ R
n : Ax ≥ b, x ≥ 0} and the

uncertainty set of coefficients D =
∏n

i=1[ci, ci] does not necessarily contain
the origin in its interior. Suppose that there exists a nonempty subset I ′ ⊆ I
and an affine set Y = {x ∈ R

n : xi = 0 if i ∈ I ′}, such that all the optimal
solutions to the uncertain objective linear problem for all cs ∈ D, lies onto
Y . Then we have the following question: under what conditions does a
solution of the MinMaxR interval problem exist that belongs to Y ?. The
last geometrical description will help us to give an answer to this question,
but first we shall give some definitions and notations.

Definition 5.1 Consider a UOLPP. A point p ∈ {x ∈ R
n : Ax ≥ b, x ≥ 0}

is said to be a weak point if there exists at least cs ∈ D for which p is an
optimal solution of the problem under the scenario s. We shall call weak

vertex, a vertex of P that is a weak point. We shall denote W the set of
weak vertices of the UOLPP .



116

(4,1)

(8,0)
(0,0)

(2,0) (6,0) (10,0)

(−1,0) (1,0)

(0,−1/2)

(0,−1/3)

Figure 5.4: a) The polytope P = {x = (x1, x2) ∈ R
2 : 1

4
x1 − x2 ≥ 0 and −

x1 − 4x2 ≥ −8} and b) the region D((0, 0), 1) where R(x) ≤ 1 corresponding
to the product of intervals [−1, 1] × [−3,−2]



117

z

(10,0,0)x

(0,0,10)

y

(0,10,0)
      (0,0,0)

(1,1,1)

Figure 5.5: Polyhedron P = {x ∈ R3 : x1 + x2 + 8x3 ≥ 10, x1 + 8x2 + x3 ≥
10, 8x1 + x2 + x3 ≥ 10, x1 + x2 + x3 ≥ 10, x ≥ 0 }

Using this concept and formulation (5.1), we observe that, when the di-
mension is fixed, the most general case of the MinMaxR interval problem
(i.e. in which some uncertainty intervals may not contain the origin in its
interior) is also equivalent to finding the minimum value r0 ∈ R for which

⋂

ω∈W

D(ω, r0) ∩ P 6= ∅

We observe that in the case when all the intervals [ci, ci] contain the origin
in its interior, V (P ) coincides with the set of weak vertices of the UOLPP .
However, even in this case, the set of optimal solutions to the MinMaxR
interval problem may have an empty intersection with the interior of P .
This situation is illustrated by the following example.

Example 5.5 Let P the polytope in R
3, defined by the following inequalities:

x1+x2+x3 ≤ 10, x1+x2+8x3 ≥ 10, x1+8x2+x3 ≥ 10, and 8x1+x2+x3 ≥ 10.
Suppose that D = [−1, 1] × [−1, 1] × [−1, 1]. The set of weak vertices of P
is W = {a1 = (10, 0, 0), a2 = (0, 10, 0), a3 = (0, 0, 10), a4 = (1, 1, 1)} = V (P ).
The unique optimal solution to the MinMaxR interval problem

minimize z

subject to c(x− ai) ≤ z ∀ c ∈ D i = 1, . . . , 3

x1 + x2 + x3 ≤ 10



118

x1 + x2 + 8x3 ≥ 10

x1 + 8x2 + x3 ≥ 10

8x1 + x2 + x3 ≥ 10

xi ≥ 0

is the point x = (1, 1, 1), see Figure 5.5, and

max
c∈D

max
ai∈W

c(x− ai) = 11.

This situation can be explained by Corollary 5.1, because the unique optimal
solution to the Relaxed MinMaxR interval problem is the point (0, 0, 0). Hence
all optimal solution to the MinMaxR interval problem must be visible form
this point and this must belong to the boundary of P .

Definition 5.2 A variable xk is 0-persistent if the kth coordinate of all the
optimal solutions x∗s to LP, for all cs ∈ D, are equal to zero.

Consider an optimal solution x∗s to LP corresponding to cs. Variable xk
is thus a 0-persistent variable if and only if for all cs ∈ D and for all x′ ∈ P
such that x′k > 0, csx′ > csx∗s.

Then in the case when
∏n

i=1[ci, ci] contains the origin in its interior and
the polytope P is full dimensional, since W = V (P ), there is no 0-persistent
variable.

Finally we shall give an answer to the main question of this section, that
is to say, suppose that there exists a nonempty subset I ′ ⊆ I and a affine
set Y = {x ∈ R

n : xi = 0 if i ∈ I ′}, such that all optimal solution to the
uncertain objective linear problem for all cs ∈ D, lies onto Y . Under what
conditions does a solution to the MinMaxR interval problem exist that lies
onto Y ?

