
Numerical Stability in Linear

Programming and Semidefinite

Programming

by

Hua Wei

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2006

c©Hua Wei 2006

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We study numerical stability for interior-point methods applied to Linear Programming,

LP, and Semidefinite Programming, SDP. We analyze the difficulties inherent in current

methods and present robust algorithms.

We start with the error bound analysis of the search directions for the normal equation

approach for LP. Our error analysis explains the surprising fact that the ill-conditioning is

not a significant problem for the normal equation system. We also explain why most of the

popular LP solvers have a default stop tolerance of only 10−8 when the machine precision

on a 32-bit computer is approximately 10−16.

We then propose a simple alternative approach for the normal equation based interior-

point method. This approach has better numerical stability than the normal equation based

method. Although, our approach is not competitive in terms of CPU time for the NETLIB

problem set, we do obtain higher accuracy. In addition, we obtain significantly smaller CPU

times compared to the normal equation based direct solver, when we solve well-conditioned,

huge, and sparse problems by using our iterative based linear solver. Additional techniques

discussed are: crossover; purification step; and no backtracking.

Finally, we present an algorithm to construct SDP problem instances with prescribed

strict complementarity gaps. We then introduce two measures of strict complementarity

gaps. We empirically show that: (i) these measures can be evaluated accurately; (ii) the

size of the strict complementarity gaps correlate well with the number of iteration for the

SDPT3 solver, as well as with the local asymptotic convergence rate; and (iii) large strict

complementarity gaps, coupled with the failure of Slater’s condition, correlate well with loss

of accuracy in the solutions. In addition, the numerical tests show that there is no correlation

between the strict complementarity gaps and the geometrical measure used in [31], or with

Renegar’s condition number.

iii

Acknowledgments

I would like to express my deep thanks to my supervisor, Professor Henry Wolkowicz. With-

out his continues guidance and support, I could not finish this thesis. I would also like to

thank the committee members, Professor Miguel Anjos, Professor Chek Beng Chua, Profes-

sor Levent Tunçel, and Professor Yin Zhang, for their detailed comments and careful reading

of the draft.

Thanks to the professors, colleagues, and friends in the Department of Combinatorics

and Optimization at the University of Waterloo.

Thank Ontario Graduate Scholarship Program, NSERC, and Bell Canada for their fi-

nancial support during my PhD study.

Thanks my parents, my brother for their love and continues encouragement. Although

they were not in Canada when I was writing the thesis, I can always feel their support.

Last, I owe great thanks to my wife, Feng Zou, for her love, encouragement, and being

my company for countless good or bad days. This thesis is dedicated to my daughter Laura,

who just turned one year old when I finished the first draft.

iv

Contents

1 Introduction 1

1.1 Overview and Outline of Thesis . 1

1.2 Historical Perspective . 2

2 Fundamentals of Linear Programming 6

2.1 Basic Theorems of Linear Programming . 6

2.2 Central Path . 8

2.3 Algorithms . 10

3 Numerical Stability in Linear Programming 13

3.1 Introduction . 13

3.1.1 Preliminaries . 15

3.2 Properties of the Normal Equation System 19

3.2.1 Roundoff Error in the Right-Hand Side 19

3.2.2 The Structure of AXZ−1AT and fl(AXZ−1AT) 22

3.3 Non-Degenerate Case . 26

3.3.1 Estimating the Magnitudes of dx, dy, dz 26

3.3.2 Error in fl(dy) . 27

3.3.3 Error in fl(dx) . 28

3.3.4 Error in fl(dz) . 31

3.3.5 The Maximal Step Length α . 34

3.3.6 Numerical Example for The Non-Degenerate Case 35

3.4 The Degenerate Case with rank (AB) < m 36

v

3.4.1 The Semi-Affine Direction (3.52) . 40

3.4.2 The Centering Direction . 43

3.4.3 The Maximal Step Length α . 47

3.4.4 Numerical Example . 49

3.5 The Degenerate Case with |B| > m and rank (AB) = m 52

3.5.1 The Maximal Step Length α . 53

3.5.2 Numerical Example . 55

3.6 Numerical Examples on NETLIB Problems 56

3.7 Summary . 59

4 A Simple Stable LP Algorithm 62

4.1 Introduction . 62

4.1.1 Background and Motivation . 62

4.2 Block Eliminations . 65

4.2.1 Linearization . 65

4.2.2 Reduction to the Normal Equations 66

4.2.3 Roundoff Difficulties for NEQ; Examples 68

4.2.4 Simple/Stable Reduction . 69

4.2.5 Condition Number Analysis . 71

4.2.6 The Stable Linearization . 72

4.3 Primal-Dual Algorithm . 75

4.3.1 Preconditioning Techniques . 76

4.3.2 Crossover Criteria . 77

4.3.3 Purify Step . 81

4.4 Numerical Tests . 81

4.4.1 Well Conditioned AB . 86

4.4.2 NETLIB Set - Ill-conditioned Problems 90

4.4.3 No Backtracking . 96

4.5 Summary . 96

5 Fundamentals of Semidefinite Programming 99

5.1 Introduction to Semidefinite Programming 99

vi

5.2 Central Path . 100

5.3 Algorithm . 103

5.4 Numerical Stability Issue in Semidefinite Programming 105

6 Hard Instances in Semidefinite Programming 107

6.1 Introduction . 107

6.1.1 Outlines . 108

6.2 Generating Hard SDP Instances . 109

6.3 Measures for Strict Complementarity Gaps 112

6.3.1 Strict Complementarity Gap Measures gt and gs 113

6.3.2 Measure κ . 115

6.4 Numerics . 115

6.4.1 Randomly Generated Instances . 116

6.4.2 Plots for Randomly Generated Instances 117

6.4.3 Geometrical Measure vs Large Strict Complementarity Gaps 123

6.4.4 SDPLIB Instances . 126

6.5 Summary . 126

7 Conclusions 128

7.1 Contributions . 128

7.2 Future Research Directions . 129

vii

List of Tables

3.1 The error in fl(dx), fl(dy), fl(dz), and fl(α) for different u for the data in Exam-

ple 3.20, where fl(α) is the largest number (≤ 1) such that (x + fl(α)fl(x), z +

fl(α)fl(z)) ≥ 0, and σ = 0 in (3.2) (p15). Here B = {1, 2} and N = {3, 4}. . . 37

3.2 The affine scaling direction (σ = 0). Error in fl(dx), fl(dy), fl(dz), and fl(α)

on different u for the data in Section 3.4.4, where fl(α) is the largest number

(≤ 1) such that (x+αfl(x), z +fl(α)fl(z)) ≥ 0. Here B = {1, 3} and N = {2, 4}. 50

3.3 The centering direction σ = 1 in (3.2) (p15). The error in fl(dx), fl(dy), fl(dz),

and fl(α) on different u for the data in Section 3.4.4, where fl(α) is the largest

number (≤ 1) such that (x + fl(α)fl(x), z + fl(α)fl(z)) ≥ 0. Here B = {1, 3}
and N = {2, 4}. 51

3.4 Error in fl(dx), fl(dy), fl(dz), and fl(α) at different u for the data in Section

3.5.2, where fl(α) is the largest number (≤ 1) such that (x + fl(α)fl(x), z +

fl(α)fl(z)) ≥ 0. Here B = {1, 2, 3} and N = {4} and σ = 0. 57

3.5 NETLIB problems that Modified LIPSOL can not get desired accuracy of

10−8. The numbers are the accuracies LIPSOL and Modified LIPSOL can

get. The Modified LIPSOL only changes the linear solver to the standard

backslash linear solver in Matlab. 58

3.6 Summary of our error analysis. 59

4.1 nnz(E) - number of nonzeros in E; cond(·) - condition number; J = (ZN −
XAT) at optimum, see (4.24); D time - avg. time per iteration for search

direction, in sec.; its - iteration number of interior point methods. * denotes

NEQ stalls at relative gap 10−11. 82

viii

4.2 Same data sets as in Table 4.1; two different preconditioners (diagonal and

incomplete Cholesky with drop tolerance 0.001); D time - average time for

search direction; its - iteration number of interior point methods. L its - aver-

age number LSQR iterations per major iteration; Pre time - average time for

preconditioner; Stalling - LSQR cannot converge due to poor preconditioning. 83

4.3 Same data sets as in Table 4.1; LSQR with Block Cholesky preconditioner;

Notation is the same as Table 4.2. 83

4.4 Sparsity vs Solvers: cond(·) - (rounded) condition number; D time - average

time for search direction; its - number of iterations; L its - average number

LSQR iterations per major iteration; All data sets have the same dimension,

1000× 2000, and have 2 dense columns. 87

4.5 How problem dimension affects different solvers. cond(·) - (rounded) condition

number; D time - average time for search direction; its - number of iterations.

All the data sets have 2 dense columns. The sparsity for the data sets are

similar. Without the 2 dense columns, they have about 3 nonzeros per row. 87

4.6 How number of dense columns affect different solvers. cond(·) - (rounded)

condition number; D time - average time for search direction; its - number

of iterations. All the data sets are the same dimension, 1000 × 2000. The

sparsity for the data sets are similar. Without the dense columns, they all

have about 3 nonzeros per row. 88

4.7 LIPSOL results D time - average time for search direction; its - number of iter-

ations. (We also tested problems sz8,sz9,sz10 with the two dense columns re-

placed by two sparse columns, only 6 nonzeros in these new columns. (D time,

iterations) on LIPSOL for these three fully sparse problems are: (0.41, 11),

(2.81, 11), (43.36, 11).) . 89

4.8 LIPSOL failures with desired tolerance 10−12; highest accuracy attained by

LIPSOL. 92

4.9 NETLIB set with LIPSOL and Stable Direct method. D time - avg. time per

iteration for search direction, in sec.; its - iteration number of interior point

methods. 93

4.10 NETLIB set with LIPSOL and Stable Direct method continued 94

ix

4.11 NETLIB set with LIPSOL and Stable Direct method continued 95

6.1 Notation from [31]: (Dp, gp) - primal geometrical measure; (Dd, gd) - dual

geometrical measure; (gm) - aggregate geometrical measure, i.e. geometrical

mean of Dp, gp, Dd, and gd. MAXIT - max iteration limit reached; Nacc - no

accurate/meaningful solution. 124

6.2 Renegar’s condition number on SDPswith strict complementarity gaps. No-

tation from [31]: (ρP (d)) - distance to primal infeasibility; (ρD(d)) - distance

to dual infeasibility; (‖d‖l, ‖d‖u) - lower and upper bounds of the norm of

the data; (C(d)l, C(d)u) - lower and upper bounds on Renegar’s condition

number, C(d) = ‖d‖
min{ρP (d),ρD(d)} . 125

x

List of Figures

4.1 Iterations for Degenerate Problem . 85

4.2 Illustration for LSQR iterations at different stage of interior point methods

for the data set in Table 4.4. Each major iteration in interior point method

is divided into a predictor step and a corrector step. 90

4.3 Iterations for Different Backtracking Strategies. The data is from row 2 in

Table 4.1. 97

6.1 Slater’s holds; stop tolerance 10−8; strict complementarity gaps from 0 to 24

versus average of: iterations, − log10 err, gt, gs, κ, local convergence; 100

instances. 118

6.2 Slater’s holds; stop tolerance 10−10; strict complementarity gaps from 0 to 24

versus average of: iterations, − log10 err, gt, gs, κ, local convergence; 100

instances. 118

6.3 Slater’s holds; stop tolerance 10−12; strict complementarity gaps from 0 to 24

versus average of: iterations, − log10 err, gt, gs, κ, local convergence; 100

instances. 119

6.4 Slater’s fails for gap0–gap21; stop tolerance 10−8; strict complementarity gaps

from 0 to 24 versus: iterations, − log10 err, gt, gs, κ, local convergence; single

instance. 119

6.5 Slater’s fails for gap0–gap21; stop tolerance 10−10; strict complementarity gaps

from 0 to 24 versus: iterations, − log10 err, gt, gs, κ, local convergence; single

instance. 120

xi

6.6 Slater’s fails for gap0–gap21; stop tolerance 10−12; strict complementarity gaps

from 0 to 24 versus: iterations, − log10 err, gt, gs, κ, local convergence; single

instance. 120

6.7 Slater’s generally fails; stop tolerance 10−8; strict complementarity gaps from

0 to 24 versus average of: iterations, error, gt, gs, κ, local convergence; 100

instances. 121

6.8 Slater’s generally fails; stop tolerance 10−10; strict complementarity gaps from

0 to 24 versus average of: iterations, error, gt, gs, κ, local convergence; 100

instances. 121

6.9 Slater’s generally fails; stop tolerance 10−12; strict complementarity gaps from

0 to 24 versus average of: iterations, error, gt, gs, κ, local convergence; 100

instances. 122

6.10 Scatter plots of gt, gs, κ versus # iterations for SDPLIB instances with attained

tolerance < 10−7. 127

xii

Chapter 1

Introduction

1.1 Overview and Outline of Thesis

The main goal of this thesis is to investigate the numerical stability for Linear Programming,

LP, and Semidefinite Programming, SDP.

We first investigate the long puzzling fact that most of the practical, popular, interior

point LP solvers can attain solutions with 10−8 accuracy, even when the condition number of

the underlying linear system can be as large as 1030. The standard condition number based

error analysis, which predicts the worst case accuracy of the solution to a linear system by

the condition number, is overly pessimistic in this case, e.g. Stewart and Sun [91, p120]:

If a matrix has a condition number of 10k and its elements are perturbed in their

t-th digits, then the elements of its inverse will be perturbed in their (t − k)-th

digits.

Since most popular 32-bit PCs have a machine precision of about 10−16, we see almost no

accuracy in the inverse of a matrix when the condition number is larger than 1016. Although,

we generally do not form the inverse of a matrix explicitly when solving a linear system, ill-

conditioning still explains well the worst case forward error. Solving for the search direction

for LP problems involves highly ill-conditioned linear systems. We show that for certain LP

starting point, this ill-conditioning do cause serious error (see Example 4.1 (p68)). However,

in practice, we observe much better accuracy than the condition numbers suggest. In this

1

CHAPTER 1. INTRODUCTION 2

thesis we investigate this phenomena and demonstrate that it is a result of the LP algorithm

special structure.

Based on our error analysis, we propose a simple modification to the popular normal

equation LP solver. This new method demonstrates better numerical stability. It is more

efficient when the LP problem has a certain special structure. We also discuss the technique

of using a pure Newton’s method at the final stage of the interior point method to get

quadratic convergence. Purify step, which identifies those variables that converge to zero

and eliminates them to get a smaller system, is discussed. Due to the stability of the new

system, we investigate the interior point method without backtracking steps, i.e., once we

have the search direction, we go all the way to the boundary.1

For interior point algorithms in SDP, the same ill-conditioning as in LP is observed.

However, we do not have the same surprising numerical stability when solving for the search

direction. Although, most of the interior point algorithms for SDP are extensions of LP

algorithms, it is observed that the SDP algorithms have many important differences. For

example SDP needs a constraint qualification to guarantee strong duality. Moreover, un-

like the LP case, SDP may not have a strictly complementary primal-dual optimal solution.

The strict complementarity condition plays a crucial role in much of the SDP theory. For

example, we need strict complementarity to ensure that the central path converges to the

analytic center of the optimal face, see [46, 64]. Also, many of the local superlinear and

quadratic convergence results for interior point methods depend on the strict complemen-

tarity assumption, e.g., [84, 50, 4, 64, 59]. In this thesis, we derive a procedure to generate a

class of problems for which we can control the size of the strict complementarity gap. These

problems provide hard instances for testing SDP algorithms. We also develop measures to

estimate the size of the strict complementarity gap.2

1.2 Historical Perspective

Modern operation research starts with Danzig’s simplex method for LP [18]. The simplex

method moves from one vertex to an adjacent vertex of the feasible set and tries to improve

1This part of the thesis is based on the report [41].
2 This part of the thesis is based on the report [106].

CHAPTER 1. INTRODUCTION 3

the objective value at each step. It is effective in solving most practical problems; and it

generally requires at most 2m to 3m iterations, where m is the number of constraints of the

LP in standard form, see [77, pp391]. It is shown by Borgwardt and Huhn [12], and Smale

[89], that the expected average number of iterations for the simplex method is polynomial.

The more recent smoothed analysis by Spielman and Teng [90] reveals that the smoothed

complexity of the simplex method is polynomial in: the input size and standard deviation

of Gaussian perturbations.

However, there is no worst case polynomial complexity bound for any type of simplex

method so far. By the inherent combinatorial property of simplex methods, worst case

scenarios may be constructed to go through every vertex of the feasible region; and thus

the running time becomes exponential. It was shown by Klee and Minty [56] that under a

standard pivoting rule, the worst case scenario does happen.

The lack of a polynomial complexity bound for the simplex method motivated people

to find a polynomial time algorithm. Khachian [54, 55], using the ellipsoid method of Shor

[88] and Yudin and Nemirovskii [120], was the first to give a polynomial algorithm for LP.

However, contrary to the theoretical polynomial-time convergence property, which suggests

it should be a fast algorithm, the ellipsoid method performs poorly in practice compared to

the simplex method. It usually achieves the worst case theoretical bound for the number of

iterations.

More recently, Karmarkar’s seminal paper [53] in 1984 gave a polynomial time algorithm

for LP; and, it was announced as more efficient than the simplex method. Contrary to the

inherent combinatorial property of the simplex method, Karmarkar’s algorithm is more like

an algorithm working on a nonlinear optimization problem. It evolves through a series of

strictly feasible points (interior points), and converges to an optimal solution. That is why

it and its successor variants are called interior point methods.

Karmarkar’s paper attracted many researchers into this area. Vanderbei, Meketon, and

Freedman [102] and Barnes [8] proposed a natural simplification of Karmarkar’s algorithm,

called the affine scaling method. It turned out that as early as 1967, Dikin [26] had a very

similar proposal.

It was shown by Gill Murray, Saunders, Tomlin, and M. Wright [36] that there was

an equivalence between Karmarkar’s primal potential based interior point method and the

CHAPTER 1. INTRODUCTION 4

classical logarithmic barrier method applied to LP. However, the logarithmic barrier method,

which was popularized by Fiacco and McCormick [28] long back in the sixties, lost favour

due to the inherent ill-conditioning of the underlying Newton system. However, the huge

condition numbers of the Newton system in current versions of interior point methods have

not stopped its successful implementation. The lost interest in logarithmic barrier methods

has been reignited by the efficiency of interior point methods for LP.

Many researchers have questioned why interior point LP solvers have such numerical

robustness. Error analysis for interior point methods has been studied in the literature. S.

Wright [115, 112] did a thorough error analysis on the augmented system for LP. He showed

that the ill-conditioning of the augmented system does not cause major problems for the

search direction for non-degenerate problems. Forsgren, Gill, and Shinnerl [29] performed

a similar analysis in the context of logarithmic barrier methods for nonlinear problems.

M. Wright [111] worked on the ill-conditioning of the condensed system (equivalent to the

normal system in LP) for nonlinear programming problems. Her work assumed positive

definiteness of the Hessian of the Lagrange function, an assumption that does not hold in

the LP case. The most closely related work to ours is that done in S. Wright [116]. He

did the analysis for the normal equation approach for LP based on a class of particular

modified Cholesky solvers. This class of modified Cholesky solvers are adapted for many of

the practical solvers. He explained why we usually see convergence to a relative accuracy of

10−8 with certain numerical estimation on the size of computed search directions.

Besides the global polynomial-time convergence rate analysis, there are has been a lot of

researches done on the local asymptotic convergence rate of the interior point method. They

show that interior point method can have a quadratic convergence rate. See for example

Tapia and Zhang [94], Ye, Güler, Tapia and Zhang [119], and Tunçel [97].

The work of Nesterov and Nemirovski [73, 74] generalized the logarithmic barrier based

interior point methods and the complexity analysis to general convex programming problems.

A special application is SDP. Independently, Alizadeh extended interior point methods from

linear programing to semidefinite programming [1, 2, 3].

Since SDP has polynomial time algorithms and it is more general than LP, many applica-

tions are developed based on SDP. Lovász introduced one of the most interesting and exciting

applications in combinatorial optimization in his paper about the theta function [63]. (See

CHAPTER 1. INTRODUCTION 5

also [58] for more references and details.) The now classical Goemans and Williamson paper

[38, 37] provided a significant improvement for a polynomial time approximation bound for

the max-cut problem. This generated more attention and applications. For a more complete

review see [108].

However, SDP generally has less desirable numerical properties than LP. Several papers

addressed the numerical problems of SDP, e.g. [4, 61, 62, 70, 93, 96]. It is harder to get

high accuracy solution for SDP than for LP using the current popular algorithms. Unlike

the LP case, ill-conditioning causes major problems in SDP. In general, the so-called AHO

direction [5], has better numerical accuracy in the final stages of their interior point method

in SDP than the HRVW/KSH/M [48, 60, 71] and NT [75, 76] search directions.

Kruk, Muramatsu, Rendl, Vanderbei, and Wolkowicz [62] used a Gauss-Newton type

method and show that they can get high accuracy solutions for SDP. But since the dimension

of the Gauss-Newton system is large, n(n + 1)/2, solving such a system is expensive when n

is large. Sturm [93] proposed an implementation of the NT direction to overcome some of the

numerical difficulties. Instead of keeping the X and Z variables, the implementation factors

these variables using a product of a stable U -factor and a well conditioned matrix. Over the

iterations, the algorithm updates the stable U -factor and the well conditioned matrix. His

implementation then achieves relative high accuracy for the NT direction for some of the

SDPLIB problem set, [11].

Chapter 2

Fundamentals of Linear Programming

2.1 Basic Theorems of Linear Programming

We consider the Linear Programming (LP) problem and its dual program in the following

form:

(LP)

p∗ := min cT x

s.t. Ax = b

x ≥ 0

(DLP)

d∗ := max bT y

s.t. AT y + z = c

z ≥ 0,

(2.1)

where A is a full row rank matrix in Rm×n, c is in Rn, and b is in Rm. The variable x in the

primal (LP) is thus in Rn and the variables y and z in the dual (DLP) are in Rm and Rn,

respectively.

The following is the well known weak duality relation for LP.

Theorem 2.1 (Weak Duality) Let x̄ and (ȳ, s̄) be a feasible solution for (LP) and (DLP)

respectively, then the primal objective value is greater than or equal to the dual objective value,

that is

cT x̄ ≥ bT ȳ, and cT x̄− bT ȳ = x̄T s̄ .

Proof.

cT x̄ = (AT ȳ + s̄)T x̄ = ȳT AT x + s̄T x̄ = ȳT b + x̄T s̄ .

Because x̄ ≥ 0 and s̄T ≥ 0, we have cT x̄ ≥ bT ȳ.

6

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING 7

Strong duality holds for LP as well. See for example [113, Theorem 2.1,p25].

Theorem 2.2 (Strong Duality) 1. Suppose that (LP) and (DLP) are feasible. Then

optimal solutions for (LP) and (DLP) exist, and their optimal values are equal.

2. If either problem (LP) or (DLP) has an optimal solution, then so does the other, and

the objective values for both are equal.

The well-known primal-dual optimality conditions (primal feasibility, dual feasibility,

and complementary slackness) follow from the weak and strong duality properties. In the

following theorem, we use X and Z to denote n× n diagonal matrices whose diagonals are

x and z, respectively. The vector e is the vector of all ones.

Theorem 2.3 The primal-dual variables (x, y, z), with x, z ≥ 0, are optimal for the primal-

dual pair of LPs if and only if

F (x, y, z) :=




AT y + z − c

Ax− b

ZXe


 = 0. (2.2)

Another important property of LP is the existence of a strict complementarity optimal

solution pair, i.e. the Goldman-Tucker Theorem [40]. We define two index sets denoted by

B and N .

B := {i ∈ {1, 2, . . . , n} : x∗i > 0 for some optimum x∗ to problem (LP) }; (2.3)

N := {i ∈ {1, 2, . . . , n} : z∗i > 0 for some dual optimum z∗ to problem (DLP)}. (2.4)

Theorem 2.4 (Goldman-Tucker) If an LP has an optimal solution, then there must exist

a strict complementary pair of optimal solutions x∗ and z∗ such that x∗ + z∗ > 0. In other

words, the two index sets B and N are a partition of the indices {1, 2, . . . , n}. That is

B ∩N =6 0 and B ∪N = {1, 2, . . . , n}.

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING 8

2.2 Central Path

We define a pair of families of non-linear programming problems, parameterized by µ > 0:

(LPµ)

min cT x− µ
∑n

i=1 ln xi

s.t. Ax = b

(x > 0)

(DLPµ)

max bT y + µ
∑n

i=1 ln zi

s.t. AT y + z = c

(z > 0)

The functions −∑n
i=1 ln xi and

∑n
i=1 ln zi are called the barrier functions (for the primal and

dual, respectively). These barrier functions force the inequality constraints to hold. So, the

inequality constraints are implicit here.

Theorem 2.5 Suppose the primal (LP) and the dual (DLP) problems both have strictly feasi-

ble solutions, then (LPµ) and (DLPµ) have a unique optimal solution pair x(µ),
(
y(µ), z(µ)

)
,

for each µ > 0.

Proof. Let x̄ and z̄ be fixed strictly feasible solutions to (LP) and (DLP), respectively.

Then, there exists ȳ such that AT ȳ + z̄ = c and

z̄T x− cT x = (c− AT ȳ)T x− cT x = −ȳT b, a constant.

Therefore, the objective function of (LPµ) can be rewritten as f(x) := z̄T x − µ
∑n

i=1 ln xi.

The function f is strictly convex and goes to infinity if any of the entries of x go to 0 or

infinity. Thus the set {x : f(x) ≤ f(x̄)} is bounded and closed. We are minimizing a strictly

convex function over a compact set. Thus the minimizer for LPµ exists and is unique.

Similarly, we can prove that the solution for the dual (DLPµ) is also unique.

Theorem 2.6 Suppose the primal (LP) and the dual (DLP) problems both have strictly

feasible solutions. Then for a fixed µ > 0, the unique solutions x(µ),
(
y(µ), z(µ)

)
of (LPµ)

and (DLPµ) make up the unique solution to the following system:

Ax = b, x > 0 ,

AT y + z = c, z > 0 , (2.5)

Xz = µe .

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING 9

Proof. We use the Karush-Kuhn-Tucker (KKT) conditions to prove the theorem. For

the parameterized primal problem (LPµ), the Lagrangian function and its derivatives are:

L(x, λ) := (cT x− µ

n∑
i=1

ln xi)− (Ax− b)T λ ,

∇xL(x, λ) = c− µX−1e− AT λ ,

∇2
xxL(x, λ) = X−2 .

The Hessian of the Lagrangian is positive definite. So, the KKT conditions, ∇xL(x, λ) = 0,

are both sufficient and necessary in this case. Let z := µX−1e > 0, y := λ. Then Xz = µe.

Moreover, ∇xL(x, λ) = 0 is equivalent to AT y + z = c. Also, because x is a feasible solution

to the problem (LPµ), we must have Ax = b and x > 0. Thus system (2.5) is a restatement

of the KKT conditions of problem (LPµ). So, a solution of system (2.5) is equivalent to the

optimal solution of (LPµ). Theorem 2.5 shows that (LPµ) has a unique solution. Thus, this

also proves that the solution of system (2.5) is unique.

The proof for the dual (DLPµ) part is similar.

If a feasible solution pair (x, (y, z)) satisfies system (2.5) for some µ > 0, then we say

that they are on the central path.

As µ goes to 0, x(µ)T z(µ), which is µn, also goes to 0. So if x(µ) and z(µ) converge, then

x(µ) and z(µ) must converge to a solution of the system (2.2), which is an optimal solution

pair to the primal (LP) and dual (DLP) problem. McLinden [67] proved the following theo-

rem for the monotone linear complementarity problem, which includes linear programming.

Theorem 2.7 Let (x(µ), (y(µ), z(µ))) be on the central path. Then (x(µ), (y(µ), z(µ))) con-

verges to an optimal solution pair for primal (LP) and dual (DLP) problem.

Ye [118, Theorem 2.17, p72] shows that the central path converges to a pair of strict com-

plementary solutions, which are the analytic center of the primal and dual optimal face,

respectively.

So, if we can find a feasible pair for (LPµ) and (DLPµ), and decrease µ at each iteration,

we will obtain an optimal solution. This is the basic idea behind the path-following methods.

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING 10

Since it is expensive to get an exact optimal solution for (LPµ) and (DLPµ), we usually find

an approximate solution near the optimal solution of the central path, and then decrease

µ and go to the next iteration. Usually a neighbourhood of the central path is defined

to theoretically guarantee good progress of algorithms. Before we give several examples of

neighbourhoods of the central path, we first give the notation for the feasible region F and

strictly feasible region F+ as follows:

F(P) := {x : x is feasible for primal problem (LP)},

F(D) := {z : z is feasible for dual problem (DLP)},
F+(P) := {x > 0 : x ∈ F(P)}, and F+(D) := {z > 0 : z ∈ F(D)}.

The following are some examples of the neighbourhoods of the central path.

Example 1: N2(β) := {(x, s) ∈ F+(P)⊕F+(D) : ‖Xs− µe‖2 ≤ βµ} .

Example 2: N∞(β) := {(x, s) ∈ F+(P)⊕F+(D) : ‖Xs− µe‖∞ ≤ βµ} .

Example 3: N−
∞(β) := {(x, s) ∈ F+(P)⊕F+(D) : ‖Xs− µe‖−∞ ≤ βµ} .

Here, for v ∈ Rn, ‖v‖−∞ := −min {0, minj{vj}}.
Clearly, for v ∈ Rn, ‖v‖2 ≥ ‖v‖∞ ≥ ‖v‖−∞. So, for every β ≥ 0, we have

N2(β) ⊆ N∞(β) ⊆ N−
∞(β).

2.3 Algorithms

A natural way to solve a nonlinear system like (2.2) and (2.5) is to use Newton’s method.

However, due to the non-negativity constraints in the optimality conditions (2.2), it is gener-

ally impossible to guarantee that Newton’s method converges correctly to the nonnegative so-

lution. However, when µ is sufficiently large, the central path neighbourhood (N2(β),N∞(β),

or N+
∞(β)) is much larger compared with the one when µ is small. Thus when µ is suffi-

ciently large, the effect of the non-negativity constraints of x and z is negligible and Newton’s

method can be directly applied in this case. Thus the path-following method starts with a

big µ value and solves (2.5) approximately. It then decreases the value of µ at each iteration.

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING 11

We list an algorithmic framework below. There are many variants of interior point methods

for LP. Almost all of them share this similar algorithmic framework. We define

Fσµ(x, y, z) :=




AT y + z − c

Ax− b

Xz − σµe


 . (2.6)

The Jacobian of Fσµ is

F ′
σµ =




0 AT I

A 0 0

X 0 Z


 .

Algorithm 1 Interior Point Method Framework for LP

Require: x and z both positive; ε > 0 desired tolerance

1: while xT z > ε or ‖Ax− b‖+ ‖AT y + z − c‖ ≥ ε do

2: solve F ′
σµ(x, y, z)




dx

dy

dz


 = −Fσµ(x, y, z), where σ ∈ [0, 1] and µ = xT s/n;

3: choose α > 0, such that (x+, z+) := (x, z) + α(dx, dz) > 0;

4: let x := x+, z := z+, y := y + αdy;

5: end while

6: return solution (x, y, z).

Many algorithms differ in the choice of the parameter σ and the step length α. For

example, if we set the parameter σ to 1, then we call the search direction the “centering

direction”. The Newton search direction then aims toward a solution on the central path

with the fixed value µ. However, if we set the parameter σ to 0, then we call the search

direction the “affine scaling direction”. The search direction then aims toward the optimal

solution of the original LP.

One of the most successful heuristics in practice is Mehrotra’s predictor-corrector ap-

proach [68]. It has two steps: the predictor step and the corrector step. In the predictor

step, it first sets σ = 0 and finds the affine scaling direction dx, dy, dz in step 2 of the above

algorithm. Then it finds a maximal step over this search direction such that x + αdx and

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING 12

z + αdz are both nonnegative. It then evaluates the progress for the affine scaling direction

by calculating the centering value

σ = [(x + αdx)T (z + αdz)/xT z]3. (2.7)

In the corrector step, it substitutes the right-hand side of the linear equation in step 2

Algorithm 1 with [0, 0, σµe− dx ◦ dz]T and solves for the search direction, where σ comes

from (2.7), the dx and dz come from the affine scaling direction, and ◦ means the Hadamard

product (entry-wise product). The final search direction is the sum of the predictor direction

and corrector direction.

The predictor step tries to predict how far the search direction can go if we aim at the

optimal solution. The quantity σ is a natural indicator of the predictor step’s progress. If

the predictor step goes well, then we can aim to a smaller σµ on the central path. If the

predictor step does not have a large step α, then our σ is larger and the step is more like a

centering step. The corrector step then uses the information from the predictor step, the σ,

to decide how much weight to put in the centering direction. Also, the dx◦dz in the corrector

step is a second order approximation of the linearization. We can see that if there are dx

and dz such that (x+dx)◦ (z +dz) = σµ, then we have Xdz +Zdx = −XZe+σµ−dx◦dz.

The two-step procedure is efficient in implementations. The extra corrector direction

with the new right-hand side can be quickly obtained using the LU factorization from the

predictor step.

Chapter 3

Numerical Stability in Linear

Programming

3.1 Introduction

Ill-conditioning has an interesting history and a growing influence in optimization. For

example, logarithmic barrier methods for minimization were proposed in the 1950s and

popularized in the 1960s, see e.g. [35, 28, 109, 110]. These methods lost favour because,

at each iteration, they need to solve a linear system (the Newton equation) that becomes

increasingly ill-conditioned as the iterates approach an optimum. Current interior point

methods are based on a logarithmic barrier approach. The optimality conditions that arise

from minimizing the log-barrier function (in particular, the complementary slackness part)

are typically modified to avoid the ill-conditioning, see e.g. [28]. However, the popular

interior point methods, e.g. those that solve the so-called normal equations or the augmented

equations, result in another level of ill-conditioning. When solving the Newton equation,

block elimination is introduced to take advantage of the sparse structure. This results in a

Jacobian that is singular at the optimum, i.e. ill-conditioning arises as the iterates approach

an optimum. However, in practice, most of the LP codes behave surprisingly well, even with

huge condition numbers. This raises many questions concerning the error analysis.

In this chapter, we study error bounds of the search directions in the normal equation

approach for LP. We show that, although the condensed central block after the block

13

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 14

eliminations, with matrix AXZ−1AT , may not be ill-conditioned for non-degenerate LPs,

the Jacobian of the complete system is still ill-conditioned. Its condition number diverges

to infinity when the x and z variables approaches the optimal solution. We then study the

accuracy of the solutions of the complete ill-conditioned system. We derive the error bounds

for the search directions under certain degeneracy and certain non-degeneracy assumptions.

Our work differs from previous works in the sense that we only assume a general backward

stable linear solver and we give a complete error analysis for all cases: non-degenerate,

degenerate, centering direction, and affine scaling direction. We also give numerical examples

to show that all of our derived bounds are tight. One of the most influential paper by M.

Wright [111] analyzes a similar condensed system in nonlinear-programming. However, her

work assumes that the Hessian of the Lagrange function is positive definite, as a result it

can not be applied to the LP case. Our work for the non-degenerate case is similar to her

work. S. Wright [115] investigates the error for the augmented system. His another work

[116] analyzes the error in the normal equation system for a class of modified Cholesky

factorizations with certain empirical estimates on the size of the computed search direction

dy. He also explains why most of the popular LP solvers’ default stop tolerance is 10−8.

We assume we are working on a popular 32-bit computer with machine precision ap-

proximately 10−16. We use m to denote the number of constraints in the standard equality

form.

We obtain the following results on the search directions.

1. The best error bound is obtained for the non-degenerate case. The maximum step

length computed using the computed search direction has only unit error relative to

the step length computed from the exact search direction. Therefore, the normal

equation (NEQ) based interior point method can get a solution with accuracy of about

10−16.

2. For the degenerate case with rank (AB) < m:

(a) when σ is small, (O(µ)), the search direction is close to the affine scaling direction.

Then we obtain a good error bound for the search direction. The NEQ based

interior point method can get a solution with accuracy of 10−8.

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 15

(b) when σ is large, the search direction is close to the centering direction. This results

in the worst error bound for the search direction. It may not yield a correct step

length.

3. For the degenerate case with rank (AB) = m:

the magnitude of the error bound lies between that of the non-degenerate case

(Item 1) and the affine scaling direction in the degenerate case (Item 2a). However,

depending on the σ parameter, the step length might be inaccurate. If σ is small,

the error on the step length is no worse than the case in Item 2a. It σ is large,

the error on the step length can be large.

Since most practical codes use the predictor-corrector heuristic, and the predictor-corrector

heuristic usually gives a small σ value at the final stage of interior point method, the above

error bounds explains well why in practice, most of the solvers can get solutions with 10−8

accuracy, even for the degenerate case. This explains well why 10−8 is the standard tolerance

for most solvers.

3.1.1 Preliminaries

We consider the linear program in standard form, (2.1) (p6). The optimality conditions are

given in (2.2). For interior point methods, we use the perturbed optimality conditions

Fσµ(x, y, z) = 0, (3.1)

with x, z > 0, where Fσµ is defined in (2.6). After linearization, we have the Newton equation




0 AT I

A 0 0

Z 0 X







dx

dy

dz


 =




−rd

−rp

−ZXe + σµe


 , (3.2)

where 0 ≤ σ ≤ 1 is the centering parameter, and rp and rd are the primal and dual residual

vectors, respectively,

rp := Ax− b, rd := AT y + z − c. (3.3)

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 16

Instead of solving the above linear system (3.2) directly, the normal equation approach

uses certain block eliminations to exploit the sparsity (see Section 4.2.2). After the block

eliminations, we get the following linear system.




0 AT In

0 AZ−1XAT 0

In −Z−1XAT 0







dx

dy

dz


 =




−rd

−rp + A(−Z−1Xrd + x− σµZ−1e)

Z−1Xrd − x + σµZ−1e


 . (3.4)

We solve for dy first, and then back-solve for dx and dz. This way, we are solving a smaller,

positive definite, system of size m. However, the block elimination brings back instability

(ill-conditioning). It is shown in [41] as well as in Proposition 4.2 (p71) that the condition

number of the matrix in (3.4) goes to infinity as x and z approach an optimum, even for

non-degenerate problems. It is also shown in Example 4.1 (p68) that if the residuals rp and

rd are relatively large, then the roundoff errors in the calculation of the search directions can

be catastrophic. Thus, this verifies that large condition numbers for the linear system can

result in inaccurate solutions.

Notation

We use u to denote unit roundoff, see e.g. [49, p42–44], i.e. for any real number x in the

range of a floating-point number system and any two representable numbers y and z in that

floating-point system, u is the smallest positive number such that

fl(x) = x(1 + δ) and fl(y op z) = (y op z)(1 + δ), |δ| ≤ u, (3.5)

where fl(·) denotes the floating point representation of a number and op denotes an arith-

metic operation (i.e., +,−,×, /,
√·). With binary IEEE arithmetic, u ' 6 × 10−8 in single

precision and u ' 1.1× 10−16 in double precision.

We also use the order notation O(·) in a slightly unconventional way (following S. Wright

[115]). When x and y are two numbers depending on a parameter µ, we write x = O(y) if

there exists a constant C (not too large and independent of µ) such that |x| ≤ C|y|. We

write x = Θ(y) if x = O(y) and y = O(x). For matrix A, we write A = O(y) if ‖A‖ = O(y).

Such notation (O(·) and Θ(·)) will greatly simplify the analysis and presentation. However,

when some of the constant C in the O(·) notation becomes too large, many of the results

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 17

may not be true any more. Also, “there are too many unknown factors and mathematically

imprecise rules of thumb to permit a rigorous theorem. ([111])” Thus, we make the following

assumptions. We also give numerical examples to verify our results.

We let B, N represent a partition of the indices as defined in (2.3) and (2.4).

Assumptions

Throughout the chapter we use some or all of the following assumptions about the floating

point operations.

Assumption 3.1 1. For real matrices A,B,C, with dimensions not too large, and with

elements that are in the range of floating-pointing number system, we have

fl(A) = A + E1 and fl(B op C) = B op C + E2,

where the op denotes an matrix operation (i.e., +,−,×), ‖E1‖ = O(u)‖A‖ and

‖E2‖ = O(u)‖B op C‖. In this chapter, we use the simplified notation

fl(B op C) = B op C + O(δ),

where O(δ) denotes the perturbation matrix E2 that satisfies ‖E2‖ = O(δ).

2. All the input data A, b, and c of the LP problem are floating point representable. i.e.

fl(A) = A, fl(b) = b, fl(c) = c.

All the intermediate computed variables x, y, z, and µ are also floating point repre-

sentable. i.e

fl(x) = x, fl(y) = y, fl(z) = z, and fl(µ) = µ.

We make the assumption in Assumptions 3.1 item 2 because when we consider the numerical

stability of a search direction, we usually consider a particular iteration of the interior point

method with data A, b, c, x, y, z, and µ. This data is stored in the computer and thus

is floating point representable. Another consideration of this assumption is to make the

analysis easier to read. Having a unit relative round off error on the data will not have any

difference on our results.

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 18

For most results we use the following assumption on the order of the data and the

iterates. Let B and N be the partition of the indices according to the Goldman-Tucker

Theorem (Theorem 2.4).

Assumption 3.2 1. The data A is not too large, i.e. A = Θ(1). The matrix A has full

row rank and the smallest nonzero singular values of A and AB are both Θ(1).

2. The parameter µ is sufficiently small. The sequence of iterates (x, y, z) generated by

the interior point algorithm satisfies the following properties:

xi = Θ(1) (i ∈ B), zi = Θ(1) (i ∈ N), (3.6)

xi = Θ(µ) (i ∈ N), zi = Θ(µ) (i ∈ B). (3.7)

(This assumption means x, z are in some neighbourhood of the central path, see e.g.

[113].)

3. In addition, the residuals defined in (3.3) are O(µ); that are,

rp = O(µ), rd = O(µ). (3.8)

Our assumption that µ is sufficiently small in Item 2 means that the µ value is small enough

so that we can clearly see the difference between the quantities xB (Θ(1)) and xN (Θ(µ)).

Notice that the size of xB (Θ(1)) depends on the input data A, b, c. In practice, if µ is less

than 10−3 then it usually can be treated as small enough for most of the problems.

Our analysis in the non-degeneracy section requires the following assumption.

Assumption 3.3 The problem is non-degenerate. More specifically, we require

|B| = m and (ABAT
B)−1 = Θ(1).

In particular, this implies that the condition number of ABAT
B is not too large. (Here AB

denotes a submatrix of A whose columns are specified by the index set B.)

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 19

3.2 Properties of the Normal Equation System

In this section, we present a few properties of the normal equation system. The theorems

illustrate the structural information on the matrix AXZ−1AT . We also give the roundoff

error on the right-hand side of the normal equation. The properties in this section hold for

the normal equation system in general, regardless of degeneracy.

3.2.1 Roundoff Error in the Right-Hand Side

Lemma 3.4 Suppose that Assumption 3.2 (items 1,2) holds. Then the floating point repre-

sentations of the residuals in (3.3) satisfy

fl(rp)− rp = O(u), fl(rd)− rd = O(u).

Proof.

fl(rp) = fl(Ax− b)

= fl(Ax)− fl(b) + O(u) (by Assumption 3.2 (items 1,2))

= Ax + O(u)− b + O(u) (since Ax is O(1))

= rp + O(u).

fl(rd) = fl(AT y + z − c)

= fl(AT y) + fl(z)− fl(c) + O(u) (since AT y + z is O(1))

= AT y + O(u) + z − c + O(u) (since AT y is O(1))

= rd + O(u).

Lemma 3.5 Assume that the scalars β = Θ(µ) and θ = Θ(1). Then

fl(1/β) = 1/β + O(u/µ), fl(1/θ) = 1/θ + O(u).

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 20

Proof. This follows from a direct application of (3.5).

Theorem 3.6 Suppose Assumption 3.2 holds. Then the floating point roundoff error in

the right-hand side in the middle block of the normal equation system is O(u/µ), more

specifically,

fl(−rp + A(−Z−1Xrd + x− σµZ−1e)) =

− rp + A(−Z−1Xrd + x− σµZ−1e) + {ABO(u/µ) + ANO(µu) + O(u)} .

Proof. If the index i ∈ B, then

fl(−z−1
i xi(rd)i) = fl(−z−1

i xi)fl((rd)i) + O(u), (since z−1
i xi(rd)i is O(1))

= [fl(−z−1
i)fl(xi) + O(u/µ)]((rd)i + O(u)) + O(u), (since z−1

i xi is Θ(1
µ
))

= [(−z−1
i + O(u/µ))xi + O(u/µ)]((rd)i + O(u)) + O(u)

= −z−1
i xi(rd)i + O(u/µ),

(3.9)

where the error term O(u/µ) in the last step comes from the z−1
i xiO(u) term as underlined.

Other error terms are much smaller than O(u/µ) and thus can be folded into this error term.