The following theorem assures that if xk is a 0-persistent variable, there
exists an optimal solution x∗ to the MinMaxR interval problem such that
x∗k = 0.

This result implies that we can preprocess the problem prior to the solu-
tion of the minimax regret linear programming problem. The preprocessing
delete the 0-persistent variables in order to reduce the dimension of the prob-
lem.



119

Theorem 5.4 Consider the UOLPP where P = {x ∈ R
n : Ax ≥ b, x ≥ 0}

and the uncertainty set of coefficients is D =
∏n

i=1[ci, ci]. Suppose that P is
a full dimensional polytope and let xk be a 0-persistent variable. Let W =
{ω1, . . . ωt} be the set of weak vertices of UOLPP and consider the minimum
value r0 ∈ R such that

⋂

ω∈W

D(ω, r0) ∩ P 6= ∅

then there exists a

v ∈
⋂

ω∈W

D(ω, r0) ∩ P

such that vk = 0. That is to say, if xk is a 0-persistent variable, there exists
an optimal solution x∗ to the MinMaxR interval problem such that x∗k = 0.

Proof. Let Y = {x ∈ R
n : xk = 0} and consider the minimum radius r0 ∈ R

such that
⋂

ω∈W

D(ω, r0) ∩ P 6= ∅,

and suppose that all

v ∈
⋂

ω∈W

D(ω, r0) ∩ P

are such that vk > 0. That implies that all y ∈ P ∩ Y , are such that

y /∈
⋂

ω∈W

D(ω, r0) ∩ P

then

y /∈
⋂

ω∈W

D(ω, r0),

thus given a y ∈ P ∩Y , there exist a ωj ∈W such that y /∈ D(ωj, r0), and by
definition of D(ωj, r0), there exists a c ∈

∏n

i=1{ci, ci} such that c(y−ωj) > r0.
Now, given a

v ∈
⋂

ω∈W

D(ω, r0) ∩ P,

for all ω ∈W and for all cs ∈
∏n

i=1{ci, ci}, c
s(v−ω) ≤ r0. Then in particular,

c(v − ωj) ≤ r0 < c(y − ωj),

and for all y ∈ P ∩Y , there exists a c ∈
∏n

i=1{ci, ci} such that cv < cy. Since
vk 6= 0, xk is not a 0-persistent variable. �



120

z

(10,0,0)x

(0,0,10)

      (0,0,0)

y

(0,10,0)

(0,0,2) (4,4,4)

(6,0,0)

(0,3,0)

Figure 5.6: Polyhedron P = {x ∈ R3 : −x1 − 2x2 − 2x3 ≥ −20, −2x1 − x2 −
2x3 ≥ −20, −2x1 − 2x2 − x3 ≥ −20, x1 + 2x2 + 3x3 ≥ 6, x ≥ 0 }

In order to illustrate the last result, we give the following example.

Example 5.6 Consider the UOLPP associated to P = {(x1, x2, x3) ∈ R3 :
−x1−2x2−2x3 ≥ −20,−2x1−x2−2x3 ≥ −20,−2x1−2x2−x3 ≥ −20, x1 +
2x2 + 3x3 ≥ 6, x ≥ 0} and D = [1, 2] × [−4, 3] × [−1, 1].

In this example the set of weak vertices of the UOLPP is

cs1 = (1,−4, 1) y∗s1∗ = (0, 10, 0)
cs2 = (1,−4,−1) y∗s2 = (0, 10, 0)
cs3 = (1, 3, 1) y∗s3 = (0, 0, 2)
cs4 = (1, 3,−1) y∗s4 = (0, 0, 10)
cs5 = (2,−4,−1) y∗s5 = (0, 10, 0)
cs6 = (2, 3, 1) y∗s6 = (0, 0, 2)
cs7 = (2, 3,−1) y∗s7 = (0, 0, 10)
cs8 = (2,−4, 1) y∗s8 = (0, 10, 0).

A solution of the MinMaxR interval problem is (0, 5.55555, 4.444444) with
value 22.22222, and this solution lies on the hyperplane x1 = 0, see Figure
5.6.

Now consider the LP

minimize csx

subject to Ax ≥ b

x ≥ 0,



121

where the matrix A is a m×n matrix, cs ∈ R
n and b ∈ R

m. We shall denote
by Ai, for i = 1, . . . ,m the i-th line vector of the matrix A and by Aj for
j = 1, . . . , n the j-th column vector.

The next two results give sufficient conditions for a variable to be 0-
persistent.

Lemma 5.1 Consider the UOLPP where P = {x ∈ R
n : Ax ≥ b, x ≥ 0}

and the uncertainty set of coefficients is D =
∏n

i=1[ci, ci]. If there exists
k ∈ {1, . . . , n} such that ck > 0 and Aik ≤ 0 for all i = 1, . . . ,m then xk is a
0-persistent variable.

Proof. Let x ∈ P such that xk > 0 and x′ ∈ R
n such that x′j = xj, for

all j 6= k and x′k = 0. We can observe that for all cs ∈ D, csx′ < csx
and Ax′ = Ax − Akxk ≥ Ax ≥ b, thus for all cs ∈ D, x∗sk = 0 and xk is
0-persistent. �

Theorem 5.5 Consider cs
′

∈ D such that

cs
′

j =

{

cj if j 6= k,
cj if j = k.

Let y∗s and x∗s
′

be optimal solutions to Problem (5.8) and (5.9) defined
as follows:

minimize cy (5.8)

subject to Ay ≥ b

y ≥ 0,

minimize cs
′

x (5.9)

subject to Ax ≥ b

xi ≥ 0, for i 6= k.

If

cy∗s > cs
′

x∗s
′

,

then xk is a 0-persistent variable.



122

Proof. We shall denote by y∗s and x∗s optimal solutions to the following
problems:

minimize csy (5.10)

subject to Ay ≥ b

y ≥ 0,

and

minimize csx (5.11)

subject to Ax ≥ b

xi ≥ 0, for i 6= k

respectively. We can observe that for all s ∈ S, all the optimal solutions
y∗s to the problem (5.10) are such that csy∗s ≥ cy∗s ≥ cy∗s, thus if cy∗s >
cs

′

x∗s
′

, then for cs = cs
′

, x∗s
′

is non feasible for the problem (5.10) and then
x∗s

′

k < 0. This implies that for all cs ∈ D, cs
′

x∗s
′

≥ csx∗s
′

≥ csx∗s. Thus for
all cs ∈ D, we have

csy∗s ≥ cy∗s ≥ cy∗s > cs
′

x∗s
′

≥ csx∗s
′

≥ csx∗s.

Let us prove now that the inequality csy∗s > csx∗s, implies that all the
optimal solutions y∗s to the problem (5.10) are such that y∗sk = 0. If for
cs ∈ D, csy∗s > csx∗s, x∗s is not a feasible solution to the problem (5.10),
and thus x∗sk < 0. If we suppose that y∗sk > 0 there exists a λ ∈ [0, 1], and a
point x′ = λx∗s + (1 − λ)y∗s, such that x′k = 0 and

csx′ = cs(λx∗s+(1−λ)y∗s) = λcsx∗s+(1−λ)csy∗s < λcsy∗s+(1−λ)csy∗s = csy∗s.

Since x′ is a feasible solution to the problem (5.10), then y∗s is not optimal
to the problem (5.10) and that is a contradiction. Since csy∗s > csx∗s, for all
cs ∈ D, then all optimal solutions to the problem (5.10) for all cs ∈ D are
such that y∗sk = 0, hence yk is a 0-persistent variable. �

5.5.3 Numerical results

The condition of Theorem 5.5 has been tested on randomly generated in-
stances. Except for the last table, all the computational experiments were
made on a Pentium II 400MHz station under Linux 2.2.16-SMP with 384
MB of RAM. The algorithm uses the CPLEX 7.0 library to solve the linear



123

20
40

60
80

100

120
140

0

20

40

60

80

100

0

20

40

60

80

100

densityupper bound

%
 o

f 0
−

pe
rs

is
te

nt
 v

ar
ia

bl
es

Figure 5.7: Percentage of 0-persistent variables, for n = 70

programs. We give, for each series, the mean value µ and the standard de-
viation σ of the number of 0-persistent variables that are detected. A series
contains 10 randomly generated instances with same dimension n, number
of constraints Nconstr and density ∆ of the matrix A.

To generate the instances, we use the following procedure. For Tables 5.1
to 5.3, The elements of the vector b, are randomly chosen between −M and
M , c and c are randomly chosen between 0 and M , where M = 2n for Table
5.1, M = n for Table 5.2 and M = n

2
for Table 5.3.