If index i ∈ N , then

fl(−z−1
i xi(rd)i) = fl(−z−1

i xi)fl((rd)i) + O(µ2u), (since z−1
i xi(rd)i is O(µ2))

= [fl(−z−1
i)fl(xi) + O(µu)]((rd)i + O(u)) + O(µ2u), (since z−1

i xi is Θ(µ))

= [(−z−1
i + O(u))xi + O(µu)]((rd)i + O(u)) + O(µ2u)

= −z−1
i xi(rd)i + O(µu),

(3.10)

where the O(µu) term in the last step comes from z−1
i xiO(u) as underlined. For the σµZ−1e

part, if i ∈ B, we have

fl((σµZ−1e)i) = fl(σµzi
−1)

= fl(σµ)fl(zi
−1) + O(u) (since σµzi

−1 is Θ(1))

= σµ[zi
−1 + O(u/µ)] + O(u)

= (σµZ−1e)i + O(u). (3.11)

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 21

If i ∈ N , we have

fl((σµZ−1e)i) = fl(σµzi
−1)

= fl(σµ)fl(zi
−1) + O(µu) (since σµzi

−1 is Θ(σµ))

= σµ[zi
−1 + O(u)] + O(µu)

= (σµZ−1e)i + O(µu). (3.12)

Thus, if i ∈ B, we get

fl((−Z−1Xrd + x− σµZ−1e)i)

=fl((−Z−1Xrd + x)i)− fl((σµZ−1e)i) + O(u) (since both of the terms are O(1))

=fl((−Z−1Xrd)i) + fl(xi)− fl((σµZ−1e)i) + O(u)

=(−Z−1Xrd)i + xi − (σµZ−1e)i + O(u/µ). (using (3.9) and (3.11)) (3.13)

Similarly, if i ∈ N , we get

fl((−Z−1Xrd + x− σµZ−1e)i)

=fl((−Z−1Xrd + x)i)− fl((σµZ−1e)i) + O(µu) (since both of the terms are O(µ))

=fl((−Z−1Xrd)i) + fl(xi)− fl((σµZ−1e)i) + O(µu)

=(−Z−1Xrd)i + xi − (σµZ−1e)i + O(µu). (using (3.10) and (3.12)) (3.14)

So the right-hand side error is bounded by the following

fl(−rp + A(−Z−1Xrd + x− σµZ−1e))

=fl(−rp) + fl(AB(−Z−1Xrd + x− σµZ−1e)B) + fl(AN (−Z−1Xrd + x− σµZ−1e)N) + O(u)

=− rp + O(u) + fl(AB)fl((−Z−1Xrd + x− σµZ−1e)B)) + O(u)

+ fl(AN)fl((−Z−1Xrd + x− σµZ−1e)N) + O(µu) + O(u)

=− rp + AB[(−Z−1Xrd + x− σµZ−1e)B + O(u/µ)]

+ AN [(−Z−1Xrd + x− σµZ−1e)N + O(µu)] + O(u)

=− rp + A(−Z−1Xrd + x− σµZ−1e) + {ABO(u/µ) + ANO(µu) + O(u)} . (3.15)

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 22

The right-hand side error can be divided into three parts. The first part ABO(u/µ) is

large and is in the range of AB; the second part ANO(µu) is small and is located in the

range of AN ; the third part is a random error in the right-hand side with size O(u).

3.2.2 The Structure of AXZ−1AT and fl(AXZ−1AT)

Before we analyze the structure of AXZ−1AT , we present some related theorems.

Theorem 3.7 Let B ∈ Cm×n have singular values σ1 ≥ σ2 ≥ . . . ≥ σn and let C = AB

have singular values τ1 ≥ τ2 ≥ . . . ≥ τn. Then

τi ≤ σi‖A‖2, i = 1, · · · , n.

(This is [91, Theorem I.4.5, p34].)

Theorem 3.8 (Weyl’s Theorem) Let A be a Hermitian matrix with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn,

and Ã = A + E denote a Hermitian perturbation of A with eigenvalues

λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n.

Then

max
i
{|λ̃i − λi|} ≤ ‖E‖2 .

(This is [91, Corollary IV.4.10, p203].)

Theorem 3.9 Let M denote a real symmetric matrix, and define the perturbed matrix M̃

as M + E, where E is symmetric. Consider an orthogonal matrix [X1 X2] where X1 has l

columns, such that range(X1) is a simple invariant subspace of M , with
[
XT

1

XT
2

]
M

[
X1 X2

]
=

[
L1 0

0 L2

]
and

[
XT

1

XT
2

]
E

[
X1 X2

]
=

[
E11 E12

E21 E22

]
.

Let d1 = sep(L1, L2)−‖E11‖−‖E22‖ and v = ‖E12‖/d1, where sep(L1, L2) = mini,j |λi(L1)−
λj(L2)|, with λk(·) denoting the kth eigenvalue of its argument. If d1 > 0 and v < 1/2, then

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 23

1. there are orthonormal bases X̃1 and X̃2 for simple invariant subspaces of the perturbed

matrix M̃ satisfying ‖X1 − X̃1‖ ≤ 2v and ‖X2 − X̃2‖ ≤ 2v;

2. for i = 1, . . . , l, there is an eigenvalue ω̃ of M̃ satisfying |ω̃ − ω̌i| ≤ 3‖E12‖v, where

{ω̌i} are the eigenvalues of XT
1 M̃X1.

(This is [111, Theorem 3.1]. It is a specialized version of [91, Theorem V.2.7, p236].)

For the complete definition of simple invariant subspaces, see [91, Definition V.1.2,

p221]. Briefly, in Theorem 3.9, we say range(X1) is a simple invariant subspace of M if

range(MX1) ⊂ range(X1) and the diagonal blocks L1 and L2 do not have any eigenvalues

in common.

The following theorem is based on the work of M. Wright [111]. In that paper, she showed

a similar result but for a matrix AXZ−1AT + Θ(1). This is also partially mentioned in [116,

(5.10)]. The result illustrates the splitting of the eigenvalues of AXZ−1AT into two parts of

size Θ(1/µ) and Θ(µ).

Theorem 3.10 Suppose that Assumption 3.2 (item 1, 2) holds. Let m̂ denote the rank

of AB; λ1 ≥ · · · ≥ λm denote the (ordered) eigenvalues of AXZ−1AT ; and [UL US] be an

orthogonal matrix where the columns of US span the null space of AT
B.

Then

1. The m̂ largest eigenvalues of AXZ−1AT are Θ(1/µ).

2. If m̂ < m, then each eigenvalue λm̂+k, k = 1, · · · , n− m̂, differs at most by O(µ) from

some eigenvalue of ABXBZ−1
B AT

B and, in addition, it is Θ(µ).

3. AXZ−1AT has simple invariant subspaces close to those defined by UL and US in the

sense that there exist matrices ŨL and ŨS whose columns form orthonormal bases for

simple invariant subspaces of AXZ−1AT such that

‖ŨL − UL‖ = O(µ2) and ‖ŨS − US‖ = O(µ2).

Proof. We first observe that XBZ−1
B is Θ(1/µ) by (3.6) in Assumption 3.2 (p18). In

addition, the assumption implies that AB is Θ(1), which in turn yields

‖ABXBZ−1
B AT

B‖ ≤ ‖AB‖2‖XBZ−1
B ‖ = O(1/µ).

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 24

So λ1(ABXBZ−1
B AT

B) = O(1/µ). Let the matrix X
1/2
B Z

−1/2
B AT

B be the matrix B in Theorem

3.7 and X
−1/2
B Z

1/2
B be the matrix A in Theorem 3.7. Then, we can use Theorem 3.7 and

Assumption 3.2 Item 1 (p18) to see that the m̂ largest singular values of X
1/2
B Z

−1/2
B AT

B are

Θ(1/
√

µ). Thus λm̂(ABXBZ−1
B AT

B) = Θ(1/µ). Then part 1 follows by applying Theorem 3.8

in conjunction with the above bounds. (notice that ANXNZ−1
N AT

N = O(µ).)

The eigenvalue perturbation result Theorem 3.8, in conjunction with the above bounds

shows that the eigenvalue λm̂+k, k = 1, · · · , n − m̂ differs at most by O(µ) from some

eigenvalue of ABXBZ−1
B AT

B . Thus λm̂+k is O(µ). To show that λm̂+k is Θ(µ), we need to

show that λm ≥ Cµ, for some constant C. Notice that with the assumption that A is full

row rank, we get that AT y 6= 0 if y 6= 0, and that

min
‖y‖=1

yT AXZ−1AT y

(yT A)(AT y)
≥ λmin(XZ−1) ≥ C1µ,

where C1 is some constant coefficient by our Assumption 3.2 (item 2). We now have

λmin(AXZ−1AT) = min
‖y‖=1

yT AXZ−1AT y ≥ λmin(XZ−1) min
‖y‖=1

(yT AAT y) ≥ Cµ,

where C is the smallest singular value of AAT times C1. Here we use Assumption 3.2 (item

1).

Part 3 is obtained by using Theorem 3.9 and the fact that AXZ−1AT can be thought of

as a perturbation of the matrix ABXBZ−1
B AT

B by ANXNZ−1
N AT

N .

The error in fl(AXZ−1AT) can be bounded using the following. Since ABXBZ−1
B AT

B is

O(1/µ), we get

fl(AXZ−1AT) =fl(ABXBZ−1
B AT

B) + fl(ANXNZ−1
N AT

N) + O(u/µ)

=fl(AB)fl(XBZ−1
B AT) + fl(AN)fl(XNZ−1

N AT
N) + O(u/µ)

=AB(XBZ−1
B AT

B + O(u/µ))

+ AN (XNZ−1
N AT

N + O(µu)) + O(u/µ)

=AXZ−1AT + {ABO(u/µ) + ANO(µu) + O(u/µ)} . (3.16)

If we use the above error bound on fl(AXZ−1AT) and maintain µ ≥ 10
√

u, we can extend

the structure information in Theorem 3.10 to the matrix fl(AXZ−1AT).

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 25

Corollary 3.11 Suppose that Assumption 3.2 (item 1, 2) holds and assume that µ ≥ 10
√

u.

Let m̂ denote the rank of AB and {λ̂k} denote the eigenvalues of AXZ−1AT such that λ̂1 ≥
· · · ≥ λ̂m. Furthermore, let [UL US] be an orthogonal matrix, where the columns of US span

the null space of AT
B.

Then

1. The m̂ largest eigenvalues of fl(AXZ−1AT) are Θ(1/µ).

2. If m̂ < m, then every remaining eigenvalue λ̂m̂+k, k = 1, · · · , n− m̂, is Θ(µ).

3. fl(AXZ−1AT) has simple invariant subspaces close to those defined by UL and US in

the sense that there exist matrices ÛL and ÛS whose columns form orthonormal bases

for simple invariant subspaces of fl(AXZ−1AT) such that

‖ÛL − UL‖ = O(µ2) and ‖ÛS − US‖ = O(µ2).

Proof. Notice that when µ ≥ 10
√

u, we have that u/µ ≤ µ/100. Thus by (3.16),

fl(AXZ−1AT) is an O(µ/100) perturbation of AXZ−1AT . Using Theorem 3.8 and a similar

proof to part 3 in Theorem 3.10 yields the results.

For the case that rank (AB) = m, we get a stronger result that does not need the µ >

10
√

u assumption.

Corollary 3.12 Suppose that Assumption 3.2 (item 1, 2) holds and assume that rank (AB) =

m and (ABAB)−1 = Θ(1). Then The eigenvalues of fl(AXZ−1AT) are Θ(1/µ), i.e. fl(AXZ−1AT)

remains well-conditioned.

Proof. By (3.16), we can see fl(AXZ−1AT) is a O(u/µ) perturbation of AXZ−1AT . Thus

by Theorem 3.8 we can derive the results.

The significance of Theorem 3.10 and Corollary 3.11 lies in that we obtain a block de-

composition of AXZ−1AT as follows.

AXZ−1AT = [ŨL ŨS]

[
ΣL 0

0 ΣS

] [
ŨT

L

ŨT
S

]
, (3.17)

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 26

where ΣL is a m̂ × m̂ submatrix (may not be diagonal), whose eigenvalues are the first m̂

largest eigenvalues of AXZ−1AT ; and ΣS is a (n−m̂)×(n−m̂) submatrix, whose eigenvalues

are the remaining small eigenvalues of AXZ−1AT . Thus we have

ΣL = Θ(1/µ), Σ−1
L = Θ(µ), and ΣS = Θ(µ), Σ−1

S = Θ(1/µ). (3.18)

Part 3 of Theorem 3.10 implies that

AT
BŨS = O(µ2). (3.19)

Similar results exist for fl(AXZ−1AT), i.e. we have

fl(AXZ−1AT) = [ÛL ÛS]

[
Σ̂L 0

0 Σ̂S

][
ÛT

L

ÛT
S

]
, (3.20)

where Σ̂L is a m̂ × m̂ submatrix (may not be diagonal), whose eigenvalues are the first

m̂ largest eigenvalues of fl(AXZ−1AT); and Σ̂S is a (n − m̂) × (n − m̂) submatrix, whose

eigenvalues are the remaining small eigenvalues. Thus we have

Σ̂L = Θ(1/µ), Σ̂−1
L = Θ(µ), and Σ̂S = Θ(µ), Σ̂−1

S = Θ(1/µ). (3.21)

Part 3 of Corollary 3.11 implies that

AT
BÛS = O(µ2). (3.22)

Corollary 3.12 gives stronger result on the structure information without the assumption

of µ > 10
√

u. This corollary can be applied to the non-degenerate case and the degenerate

case with rank (AB) = m and |B| > m, where we are able to prove our results without the

assumption µ > 10
√

u.

3.3 Non-Degenerate Case

3.3.1 Estimating the Magnitudes of dx, dy, dz

Theorem 3.13 Suppose that Assumptions 3.2 and 3.3 hold. Let (dx, dy, dz) be the exact

solution of the original system (3.2) (equivalently the exact solution of (3.4)). Then

(dx, dy, dz) = O(µ).

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 27

Proof. See [115]. We provide an alternative proof here using our structure analysis of

AXZ−1AT . Notice that the right-hand side of the second block of (3.4) is O(1). Then by

using (3.17) (p25) and the non-degeneracy assumption (Assumption 3.3), we have

dy = (AXZ−1AT)−1O(1)

= [ŨL ŨS]

[
Σ−1

L 0

0 Σ−1
S

][
ŨT

L

ŨT
S

]
O(1)

= ŨLΣ−1
L ŨT

L O(1) = O(µ).

We then can see that dz = O(µ) follows from dz = −AT dy − rd; and also that dxN =

O(µ) follows from ZNdxN + XNdzN = (−ZXe + σµe)N . Then we have dxB = O(µ) from

ABdxB + ANdxN = −rp and the non-degeneracy assumption (i.e., AB is invertible and well-

conditioned).

3.3.2 Error in fl(dy)

We state a slightly modified version of [101] and [49, p133].

Lemma 3.14 Let

Mx = b, and (M + ∆M)x̃ = b + ∆b.

Assume M + ∆M is nonsingular. Then

x̃− x = (M + ∆M)−1(∆b−∆Mx).

Proof. Notice that (M + ∆M)(x̃− x) = ∆b−∆Mx.

Theorem 3.15 Suppose Assumption 3.2 and 3.3 hold. Let dy be the exact solution of the

middle block of (3.4) (p16). Let fl(dy) be the computed solution by any backward stable linear

equation solver. Then

fl(dy)− dy = O(u).

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 28

Proof. Assume fl(dy) is a solution which comes from a backward stable linear system.

This means

fl(AXZ−1AT)fl(dy) = fl(−rp + A(−Z−1Xrd + x− σµZ−1e)) + O(u). (3.23)

The O(u) term can be folded into the argument of the fl(·) operator because the argument is

O(1). Now, using Lemma 3.14, the error bound for the right-hand side (Theorem 3.6 (p20)),

and Corollary 3.12, we have

fl(dy)− dy

=fl(AXZ−1AT)−1[O(u/µ)− (fl(AXZ−1AT)− AXZ−1AT)dy]

=ÛLΣ̂−1
L ÛT

L [O(u/µ)− (ABO(u/µ) + ANO(µu) + O(u/µ))dy] (by (3.16), (3.20))

=O(u),

where the last step follows from Σ̂−1 = Θ(µ).

Notice that dy = O(µ). In addition, when µ > u, Theorem 3.15 means that fl(dy) is also

O(µ).

3.3.3 Error in fl(dx)

Theorem 3.16 Suppose that Assumptions 3.2 and 3.3 hold. Let dx be the exact solution

obtained from the back-substitution using dy and the third equation of (3.4). Let fl(dx) be the

floating point computed solution from the back-substitution with fl(dy) and the third equation

of (3.4). If fl(dy) has the error bound in Theorem 3.15, then

fl(dxi) = dxi + O(u) (i ∈ B), fl(dxi) = dxi + O(µu) (i ∈ N).

Proof. Notice that the equation for solving dy is:

AZ−1XAT dy = −rp + A(−Z−1Xrd + x− σµZ−1e). (3.24)

The Ax− rp term in the right-hand side of (3.24) is equal to b. Thus,

AZ−1XAT dy = b + A(−Z−1Xrd − σµZ−1e). (3.25)

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 29

We split this term according to the partition of indices, B,N , i.e.

ABZ−1
B XBAT

Bdy+ANZ−1
N XNAT

Ndy = b−ABZ−1
B XBrdB−ANZ−1

N XN rdN−σµABZ−1
B e−σµANZ−1

N e.

Now, move the parts associated with B to one side.

AB(Z−1
B XBAT

Bdy + Z−1
B XBrdB + σµZ−1

B e)

= b− ANZ−1
N XN rdN − σµANZ−1

N e− ANZ−1
N XNAT

Ndy. (3.26)

Similar to (3.25), our computed solution fl(dy), from a backward stable linear solver, satisfies

the following equality

fl(AXZ−1AT)fl(dy) = fl(b + A(−Z−1Xrd − σµZ−1e) + O(u).

We now follow the same procedure from (3.25) to (3.26). We first do the split according to

the partition with indices B,N . The O(·) item is added to represent the roundoff error in

the floating point operation.

[fl(ABZ−1
B XBAT

B) + fl(ANZ−1
N XNAT

N) + O(u/µ)]fl(dy)

= b− fl(ABZ−1
B XBrdB)− fl(ANZ−1

N XN rdN)− fl(σµABZ−1
B e)− fl(σµANZ−1

N e) + O(u).

(3.27)

Now, move the parts associated with B to one side and combine all the error terms. (Notice

that O(u/µ)fl(dy) = O(u).) We get

fl(ABZ−1
B XBAT

B)fl(dy) + fl(ABZ−1
B XBrdB) + fl(σµABZ−1

B e)

= b− fl(ANZ−1
N XN rdN)− fl(σµANZ−1

N e)− fl(ANZ−1
N XNAT

N)fl(dy) + O(u). (3.28)

By factoring out AB, we rewrite the left-hand side.

fl(ABZ−1
B XBAT

B)fl(dy) + fl(ABZ−1
B XBrdB) + fl(σµABZ−1

B e)

= [ABfl(Z−1
B XBAT

B)+O(u/µ)]fl(dy)+ [ABfl(Z−1
B XBrdB)+O(u)]+ [ABfl(σµZ−1

B e)+O(u)].

(3.29)

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 30

We can see from the above equation that all the error terms are O(u) (as O(u/µ)fl(dy) =

O(u)). So, we can rewrite (3.28) as

AB[fl(Z−1
B XBAT

B)fl(dy) + fl(Z−1
B XBrdB) + fl(σµZ−1

B e)]

= b− fl(ANZ−1
N XN rdN)− fl(σµANZ−1

N e)− fl(ANZ−1
N XNAT

N)fl(dy) + O(u). (3.30)

Now if we take the difference of (3.26) and (3.30), we have

AB[fl(Z−1
B XBAT

B fl(dy)) + fl(Z−1
B XBrdB) + fl(σµZ−1

B e)

− (Z−1
B XBAT

Bdy + Z−1
B XBrdB + σµZ−1

B e)]

= [ANZ−1
N XN rdN + σµANZ−1

N e + ANZ−1
N XNAT

Ndy (3.31)

−fl(ANZ−1
N XN rdN)− fl(σµANZ−1

N e)− fl(ANZ−1
N XNAT

N)fl(dy) + O(u)].

Since each item of ANZ−1
N XN rdN , σµANZ−1

N e, ANZ−1
N XNAT

Ndy in the right-hand side of

(3.31) is O(1) and the right-hand side is the sum of the roundoff errors of these terms, we

conclude that the right-hand side is at most O(u). Thus the above equation (3.31) can be

written as

AB[fl(Z−1
B XBAT

Bfl(dy)) + fl(Z−1
B XBrdB) + fl(σµZ−1

B e)

− (Z−1
B XBAT

Bdy + Z−1
B XBrdB + σµZ−1

B e)]

= O(u). (3.32)

By the non-degeneracy assumption (Assumption 3.3) that AB is non-singular and well con-

ditioned, we have that

fl(Z−1
B XBAT

Bfl(dy)) + fl(Z−1
B XBrdB) + fl(σµZ−1

B e)

− (Z−1
B XBAT

Bdy + Z−1
B XBrdB + σµZ−1

B e)

= A−1
B O(u) = O(u). (3.33)

Moreover, using Assumption 3.1, Item 2 (p17), that fl(xB) = xB, we see that

fl(dxB) = fl(Z−1
B XBAT

B)fl(dy) + fl(Z−1
B XBrdB) + fl(σµZ−1

B e)− fl(xB) + O(u)

= Z−1
B XBAT

Bdy + Z−1
B XBrdB + σµZ−1

B e− xB + O(u), by (3.33)

= dxB + O(u).

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 31

If index i ∈ N , we have

fl(dxi) =fl(z−1
i xi(A

T fl(dy))i) + fl(z−1
i xi(rd)i)− xi + fl(σµz−1

i) + O(µu)

=[(z−1
i xi + O(µu)][(AT dy)i + O(u)] + [z−1

i xi + O(µu)][(rd)i + O(u)]

− xi + [σµ(z−1
i + O(u)) + O(µu)] + O(µu)

=z−1
i xi(A

T dy)i + O(µu) + z−1
i xi(rd)i + O(µu)− xi + σµz−1

i + O(µu)

=dxi + O(µu). (3.34)

3.3.4 Error in fl(dz)

We use two equations to back-solve for dz. One is with AT dy + dz = −rd, the first equation

of (3.4) or (3.2). The other one is with Zdx + Xdz = −ZX + σµe, the third equation of

(3.2). The error bounds on fl(dz) using these two approaches are the same.

Theorem 3.17 Suppose Assumptions 3.2 and 3.3 hold. Let dz be the exact solution obtained

from a back-solve with dx using dz = X−1[−ZX + σµe − Zdx], the third equation of (3.2).

Let fl(dz) = fl(X−1[−ZX + σµe−Zfl(dx)]) be the floating pointing computed solution of dz,

where fl(dx) has the error bound in Theorem 3.16. Then

fl(dzi) = dzi + O(µu) (i ∈ B), fl(dzi) = dzi + O(u) (i ∈ N).

Proof. The proof follows directly from the proof of the augmented system in [115]. (It

also follows from a standard error analysis argument on each arithmetic operation.)

Theorem 3.18 Suppose Assumptions 3.2 and 3.3 hold. Let dz be the exact solution obtained

from a back-solve with dy using dz = −AT dy − rd, the first equation of (3.4). Let fl(dz) =

fl(−rd − AT fl(dy)) be the floating point computed solution of dz, where fl(dy) has the error

bound in Theorem 3.15. Then

fl(dzi) = dzi + O(µu) (i ∈ B), fl(dzi) = dzi + O(u) (i ∈ N).

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 32

Proof. By using the fact dy = O(µ), we have

fl(dz) =fl(−rd − AT dy)

=− fl(rd)− [fl(AT)fl(dy) + O(µu)] + O(µu)

=− (rd + O(u))− [AT (dy + O(u)) + O(µu)] + O(µu)

=− rd − AT dy + O(u) (O(µu) folded into O(u))

=dz + O(u). (3.35)

We now show the bound for index i ∈ B. By using the second equation in (3.4) we get

AZ−1XAT dy = −rp − AZ−1Xrd + Ax− σµAZ−1e. (3.36)

Equating the Ax− rp term to b and moving −AZ−1Xrd to the left-hand side, we have

AZ−1X(rd + AT dy) = b− σµAZ−1e.