For each element of the matrix A, a random number between 0 and 1
is generated. If the number is less than ∆, then the element is randomly
chosen between -20 and 20, otherwise it is fixed to 0. Some entries are added
to the matrix A in order to ensure that there is no empty line or column.
Then, the additional constraint 1tx ≤ n guarantees that the polyhedron
P = {x ∈ R

n : Ax ≥ b, x ≥ 0} is bounded.

Tables 5.1 to 5.3 show that, for positive intervals, when the density ∆ of
matrix A increases, in general, the percentage of the number of 0-persistent
variables decreases. While the size of the interval [0,M ] increases, the number
of 0-persistent variables increases. See Figure 5.7 for n = 70 and Figure 5.8
for M = 2n. In Figures 5.9 and 5.10, the elements of the vector b, are
randomly chosen between −2n and 2n, c and c are randomly chosen between
−M and 2n, for M = n, n

2
, n

4
, n

8
, n

16
, n

32
, n

64
, n

128
and the density is fixed to 0.3.

Figures 5.9 and 5.10 show that, in this case, the percentage of the number
of 0-persistent variables increases when M decreases.



124

10

20

30

40

50

60

70

80

90 0

50

100

150

20

30

40

50

60

70

80

90

dimension

density

%
 o

f 0
−

pe
rs

is
te

nt
e 

va
ria

bl
es

   
   

   
   

   
   

   
   

   
 

Figure 5.8: Percentage of 0-persistent variables, for M = 2n

In order to reduce the computing time used to solve a minimax regret lin-
ear programming problem under interval uncertainty we use our 0-persistent
variables preprocessing procedure that consists of deleting the 0-persistent
variables. We first solve the problem with all the variables. Then we use our
preprocessing to remove the 0-persistent variables from the problem, and
finally we solve it one more time.

The preprocessing has been tested on randomly generated instances. In
this part, the experiments were made on a Pentium III 1 GHz station under
Linux 2.4.20-60GB-SMP with 1 GB of RAM. The algorithm was coded in C
(compiler gcc) and uses the CPLEX 7.0 library to solve the linear programs.
In Table 5.4 we show the behavior of the number of 0-persistent variables,
the size of the problem and cpu time reductions. The coefficient nw is the
dimension of the space, nv the number of constraints defining the polytope
P . The mean value µ and the standard deviation σ of the number of 0-
persistent variables of 10 randomly generated problems of density parameter
∆ are given in the column labeled 0-pers. Computing times in seconds spent
by the corresponding preprocessing are given in the column labeled prep.
The columns labeled cpu1 and cpu2 corresponds to the solution times of the
problem before and after the preprocessing respectively. The time reduc-
tions are given in the column labeled t.r. and corresponds to the difference
µ(cpu1) − (µ(cpu2) + µ(prep)) divided by µ(cpu1). The size reductions are
given in the column labeled s.r.. These numerical experiments show that
our preprocessing procedure vastly decrease the size of the problem and the
computing time to solve it.



125

n = dim Nconstr density ∆ µ± σ reduct

10 10 10 4.70 ± 1.42 47.0 %
10 10 30 5.30 ± 2.50 53.0 %
10 10 50 5.90 ± 3.11 59.0 %
10 10 90 5.20 ± 2.74 52.0 %
20 20 10 11.80 ± 4.02 59.0 %
20 20 30 12.90 ± 3.38 64.5 %
20 20 50 7.80 ± 4.39 39.0 %
20 20 90 6.60 ± 3.81 33.0 %
50 50 10 39.00 ± 5.03 78.0 %
50 50 30 29.20 ± 9.45 58.4 %
50 50 50 20.60 ± 10.48 41.2 %
50 50 90 17.70 ± 8.99 35.4 %
70 70 10 60.10 ± 9.93 85.8 %
70 70 30 40.30 ± 13.37 57.5 %
70 70 50 38.40 ± 16.65 54.8 %
70 70 90 22.00 ± 13.27 31.4 %
100 100 10 81.50 ± 11.09 81.51 %
100 100 30 57.30 ± 17.23 57.3 %
100 100 50 47.30 ± 24.94 47.3 %
100 100 90 22.20 ± 10.17 22.2 %
150 150 10 134.00 ± 10.64 89.3 %
150 150 30 103.00 ± 18.92 68.6 %
150 150 50 79.30 ± 20.76 52.8 %

Table 5.1: 0-persistent variables cj and cj chosen between 0 and 2n



126

n = dim Nconstr density ∆ µ± σ reduct

10 10 10 3.50 ± 2.17 35.00 %
10 10 30 3.70 ± 2.16 37.00 %
10 10 50 3.80 ± 1.69 38.00 %
10 10 90 3.50 ± 2.88 35.00 %
20 20 10 7.00 ± 4.37 35.00 %
20 20 30 6.60 ± 4.74 33.00 %
20 20 50 4.20 ± 4.32 21.00 %
20 20 90 2.90 ± 3.00 14.50 %
50 50 10 28.00 ± 10.20 56.00 %
50 50 30 12.20 ± 6.00 24.40 %
50 50 50 5.50 ± 4.30 11.00 %
50 50 90 2.90 ± 3.51 5.80 %
70 70 10 39.50 ± 12.64 56.43 %
70 70 30 12.30 ± 7.32 17.57 %
70 70 50 7.00 ± 6.27 10.00 %
70 70 90 3.90 ± 4.77 5.57 %
100 100 10 55.90 ± 11.96 55.90 %
100 100 30 22.10 ± 18.28 22.10 %
100 100 50 7.10 ± 8.95 7.10 %
100 100 90 1.20 ± 1.23 1.20 %
150 150 10 97.40 ± 18.73 64.93 %
150 150 30 43.30 ± 26.76 28.87 %
150 150 50 19.50 ± 16.22 13.00 %

Table 5.2: 0-persistent variables, cj and cj chosen between 0 and n



127

n = dim Nconstr density ∆ µ± σ reduct

10 10 10 2.10 ± 2.28 21.00 %
10 10 30 3.00 ± 1.63 30.00 %
10 10 50 2.60 ± 1.84 26.00 %
10 10 90 2.50 ± 2.92 25.00 %
20 20 10 4.60 ± 4.17 23.00 %
20 20 30 4.00 ± 2.05 20.00 %
20 20 50 2.00 ± 1.76 10.00 %
20 20 90 2.80 ± 3.19 14.00 %
50 50 10 13.50 ± 7.55 27.00 %
50 50 30 3.50 ± 3.10 7.00 %
50 50 50 1.50 ± 1.90 3.00 %
50 50 90 1.40 ± 1.35 2.80 %
70 70 10 18.50 ± 10.46 26.43 %
70 70 30 3.60 ± 3.27 5.14 %
70 70 50 1.40 ± 1.96 2.00 %
70 70 90 0.20 ± 0.42 0.29 %
100 100 10 15.60 ± 13.04 15.60 %
100 100 30 2.80 ± 2.15 2.80 %
100 100 50 0.20 ± 0.42 0.20 %
100 100 90 0.20 ± 0.63 0.20 %
150 150 10 35.00 ± 22.89 23.33 %
150 150 30 2.90 ± 3.96 1.93 %
150 150 50 0.80 ± 1.75 0.53 %

Table 5.3: 0-persistent variables, cj and cj chosen between 0 and n
2



128

−100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0
0

5

10

15

20

25

30

35

40

45

lower bound

%
 o

f 0
−

pe
rs

is
te

nt
 v

ar
ia

bl
es

   
   

   
   

   
   

   
   

   

 n=30
 
 n=50
 
 n=70
 
 n=100
 

Figure 5.9: 0-persistent variables, cj and cj chosen between −M and 2n ,
∆ = 0.3

−14 −12 −10 −8 −6 −4 −2 0
5

10

15

20

25

30

35

40

45

lower bound

%
 o

f 0
−

pe
rs

is
te

nt
 v

ar
ia

bl
es

n=50
 
n=70
 
n=100
 
n=30
 

Figure 5.10: Detail of Figure 5.9 when M is close to 0



129

nw ∆ 0-pers s.r. cpu1 prep cpu2 t.r.
nv µ± σ % µ± σ µ± σ µ± σ %
50 30 25.40 50.80 300.09 2.16 86.73 70.38

±12.56 ±204.76 ±0.09 ±83.64
50 70 23.80 47.60 781.82 3.74 258.94 66.40

±11.82 ±822.19 ±0.17 ±398.90
100 30 59.20 59.20 2118.35 12.78 845.02 59.51

±24.15 ±2045.58 ±0.21 ±858.25
100 70 30.40 30.40 3922.09 27.40 3658.51 6.02

±12.93 ±1726.87 ±0.79 ±1507.27

Table 5.4: The minimax regret interval UOLPP algorithm and the perfor-
mance of the preprocessing.



130



Conclusion and extensions

Under the classical definitions of robustness, given in Kouvelis and Yu (1997),
the robust versions of most classical polynomial combinatorial optimization
problems becomes NP-hard. Hence, investigating the ways in which the so-
lution space can be reduced is an important issue. A way to reduce the size
of these problems is to study when a robust solution is optimal for a scenario
and to detect when a decision variable is always or never part of an opti-
mal solution for all realization of data (1-persistent or 0-persistent variables
respectively). One of the main goals of the first part of this thesis was to
investigate these questions in some combinatorial optimization problems.