We split the left-hand side according to the partition of indices, B,N , i.e.,

ABZ−1
B XB(rd + AT dy)B + ANZ−1

N XN (rd + AT dy)N = b− σµAZ−1e. (3.37)

Rearranging, we get

ABZ−1
B XB(rd + AT dy)B = b− σµAZ−1e− ANXNZ−1

N (rd + AT dy)N . (3.38)

For the floating point computation, we have similar equations. Notice that for a backward

stable system, the floating point computed solution of fl(dy) satisfies the following equation

(similar to (3.36)).

fl(AZ−1XAT)fl(dy) = fl(b− AZ−1Xrd − σµAZ−1e) + O(u)

This implies

[fl(AZ−1X)AT (1 + O(u))]fl(dy) = fl(b− σµAZ−1e)− fl(AZ−1X)fl(rd) + O(u).

Rearranging again, we get

fl(AZ−1X)(AT fl(dy) + fl(rd)) = fl(b− σµAZ−1e) + O(u).

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 33

Now, split the indices according to the partition of B and N .

fl((AZ−1X)B)(AT fl(dy) + fl(rd))B + fl((AZ−1X)N)(AT fl(dy) + fl(rd))N + O(u)

= fl(b− σµAZ−1e) + O(u).

Rearrange:

fl((AZ−1X)B)(AT fl(dy) + fl(rd))B

= fl(b− σµAZ−1e)− fl((AZ−1X)N)(AT fl(dy) + fl(rd))N + O(u). (3.39)

Now using the definition of fl(·), we can see that

fl((AZ−1X)B) = fl(AB)fl((Z−1X)B) + O(u/µ)

= fl(AB)((Z−1 + O(u/µ))X + O(u/µ)) + O(u/µ)

= ABZ−1X + O(u/µ).

Then, we substitute this error estimate into (3.39) and obtain

[(AZ−1X)B + O(u/µ)](AT fl(dy) + fl(rd))B

= fl(b− σµAZ−1e)− fl((AZ−1X)N)(AT fl(dy) + fl(rd))N + O(u).

Since the term (AT fl(dy) + fl(rd))B is O(µ), the error term O(u/µ)(AT fl(dy) + fl(rd))B is

O(u). The above equation implies that

(AZ−1X)B(AT fl(dy) + fl(rd))B

= fl(b− σµAZ−1e)− fl((AZ−1X)N)(AT fl(dy) + fl(rd))N + O(u). (3.40)

Now, by taking the difference of (3.40) and (3.38), we have

(AZ−1X)B(AT fl(dy) + fl(rd))B − (AT dy + rd)B)

= fl(b− σµAZ−1e)− fl((AZ−1X)N)(AT fl(dy) + fl(rd))N + O(u)

− [b− σµAZ−1e− (AZ−1X)N (AT dy + rd)N]. (3.41)

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 34

Since each term of the right-hand side of (3.41) is O(1), after the cancellation, the right-hand

side is O(u). Thus

(AT fl(dy) + fl(rd))B − (AT dy + rd)B) = (AZ−1X)−1
B O(u)

= O(µu), (3.42)

which is

fl(dzB)− dzB = O(µu).

3.3.5 The Maximal Step Length α

The following theorem [115, Theorem 4.1] shows that interior point methods progress well

(i.e. the maximal step length is approximately 1 when µ is sufficiently small.) The theorem

also shows that the maximal step length calculated from fl(dx) and fl(dz) only has an error

of O(u) compared to the exact one calculated from exact dx and dz.

Theorem 3.19 Suppose that Assumption 3.2 holds. Let (dx, dy, dz) be the exact solution of

(3.2)(equivalently, (3.4)), and let (d̂x, d̂y, d̂z) be an approximation to this step. Suppose that

the centering parameter σ in (3.2) lies in the range [0, 1/2] and that the following conditions

hold:

(dx, dz) = O(µ), (3.43)

(dxB, dzN)− (d̂xB, d̂zN) = O(u), (3.44)

(dxN , dzB)− (d̂xN , d̂zB) = O(µu). (3.45)

Let α∗ denote the largest number in [0, 1] such that

(x + αdx, z + αdz) ≥ 0 for all α ∈ [0, α∗]; (3.46)

(x + αdx)T (z + αdz) is decreasing for all α ∈ [0, α∗]. (3.47)

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 35

Suppose α̂∗ is obtained by replacing (dx, dz) with (d̂x, d̂z) in (3.46) and (3.47). Then for all

µ sufficiently small, we have

1− α∗ = O(µ), (3.48)

α̂∗ = α∗ + O(u) = 1−O(µ) + O(u), (3.49)

(x + α̂∗d̂x)T (z + α̂∗d̂z)/n = σO(µ) + O(µ(µ + u)). (3.50)

S. Wright [115] uses the above theorem to show that the augmented system in LP, under

a non-degeneracy assumption, can have close to 1 step lengths at the final stage of interior

point methods. Thus, the roundoff error is not a problem for the augmented system. Our

error bounds on fl(dx), fl(dz) are the same as those from (3.43) to (3.45). Thus, this theorem

can be applied to our analysis without modification. We also expect the normal equation

system to have a close to 1 step length at the final stage of interior point methods for

non-degenerate (specified by Assumption 3.3) problems where Assumption 3.2 holds. This

can happen even when the condition number for the left-hand side of the normal equation

system, (3.4), can go to infinity, see [41]. The step length α̂∗ computed using fl(dx) and

fl(dz) has an error of O(u) compared to the exact α.

3.3.6 Numerical Example for The Non-Degenerate Case

The following example illustrates that our error estimates are tight on the computed search

direction.

Example 3.20 The data A and an optimal solution x∗, y∗, and z∗ of the LP problem are

given below:

A =

[
1 0 2 0

2 2 4 1

]
, x∗ =




1

1

0

0


 , y∗ =

[
1

0

]
, z∗ =




0

0

1

1


 . (3.51)

The data b, c is defined by Ax∗ = b and AT y∗ + z∗ = c. And the partition of the indices is

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 36

B = {1, 2}, and N = {3, 4}. We let the initial x, y, and z be

x =




1.0002568

0.99981378

3.9374932e−4

1.634266e−4


 , y =

[
1.00005026

1.16595e− 4

]
, z =




1.9454628e−4

1.398727e−4

1.0001686

1.0001916


 .

We check the duality gap and the residuals

µ = 2.2292914e−004, rp =

[
1.0442986e−003

1.8795839e−003

]
, rd =




4.7799628e−004

3.7306273e−004

7.3550000e−004

3.0819500e−004


 .

This data satisfies Assumption 3.2 and AB satisfies Assumption 3.3.

We use double precision to solve for dy, dx, dz and assume this is the accurate solution.

We then simulate the fl(·) operation by keeping the − log(u) most significant digits through

a roundoff computation after each arithmetic operation. So, it can be thought of as having

an error of size u. In Table 3.1, we list the error for fl(dx), fl(dy), and fl(dz) at different

u values. We see that the error bound is consistent with Theorems 3.15, 3.16, and 3.18

outlined in this section.

3.4 The Degenerate Case with rank (AB) < m

For degenerate problems, our error bounds on fl(dx), fl(dy), and fl(dz) in the previous section

can fail. First, it is generally not true that dy = O(µ) for the degenerate case. Second, the

proof of the error bounds for fl(dx) and fl(dz) uses the property that AB is invertible. This

is not true in the degenerate case.

But in practice, surprisingly, degeneracy seldom causes serious problems. We explain

this in the following discussion. In this section, we assume that the rank of AB is less than

m and µ > 10
√

u.

We first state a lemma on the bound of the magnitude of dx, dy, dz from [116].

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 37

u = 1e−7 u = 1e−8 u = 1e−9 u = 1e−10 u = 1e−11 u = 1e−12

|dy − fl(dy)| i :

(‖dy‖=1.3e−4)

3.6e−9

1.2e−10

3.7e−9

1.5e−11

3.7e−9

8.8e−13

2.8e−10

1.9e−14

2.0e−11

1.1e−14

6.3e−16

5.8e−16

|dx− fl(dx)| i :

(‖dxB‖=3.2e−4

‖dxN‖=4.3e−4
)

8.7e−7

2.0e−6

1.8e−10

8.7e−12

3.3e−8

1.8e−7

5.6e−12

1.3e−12

7.3e−9

4.3e−9

2.6e−12

6.7e−13

3.3e−10

6.5e−10

2.0e−13

3.4e−14

7.1e−11

1.5e−10

1.8e−14

3.6e−15

1.2e−12

5.7e−12

7.6e−17

4.3e−16

|dz − fl(dz)| i :

(‖dzB‖=2.4e−4

‖dzN‖=2.6e−4
)

2.1e−10

2.8e−10

4.9e−7

2.0e−7

7.5e−12

3.0e−11

7.5e−9

5.0e−9

1.5e−12

1.8e−12

7.4e−9

5.0e−9

3.8e−14

3.9e−14

5.6e−10

2.0e−14

1.2e−14

2.1e−14

4.0e−11

1.0e−14

5.4e−16

1.2e−15

1.1e−15

4.8e−16
|α− fl(α)| :

(α=1.0)
2.2e−6 2.4e−7 9.0e−9 2.7e−11 1.3e−10 7.1e−12

Table 3.1: The error in fl(dx), fl(dy), fl(dz), and fl(α) for different u for the data in Example

3.20, where fl(α) is the largest number (≤ 1) such that (x + fl(α)fl(x), z + fl(α)fl(z)) ≥ 0,

and σ = 0 in (3.2) (p15). Here B = {1, 2} and N = {3, 4}.

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 38

Lemma 3.21 Suppose Assumption 3.2 holds. Let dx, dy, and dz be the solution of




0 AT I

A 0 0

Z 0 X







dx

dy

dz


 =




−rd

−rp

−ZXe + w


 , (3.52)

where w = O(µ2). Then

(dx, dy, dz) = O(µ).

Proof. See [116, sect. 5.1].

However, the estimates for the magnitudes are different for the case of a centering direc-

tion, as shown in the following lemma.

Lemma 3.22 Suppose Assumption 3.2 holds. Let dx, dy, and dz be the solution of




0 AT I

A 0 0

Z 0 X







dx

dy

dz


 =




−rd

−rp

−ZXe + µe


 . (3.53)

Then

dy = O(1),

dxB = O(1), dxN = O(µ), and dzB = O(µ), dzN = O(1).

Proof. The direction (dx, dy, dz) can be split into an affine scaling component (dxaff,

dyaff, dzaff) (satisfying (3.53) without the µe component in the right-hand side) and a

component (dxµ, dyµ, dzµ) that satisfies




0 AT I

A 0 0

Z 0 X







dxµ

dyµ

dzµ


 =




0

0

µe


 . (3.54)

It is shown in [116, sect. 5.1] that

(dxaff, dyaff, dzaff) = O(µ). (3.55)

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 39

We notice that dyµ also satisfies the following equation by a block elimination on (3.54)

AXZ−1AT dyµ = −µAZ−1e.

Using the structure information of AXZ−1AT in (3.17) (p25), we have

dyµ = −(AXZ−1AT)−1µAZ−1e

= −[ŨL ŨS]

[
Σ−1

L 0

0 Σ−1
S

][
ŨT

L

ŨT
S

]
(µABZ−1

B e + µANZ−1
N e)

= −ŨLΣ−1
L ŨT

L (µABZ−1
B e + µANZ−1

N e)− ŨSΣ−1
S ŨT

S (µABZ−1
B e + µANZ−1

N e). (3.56)

From (3.18), (3.19) (p26) and Assumption 3.2 (p18), we can see that the underlined part in

(3.56) is the dominant part with size O(1). So dyµ = O(1). Since dy = dyaff + dyµ, we see

that dy = O(1).

Since dy = O(1), we see that dz = O(1) from dz = −AT dy− rd. Notice that from (3.56),

we have

AT
Bdyµ = −AT

BŨLΣ−1
L ŨT

L (µABZ−1
B e + µANZ−1

N e)− AT
BŨSΣ−1

S ŨT
S (µABZ−1

B e + µANZ−1
N e)

= O(µ), (3.57)

where we used (3.18) (p26), (3.19) (p26) and Assumption 3.2. The dominating part is

underlined. Thus using (3.55), (3.57), we have

dzB = −AT
BdyB − (rd)B

= −AT
B(dyaff

B + dyµ
B)− (rd)B

= O(µ).

To prove the bound on dx, we use the third equation of (3.53) and have

dx = −Z−1Xdz − x + µZ−1e.

Using the bounds of dzN and dzB, and the size of xi and zi in Assumption 3.2, we see that

dxB = O(1) and dxN = O(µ).

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 40

We remark that the bounds in the above theorem are tight as illustrated by the data in

Table 3.3 (p51).

We can use the same technique (using the structure information of AXZ−1AT) to prove

that in Lemma 3.21, the component dy−dyaff is magnitude O(µ), and thus prove dy is O(µ)

in Lemma 3.21 in conjunction with the O(µ) bound for the affine scaling direction. This

gives an alternative proof for the bound on dy in Lemma 3.21.

Due to the different estimates of the size of dy, we have different error bounds for these

two linear systems. We call the direction defined in Lemma 3.21 the “semi-affine” direction;

and we call the direction defined in Lemma 3.22 the “centering” direction. In the following

sections we find the error bounds for both directions.

3.4.1 The Semi-Affine Direction (3.52)

Error in fl(dy) for The Semi-Affine Direction

Theorem 3.23 Suppose Assumption 3.2 holds, rank (AB) < m, and µ > 10
√

u. Let dy be

the exact solution of

AXZ−1AT dy = −rp + A(−Z−1Xrd + x− w), (3.58)

where w = O(µ2). Let fl(dy) be the computed solution of (3.58) using a backward stable

linear equation solver. Then

fl(dy)− dy = O(u/µ).

Proof. Since fl(dy) comes from a backward stable solver, we have

fl(AXZ−1AT)fl(dy) = fl(−rp + A(−Z−1Xrd + x− w)) + O(u).

The O(u) term can be folded into the fl(·) on the right-hand side because the argument in

the fl(·) is O(1). So, we have

fl(AXZ−1AT)fl(dy) = fl(−rp + A(−Z−1Xrd + x− w)). (3.59)

Using similar analysis as in Theorem 3.6 (p20), we can bound the right-hand side in (3.59)

as follows.

fl(−rp+A(−Z−1Xrd+x−w)) = −rp+A(−Z−1Xrd+x−w)+[ABO(u/µ)+ANO(µu)+O(u)].

(3.60)

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 41

Notice that (3.58) in the lemma is obtained from (3.52) by a block elimination. Now, using

Lemma 3.14, (3.20) (p26), (3.60), and (3.16) (p24), we have

fl(dy)− dy = [fl(AXZ−1AT)]−1 (3.61)

{ABO(u/µ) + ANO(µu) + O(u)− [fl(AXZ−1AT)− AXZ−1AT]dy}

= [ÛL ÛS]

[
Σ̂−1

L 0

0 Σ̂−1
S

][
ÛT

L

ÛT
S

]

{ABO(u/µ) + ANO(µu) + O(u)− [ABO(u/µ) + ANO(µu) + O(u/µ)]dy}.
(3.62)

Since Σ̂−1
L = Θ(µ), Σ̂−1

S = Θ(1/µ), dy = O(µ) (Lemma 3.21), and ÛT
S AB = O(µ2), we observe

that the dominant error, the underlined part, is O(u/µ).

Error in fl(dx)

Theorem 3.24 Suppose Assumption 3.2 holds, rank (AB) < m, and µ > 10
√

u. Let dx be

the exact solution back-solved from dy by

dx = Z−1XAT dy + ZXrd − x + w. (3.63)

Let fl(dx) be the floating point computed solution back-solved from fl(dy) by the same equation.

If fl(dy) has the error bound in Theorem 3.23, then

fl(dxi) = dxi + O(u/µ) (i ∈ B), fl(dxi) = dxi + O(u) (i ∈ N).

Proof. Similar to the result in (3.34) (p31), we can derive the bound on fl(dxN) by using

the error bound on fl(dy) from Theorem 3.23. If index i ∈ N , we have

fl(dxi)

=fl(z−1
i xi(A

T fl(dy))i) + fl(z−1
i xi(rd)i)− xi + fl(w) + O(µu)

=[(z−1
i xi + O(µu)][(AT dy)i + O(u/µ)] + [z−1

i xi + O(µu)][(rd)i + O(u)]

− xi + w + O(µu)

=z−1
i xi(A

T dy)i + O(u) + z−1
i xi(rd)i + O(µu)− xi + w + O(µu)

=dxi + O(u). (3.64)

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 42

The underlined part is the main difference from (3.34) (p31).

If index i ∈ B, using (3.62), we have

‖AT
B(fl(dy)− dy)‖

=

∥∥∥∥∥AT
B [ÛL ÛS]

[
Σ̂−1

L 0

0 Σ̂−1
S

][
ÛT

L

ÛT
S

]

{ABO(u/µ) + ANO(µu) + O(u)− [ABO(u/µ) + ANO(µu) + O(u/µ)]dy}
∥∥∥ . (3.65)

Again, using the property that AT
BÛS = O(µ2), Σ̂−1

L = Θ(µ), Σ̂−1
S = Θ(1/µ), dy = O(µ), we

see the underlined parts dominate, which gives

AT
B(fl(dy)− dy) = O(u). (3.66)

So, similarly to (3.64), we have

fl(dxB)

=fl(Z−1
B XB(AT

Bfl(dy))) + fl(Z−1
B XB(rd)B)− xB + fl(w) + O(u)

=[(Z−1
B XB + O(u/µ)][(AT dy)B + O(u)] + [Z−1

B XB + O(u/µ)][(rd)B + O(u)]

− xB + w + O(u)

=Z−1
B XB(AT dy)B + O(u/µ) + Z−1

B XB(rd)B + O(u/µ)− xB + w + O(u)

=dxB + O(u/µ). (3.67)

Error in fl(dz)

Theorem 3.25 Suppose Assumption 3.2 (p18) holds, rank (AB) < m, and µ > 10
√

u. Let

dz be the exact solution back-solved from dy by AT dy+dz = −rd, the first equation of (3.52).

Let fl(dz) = fl(−rd−AT fl(dy)) be the floating point computed solution of dz from fl(dy), and

suppose that fl(dy) has the error bound in Theorem 3.23. Then

fl(dzi) = dzi + O(u) (i ∈ B), fl(dzi) = dzi + O(u/µ) (i ∈ N).

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 43

Proof. By using the property that dy = O(µ) and Theorem 3.23, we have

fl(dz) =fl(−rd − AT dy)

=− fl(rd)− [fl(AT)fl(dy) + O(µu)] + O(µu)

=− (rd + O(u))− [AT (dy + O(u/µ))] + O(µu)

=− rd − AT dy + O(u/µ)

=dz + O(u/µ).

We now show the bound for index i ∈ B. By using the bound in (3.66), we have

fl(dzB) =fl(−(rd)B − AT
Bdy)

=− fl(rd)B − [fl(AT
B)fl(dy) + O(µu)] + O(µu)

=− (rd)B + O(u))− [AT
Bdy + O(u)] + O(µu)

=− (rd)B − AT
Bdy + O(u)

=dzB + O(u). (3.68)

3.4.2 The Centering Direction

Error in fl(dy) for the centering direction

Theorem 3.26 Suppose Assumption 3.2 holds, rank (AB) < m, and µ > 10
√

u. Let dy be

the exact solution of the middle block of (3.4) (p16) with σ = 1. Let fl(dy) be the computed

solution by any backward stable linear equation solver. Then

fl(dy)− dy = O(u/µ2).

Proof. Since fl(dy) comes from a backward stable linear system, we have

fl(AXZ−1AT)fl(dy) = fl(−rp + A(−Z−1Xrd + x− µZ−1e)) + O(u). (3.69)

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 44

The O(u) term can be folded into the fl(·) on the right-hand side because the argument in

the fl(·) is O(1). So, we have

fl(AXZ−1AT)fl(dy) = fl(−rp + A(−Z−1Xrd + x− µZ−1e)). (3.70)

Now, using Lemma 3.14, we have

fl(dy)− dy =[fl(AXZ−1AT)]−1 (3.71)

{ABO(u/µ) + ANO(µu) + O(u)− [fl(AXZ−1AT)− AXZ−1AT]dy}

=[ÛL ÛS]

[
Σ̂−1

L 0

0 Σ̂−1
S

][
ÛT

L

ÛT
S

]

{ABO(u/µ) + ANO(µu) + O(u)− [ABO(u/µ) + ANO(µu) + O(u/µ)]dy}.
(3.72)

Since Σ̂−1
L = Θ(µ), Σ̂−1

S = Θ(1/µ), dy = O(1), and ÛT
S AB = O(µ2), we observe that the

dominant errors are the underlined parts, which are O(u/µ2).

Error in fl(dx)

Theorem 3.27 Suppose Assumption 3.2 holds, rank (AB) < m, and µ > 10
√

u. Let dx be

the exact solution back-solved from dy by

dx = Z−1XAT dy + ZXrd − x + µZ−1e. (3.73)

Let fl(dx) be the floating point computed solution back-solved from fl(dy) by the same equation.

If fl(dy) has the error bound in Theorem 3.26, then

fl(dxi) = dxi + O(u/µ) (i ∈ B), fl(dxi) = dxi + O(u/µ) (i ∈ N).

Proof. Similar to the result in (3.34) (p31), we can derive the bound on fl(dxN) by using

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 45

the error bound on fl(dy) from Theorem 3.26. If index i ∈ N , we have

fl(dxi)

=fl(z−1
i xi(A

T fl(dy))i) + fl(z−1
i xi(rd)i)− xi + fl(µz−1

i) + O(u)

=[(z−1
i xi + O(µu)][(AT dy)i + O(u/µ2)] + [z−1

i xi + O(µu)][(rd)i + O(u)]

− xi + [µ(z−1
i + O(u)) + O(µu)] + O(µu)

=z−1
i xi(A

T dy)i + O(u/µ) + z−1
i xi(rd)i + O(µu)− xi + µz−1

i + O(µu)

=dxi + O(u/µ). (3.74)

The underlined part in the above equation is the main difference from (3.34) (p31).

If index i ∈ B, using (3.72), we have

‖AT
B(fl(dy)− dy)‖

=

∥∥∥∥∥AT
B [ÛL ÛS]

[
Σ̂−1

L 0

0 Σ̂−1
S

][
ÛT

L

ÛT
S

]

{ABO(u/µ) + ANO(µu) + O(u)− [ABO(u/µ) + ANO(µu) + O(u/µ)]dy}
∥∥∥ . (3.75)

Again, using the property that AT
BÛS = O(µ2), Σ̂−1

L = Θ(µ), Σ̂−1
S = Θ(1/µ), dy = O(1), we

see the underlined parts as well as the term AT
BÛSΣ̂−1

s ÛT
S O(u/µ)dy dominate, which gives

AT
B(fl(dy)− dy) = O(u). (3.76)

So, using (3.76), we have

fl(dxB) =fl(Z−1
B XB(AT

B fl(dy))) + fl(Z−1
B XB(rd)B)− xB + fl(µz−1

B) + O(u)

=[(Z−1
B XB + O(u/µ)][(AT dy)B + O(u)] + [Z−1

B XB + O(u/µ)][(rd)B + O(u)]

− xB + [µ(z−1
B + O(u/µ)) + O(u)] + O(u)

=Z−1
B XB(AT dy)B + O(u/µ) + Z−1

B XB(rd)B + O(u/µ)− xB + µz−1
B + O(u)

=dxB + O(u/µ). (3.77)

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 46

Error in fl(dz)

Theorem 3.28 Suppose Assumption 3.2 (p18) holds, rank (AB) < m, and µ > 10
√

u. Let

dz be the exact solution back-solved from dy by AT dy + dz = −rd. Let fl(dz) = fl(−rd −
AT fl(dy)) be the floating point computed solution of dz back-solved from fl(dy), and fl(dy)

has the error bound in Theorem 3.26. Then

fl(dzi) = dzi + O(u) (i ∈ B), fl(dzi) = dzi + O(u/µ2) (i ∈ N).

Proof. By using the property that dy = O(1) and the bound on fl(dy) (Theorem 3.26),

we have

fl(dz) =fl(−rd − AT fl(dy))

=− (rd + O(u))− [AT (dy + O(u/µ2))] + O(u)

=− rd − AT dy + O(u/µ2)

=dz + O(u/µ2).

We now show the bound for index i ∈ B. By using the bound in (3.76), we have

fl(dzB) =fl(−(rd)B − AT
Bdy)

=− fl(rd)B − [fl(AT
B)fl(dy) + O(u)] + O(u)

=− (rd)B + O(u))− [AT
Bdy + O(u)] + O(u)

=− (rd)B − AT
Bdy + O(u)

=dzB + O(u).

Remarks: these two sets of error bounds for the semi-affine and the centering direction

are interesting in the sense that just the change of the parameter σ yields a big change in

the error estimates. Our numerical results in Tables 3.2 (p50), 3.3 (p51) show that these

error bounds are tight.

In summary, we observe that the error bounds for dx, dy, dz in the degenerate case are

worse than the error bounds for dx, dy, dz in the non-degenerate case. However, this may

not pose a big problem in computations.

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 47

3.4.3 The Maximal Step Length α

Most of the search directions in practice are a combination of the semi-affine direction and

the centering direction. We consider a convex combination of these two directions with

(1− σ) weight on the semi-affine direction and σ weight on the centering direction. Such a

convex combination satisfies the linear system (3.78). If we assume that the error bounds

for the semi-affine and the centering direction in the previous section hold, then the error

bounds on their convex combination satisfy the bounds (3.79)–(3.84). The following theorem

shows the error bound for the maximal step length.

Theorem 3.29 Suppose that Assumption 3.2 holds. Let (dx, dy, dz) be the exact solution of

the following linear system




0 AT I

A 0 0

Z 0 X







dx

dy

dz


 =




−rd

−rp

−ZXe + σµe + (1− σ)w


 , (3.78)

where w = O(µ2) and σ ∈ [0, 1]. Let (d̂x, d̂y, d̂z) be an approximation to this step and let the

following conditions hold:

(dxB, dzN) = (1− σ)O(µ) + σO(1), (3.79)

(dxN , dzB) = O(µ), (3.80)

dxB − d̂xB = O(u/µ), (3.81)

dxN − d̂xN = (1− σ)O(u) + σO(u/µ), (3.82)

dzB − d̂zB = O(u), (3.83)

dzN − d̂zN = (1− σ)O(u/µ) + σO(u/µ2). (3.84)

Suppose that the centering parameter σ is small enough such that

− dxi/xi < 1, and − dzj/zj < 1 ∀i ∈ B and ∀j ∈ N , (3.85)

and

− d̂xi/xi < 1 and − d̂zj/zj < 1 ∀i ∈ B and ∀j ∈ N . (3.86)

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 48

Let α∗ denote the largest number in [0, 1] such that

(x + αdx, z + αdz) ≥ 0 for all α ∈ [0, α∗]. (3.87)

And, suppose α̂∗ is obtained by replacing (dx, dz) with (d̂x, d̂z) in (3.87). Then for all µ and

σ sufficiently small, we have

α∗ = 1− (1− σ)O(µ)− σO(1), (3.88)

α̂∗ = α∗ + (1− σ)O(u/µ) + σ(u/µ2). (3.89)

Proof. (We follow a similar approach as the one for Theorem 3.19.) Our assumptions

(3.85) (and (3.86)) show that the values dxN , dzB (and d̂xN , d̂zB) determine whether or not

α∗ (and α̂∗), is less than 1. Hence, α∗ satisfies

1

α∗
= max(1, max

i∈B
−dzi

zi

, max
i∈N

−dxi

xi

). (3.90)

From the last row of (3.78), we have zidxi+xidzi = −zixi+σµ+(1−σ)wi. Since zixi = Θ(µ)

and wi = O(µ2), we have

−dxi

xi

= 1 +
dzi

zi

− σ
µ

xizi

− (1− σ)
wi

xizi

< 1 +
dzi

zi

+ (1− σ)O(µ).

For i ∈ N , we have from (3.79) and (3.6) that dzi/zi = (1− σ)O(µ) + σO(1). Thus

max
i∈N

−dxi

xi

≤ 1 + (1− σ)O(µ) + σO(1).

Similarly, we have

max
i∈B

−dzi

zi

≤ 1 + (1− σ)O(µ) + σO(1).

So if σ is small enough, we have

1/α∗ ≤ max(1, 1 + (1− σ)O(µ) + σO(1) =⇒ α∗ = 1− (1− σ)O(µ)− σO(1).

For the quantity α̂∗, we have from (3.82) that

d̂xi

xi

− dxi

xi

=
(1− σ)O(u) + σO(u/µ)

Θ(µ)
= (1− σ)O(u/µ) + σO(u/µ2), (i ∈ N).

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 49

Similarly, we have from (3.83) that

d̂zi

zi

− dzi

zi

=
O(u)

Θ(µ)
= O(u/µ), (i ∈ B).

Therefore, from (3.90), we have α̂∗ = α∗ + (1− σ)O(u/µ) + σ(u/µ2).

We remark that the above error bound on α̂∗ requires small values for σ. For example, in

the case of the centering direction, σ = 1, we can obtain an inaccurate maximal step length

α̂∗, as illustrated by the value of |α− fl(α)| in Table 3.3 (p51). However, if σ is small, then

the above theorem states that the algorithm makes good progress.

3.4.4 Numerical Example

In this subsection, we use the same matrix A, as in Example 3.20, to illustrate the error

bounds for the degenerate case. The data A and optimal solution x∗, y∗, and z∗ of the LP

problem is given below:

A =

[
1 0 2 0

2 2 4 1

]
, x∗ =




1

0

1

0


 , y∗ =

[
1

0

]
, z∗ =




0

1

0

1


 . (3.91)

The data b, c is defined by Ax∗ = b and AT y∗ + z∗ = c. And, the partition of the indices is

B = {1, 3}, and N = {2, 4}. Notice that rank (AB) = 1. We let the initial x, y, and z be

x =




1.0004568

1.1713298e−4

1.0001432

1.634266e−4


 , y =

[
1.00005026

1.16595e−4

]
, z =




1.9454628e−4

9.9961681e−1

1.398727e−4

1.0001916


 .

We check the duality gap and the residuals

µ = 1.1641818e−004, rp =

[
7.4320000e−004

1.7370086e−003

]
, rd =




4.7799628e−004

−1.5000000e−004

7.0448398e−004

3.0819500e−004


 .

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 50

u = 1e−7 u = 1e−8 u = 1e−9 u = 1e−10 u = 1e−11 u = 1e−12

|dy − fl(dy)| i :

(‖dy‖=4.1e−4)

5.5e−4

2.8e−4

3.8e−4

1.9e−4

4.1e−4

2.0e−4

1.3e−5

6.3e−6

1.2e−6

6.0e−7

2.9e−7

1.4e−7

|dx− fl(dx)| i :

(‖dxB‖=3.3e−4

‖dxN‖=1.2e−4
)

1.1e−3

6.5e−8

5.5e−4

4.5e−9

1.9e−5

4.4e−8

9.5e−6

3.1e−9

2.5e−5

4.8e−8

1.2e−5

3.3e−9

1.3e−6

1.5e−9

6.3e−7

1.0e−10

4.4e−8

1.4e−10

2.2e−8

9.7e−12

1.6e−12

3.4e−11

1.4e−11

2.3e−12

|dz − fl(dz)| i :

(‖dzB‖=2.4e−4

‖dzN‖=3.7e−4
)

2.2e−7

5.5e−4

7.6e−8

2.8e−4

3.6e−9

3.8e−4

1.3e−9

1.9e−4

4.9e−9

4.1e−4

1.7e−9

2.0e−4

2.5e−10

1.3e−5

8.7e−11

6.3e−6

8.5e−12

1.2e−6

3.0e−12

6.0e−7

8.2e−16

2.9e−7

2.8e−15

1.4e−7
|α− fl(α)| :

(α=1.0)
5.5e−4 2.6e−5 4.1e−4 1.3e−5 1.2e−6 2.9e−7

Table 3.2: The affine scaling direction (σ = 0). Error in fl(dx), fl(dy), fl(dz), and fl(α) on

different u for the data in Section 3.4.4, where fl(α) is the largest number (≤ 1) such that

(x + αfl(x), z + fl(α)fl(z)) ≥ 0. Here B = {1, 3} and N = {2, 4}.

This data satisfies Assumption 3.2.

We use double precision to solve for dy, dx, dz and assume this is the accurate solution.

We then simulate the fl(·) operation by keeping the − log(u) most significant digits through

a roundoff computation after each arithmetic operation. So, it can be thought of as having

an error of size u.

We list the error in the affine scaling direction, at different u values, in Table 3.2 (p50).

We see that this is consistent with the error bounds in Theorems 3.23, 3.24, and 3.25.

In Table 3.3, we list the errors for the centering direction at different u value. We see

that these errors are consistent with the theorems (Theorem 3.26, 3.27, and 3.28) outline in

this section.

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 51

u = 1e−7 u = 1e−8 u = 1e−9 u = 1e−10 u = 1e−11 u = 1e−12

|dy − fl(dy)| i :

(‖dy‖=1.6e+0)

1.5e+0

7.3e−1

1.3e+0

6.3e−1

4.9e+0

2.5e+0

1.5e−2

7.6e−3

1.5e−2

7.3e−3

7.5e−4

3.7e−4

|dx− fl(dx)| i :

(‖dxB‖=2.8e−1

‖dxN‖=1.9e−4
)

1.1e−3

1.7e−4

5.4e−4

1.2e−5

4.9e−6

1.5e−4

4.8e−5

1.0e−5

3.6e−5

5.8e−4

1.9e−5

4.0e−5

2.3e−6

1.8e−6

1.1e−5

1.2e−7

2.7e−7

1.7e−6

9.1e−7

1.2e−7

1.8e−8

8.7e−8

5.0e−8

6.1e−9

|dz − fl(dz)| i :

(‖dzB‖=1.3e−4

‖dzN‖=1.6e+0
)

2.2e−7

1.5e+0

7.5e−8

7.3e−1

9.5e−10

1.3e+0

6.7e−9

6.3e−1

7.0e−9

4.9e+0

2.7e−9

2.5e+0

4.5e−10

1.5e−2

1.5e−9

7.6e−3

5.3e−11

1.5e−2

1.3e−10

7.3e−3

3.4e−12

7.5e−4

6.9e−12

3.7e−4
|α− fl(α)| :

(α=0.7)
3.1e−1 3.1e−1 4.1e−1 7.2e−3 7.0e−3 3.6e−4

Table 3.3: The centering direction σ = 1 in (3.2) (p15). The error in fl(dx), fl(dy), fl(dz),

and fl(α) on different u for the data in Section 3.4.4, where fl(α) is the largest number (≤ 1)

such that (x + fl(α)fl(x), z + fl(α)fl(z)) ≥ 0. Here B = {1, 3} and N = {2, 4}.

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 52

3.5 The Degenerate Case with |B| > m and rank (AB) =

m

When |B| > m and rank (AB) = m, we have stronger error bounds for the search directions

than the degenerate case but weaker error bounds than the non-degenerate case.

We first give the estimates on the magnitude of dx, dy, dz. Similar to the degenerate case

with rank (AB) < m (Section 3.4), the estimates depend on the parameter σ. In the case of

the semi-affine direction (defined in (3.52) (p38)), Lemma 3.21 still holds; and, we have

(dx, dy, dz) = O(µ).

In the case of the centering direction (σ = 1), we have

(dxN , dy, dz) = O(µ) and dxB = O(1).

For the proof of the magnitude of dxN , dy, and dz, we can apply the proof in Theorem

3.13 (p26) without any modification, since the non-degeneracy assumption is not used for

those bounds. For the proof of dxB = O(1), we use ZBdxB + XBdzB = −(XZe)B + σµe.

Since the right-hand side, XBdzB, and ZB are all O(µ), it can be seen that dxB is O(1).

We note that the O(1) bound on dxB is tight as illustrated by the following example.

Let A =

[
1 0 −1 0

0 1 0 1

]
, b = [0, 1]T , c = [0, 0, 0, 1]T , B = {1, 2, 3}, and N = {4}. Let x =

[1.0001, 1.0001, 1.0001, 0.0001]T , y = [0.0001, 0.0001]T , z = [0.0001, 0.0001, 0.0001, 1.0001]T ,

and σ = 1. It can be verified that the assumptions are satisfied. A computation gives that

dx = [1, −1.999e−4, 1, −1e−8]T , i.e., dxB = O(1).

Second, the error bounds for fl(dx), fl(dy), and fl(dz) can be obtained by reusing much

of the previous analysis. The proof for the error bound of fl(dy) (Theorem 3.15) in the

non-degenerate case still applies. Thus we have

fl(dy)− dy = O(u). (3.92)

For the error on dx, we can apply the analysis in (3.34) (p31) to dxN without modification.

Thus

fl(dxN)− dxN = O(µu). (3.93)

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 53

For the error on fl(dxB), we first observe from (3.92) that we have

‖AT
B [fl(dy)− dy]‖ = O(u). (3.94)

This error bound is the same as the one in (3.66) (p42). We then can use the same analysis

as in (3.67) (p42) to show that

fl(dxB)− dxB = O(u/µ). (3.95)

For the error on fl(dz), we see that (3.35) (p32) in Theorem 3.18 is still valid. Thus

fl(dzN)− dzN = O(u). (3.96)

Since we have the bound (3.94), we then can use the same analysis as in (3.68) (p43) to get

the bound

fl(dzB)− dB = O(u). (3.97)

We remark that in the analysis of this section, we do not need the assumption that µ ≥ 10
√

u

as in Section 3.4.

3.5.1 The Maximal Step Length α

We still consider a search direction which is a convex combination of the centering direction

and the semi-affine direction, with weights of σ and (1 − σ), respectively. Such a convex

combination of the search directions satisfies equation (3.98). The magnitude and error

bounds on the convex combination satisfy the bounds (3.99)–(3.103).

Theorem 3.30 Suppose that Assumption 3.2 holds. Let (dx, dy, dz) be the exact solution of

the following linear system




0 AT I

A 0 0

Z 0 X







dx

dy

dz


 =




−rd

−rp

−ZXe + σµe + (1− σ)w


 , (3.98)

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 54

where w = O(µ2) and σ ∈ [0, 1]. Let (d̂x, d̂y, d̂z) be an approximation to this step and assume

that the following conditions hold:

dxB = (1− σ)O(µ) + σO(1), (3.99)

(dxN , dz) = O(µ), (3.100)

dxB − d̂xB = O(u/µ), (3.101)

dxN − d̂xN = O(µu), (3.102)

dz − d̂z = O(u). (3.103)

Suppose that the centering parameter σ is small enough such that

− dxi/xi < 1, and − d̂xi/xi < 1 ∀i ∈ B. (3.104)

Let α∗ denote the largest number in [0, 1] such that

(x + αdx, z + αdz) ≥ 0 for all α ∈ [0, α∗]. (3.105)

And, suppose α̂∗ is obtained by replacing (dx, dz) with (d̂x, d̂z) in (3.87). Then, for all µ

and σ sufficiently small, we have

α∗ = 1− (1− σ)O(µ)− σO(1),

α̂∗ = α∗ + O(u/µ).

Proof. (We follow a similar approach as in Theorem 3.19.) Our assumption of (3.104)

ensures that whether or not α∗ (and α̂∗) is less than 1 is determined by dxN and dzB (d̂xN
and d̂zB). Hence, α∗ satisfies

1

α∗
= max(1, max

i∈B
−dzi

zi

, max
i∈N

−dxi

xi

). (3.106)

From the last row of (3.98), we have zidxi+xidzi = −zixi+σµ+(1−σ)wi. Since zixi = Θ(µ)

and wi = O(µ2), we have

−dxi

xi

= 1 +
dzi

zi

− σ
µ

xizi

− (1− σ)
wi

xizi

< 1 +
dzi

zi

+ (1− σ)O(µ).

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 55

For i ∈ N , we have from (3.100) and (3.6) that dzi/zi = O(µ). Thus

max
i∈N

−dxi

xi

≤ 1 + O(µ) + (1− σ)O(µ) = 1 + (2− σ)O(µ).

Similarly, we have

max
i∈B

−dzi

zi

≤ 1 + (1− σ)O(µ) + σO(1).

So if σ is small enough, we have

1/α∗ ≤ max(1, 1+(1−σ)O(µ)+σO(1), 1+(2−σ)O(µ)) =⇒ α∗ = 1−(1−σ)O(µ)−σO(1).

For the quantity α̂∗, we have from (3.101) that

d̂xi

xi

− dxi

xi

=
O(µu)

Θ(µ)
= O(u), (i ∈ B).

Similarly, we have from (3.103) that

d̂zi

zi

− dzi

zi

=
O(u)

Θ(µ)
= O(u/µ), (i ∈ N).

Therefore, from (3.106), we have α̂∗ = α∗ + O(u/µ).

We remark that the above error bound on α̂∗ requires small σ values. However, comparing

this result to the one in the degenerate case with rank (A) < m (Theorem 3.29), we see that

this result is less dependent on σ in the sense that the final error bound on α̂∗ is not depend

on σ.

3.5.2 Numerical Example

In this subsection, we use a similar matrix A to Example 3.20 to illustrate our error bound

in the degenerate case. The data A and optimal solution x∗, y∗, and z∗ of the LP problem is

given below:

A =

[
1 0 2 0

2 2 2 1

]
, x∗ =




1

1

1

0


 , y∗ =

[
1

0

]
, z∗ =




0

0

0

1


 .

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 56

The data b, c is defined by Ax∗ = b and AT y∗ + z∗ = c. And, the partition of the indices is

B = {1, 2, 3}, and N = {4}. Notice that rank (AB) = 2. We let the initial x, y, and z be

x =




1.0004568

0.99951378

1.0001432

1.634266e−4


 , y =

[
1.00005026

1.16595e−4

]
, z =




1.9454628e−4

1.1987273e−4

1.398727e−4

1.0001916


 .

We check the duality gap and the residuals

µ = 1.1641818e−004, rp =

[
7.4320000e−004

3.9098550e−004

]
, rd =




9.3033628e−004

3.5306273e−004

1.3782627e−003

5.0819500e−004


 .

These data satisfy Assumption 3.2.

We use double precision to solve for dy, dx, dz and assume this is the accurate solution.

We then simulate the fl(·) operation by keeping the − log(u) most significant digits through

a roundoff computation after each arithmetic operation. So, it can be thought of as having

an error of size u.

We list the error of the search directions in Table 3.4 at different u value. We can see

that these error bounds are consistent with (3.92), (3.93), (3.95), (3.96), and (3.97).

3.6 Numerical Examples on NETLIB Problems

Notice that in the proof of the error bound for the degenerate case (Theorem 3.23, 3.24, 3.25),

we assume that µ > 10
√

u. This assumption means for a 32-bit computer, where u ' 10−16,

we usually can progress well up to 10−8 accuracy. This is often observed in practice for many

popular codes and that may explain why most codes’ default stop tolerance is 10−8.

To verify the claim that any backward stable linear solver can get up to 10−8 accuracy

without much difficulty, we modified LIPSOL [122] to compute the NETLIB problems. Our

modification is only changing the linear solver in LIPSOL to the standard backslash linear

solver in Matlab. LIPSOL uses some special technique (setting a very small diagonal pivot

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 57

u = 1e−7 u = 1e−8 u = 1e−9 u = 1e−10 u = 1e−11 u = 1e−12

|dy − fl(dy)| i :

(‖dy‖=5.2e−4)

1.2e−7

9.2e−8

1.8e−8

6.4e−9

1.2e−9

5.8e−10

1.4e−10

5.0e−11

3.4e−13

2.3e−12

4.2e−17

9.6e−16

|dx− fl(dx)| i :

(‖dxB‖=4.5e−4

‖dxN‖=1.6e−4
)

3.1e−3

1.5e−3

1.5e−3

7.6e−11

2.1e−4

1.1e−4

1.1e−4

4.5e−12

2.0e−5

9.7e−6

9.8e−6

5.3e−13

1.7e−6

8.3e−7

8.3e−7

2.9e−14

7.7e−8

3.9e−8

3.8e−8

1.1e−15

9.0e−12

7.7e−12

1.6e−11

1.1e−16

|dz − fl(dz)| i :

(‖dzB‖=2.7e−4

‖dzN‖=3.9e−4
)

6.0e−7

1.8e−7

2.1e−7

2.9e−7

4.1e−8

1.3e−8

1.5e−8

1.1e−8

3.8e−9

1.2e−9

1.4e−9

5.6e−9

3.2e−10

10.0e−11

1.2e−10

5.0e−11

1.5e−11

4.7e−12

5.4e−12

2.3e−12

1.8e−15

1.9e−15

1.7e−15

8.4e−16
|α− fl(α)| :

(α=1.0)
2.7e−3 1.1e−4 9.7e−6 8.3e−7 3.9e−8 2.0e−11

Table 3.4: Error in fl(dx), fl(dy), fl(dz), and fl(α) at different u for the data in Section 3.5.2,

where fl(α) is the largest number (≤ 1) such that (x + fl(α)fl(x), z + fl(α)fl(z)) ≥ 0. Here

B = {1, 2, 3} and N = {4} and σ = 0.

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 58

LIPSOL Modified LIPSOL

bore3d 1e-11 8e-1

d2q06c 6e-10 2e-5

degen2 6e-9 5e-7

degen3 5e-9 2e-6

dfl001 1e-7 4e+1

greenbea 1e-7 3e-6

scorpion 1e-13 3e+4

ship08l 3e-13 4e-7

ship08s 3e-13 3e-7

ship12s 1e-11 1e-6

sierra 9e-11 1e-7

Table 3.5: NETLIB problems that Modified LIPSOL can not get desired accuracy of 10−8.

The numbers are the accuracies LIPSOL and Modified LIPSOL can get. The Modified

LIPSOL only changes the linear solver to the standard backslash linear solver in Matlab.

to large number) in the Cholesky factorization to handle the potential breakdown due to the

highly ill-conditioned matrix. Thus, by changing the linear solver in LIPSOL to a standard

one, we should be able to see that most of the problems can still converge to 10−8 without

much difficulty as long as the linear solver does not break down. We ran through all the

NETLIB problems, except “QAP8, QAP12, QAP15, STOCFOR3, TRUSS”, which require

certain generators. Our modified LIPSOL solved almost all the 93 problems in NETLIB to

the desired accuracy of 10−8 except the problems list in Table 3.5. The problems bore3d,

dfl001, scorpion have large error mainly due to the break down of the linear solver. For

example, the coefficient matrix of bore3d is not full row rank and may cause the linear solver

to break down.