We considered the minimum spanning tree problem under compact and
convex uncertainty. We presented localization results for scenarii yielding to
the largest regret for a tree and in the case of interval uncertainty, we ob-
tained characterizations of 1-persistent and 0-persistent edges and provided
polynomial algorithms for detecting them.

We investigated the uncertain shortest path and the uncertain single-
source shortest path problems, both of them on finite directed graphs where
arcs lengths are nonnegative intervals. For the shortest path problem under
interval uncertainty we obtained sufficient conditions for a node to be 0-
persistent and for an arc to be 0- or 1- persistent. For the uncertain single-
source shortest path problem, we presented sufficient conditions for an arc
to be 1- or 0-persistent. Such conditions are based on the topology of the
graph combined with the structure of the uncertainty set. Based on these
results we presented polynomial time recognition algorithms that we used to
preprocess a given graph with interval uncertainty prior to the solution of
the minimax regret problem. In order to test our algorithms, we proposed a
mixed integer programming formulation to solve the minimax regret single-
source shortest path problem under interval uncertainty. We showed by
numerical experiments that such preprocessing procedures greatly reduce the
time to compute a minimax regret solution.

131



132

The choice of which element of the problem is most convenient to detect
for persistency, depends on the combinatorial structure of the problem. We
observed for instance, that in the shortest path problem under interval un-
certainty it is much faster checking for 0-persistent nodes than 0-persistent
arcs.

We also investigated the minimax regret linear programming problem un-
der uncertainty in the objective function coefficients. We studied the problem
under compact and convex uncertainty and we presented some of its prop-
erties. We presented an alternative proof to the one given in Averbakh and
Lebedev (2005) about the NP-hardness of the maximum regret interval prob-
lem. We presented special cases when the maximum regret and the minimax
regret problems are polynomial. We presented an exact algorithm to solve
the minimax regret polyhedral problem. Numerical results were given, in the
case of polyhedral and interval uncertainty.

We established a link between the restricted 1-center problem and the
minimax regret linear programming problem under interval uncertainty in
the objective function coefficients. We described the underlying geometry
of this last problem and we derived an approach to the restricted 1-center
problem based on the regret of a special class of unbounded closed convex
sets. Moreover, we discussed an application of this model in location theory.
In the case when the polytope is full dimensional and all the constraints are
non redundant, we established conditions under which 0-persistent variables
can be eliminated from the problem. We tested these condition on randomly
generated instances and the numerical results showed that we can greatly
reduce the size and the computing time to solve a minimax regret problem
under interval uncertainty.

Future considerations in this area would involve the following aspects and
questions.

• Consider a uncertain combinatorial optimization problem where c ∈ D.
Under what conditions over D and for which robust counterparts, a
robust solution is a weak solution?

• The study of conditions for a variable to be 1- and 0-persistent for other
combinatorial problems.

• Verifying the performance of the preprocessing that consists to detect
1-persistent arcs and nodes.

• In the case of UCOP under polyhedral uncertainty, a minimax regret
solution is weak solution?



133

• The study of a link between the minimax regret linear programming
problem under polyhedral uncertainty in the objective function coeffi-
cients and another 1-center problem, for example the 1-center problem
under an special type of gauge.

• The study of the positive persistent variables, that is, the variables that
are always positive, for all optimal solution and for all set of coefficients
to the UOLPP.

• Verifying the performance of our minimax regret algorithm to solve
1-center problems under gauges.

• There is a class of problems for which the decision must resist to the
repetitive change of conditions. We refer the reader to Roy (2007) for
the motivation. Studying the properties of these problems, defining
new robust counterparts and construct algorithms to solve it are also
possible future research directions and warrant additional analysis.



134



Bibliography

H. Aissi. Approximation et resolution des versions min-max et min-max
regret de problemes d’optimisation combinatoire. PhD thesis, Université
Paris Dauphine, 2005.

H. Aissi, C. Bazgan, and D. Vanderpooten. Complexity of the min-max
(regret) versions of min cut problems. Discrete optimization, 5:66–73, 2008.

H. Aissi, C. Bazgan, and D. Vanderpooten. Min-max and min-max regret ver-
sions of combinatorial optimization problems: A survey. European Journal
of Operations Research, 197(2):427–438, 2009.