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 59

3.7 Summary

We summarize our results here. The bounds on the magnitude of (dx, dy, dz) are listed in

the following table.

non-deg. deg. with rank (AB) < m deg. with rank (AB) = m

semi-affine centering

‖dy‖ : O(µ) O(µ) O(1) O(µ)

‖dxB‖ : O(µ) O(µ) O(1) O(µ)(semi-affine) | O(1)

‖dxN‖ : O(µ) O(µ) O(µ) O(µ)

‖dzB‖ : O(µ) O(µ) O(µ) O(µ)

‖dzN‖ : O(µ) O(µ) O(1) O(µ)

‖α∗‖ : 1−O(µ) 1− (1− σ)O(µ)− σO(1) 1− (1− σ)O(µ)− σO(1)

where the σ in the table is the weight on the centering direction if we consider a convex

combination of the centering direction and semi-affine direction (see (3.78) (p47)).

The error bounds on (fl(dx), fl(dy), fl(dz)) and fl(α∗) are summarized in the following

table. Our numerical examples illustrate that both the bounds on the magnitudes in the

non-deg. deg. with rank (AB) < m deg. with rank (AB) = m

semi-affine centering

‖fl(dy)− dy‖ : O(u) O(u/µ) O(u/µ2) O(u)

‖fl(dxB)− dxB‖ : O(u) O(u/µ) O(u/µ) O(u/µ)

‖fl(dxN)− dxN‖ : O(µu) O(u) O(u/µ) O(µu)

‖fl(dzB)− dzB‖ : O(µu) O(u) O(u) O(u)

‖fl(dzN)− dzN‖ : O(u) O(u/µ) O(u/µ2) O(u)

‖fl(α∗)− α∗‖ : O(u) (1− σ)O(u/µ) + σO(u/µ2) O(u/µ)

Table 3.6: Summary of our error analysis.

first table and the error bounds on (fl(dx), fl(dy), fl(dz)) and fl(α∗) in the second table (Table

3.6) are tight.

For comparison purpose, we also consider the well-understood condition number analysis.

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 60

Let x be the solution of Mx = b and let x̂ be the solution of Mx̂ = b + ∆b. Then

‖x̂− x‖ ≤ ‖M−1‖‖∆b‖ and ‖b‖ = ‖Mx‖ ≤ ‖M‖‖x‖.

Thus the difference between x̂ and x can be bounded as follows.

‖x̂− x‖ ≤ ‖M‖‖M−1‖‖x‖‖∆b‖
‖b‖ = cond (M)‖x‖‖∆b‖

‖b‖ , (3.107)

where cond (M) denotes the condition number of matrix M .

We provide a similar error bounds table based on the analysis of the condition number.

For simplicity, we do not consider the error in the matrix AXZ−1AT . The condition number

estimate for the matrix AXZ−1AT comes from our structure information on AXZ−1AT

(Section 3.2.2 (p22)). Since the right-hand side error is O(u/µ) and the right-hand side is

Θ(1), we can estimate the error bound on fl(dy) using (3.107). The error bounds estimates

that predicted by the condition number analysis are listed in the following table. In the

table, we obtain the error bounds on fl(dx) by using a standard entry-wise error analysis as

the one used in (3.34) (p31), where no special technique is used. We obtain the error bounds

on fl(dz) by applying a standard entry-wise error analysis on fl(dz) = fl(−rd − AT fl(dy)).

non-deg. deg. with rank (AB) < m deg. with rank (AB) = m

semi-affine centering

cond (AXZ−1AT) Θ(1) Θ(1/µ2) Θ(1)

‖fl(dy)− dy‖ : O(u) O(u/µ2) O(u/µ3) O(u)

‖fl(dxB)− dxB‖ : O(u/µ) O(u/µ3) O(u/µ4) O(u/µ)

‖fl(dxN)− dxN‖ : O(µu) O(u/µ) O(u/µ2) O(µu)

‖fl(dz)− dz‖ : O(u) O(u/µ2) O(u/µ3) O(u)

This table shows much worse error bounds than our error bounds in Table 3.6. Our improve-

ment is especially significant in the degenerate case with rank (AB) < m.

In conclusion, our error bound analysis shows that the NEQ approach obtains relative

accurate solutions for the non-degenerate case. For part of the search directions (dxB and

dzN), the accuracy is the best we can get since it only has an O(u) relative error. For

the degenerate case with rank (AB) < m, the accuracy of the search direction depends on

the value of the centering parameter σ. Smaller σ values give better accuracy. The error

bounds in this case require the assumption that µ > 10
√

u. For the degenerate case with

CHAPTER 3. NUMERICAL STABILITY IN LINEAR PROGRAMMING 61

rank (AB) = m and |B| > m, the error bounds are no worse than the previous degenerate

case. We do not need the µ > 10
√

u assumption in this case to obtain these error bounds.

In general, our error analysis explains well why most of the practical codes have a default

stop tolerance of 10−8. It also explains why NEQ based codes can generally progress well up

to 10−8 without significant numerical problems as long as the data satisfies our assumption,

despite the huge condition number of the underlying linear system.

Chapter 4

A Simple Stable LP Algorithm

4.1 Introduction

The purpose of this chapter is to study a simple alternative primal-dual development for

Linear Programming (LP) based on an (inexact) Newton’s method with preconditioned

conjugate gradients (PCG). We do not form the usual normal equations (NEQ) system. No

special techniques need to be introduced to avoid ill-conditioning or loss of sparsity.

We assume the coefficient matrix A is full rank and the set of strictly feasible points

defined as

F+ = {(x, y, z) : Ax = b, AT y + z = c, x > 0, z > 0}
is not empty.

Throughout this chapter we will use the following notation. Given a vector x ∈ Rn, the

matrix X ∈ Rn×n, or equivalently Diag (x), denotes the diagonal matrix with the vector x on

the diagonal. The matrix I denotes the identity matrix, also with the corresponding correct

dimension. Unless stated otherwise, ‖.‖ denotes the Euclidean norm.

4.1.1 Background and Motivation

Solution methods for Linear Programming (LP) have evolved dramatically following the in-

troduction of interior point methods. Currently the most popular methods are the elegant

62

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 63

primal-dual path-following methods. These methods are based on log-barrier functions ap-

plied to the non-negativity constraints. For example, we can start with the dual log-barrier

problem, with parameter µ > 0,

(Dlogbarrier)

d∗µ := max bT y + µ
∑n

j=1 log zj

s.t. AT y + z = c

z > 0.

(4.1)

The stationary point of the Lagrangian for (4.1) (x plays the role of the vector of Lagrange

multipliers for the equality constraints) yields the optimality conditions




AT y + z − c

Ax− b

X − µZ−1


 = 0, x, z > 0. (4.2)

For each µ > 0, the solution of these optimality conditions is unique. The set of these

solutions forms the so-called central path that leads to the optimum of (LP), as µ tends

to 0. However, it is well-known that the Jacobian of these optimality conditions grows ill-

conditioned as the log-barrier parameter µ approaches 0. This ill-conditioning (as observed

for general nonlinear programs in the classical [28]) can be avoided by changing the third

row of the optimality conditions to the more familiar form of the complementary slackness

conditions, ZXe−µe = 0. One then applies a damped Newton’s method to solve this system

while maintaining positivity of x, z and reducing µ to 0. Equivalently, this can be viewed as

path following of the central path.

It is inefficient to solve the resulting linearized system as it stands. But it has special

structure that can be exploited. Block eliminations yield a positive definite system (called

the normal equations, NEQ) of size m, with matrix ADAT , where D is diagonal; see Section

4.2.2. Alternatively, a larger augmented system or quasi-definite system, of size n × n can

be used, e.g. [114], [103, Chap. 19]. However, the ill-conditioning returns for these systems,

i.e. we first get rid of the ill-conditioning by changing the log-barrier optimality conditions;

we then bring it back with the back-solves after the block eliminations; see Section 4.2.2.

Another potential difficulty for NEQ system is the possible loss of sparsity after forming

ADAT , e.g. in the presence of dense columns in A.

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 64

However, there are advantages when considering the two reduced systems. The size of

the normal equations system is m compared to the size m + 2n of the original linearized

system. And efficient factorization schemes can be applied. The augmented system is larger

but there are gains in exploiting sparsity when applying factorization schemes. Moreover,

the ill-conditioning for both systems has been carefully studied. Our analysis in Chapter 3

shows that the normal equation approach can usually get to accuracy of 10−8 without much

difficulty, under the mild assumption that the data is in general well behaved. However, if we

want higher accuracy, we may have problems for the degenerate case with rank (AB) < m.

For further results on the ill-conditioning of the augmented system, see e.g. [112, 115] and

the books [103, 113]. For a discussion on the growth in the condition number after the

back-solve, see Remark 4.3.

The major work (per iteration) is the formation and factorization of the reduced system.

However, factorization schemes can fail for huge problems and/or problems where the reduced

system is not sparse. If A is sparse, then one could apply conjugate-gradient type methods

and avoid the matrix multiplications, e.g. one could use A(D(AT v)) for the matrix vector

multiplications for the ADAT system. However, classical iterative techniques for large sparse

linear systems have not been generally used. One difficulty is that the normal equations can

become extremely ill-conditioned in certain degenerate case. Iterative schemes need efficient

preconditioners to be competitive. This can be the case for problems with special structure,

see e.g. [51]. For other iterative approaches see e.g. [45, 22, 65, 7, 78].

Although the reduced normal equations approach has benefits as mentioned above, the ill

conditioning that arises is still a potential numerical problem for obtaining high accuracy so-

lutions. In this chapter we look at a modified approach for these interior point methods. We

use a simple preprocessing technique to eliminate the primal and dual feasibility equations.

Under non-degeneracy assumptions, the result is a nonsingular bilinear equation that does

not necessarily become ill-conditioned. We work on this equation with an inexact Newton

approach and use a preconditioned conjugate gradient type method to (approximately) solve

the linearized system for the search direction. One can still use efficient Cholesky techniques

in the preconditioning process, e.g. partial Cholesky factorizations that preserve sparsity (or

partial QR factorizations). The advantage is that these techniques are applied to a system

that does not necessarily get ill-conditioned and sparsity can be directly exploited without us-

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 65

ing special techniques. As in the case mentioned above, the approach is particularly efficient

when the structure of the problem can be exploited to construct efficient preconditioners.

(This is the case for certain classes of Semidefinite Programming (SDP) problems, see [107].)

We also use crossover and purification techniques to speed up the convergence. In partic-

ular, the robustness of the linear system allows us to apply the so-called Tapia indicators

[27] to correctly detect those variables that are zero at the solution. In addition, a crossover

technique can be applied at the final stage of interior point method to take advantage of the

full quadratic convergence of the pure Newton step.

4.2 Block Eliminations

4.2.1 Linearization

Note that the function F in (2.2) (p7) maps from Rn×Rm×Rn to Rn×Rm×Rn. Let µ > 0

and let us consider the perturbed optimality conditions

Fµ(x, y, z) :=




AT y + z − c

Ax− b

ZXe− µe


 =




rd

rp

rc


 = 0, (4.3)

thus defining the (resp. dual, primal) residual vectors rd, rp and perturbed complementary

slackness rc. The Newton equation (the linearization) for the Newton direction ds =




dx

dy

dz




is

F ′
µ(x, y, z)ds =




0 AT I

A 0 0

Z 0 X


 ds = −Fµ(x, y, z). (4.4)

Damped Newton steps

x ← x + αpdx, y ← y + αddy, z ← z + αddz,

are taken that backtrack from the non-negativity boundary to maintain the positivity/interiority,

x > 0, z > 0.

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 66

Suppose that Fµ(x, y, z) = 0 in (4.3). Then (4.3) imply

µ =
1

n
µeT e =

1

n
eT ZXe =

1

n
zT x =

1

n
(duality gap),

i.e. the barrier parameter µ is a good measure of the duality gap. However, most practical

interior point methods are infeasible methods, i.e. they do not start with primal-dual feasible

solutions and stop with nonzero residuals. Similarly, if feasibility is obtained, roundoff error

can result in nonzero residuals rd, rp in the next iteration. Therefore, in both cases,

nµ = zT x

= (c− AT y + rd)
T x

=
(
cT x− yT Ax + rT

d x
)

=
(
cT x− yT (b + rp) + rT

d x
)

=
(
cT x− bT y − rT

p y + rT
d x

)

= (c + rd)
T x− (b + rp)

T y,

(4.5)

i.e. nµ measures the duality gap of a perturbed LP. (See e.g. the survey article on error

bounds [80].)

4.2.2 Reduction to the Normal Equations

The Newton equation (4.4) is solved at each iteration of a primal-dual interior point (p-d

i-p) algorithm. This is the major work involved in these path-following algorithms. Solving

(4.4) directly is too expensive. There are several manipulations that can be done that result

in a much smaller system. We can consider this in terms of block elimination steps.

First Step in Block Elimination for Normal Equations

The customary first step in the literature is to eliminate dz using the first row of equations.

(Note the linearity and coefficient I for z in the first row of (4.3).) Equivalently, apply

elementary row operations to matrix F ′
µ(x, y, z), or find a matrix PZ such that the multi-

plication of PZF ′
µ(x, y, z) results in a matrix with the corresponding columns of dz being

formed by the identity matrix and zero matrices. This is,

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 67




I 0 0

0 I 0

−X 0 I







0 AT I

A 0 0

Z 0 X


 =




0 AT I

A 0 0

Z −XAT 0


 , (4.6)

with right-hand side

−




I 0 0

0 I 0

−X 0 I







AT y + z − c

Ax− b

ZXe− µe


 = −




rd

rp

−Xrd + ZXe− µe


 . (4.7)

We let

PZ =




I 0 0

0 I 0

−X 0 I


 , K =




0 AT I

A 0 0

Z −XAT 0


 . (4.8)

Second Step in Block Elimination for Normal Equations

The so-called normal equations are obtained by further eliminating dx. (Note the nonlinearity

in x in the third row of (4.3).) Following a similar procedure as above, we define the matrices

Fn, Pn with

Fn := PnK :=




I 0 0

0 I −AZ−1

0 0 Z−1







0 AT I

A 0 0

Z −XAT 0




=




0 AT In

0 AZ−1XAT 0

In −Z−1XAT 0


 .

(4.9)

The right-hand side becomes

−PnPZ




AT y + z − c

Ax− b

ZXe− µe


 =




−rd

−rp + A(−Z−1Xrd + x− µZ−1e)

Z−1Xrd − x + µZ−1e


 . (4.10)

The algorithm for finding the Newton search direction using the normal equations is now

evident from (4.9), i.e. we move the third column before column one and interchange the

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 68

second and third rows.


In 0 AT

0 In −Z−1XAT

0 0 AZ−1XAT







dz

dx

dy


 =




−rd

Z−1Xrd − x + µZ−1e

−rp + A(−Z−1Xrd + x− µZ−1e)


 .

(4.11)

Thus we first solve for dy. We then back-solve for dx and finally back-solve for dz. This

block upper-triangular system has the disadvantage of being ill-conditioned when evaluated

at points close to the optimum. This will be shown in the next section. The condition

number for the system is found from the condition number of the matrix Fn and not just the

matrix AZ−1XAT . (Though, as mentioned above, the latter can have a uniformly bounded

condition number under some standard neighbourhood assumptions plus the non-degeneracy

assumption, see e.g. [44], or under the degeneracy assumption with rank (AB) = m, see

Corollary 3.12 (p25).)

4.2.3 Roundoff Difficulties for NEQ; Examples

Roundoff difficulties are demonstrated clearly in Chapter 3. It is shown that the worst case

roundoff error happens when we use NEQ to solve for the “centering” direction in Section

3.4.2. Here we show another simple example to demonstrate the catastrophic consequence

of ill-conditioning when Assumption 3.2 (p18) is not satisfied.

Non-degenerate but with Large Residual

Though a problem is non-degenerate, problems can arise if the the current primal-dual point

has a large residual error relative to the duality gap.

Example 4.1 Here the residuals are not the same order as µ. We see that we get catas-

trophic roundoff error. Consider the simple data

A =
[
1 1

]
, c =

[
−1

1

]
, b = 1.

The optimal primal-dual variables are

x =

[
1

0

]
, y = −1, z =

[
0

2

]
.

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 69

We use 6 decimals accuracy in the arithmetic and start with the following points (infeasible)

obtained after several iterations:

x =

[
9.183012 ×10−1

1.356397 ×10−8

]
, z =

[
2.193642 ×10−8

1.836603

]
, y = −1.163398 .

The residuals (relatively large) and duality gap measure are:

‖rb‖ = 0.081699, ‖rd‖ = 0.36537, µ = xT z/n = 2.2528 × 10−8.

Though µ is small, we still have large residuals for both primal and dual feasibility. Therefore,

2µ = nµ is not a true measure of the duality gap as we do not have a feasible primal-dual

pair. The two search directions,




dx

dy

dz


, that are found using first the full matrix F ′

µ and

second the system Fn (solving dy first and then back-solving dx, dz) are, respectively,



8.16989× 10−2

−1.35442× 10−8

1.63400× 10−1

−2.14348× 10−8

1.63400× 10−1




,




−6.06210× 10

−1.35441× 10−8

1.63400× 10−1

0

1.63400× 10−1




.

Though the error in dy is small, since m = 1, the error after the back-substitution for the

first component of dx is large, with no decimals accuracy. The resulting search direction

results in no improvements in the residuals or the duality gap. Using the accurate direction

from F ′
µ results in good improvement and convergence.

In practice, the residuals generally decrease at the same rate as µ. (For example, this is

assumed in the discussion in [114].) But, as our tests in Section 4.4 below show, the residuals

and roundoff do cause a problem for NEQ when µ gets small, generally less than 10−8.

4.2.4 Simple/Stable Reduction

There are other choices for the above second step in Section 4.2.2, e.g. the one resulting

in the augmented system [113] or equivalently the one used in the software package [104,

LOQO] that results in the quasi-definite system.

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 70

In our approach we present a different type of second elimination step. We assume

that we have the special structure A =
[
S E

]
(perhaps obtained by permuting rows and

columns), where S is m ×m, nonsingular, and it is inexpensive to solve the corresponding

linear system Su = d. For example, the best choice is S = I obtained when adding slack

variables.

We partition the diagonal matrix Z,X using the vectors z =

[
zm

zv

]
, x =

[
xm

xv

]
with

lengths m, v = n −m. And, we denote an initial primal vector x̂ =

[
x̂m

x̂v

]
. If possible, this

vector is chosen primal feasible, e.g. x̂ =

[
x̂m

x̂v

]
=

[
S−1b

0

]
, in the case that S−1b ≥ 0. With

K given in (4.8), we define the matrices Fs, Ps with

Fs : = PsK =




In 0 0 0

0 S−1 0 0

0 −ZmS−1 Im 0

0 0 0 Iv







0 0 AT In

S E 0 0

Zm 0 −XmST 0

0 Zv −XvE
T 0




=




0

Im

0 AT

S−1E 0

In

0

0

0

−ZmS−1E −XmST

Zv −XvE
T

0

0




.

(4.12)

The right-hand side becomes

−PsPZ




AT y + z − c

Ax− b

ZXe− µe


 = −Ps




rd

rb

−Xm(rd)m + ZmXme− µe

−Xv(rd)v + ZvXve− µe




=




−rd

−S−1rp

ZmS−1rp + Xm(rd)m − ZmXme + µe

Xv(rd)v − ZvXve + µe


 .

(4.13)

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 71

Our algorithm uses the last two rows to solve for dxv, dy. We then use the second row to

back-solve for dxm and then the first row to back-solve for dz. The matrix S−1 is never

evaluated if an iterative linear solver is used, but rather the required operation is performed

using a system solve. Therefore, we require this operation to be both efficient and stable.

Moreover, if we started with exact dual feasibility and we find the step-length α > 0 that

maintains positivity for x, z, then we can update y ← y+αdy first, and then set z = c−AT y;

thus we maintain exact dual feasibility (up to the accuracy of the matrix multiplication and

vector subtraction). There is no reason to evaluate and carry the residual to the next

iteration. This works for the normal equations back-solve as well. But, if we start with

exact feasibility for the primal as well, we can also update xv ← xv + αdxv and then solve

Sxm = b − Exv. Thus we guarantee stable primal feasibility as well (up to the accuracy in

evaluating E, the matrix vector multiplications and additions, and the system solve for xm).

This is discussed further at the end of Section 4.2.6.

The matrix derived in (4.12) is generally better conditioned than the one from the normal

equations system (4.9) in the sense that, under non-degeneracy assumptions, the condition

number is bounded at the solution. We do not change a well-posed problem into an ill-

posed one. The result proved in Proposition 4.2 shows the advantages of using this Stable

Reduction.

4.2.5 Condition Number Analysis

Proposition 4.2 Let Fn and Fs be the matrices defined in (4.9) and (4.12). Then, the

condition number of Fn diverges to infinity if x(µ)i/z(µ)i diverges to infinity, for some i, as

µ converges to 0. The condition number of Fs is uniformly bounded if there exists a unique

primal-dual solution of problems (LP) and (DLP) in (2.1).

Proof. Note that

F T
n Fn =




In −Z−1XAT 0

−AXZ−1 (AAT + (AZ−1XAT)2 + AZ−2X2AT) A

0 AT In


 . (4.14)

We now see, using interlacing of eigenvalues, that this matrix becomes increasingly ill-

conditioned. Let D = Z−1X. Then the nonzero eigenvalue of D2
iiA:,i(A:,i)

T diverges to

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 72

infinity, as µ converges to 0. Therefore the largest eigenvalue of the matrix in the middle

block AD2AT =
∑n

i=1 D2
iiA:,i(A:,i)

T must diverge to infinity, i.e. the largest eigenvalue of

F T
n Fn diverges to infinity. Since the smallest eigenvalue cannot exceed 1, this implies that

the condition number of F T
n Fn diverges to infinity, as µ → 0 and x(µ)i/z(µ)i diverges to

infinity, for some i. On the other hand, the condition number of Fs is uniformly bounded.

This follows from the fact that Fs converges to the Jacobian matrix in (4.22), which, as

shown in Theorem 4.5 below, is nonsingular at the solution.

Remark 4.3 We can observe that the condition number of the matrix F T
n Fn is greater than

the largest eigenvalue of the block AZ−2X2AT ; equivalently, 1
cond(F T

n Fn)
is smaller than the

reciprocal of this largest eigenvalue. With the assumption that x and z stay in a certain

neighbourhood of the central path, we know that mini(zi/xi) is O(µ). Thus the reciprocal of

the condition number of Fn is O(µ).

4.2.6 The Stable Linearization

The stable reduction step above corresponds to our linearization approach. Recall the primal

LP

(LP)

p∗ = min cT x

s.t. Ax = b

x ≥ 0.

(4.15)

An essential preprocessing step is to find a (hopefully sparse) representation of the null space

of A as the range of a matrix N , i.e.

Ax = b if and only if x = x̂ + Nv, for some v ∈ Rn−m.

For our method to be efficient, we would like both matrices A,N to be sparse. More precisely,

since we use an iterative method, we need both matrix vector multiplications Ax,Nv to be

inexpensive. If the original problem is in symmetric form, i.e. if the constraint is of the type

Ex ≤ b, E ∈ Rm×(n−m),

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 73

(Applications for this form abound, e.g. the diet problem and minimum cost production

problem. See e.g. [103, Chap. 16][104].) then we can add slack variables and get A =
[
Im E

]
, N =

[
−E

In−m

]
. More generally, in this paper we assume that

A =
[
S E

]
, N =

[
−S−1E

In−m

]
, (4.16)

where E is sparse and the linear system Sv = d is nonsingular, well-conditioned and inex-

pensive to solve. (For example, S is block diagonal or triangular. Surprisingly, this structure

holds for many of the NETLIB test set problems, i.e. except for a small, of order 4, square

block, S is upper triangular and sparse.)

We can now substitute for both z, x and eliminate the first two (linear) blocks of equations

in the optimality conditions (4.3). We obtain the following single block of equations for

optimality. By abuse of notation, we keep the symbol F for the nonlinear operator. The

meaning is clear from the context.

Theorem 4.4 Suppose that Ax̂ = b and the range of N equals the nullspace of A. Then the

primal-dual variables x, y, z, with x = x̂ + Nv ≥ 0, z = c− AT y ≥ 0, are optimal for (LP),

(DLP) if and only if they satisfy the single bilinear optimality equation

F (v, y) := Diag (c− AT y)Diag (x̂ + Nv)e = 0. (4.17)

This leads to the single perturbed optimality conditions that we use for our primal-dual

method,

Fµ(v, y) := Diag (c− AT y)Diag (x̂ + Nv)e− µe = 0. (4.18)

This is a nonlinear (bilinear) system. The linearization (or Newton equation) for the search

direction ds :=

[
dv

dy

]
is

−Fµ(v, y) = F ′
µ(v, y)ds. (4.19)

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 74

The Jacobian matrix

F ′
µ(v, y) =

[
Diag (c− AT y)N −Diag (x̂ + Nv)AT

]
(4.20)

and, therefore, system (4.19) becomes

−Fµ(v, y) = Diag (c− AT y)Ndv −Diag (x̂ + Nv)AT dy. (4.21)

We note that this is a linear system of size n × n. Algorithms that use reduced linearized

systems of this size, exist, e.g. [103, Chap. 19] discusses the quasi-definite system of size

n× n.

Under standard assumptions, the above system has a unique solution at each (v, y) point

corresponding to a strictly feasible point. In addition, we now show non-singularity of the

Jacobian matrix at optimality, i.e. it does not necessarily get ill-conditioned as µ approaches

0.

Theorem 4.5 Consider the primal-dual pair (LP),(DLP). Suppose that A is onto (full

rank), the range of N is the null space of A, N is full column rank, and (x, y, z) is the

unique primal-dual optimal solution. Then the matrix of the linear system

−Fµ = F ′
µds

= ZNdv −XAT dy
(4.22)

(F ′
µ is Jacobian of Fµ) is nonsingular.

Proof. Suppose that F ′
µ(v, y)ds = 0. We need to show that ds = (dv, dy) = 0.

Let B and N denote the set of indices j such that xj = x̂j + (Nv)j > 0 and set of indices

i such that zi = ci − (AT y)i > 0, respectively. Under the non-degeneracy (uniqueness) and

full rank assumptions, we get B⋃N = {1, ...n}, B⋂N = ∅, and the cardinalities |B| = m,

|N | = n −m. Moreover, the submatrix AB, formed from the columns of A with indices in

B, is nonsingular.

By our assumption and (4.21), we get that

(
F ′

µ(v, y)ds
)

k
= (c− AT y)k(Ndv)k − (x̂ + Nv)k(A

T dy)k = 0, ∀k.

From the definitions of B,N , this implies that

(AT dy)j = 0, ∀j ∈ B, (Ndv)i = 0, ∀i ∈ N . (4.23)

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 75

The left part of (4.23) implies AT
Bdy = 0, i.e. we obtain dy = 0.

It remains to show that dv = 0. From the definition of N we have AN = 0. Therefore,

using the right part of (4.23) implies

0 =
[
AB AN

] [
(Ndv)B
(Ndv)N

]

= AB(Ndv)B + AN (Ndv)N
= AB(Ndv)B.

By the right part of (4.23) and the non-singularity of AB, we get

Ndv = 0.

Now, full rank of N implies dv = 0.

(An alternative proof follows using (4.12). We can see (after permutations if needed)

that both K,Ps are nonsingular matrices.)

We use equation (4.18) and the linearization (4.21) to develop our PCG based primal-dual

algorithm. This algorithm is presented and described in the next section.

4.3 Primal-Dual Algorithm

The algorithm we use follows the primal-dual interior point framework, see e.g. Algorithm

1 (p11). That is, we use Newton’s method applied to the perturbed system of optimality

conditions with damped step lengths for maintaining non-negativity (not necessarily posi-

tivity) constraints. The search direction is found using a preconditioned conjugate gradient

type method, LSQR, due to Paige and Saunders [79]. These are applied to the last two

rows of (4.12),(4.13). This contrasts with popular approaches that find the search directions

by using direct factorization methods on the normal equations system. In addition, we use

a crossover step, i.e. we use affine scaling (the perturbation parameter µ = 0) and we do

not backtrack to preserve positivity of z, x once we have found (or estimate) the region of

quadratic convergence of Newton’s method. Therefore, the algorithm mixes interior and

exterior ideas. We also include the identification of zero values for the primal variable x and

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 76

eliminate the corresponding indices; thus reducing the dimension of the original problem.

We call this a purification step.

The procedures are explained in more detail in the following sections.

4.3.1 Preconditioning Techniques

Recall that Z := Z(y) = Diag (c − AT y), X := X(v) = Diag (x̂ + Nv) and the Jacobian of

Fµ (equation (4.20)) is

J := F ′
µ(v, y) =

[
ZN −XAT

]
. (4.24)

Since we are interested in using a conjugate gradient type method for solving the linear

system (4.22), we need efficient preconditioners. For a preconditioner we mean a simple

nonsingular matrix M such that JM−1 is well conditioned. To solve system (4.22), we can

solve the better conditioned systems JM−1∆q = −Fµ and Mds = dq . It is clear that the

best condition for JM−1 is obtained when the matrix M is the inverse of J . We look for a

matrix M such that MT M approximates JT J .

We use the package LSQR [79], that implicitly solves the normal equations JT Jds =

−JT F ′
µ. Two possible choices for the preconditioning matrix M are: the square root of the

diagonal of JT J ; and the partial Cholesky factorization of the diagonal blocks of JT J . In the

following we describe these approaches. Since our system is non-symmetric, other choices

would be, e.g. quasi-minimal residual (QMR) algorithms [33, 34]. However, preconditioning

for these algorithms is more difficult, see e.g. [9, 10].

Optimal Diagonal Column Preconditioning

We begin with the simplest of the preconditioners. For any given square matrix K let

us denote ω(K) = trace (K)/n

det(K)1/n . Let M = arg min ω((JD)T (JD)) over all positive diagonal

matrices D. In [24, Prop. 2.1(v)] it was shown that Mii = 1/‖J:i‖, the i-th column norm.

This matrix has been identified as a successful preconditioner (see [43, Sect. 10.5], [100])

since ω is a measure of the condition number, in the sense that it is bounded above and below

by a constant times the standard condition number (ratio of largest and smallest singular

values).

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 77

Partial (Block) Cholesky Preconditioning

From (4.24) we obtain that

JT J =

[
NT Z2N −NT ZXAT

−AXZN AX2AT

]
.

Suppose that z, x lies near the central path, i.e. ZX ∼= µI (approximately equal). Then the

off diagonal terms of JT J are approximately 0, since AN = 0, by definition of N . In this

case, block (partial) Cholesky preconditioning is extremely powerful.

We now look at finding a partial Cholesky factorization of JT J by finding the factoriza-

tions of the two diagonal blocks. We can actually do this using the Q-less QR factorization,

i.e. suppose that QZRZ = ZN, QXRX = XAT represents the QR factorizations with both

RZ , RX square matrices (using the Q-less efficient form, where both QZ , QR are not found

explicitly). Then

RT
ZRZ = NT Z2N, RT

XRX = AX2AT . (4.25)

We can now choose the approximate factorization

JT J ∼= MT M, M =

[
RZ 0

0 RX

]
.

We should also mention that to calculate this preconditioner is expensive. The expense is

comparable to the Cholesky factorization of the normal equation AZ−1XAT , i.e. O(m3).

Therefore, we tested both a complete and an incomplete (denoted ILU) Cholesky precondi-

tioner for the diagonal blocks.

4.3.2 Crossover Criteria

Let us assume that the Jacobian matrix of the function F defining the optimality conditions

is nonsingular at the solution. Then, the problem has unique primal and dual solutions,

Let us call it s∗. Therefore, from the standard theory for Newton’s method, there is a

neighbourhood of the solution s∗ of quadratic convergence and, once in this neighbourhood,

we can safely apply affine scaling with step lengths of one without backtracking to maintain

positive definiteness.

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 78

To estimate the guaranteed convergence area of the optimal solution, we need to use a

theorem due to Kantorovich [52]. We use the form in [23, Theorem 5.3.1]. We let N (x, r)

denote the neighbourhood of x with radius r and Lipγ(N (x, r)) denotes Lipschitz continuity

with constant γ in the neighbourhood.

Theorem 4.6 (Kantorovich) Let r > 0, s0 ∈ Rn, F : Rn → Rn, and assume that F is

continuously differentiable in N (s0, r). Assume for a vector norm and the induced operator

norm that J ∈ Lipγ(N (s0, r)) with J(s0) nonsingular, and that there exist constants β, η ≥ 0

such that

‖J(s0)
−1‖ ≤ β, ‖J(s0)

−1F (s0)‖ ≤ η.

Define α = βγη. If α ≤ 1
2

and r ≥ r0 := (1 − √
1− 2α)/(βγ), then the sequence {sk}

produced by

sk+1 = sk − J(sk)
−1F (sk), k = 0, 1, . . . ,

is well defined and converges to s∗, a unique zero of F in the closure of N (s0, r0). If α < 1
2
,

then s∗ is the unique zero of F in N (s0, r1), where r1 := min[r, (1 +
√

1− 2α)/(βγ)] and

‖sk − s∗‖ ≤ (2α)2k η

α
, k = 0, 1, . . . ,

We follow the notation in Dennis and Schnabel’s book [23] and find the Lipschitz constant

used to determine the region of quadratic convergence.

Lemma 4.7 The Jacobian

F ′(v, y) :=
[
Diag (c− AT y)N Diag (x̂ + Nv)AT

]

is Lipschitz continuous with constant

γ = σmax(F
′) ≤

√
2‖A‖‖N‖, (4.26)

where σmax(F
′) is the largest singular value of the linear transformation F ′ : Rn → Rn×n.

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 79

Proof. For each s = (v, y) ∈ Rn we get the matrix F ′(s) ∈ Rn×n. This mapping is denoted

by the linear transformation F ′ : Rn → Rn×n. The largest singular value of the matrix

representation is denoted σmax := σmax(F
′). This satisfies ‖F ′(s) − F ′(s̄)‖ = ‖F ′(s − s̄)‖ ≤

σmax‖s− s̄‖, i.e. by setting s = 0 and s̄ to be the singular vector corresponding to the largest

singular value, we conclude γ = σmax.

Now let ds =

[
dv

dy

]
. Since

‖F ′(s)− F ′(s̄)‖ = max
‖(F ′(s)− F ′(s̄))ds‖

‖ds‖
= max

‖Diag (AT (y − ȳ))Ndv −Diag (AT dy)N(v − v̄)‖
‖ds‖

≤ max
‖AT (y − ȳ)‖‖Ndv‖+ ‖AT dy‖‖N(v − v̄)‖

‖ds‖
≤ ‖A‖‖N‖‖y − ȳ‖+ ‖A‖‖N‖‖v − v̄‖
≤

√
2‖A‖‖N‖‖s− s̄‖.

Therefore a Lipschitz constant is

γ =
√

2‖A‖‖N‖.

Observe that the Lipschitz constant depends on the representation matrix N that we

consider. In particular, N can be chosen so that its columns are orthonormal and ‖Ndv‖ =

‖dv‖ and ‖N(v − v̄)‖ = ‖v − v̄‖ . In this case, the Lipschitz constant γ ≤ √
2‖A‖.

We can evaluate the largest singular value σmax in the above Theorem 4.6 as follows.

Consider the linear transformation L : Rn 7→ Rn2
defined by

L
[
v

y

]
:= vec ([Diag (AT y)N Diag (Nv)AT]),

where vec (M) denotes the vector formed column-wise from the matrix M . The inverse of

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 80

vec is denoted Mat . Let w ∈ Rn2
. The inner-product

< L
[
v

y

]
, w > = < vec ([Diag (AT y)N Diag (Nv)AT]), w >

= <

[
v

y

]
,

[
NT diag (AT W T

2)

A diag (NW T
1)

]
>

where W1 is the first n − m columns of Mat (w) and W2 is the remaining m columns of

Mat (w). Therefore, the adjoint operator of L is

L∗(w) =

[
NT diag (AT W T

2)

A diag (NW T
1)

]
.

We can use a few iterations of the power method to efficiently approximate the largest

eigenvalue of L∗L (which is the equivalent to the square of the largest singular value of L).

This can be done without forming the matrix representation of L.

We also need to estimate β, the bound on the norm of the inverse of the Jacobian matrix

at the current s = (v, y), i.e.

β ≥ ‖[ZN −XAT]−1‖ = 1/σmin([ZN −XAT]). (4.27)

Finally, to estimate η, we note that

‖J−1F0(v, y)‖ = ‖[ZN −XAT]−1(−ZXe)‖ ≤ η. (4.28)

The vector [ZN −XAT]−1(−ZXe) is the affine scaling direction and is available within the

predictor-corrector approach that we use.

We now have the following heuristic for our crossover technique.

Theorem 4.8 With the notation in Theorem 4.6 and s0 = (v0, y0), suppose that we have

estimated the three constants γ, β, η in (4.26),(4.27),(4.28). And, suppose that

α = γβη <
1

2
.

Then the sequence sk generated by

sk+1 = sk − J(sk)
−1F (sk)

converges to s∗, the unique zero of F in the neighbourhood N (s0, r1).

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 81

Remark 4.9 Theorem 4.8 guarantees convergence of the affine scaling direction without

backtracking. But it does not guarantee convergence to a nonnegative solution. Nonetheless,

all our numerical tests were successful.

4.3.3 Purify Step

Purifying here refers to detecting the variables that are zero at optimality. This is equivalent

to identifying active constraints, e.g. [15, 16, 17]. We use the Tapia indicators [27] to detect

the x variables going to zero. (See also [69, 6].) This is more difficult than the crossover

step, as variables can increase and decrease while converging to 0, see e.g. [42].

Once we identified a x variable going to zero, we can remove the corresponding columns

in A and shrink the data. For example, assume Ñ is the index set of x variables that has been

detected to goto zero in the current iteration. B̃ is the rest indices. At the next iteration, we

will make the input to the infeasible interior point method to be AB̃, b, cB̃ with initial point

of xB̃, y, zB̃. Since we drop those x variables going to zero, the infeasibility at next iteration

is small. The infeasible interior point method is easy to correct such infeasibility. To keep

the [S E] structure of our data matrix A, we only limit our choice of Ñ corresponding to

the E columns.

4.4 Numerical Tests

Our numerical tests use the well known NETLIB library as well as randomly generated data.

Our randomly generated problems use data A, b, c, with a known optimal basis in A

and optimal values x, y, and z. For the infeasible code tests, we used the same starting

point strategy given in LIPSOL [122]. For the feasible code tests we applied a Newton

step from the optimal point with a large positive µ, in order to maintain feasibility of the

starting point. In addition, we ensure that the Jacobian of the optimality conditions at the

optimum is nonsingular and its condition number is not large, since we want to illustrate how

the stable system takes advantage of well-conditioned problems. The iteration is stopped

when the relative duality gap (including the relative infeasibility) is less than 10−12. The

computations were done in MATLAB 6.5 on a Pentium 3 733MHz running Windows 2000

with 256MB RAM.

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 82

data m n nnz(E) cond(AB) cond(J) NEQ Stable direct

D time its D Time its

1 100 200 1233 51295 32584 0.03 ∗ 0.06 6

2 200 400 2526 354937 268805 0.09 6 0.49 6

3 200 400 4358 63955 185503 0.10 ∗ 0.58 6

4 400 800 5121 14261771 2864905 0.61 ∗ 3.66 6

5 400 800 8939 459727 256269 0.64 6 4.43 6

6 800 1600 10332 11311945 5730600 5.02 6 26.43 6

7 800 1600 18135 4751747 1608389 5.11 ∗ 33.10 6

Table 4.1: nnz(E) - number of nonzeros in E; cond(·) - condition number; J = (ZN −XAT)

at optimum, see (4.24); D time - avg. time per iteration for search direction, in sec.; its -

iteration number of interior point methods. * denotes NEQ stalls at relative gap 10−11.

We use both a direct and iterative method for finding the search direction. The direct

solver uses the “LU(·)” function in MATLAB to find an LU factorization of the matrix. It

then uses the MATLAB \ (backslash) command applied to the LU factorization in both the

predictor and corrector step to solve the linear system. (We note that using “LU(·)” is gen-

erally slower than using \ (backslash) directly on the linear system.) The iterative approach

uses LSQR [79] with different preconditioners. Both the direct and iterative based method

share the exact same interior point framework except for the method used for computing

the search direction and the inclusion of crossover and purify steps.

The normal equation, NEQ, approach uses the “CHOL(·)” function in MATLAB to find

a Cholesky factorization of AZ−1XAT . It then uses the Cholesky factor with the MATLAB

\ (backslash) in both the predictor and corrector step. (We note that using “CHOL(·)” is

generally three times slower than using \ (backslash) directly on NEQ.) The NEQ approach

can solve many of the random generated problems to the required accuracy. However, if

we set the stop tolerance to 10−15, we do encounter quite a few examples where NEQ stalls

with relative gap approximately 10−11, while the stable system has no problem reaching the

desired accuracy.

The tests in Tables 4.1, 4.2, and 4.3 are done without the crossover and purification tech-

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 83

data set LSQR with ILU LSQR with Diag

D Time its L its Pre time D Time its L its Pre time

1 0.15 6 37 0.06 0.41 6 556 0.01

2 3.42 6 343 0.28 2.24 6 1569 0.00

3 2.11 6 164 0.32 3.18 6 1595 0.00

4 NA Stalling NA NA 13.37 6 4576 0.01

5 NA Stalling NA NA 21.58 6 4207 0.01

6 NA Stalling NA NA 90.24 6 9239 0.02

7 NA Stalling NA NA 128.67 6 8254 0.02

Table 4.2: Same data sets as in Table 4.1; two different preconditioners (diagonal and

incomplete Cholesky with drop tolerance 0.001); D time - average time for search direction;

its - iteration number of interior point methods. L its - average number LSQR iterations per

major iteration; Pre time - average time for preconditioner; Stalling - LSQR cannot converge

due to poor preconditioning.

data set LSQR with block Chol. Precond.

D Time its L its Pre time

1 0.09 6 4 0.07

2 0.57 6 5 0.48

3 0.68 6 5 0.58

4 5.55 6 6 5.16

5 6.87 6 6 6.45

6 43.28 6 5 41.85

7 54.80 6 5 53.35

Table 4.3: Same data sets as in Table 4.1; LSQR with Block Cholesky preconditioner;

Notation is the same as Table 4.2.

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 84

nique. The stable method with the direct solver and also with the diagonal preconditioner

consistently obtain high accuracy optimal solutions. The stable method is not competitive

in terms of time compared to the NEQ approach for this test set. One possible reason is

that the condition numbers of J , the Jacobian at the optimum, and of the basis matrix AB,

are still too large so that the iterative method is not effective. We provide another set of

numerical tests based on well conditioned AB in the following subsection.

We also performed many tests with the crossover. Using our crossover criteria in Theorem

4.8 with the inexpensive bound for γ, we can usually detect the guaranteed convergence

region at µ = 10−6 or with the relative gap tolerance at 10−4 or 10−5. We also encounter a

few examples where the crossover begins as early as µ = 10−4 and some examples that the

crossover begins as late as µ = 10−8. Once the crossover criteria is detected, we use a pure

Newton step, i.e. we use the affine scaling direction with step length 1 without limiting x

and z to be positive. It usually takes only one iteration to achieve the required accuracy

10−12. This is not a surprise considering the quadratic convergence rate of Newton’s method.

This behaviour has some similarity with the least squares projection method discussed by Ye

[117] and Vavasis and Ye [105]. They proved that an exact optimal solution on the optimal

face can be found by solving a least squares problem when the iterations are in the final

stage of the interior point method.

If we compare to the method without a crossover, then we conclude that the crossover

technique gives an average 1 iteration saving to achieve the desired accuracy. We also

encountered several instances where NEQ did not converge after we detected the crossover;

while our stable method had no difficulty. We should mention that NEQ is not suitable for

crossover since the Jacobian becomes singular. Moreover, a catastrophic error can occur if

a z element becomes zero.

We also tested the purification technique. It showed a benefit for the stable direction

when n was large compared to m, since we only identify nonbasic variables. (However, the

size of NEQ AXZ−1AT is still m × m. So there is no benefit there.) The time saving

on solving the linear system for the stable direction is cubic in the percentage of variables

eliminated, e.g. if half the variables are eliminated, then the time is reduced to (1
2
)3 = 1

8
the

original time. The purification technique starts to identify nonbasic variables as early as 6-7

iterations before convergence. It usually identifies most of the nonbasic variables from two

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 85

to four iterations before convergence. For all our random generated tests, the purification

technique successfully identified all the nonbasic variables before the last two iterations.

We should also mention the computation costs. For the crossover, we need to evaluate

the smallest singular value of a sparse n×n matrix to find β, and then solve an n×n linear

system to find the value η. The cost of finding the smallest singular value is similar to that of

solving a system of the same size. Solving this linear system is inexpensive since the matrix

is the same as the one for the search direction.

In the above tests we restricted ourselves to non-degenerate problems. See Figure 4.1 for

a comparison on a typical degenerate problem. Note that NEQ had such difficulties on more

than half of our degenerate test problems. This is consistent with our analysis in Chapter

3, in which we suggest that NEQ have problems after 10−8 for degenerate problems with

rank (AB) < m.

0 5 10 15 20 25 30 35 40 45
−15

−10

−5

0

5

10

15

iters

lo
g 10

(r
el

 g
ap

)

stable solver
normal equation solver

Figure 4.1: Iterations for Degenerate Problem

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 86

4.4.1 Well Conditioned AB

Our previous test examples in Tables 4.1,4.2,4.3 are all sparse with 10 to 20 nonzeros per

row. In this section we generate sparser problems with about 3-4 nonzeros per row in E but

we still maintain non singularity of the Jacobian at the optimum. We first fix the indices of

a basis B; we choose half of the column indices j so that they satisfy 1 ≤ j ≤ m and the

other half satisfies m + 1 ≤ j ≤ n. We then add a random diagonal matrix to AB to obtain

a well-conditioned basis matrix and generate two random (sufficiently) positive vectors xB

and zN . We set the optimal x∗ =

[
xB
xN

]
with xN = 0; and the optimal z∗ =

[
zB
zN

]
, with

zB = 0. The data b, c are determined from b := Ax∗, c := AT y∗ + z∗, y∗ ∈ Rm arbitrary.

We now compare the performance of three different solvers for the search direction, i.e.

NEQ solver, direct linear solver on the stable system, and LSQR on the stable system. In

this section, we restrict ourselves to the diagonal preconditioner when we use the LSQR

solver. (The computations in this section were done on a Sun-Fire-480R running SunOS

5.8.)

The problems in Table 4.4 all have the same dimensions and two full dense columns,

while the total number of nonzeros increases. The loss in sparsity has essentially no effect

on NEQ, since the ADAT matrix is dense due to the two dense columns. But we can see the

negative effect that the loss of sparsity has on the stable direct solver, since the density in

the system (4.20) increases. However, we see that for these problem instances, using LSQR

with the stable system can be up to twenty times faster than the NEQ solver.