S. Alarie, C. Audet, B. Jaumard, and G. Savard. Concavity cuts for disjoint
bilinear programming. Mathematical Programming, 90:373–398, 2001.

I. Aron and P. Hentenryck. On the complexity of the robust spanning tree
problem. Operations Research Letters, 32(1):36–40, 2004.

A. Atamturk. Strong formulations of robust mixed 0-1 programming. Math-
ematical Programming, series B, 108:235–250, 2006.

C. Audet, P. Hansen, B. Jaumard, and G. Savard. A symmetrical linear
maxmin approach to disjoint bilinear programming. Mathematical Pro-
gramming, 85:573–592, 1999.

I. Averbakh. Minmax regret solutions for minmax optimization problems
with uncertainty. Operations Research Letters, 27(2):57–65, 2000.

I. Averbakh. On the complexity of a class of combinatorial optimization
problems with uncertainty. Mathematical Programming, 90(2):263–272,
2001.

I. Averbakh and V. Lebedev. Interval data minmax regret network optimiza-
tion problems. Discrete Applied Mathematics, 138(3):289–301, 2004.

135



136

I. Averbakh and V. Lebedev. On the complexity of minmax regret linear
programming. European Journal of Operations Research, 160(1):227–231,
2005.

A. Ben-Tal and A. Nemirovsky. Robust convex optimization. Operations
Research, 23:769–805, 1998.

A. Ben-Tal and A. Nemirovsky. Robust solutions of uncertain linear prob-
lems. Operations Research Letters, 25:1–13, 1999.

A. Ben-Tal and A. Nemirovsky. Robust solutions of linear programming
problems contaminated with uncertain data. Mathematical Programming,
88:411–424, 2000.

A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovsky. Adjustable
robust solutions of uncertain linear programs. Mathematical Programming,
99:351–376, 2004.

D. Bertsimas and M. Sim. Robust discrete optimization under ellipsoidal un-
certainty sets. Technical report, Operations Research Center, MIT, 2004a.

D. Bertsimas and M. Sim. Robust discrete optimization and network flows.
Mathematical Programming, 98(1-3):49–71, 2003.

D. Bertsimas and M. Sim. The price of the robustness. Operations Research,
52(1):35–53, 2004b.

D. Bertsimas and J.N. Tsitsiklis. Introduction to Linear optimization. Athena
Scientific, Belmont, Massachusetts, 1997.

D. Bertsimas, K. Natarajan, and Ch. P. Teo. Persistence in discrete opti-
mization under data uncertainty. Technical report, Operations Research
Center, MIT, 2005.

J.A. Bondy and U.S.R. Murty. Graph Theory with applications. American
Elsevier, New York, 1976.

S. Chanas and P. Zielinski. On the hardness of evaluating criticality of ac-
tivities in a planar network with duration intervals. Operations Research
Letters, 31(1):53–59, 2003.

E. Conde. A branch and bound algorithm for the minimax regret spanning
arborescence. Journal of Global Optimization, 37:467–480, 2007.



137

T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The
MIT Press, Cambridge, Massachusetts and McGraw-Hill Book Company,
Boston, 1991.

L. El-Ghaoui and H. Lebret. Robust solutions to least-square problems to
uncertain data. SIAM Journal on Matrix Analysis and Applications, 18(4):
1035–1064, 1997.

L. El-Ghaoui, F. Oustry, and H. Lebret. Robust solutions to uncertain
semidefinite programs. SIAM Journal on Optimization, 9(1):32–52, 1998.

R.L. Francis, McGinnis L.F., and J.A. White. Facility Layout and Location:
an analytical approach. Englewood Cliffs, New Jersey, Prentice-Hall, 1992.

A.P. Goldman. A theorem on convex programming. Paper presented at
M.A.A. Meeting, Annapolis, 1963.

P. Hansen, D. Peeters, and J.F. Tisse. An algorithm for a constrainted weber
problem. Management Science, 28(1):1285–1295, 1982.

Y. Hinojosa and J. Puerto. Single facility location problems with unbounded
unit balls. Mathematical Methods of Operations Research, 58:87–104, 2003.

A.P. Hurter, M.K. Schaefer, and R.E. Wendell. Solutions of constrainted
location problems. Management Science, 22(1):51–56, 1975.

M. Inuiguchi and M. Sakawa. Maximum regret analysis in linear programs
with an interval objective function. Proceedings of IWSCI, pages 308–317,
1996.

M. Inuiguchi and M. Sakawa. Minimax regret solution to linear programming
problems with interval objective function. European Journal of Operations
Research, 86(3):526–536, 1995.

O.E. Karasan, M.C. Pinar, and H. Yaman. The robust shortest
path problem with interval data. Technical report, Available from
http://www.optimization-online.org., 2001.

A. Kasperski and P. Zielinski. The robust shortest path problem problem
in series-parallel miltidigraphs with interval data. Operations Research
Letters, 34(1):69–76, 2006.

A. Kasperski and P. Zielinski. An approximation algorithm for interval data
minmax regret combinatorial problems. Instytut Matematyki Politechnika
Wroclawska, Wroclaw, raport serii preprinty nr 044, 2004.



138

H. Konno. A cutting plane algorithm for solving bilinear programs. Mathe-
matical Programming, 11:14–27, 1976.

P. Kouvelis and G. Yu. Robust Discrete Optimization and its Applications.
Kluwer Academic Publishers, Boston, 1997.

R.F. Love, J.G. Morris, and G.O. Wesolowsky. Facilities Location: Models
and Methods. North-Holland, New York, 1988.

H.E. Mausser and M. Laguna. A new mixed integer formulation for the max-
imum regret problem. International Transactions in Operational Research,
5(5):389–403, 1998.

H.E. Mausser and M. Laguna. A heuristic to minmax absolute regret for
linear programs with interval objective function coefficients. European
Journal of Operations Research, 117(1):157–174, 1999.

N. Megiddo. Linear programming in linear time when the dimension is fixed.
Journal of the Association for Computing Machinery, 31:114–127, 1984.

H. Minkowski. Gesammelte Abhandlugen, volume Band 2. Chelsea Publish-
ing Company, New York, 1967.

M. Minoux. Programmaton mathématique, théorie et algorithmes. Dounod,
Paris, 1983.

R. Montemanni. A Benders decomposition approach for the robust spanning
tree with interval data. European Journal of Operations Research, 174(3):
1479–1490, 2006.

R. Montemanni and L.M. Gambardella. The robust shortest path problem
with interval data problem with interval data via Benders decomposition.
4OR, 3:315–328, 2005a.

R. Montemanni and L.M. Gambardella. A branch and bound algorithm for
the robust spanning tree problem with interval data. European Journal of
Operations Research, 161(3):771–779, 2005b.

R. Montemanni and L.M. Gambardella. An exact algorithm for the robust
shortest path problem with interval data. Computers and Operations Re-
search, 31(10):1667–1680, 2004.

R. Montemanni, L.M. Gambardella, and A.V. Donati. A branch and bound
algorithm for the robust shortest path problem with interval data. Oper-
ations Research Letters, 32(3):225–232, 2004.



139

J. Mulvay, R. Vanderbei, and S. Zenios. Robust optimization of large scale
systems. Operations Research, 43(2):264–281, 1995.

S. Nickel. Restricted center problems under polyhedral gauges. European
Journal of Operational Research, 104:343–357, 1998.

S. Nickel and J. Puerto. Location Theory: A unified approach. Springer-
Verlag, Berlin Heidelberg, 2005.

S. Nickel and A. Schobel. A geometric approach to global optimization.
Journal of Global Optimization, 15:109–126, 1999.

B. Roy. La robustesse en recherche opérationnelle et aide à la décision :
une préoccupation multi-facettes. Annales du Lamsade, Université Paris
Dauphine, 7:209–235, 2007.

M. Salazar-Neumann. The robust minimum spanning tree problem: Compact
and convex uncertainty. Operations Research Letters, 35(1):17–22, 2007a.

M. Salazar-Neumann. The robust shortest path and the single source shortest
path problems: interval data. Technical report, Annales du Lamsade,
Université Paris Dauphine, 2007b.

A.L. Soyster. Convex programming with set-inclusive constraints and appli-
cations to inexact linear programming. Operations Research, 21:1154–1157,
1973.

P. Vallin. Recherche de conclusions robustes dans une problematique de
placements financiers en environnement incertain. Technical report, An-
nales du Lamsade, Université Paris Dauphine, 2007.

J.E. Ward and R.E. Wendell. Using block norms for location modeling.
Operations Research, 33:1074–1090, 1985.

R.E. Wendell and A.P. Hurter. Location theory, dominance, and convexity.
Operations Research, 21,1:314–320, 1973.

H. Yaman, O.E. Karasan, and M.C. Pinar. The robust spanning tree problem
with interval data. Operations Research Letters, 29(1):31–40, 2001.

P. Zielinski. The computational complexity of the relative robust shortest
path problem with interval data. European Journal of Operations Research,
158:570–576, 2004.