Our second test set in Table 4.5 shows how size affects the three different solvers. The

time for the NEQ solver is proportional to m3. The stable direct solver is about twice that

of NEQ. LSQR is the best among these 3 solvers on these instances. The computational

advantage of LSQR becomes more apparent as the dimension grows.

Our third test set in Table 4.6 shows how the number of dense columns affects the different

solvers. Having at least one dense column affects the direct solvers the most. LSQR spends

more time when the number of dense columns increase, but this is due to the increased

number of nonzeros.

We also use the well-known Matlab based linear programming solver LIPSOL to solve

our test problems, see Table 4.7. Our tests use LIPSOL’s default settings except that the

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 87

data sets NEQ Stable Direct LSQR

Name cond(AB) cond(J) nnz(E) D Time its D Time its D Time its L its

nnz2 19 13558 4490 3.75 7 5.89 7 0.19 7 81

nnz4 21 19540 6481 3.68 7 7.38 7 0.27 7 106

nnz8 28 10170 10456 3.68 7 11.91 7 0.42 7 132

nnz16 76 11064 18346 3.69 7 15.50 7 0.92 7 210

nnz32 201 11778 33883 3.75 9 18.43 9 2.29 8 339

Table 4.4: Sparsity vs Solvers: cond(·) - (rounded) condition number; D time - average

time for search direction; its - number of iterations; L its - average number LSQR iterations

per major iteration; All data sets have the same dimension, 1000 × 2000, and have 2 dense

columns.

data sets NEQ Stable Direct LSQR

name size cond(AB) cond(J) D Time its D Time its D Time its

sz1 400× 800 20 2962 0.29 7 0.42 7 0.07 7

sz2 400× 1600 15 2986 0.29 7 0.42 7 0.11 7

sz3 400× 3200 13 2358 0.30 7 0.43 7 0.19 7

sz4 800× 1600 19 12344 1.91 7 3.05 7 0.13 7

sz5 800× 3200 15 15476 1.92 7 3.00 7 0.27 7

sz6 1600× 3200 20 53244 16.77 7 51.52 7 0.41 7

sz7 1600× 6400 16 56812 16.70 7 51.75 7 0.65 8

sz8 3200× 6400 19 218664 240.50 7 573.55 7 0.84 7

sz9 6400× 12800 24 8.9× 105 2.20 6

sz10 12800× 25600 22 2.4× 105 4.67 6

Table 4.5: How problem dimension affects different solvers. cond(·) - (rounded) condition

number; D time - average time for search direction; its - number of iterations. All the data

sets have 2 dense columns. The sparsity for the data sets are similar. Without the 2 dense

columns, they have about 3 nonzeros per row.

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 88

data sets NEQ Stable Direct LSQR

name dense cols. cond(AB) cond(J) D Time its D Time its D Time its

den0 0 18 45 0.60 6 1.31 6 0.14 6

den1 1 19 13341 3.64 7 6.15 7 0.17 7

den2 2 19 18417 3.62 7 6.03 7 0.20 7

den3 3 19 19178 3.65 7 6.08 7 0.23 7

den4 4 18 18513 3.65 7 6.06 7 0.30 7

Table 4.6: How number of dense columns affect different solvers. cond(·) - (rounded)

condition number; D time - average time for search direction; its - number of iterations. All

the data sets are the same dimension, 1000×2000. The sparsity for the data sets are similar.

Without the dense columns, they all have about 3 nonzeros per row.

stop tolerance is set to 10−12. Note that LIPSOL has a special routine to deal with dense

columns by default. LIPSOL uses an infeasible code, so we can see that the numbers of

iterations of the interior point method are in a different range from our tests in Tables 4.4,

4.5, 4.6, which are usually in the range of 6-8. It can be observed that LIPSOL in general

performs better than the NEQ code we have written. Considering that LIPSOL has some

special code to deal with factorization, while our code of direct method just uses the LU(or

Chol) factorization from Matlab, it is not unusual to see the better performance of LIPSOL.

But comparing to the iterative method, we should mention that when the problem size

becomes large, the iterative method has an obvious advantage over the direct factorization

method. This can be seen clearly from the solving time of problems sz8, sz9, sz10 in Table

4.7 and the corresponding time of “LSQR” in Table 4.5. When the problem size doubles,

the solution time for LIPSOL increases roughly by a factor of 8-10, while the solution time

for our iterative method only roughly doubles. This is also true for fully sparse problems as

mentioned in the Caption part of Table 4.7.

The iterative solver LSQR does not spend the same amount of time at different stages

of an interior point method. To illustrate this, we take the data set in Table 4.4. For each

problem we draw the number of LSQR iterations at each iteration, see Figure 4.2.

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 89

data sets lipsol

name D Time its

nnz2 0.08 12

nnz4 0.50 14

nnz8 1.69 14

nnz16 2.72 14

nnz32 3.94 13

sz1 0.16 11

sz2 0.15 13

sz3 0.15 14

sz4 0.05 12

sz5 0.03 14

sz6 0.22 15

sz7 0.06 15

sz8 1.55 14

sz9 12.80 15

sz10 126.47 15

den0 0.06 10

den1 0.06 12

den2 0.08 13

den3 0.09 13

den4 0.10 12

Table 4.7: LIPSOL results D time - average time for search direction; its - number of

iterations. (We also tested problems sz8,sz9,sz10 with the two dense columns replaced by

two sparse columns, only 6 nonzeros in these new columns. (D time, iterations) on LIPSOL

for these three fully sparse problems are: (0.41, 11), (2.81, 11), (43.36, 11).)

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 90

0 2 4 6 8 10 12 14 16
0

100

200

300

400

500

600

700

iterations in interior point methods

nu
m

be
r

of
 L

S
Q

R
 it

er
at

io
ns

nnz2
nnz4
nnz8
nnz16
nnz32

Figure 4.2: Illustration for LSQR iterations at different stage of interior point methods for

the data set in Table 4.4. Each major iteration in interior point method is divided into a

predictor step and a corrector step.

4.4.2 NETLIB Set - Ill-conditioned Problems

The NETLIB LPdata set is made up of highly degenerate problems which result in singular

Jacobians. Nevertheless, we applied our method to these problems. The ill-conditioning of

the linear systems negatively affects the performance of the algorithm when using iterative

methods. A direct factorization method with our stable system is better suited for the

NETLIB set.

For general LP problems, we want to find an S which is sparse and easy to invert in

the [S E] structure. An upper triangular matrix is a good choice. The heuristic we use

is to go through the columns of the matrix A and find those columns that only have one

nonzero entry. We then permute the columns and rows so that these nonzero entries are

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 91

on the diagonal of S. (In the case of multiple choices in one row, we picked the one with

the largest magnitude.) We remove the corresponding rows and columns, and then repeat

the procedure on the remaining submatrix. If this procedure is successful, we end up with

an upper triangular matrix S. However, sometimes, we may have a submatrix Â of A such

that no column has one nonzero entry. Usually, such a submatrix Â is much smaller in size.

We use an LU factorization on this small submatrix and find an upper triangular part Û in

the U part of the LU factorization by using the above procedure. The S is then determined

by incorporating those columns of Û after an appropriate permutation. This procedure also

results in a useful LU factorization for S. In our tables, we denote the row dimension of

the Â as no-tri-size of S. For NETLIB problems, surprisingly, most of them have a zero

no-tri-size of S as shown in Tables 4.9–4.11. It is worth noting that some of the NETLIB

problems may not have full row rank or the LU factorization on the submatrix Â may not

give an upper triangular U . Thus we may not be able to identify the upper triangular matrix

Û . In Tables 4.9–4.11, these problems are marked with a “ ∗” in the column of no-tri-size

of S. For these problems, our solver may not give a correct answer. (This issue can be

resolved by preprocessing to eliminate all redundant rows and by a better LU factorization.

This is beyond the scope of this chapter.) Among these singular problems, “bore3d” and

“standgub” have a complete zero row; thus we can easily identify the linearly dependent row

in the matrix A and remove it. Our answers for these two problems are accurate.

To make a fair comparison on the errors, we changed the error term in LIPSOL to be

the same as ours, which is defined as

error :=
|cT x− bT y|
1 + |cT x| +

‖rp‖
1 + ‖b‖ +

‖rd‖
1 + ‖c‖ . (4.29)

Note that LIPSOL can solve all the NETLIB problems to 10−8. In addition, we added the

preprocessing step that LIPSOL is using to our code.

We observed improved robustness when using our stable direct factorization method.

For example, when the stop tolerance is set to 10−12, LIPSOL could not solve the subset of

NETLIB problems in Table 4.8 and, incorrectly, finds that several problems are infeasible.

Table 4.8 lists the highest accuracy that LIPSOL can get. (LIPSOL does solve problems

fit1p, fit2p, seba when the stop tolerance is set to 10−8 and does solve problems bnl2, dfl001,

greenbea with tolerance 10−8 and its own error term.) This illustrates the numerical diffi-

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 92

NETLIB problems Accuracy

bnl2 infeasible

cycle 9.19× 10−11

dfl001 infeasible

etamacro 7.66× 10−11

fit1p infeasible

fit2p infeasible

greenbea infeasible

grow15 4.35× 10−10

grow22 9.24× 10−10

grow7 2.62× 10−10

kb2 3.75× 10−12

pilot87 1.21× 10−8

seba infeasible

Table 4.8: LIPSOL failures with desired tolerance 10−12; highest accuracy attained by LIP-

SOL.

culties that arise for NEQ based methods when the requested accuracy is more than 10−8.

Our stable direct factorization method not only achieved the desired accuracy (except for

capri with 1.2e−12, pilot.ja with 3.7e−12, pilot with 6.7e−12) but also exhibited quadratic

convergence during the final few iterations on these problems. For complete results on the

NETLIB problem, see Tables 4.9–4.11. (Further numerical tests appear in the forthcom-

ing [83] and in the recent Masters thesis [82]. In [82, 83], a different transformation on the

NETLIB problems is used to obtain the [I E] structure. The numerical tests on the NETLIB

problems in [82, 83] show that the ill-conditioning negatively affects the performance of the

stable algorithm. However, it was also observed that much more accurate solutions were

obtained by using the stable linearization approach compared to NEQ.)

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 93

problems LIPSOL Stable Direct
Name D time its error D time its error no-tri-size of S
25fv47 0.05 25 1.21e-14 0.94 24 8.7e-15 2

80bau3b 0.14 41 4.38e-14 2.84 49 5.5e-13 0
adlittle 0.01 12 4.13e-14 0.01 12 3.7e-16 2
afiro 0.01 8 3.70e-15 0.00 8 3.5e-16 0
agg 0.03 19 1.06e-13 0.10 19 4.5e-13 0
agg2 0.03 17 1.28e-13 0.19 17 1.4e-15 0
agg3 0.03 17 2.38e-15 0.18 16 1.4e-13 0

bandm 0.01 20 1.77e-14 0.05 17 2.3e-15 0
beaconfd 0.01 13 3.64e-14 0.04 13 3.0e-15 0

blend 0.01 12 8.32e-13 0.01 12 3.4e-15 0
bnl1 0.02 28 2.32e-14 0.37 27 3.0e-14 8
bnl2 0.08 7 2.40e+01 2.01 51 7.3e-13 0

boeing1 0.03 22 1.46e-13 0.14 23 4.7e-15 0
boeing2 0.01 20 1.46e-14 0.03 17 7.9e-13 0
bore3d 0.01 18 9.62e-14 0.03 18 3.3e-14 4∗

brandy 0.01 17 8.37e-15 0.04 15 4.2e-13 52
capri 0.02 19 2.76e-13 0.06 20 1.2e-12 0
cycle 0.12 36 9.19e-11 1.98 29 2.5e-13 4

czprob 0.03 36 7.91e-14 1.06 34 7.1e-13 0
d2q06c 0.18 33 1.92e-14 6.21 30 2.1e-13 132∗

d6cube 0.11 25 1.23e-15 3.54 14 4.8e-14 404∗

degen2 0.03 14 3.62e-13 0.14 13 2.4e-15 97∗

degen3 0.25 29 1.22e-13 2.02 17 3.8e-13 159∗

dfl001 19.63 17 2.28e+00 46.65 52 1.0e+01 4275∗

e226 0.01 22 1.05e-13 0.06 21 3.7e-13 0
etamacro 0.02 45 7.66e-11 0.11 37 7.3e-13 16
fffff800 0.03 27 9.21e-14 0.21 25 4.1e-14 0
finnis 0.02 30 7.40e-13 0.08 27 8.6e-13 0
fit1d 0.04 24 4.18e-13 0.50 18 9.2e-15 0
fit1p 0.30 17 1.75e-05 0.25 16 9.2e-14 0
fit2d 0.43 26 7.05e-13 80.99 23 8.4e-15 0
fit2p 0.68 22 2.35e-07 5.76 23 5.1e-14 0

forplan 0.02 23 1.98e-13 0.09 28 7.9e-13 0

Table 4.9: NETLIB set with LIPSOL and Stable Direct method. D time - avg. time per
iteration for search direction, in sec.; its - iteration number of interior point methods.

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 94

problems LIPSOL Stable Direct
Name D time its error D time its error no-tri-size of S
ganges 0.04 19 5.14e-14 0.28 20 9.6e-13 12

gfrd-pnc 0.02 20 3.53e-14 0.1 20 9.9e-15 0
greenbea 0.24 32 6.01e-04 5.68 45 4.6e-13 2
greenbeb 0.15 38 2.01e-13 5.49 37 6.1e-14 2
grow15 0.03 31 4.35e-10 0.86 12 2.4e-13 0
grow22 0.04 25 9.24e-10 2.27 14 4.3e-14 0
grow7 0.02 37 2.62e-10 0.16 12 2.2e-15 0
israel 0.02 23 5.06e-13 0.04 23 9.6e-14 0
kb2 0.01 34 3.75e-12 0.01 16 1.1e-14 0
lotfi 0.01 19 1.51e-15 0.05 17 9.5e-13 0

maros-r7 2.03 15 1.43e-15 14.97 15 1.3e-15 0
maros 0.05 33 5.24e-13 0.59 31 1.1e-13 4

modszk1 0.02 25 3.23e-13 0.22 68 9.8e-13 0
nesm 0.06 35 1.45e-13 2.77 32 7.3e-13 0
perold 0.04 32 5.66e-13 0.71 37 6.4e-13 0
pilot.ja 0.30 33 2.63e-13 1.34 35 3.7e-12 0
pilot 0.07 35 7.72e-13 13.69 42 6.7e-12 0

pilot.we 0.04 36 7.61e-13 0.95 40 4.5e-15 0
pilot4 0.03 31 1.80e-13 0.3 31 1.5e-13 0
pilot87 0.80 99 1.21e-08 27.58 42 2.8e-15 0
pilotnov 0.06 20 1.73e-13 1.86 24 1.3e-13 0
recipe 0.01 11 1.32e-13 0.01 11 6.1e-15 0
sc105 0.01 11 4.42e-16 0.01 10 6.0e-16 0
sc205 0.01 11 2.26e-13 0.02 10 7.2e-13 0
sc50a 0.01 10 3.34e-15 0.01 10 5.3e-16 0
sc50b 0.01 8 1.35e-15 0.01 8 6.1e-16 0

scagr25 0.01 17 7.46e-15 0.04 16 3.0e-15 0
scagr7 0.01 13 2.50e-13 0.01 13 7.5e-16 0
scfxm1 0.01 18 1.79e-13 0.06 18 2.0e-15 8
scfxm2 0.02 21 4.24e-14 0.13 20 3.3e-15 16
scfxm3 0.03 21 1.21e-14 0.19 20 3.5e-15 24
scorpion 0.01 15 1.99e-13 NA NA NA 132∗

scrs8 0.02 26 7.17e-13 0.1 25 6.2e-13 0
scsd1 0.01 10 6.40e-13 0.12 11 3.3e-14 0

Table 4.10: NETLIB set with LIPSOL and Stable Direct method continued

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 95

problems LIPSOL Stable Direct
Name D time its error D time its error no-tri-size of S
scsd6 0.02 15 7.31e-15 0.42 15 6.1e-15 0
scsd8 0.03 12 1.07e-14 2.64 13 2.2e-15 0
sctap1 0.01 17 5.67e-13 0.05 18 2.6e-14 0
sctap2 0.03 19 7.33e-13 0.27 16 1.9e-15 0
sctap3 0.04 18 1.46e-13 0.36 21 1.9e-15 0
seba 0.10 23 8.39e-07 0.1 17 7.4e-15 0

share1b 0.01 21 1.92e-13 0.03 24 5.5e-15 66
share2b 0.01 14 5.69e-15 0.01 12 1.2e-14 0

shell 0.02 20 1.61e-15 0.04 12 1.2e-15 494∗

ship04l 0.02 13 1.88e-13 0.24 13 1.9e-15 0
ship04s 0.02 14 2.76e-13 0.14 13 1.7e-15 0
ship08l 0.04 16 3.34e-15 0.49 16 2.4e-15 0
ship08s 0.02 14 2.47e-13 0.2 15 2.0e-15 0
ship12l 0.05 17 9.98e-13 0.62 17 1.0e-14 0
ship12s 0.02 19 3.94e-15 0.21 16 3.7e-15 0
sierra 0.06 17 1.50e-13 0.17 12 5.5e-15 515∗

stair 0.02 15 2.93e-13 0.1 14 4.8e-13 0
standata 0.02 17 1.62e-14 0.13 17 4.5e-15 0
standgub 0.02 17 5.15e-13 0.06 17 4.0e-15 1∗

standmps 0.02 24 9.87e-14 0.19 23 1.7e-14 0
stocfor1 0.01 16 6.84e-13 0.01 19 3.9e-14 0
stocfor2 0.05 22 1.19e-13 0.32 22 1.8e-13 0

tuff 0.02 23 2.83e-16 0.13 20 1.4e-13 0
vtp.base 0.01 23 5.76e-13 0.03 27 3.5e-13 0
wood1p 0.15 21 4.37e-13 0.76 13 6.4e-14 241∗

woodw 0.11 30 6.13e-13 41.59 30 9.6e-14 0

Table 4.11: NETLIB set with LIPSOL and Stable Direct method continued

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 96

4.4.3 No Backtracking

We now present some interesting numerical results under the condition that the interior

point method takes a complete step to the boundary without the customary backtracking

that guarantees sufficient positivity of the variables x, z. We present the results from the

three algorithms: (i) NEQ with backtracking; (ii) stable system with backtracking; (iii)

stable system with no backtracking. Since the NEQ approach is undefined at the boundary,

we cannot include a fourth comparison. No backtracking does not create problems for our

stable system, since we do not need the inverse of X or Z.

See Figure 4.3 for a comparison between NEQ with backtracking and the stable direction

with and without backtracking. In this example, the relative gap stop tolerance for NEQ

is set to 10−12, which is the highest accuracy NEQ can get for this problem. However, the

relative gap stop tolerances for both of the stable system approaches are set to 10−14. For

the first 4 iterations the three approaches are almost indistinguishable, since the backtrack

(we backtrack with .9998) is such a small step. However, once the duality gap is small,

no backtracking means we are close to taking a complete Newton step so we get a large

improvement with the no-backtracking strategy. We reach the desired tolerance in 6 itera-

tions compared to 8 for the stable direction with backtracking. The difference with using

backtracking for the stable direction is typical; while stalling for NEQ occurs for about half

our tests.

For many tests, we see that the number of iterations are reduced and the last step

behaves just as if the crossover was implemented, i.e. we jump to the stopping tolerance of

14 decimals. This is probably due to the fact that a full step to the boundary is close to a full

Newton step, i.e. this is comparable to implementing the crossover technique. On average,

the stable direct method without backtracking results in a 1-2 reduction in the number of

iterations.

4.5 Summary

We have studied a simple, robust alternative to solving LPs. The advantages of our approach

are: the resulting linear system does not necessarily get ill-conditioned as we approach the

optimum; this allows for the application of preconditioned iterative methods, a crossover

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 97

1 2 3 4 5 6 7 8
−16

−14

−12

−10

−8

−6

−4

−2

0

iters

lo
g 10

(r
el

 g
ap

)
NEQ with backtracking
STAB with backtracking
STAB without backtracking

Figure 4.3: Iterations for Different Backtracking Strategies. The data is from row 2 in Table

4.1.

technique to affine scaling without backtracking, dynamic purification, and no backtracking

from the boundary (taking the complete step to the boundary is advantageous); high accu-

racy solutions are obtained; and exact primal-dual feasibility is maintained throughout the

iterations, if we start feasible.

Since our reduced linear system is larger than the usual normal equations approach, NEQ,

our method is not competitive for the highly ill-conditioned NETLIB test set, with respect

to CPU time, though we can obtain higher accuracy solutions.

In conclusion, we believe that the stable approach has some advantages, compared with

the NEQ approach, for some applications where the nondegeneracy assumptions are satisfied

or where higher accuracy solutions are needed. Our numerical tests show that we can take

direct advantage of sparsity for large sparse well-conditioned problems. The NEQ approach

has its advantages, the main one being the smaller size and the positive definiteness of the

CHAPTER 4. A SIMPLE STABLE LP ALGORITHM 98

linear system to solve (before the backsubstitutions).

Chapter 5

Fundamentals of Semidefinite

Programming

5.1 Introduction to Semidefinite Programming

Similarly to the LP case, the primal and dual Semidefinite Programming (SDP) problem we

consider is

(PSDP)

min trace CX

s.t. A(X) = b

X º 0

(DSDP)

max bT y

s.t. A∗(y) + Z = C

Z º 0,

(5.1)

where C,X,Z ∈ Sn , Sn denotes the space of n× n real symmetric matrices, y, b ∈ Rm, and

º (Â) denotes positive semidefiniteness (resp. positive definiteness). The linear operator

A : Sn → Rm is an onto linear transformation and A∗ is the adjoint transformation.

SDP is a generalization of LP. SDP looks just like an LP and in fact, if we require X

and Z to be diagonal matrices, then (PSDP) and (DSDP) are equivalent to standard LP

problems. Many of the properties from LP follow through. For instance, weak duality holds,

i.e., for any primal feasible solution X̄ and any dual feasible solution ȳ and Z̄, we always

have trace CX̄ ≥ bT ȳ.

However, some important properties in SDP differ from those in LP. For example, just as

in general convex programming, strong duality can fail. There may exist a nonzero duality

99

CHAPTER 5. FUNDAMENTALS OF SEMIDEFINITE PROGRAMMING 100

gap, or the optimal objective value of (PSDP) or (DSDP) may not be attained. The duality

gap is assured to be zero if a constraint qualification, e.g., Slater’s condition (strict feasibility)

holds, see e.g. [87, 85]. Measure of strict feasibility, also called distance to infeasibility, have

been used in complexity analysis, e.g., [86, 30, 31, 32]. The optimality conditions are

Theorem 5.1 Suppose that Slater’s condition holds for (PSDP) and (DSDP). The primal-

dual variables (X, y, Z), with X, Z º 0, are optimal for (PSDP) and (DSDP) if and only

if

F (X, y, Z) :=



A∗y + Z − C

AX − b

XZ


 = 0. (5.2)

Another important property is strict complementarity. In LP, there always exists a pair

of strict complementary solutions as described by the well-known Goldman-Tucker result

[40], see also Section 2.1. In SDP, strict complementary solutions do not necessary ex-

ist. Similar to the lack of strict feasibility, the lack of strict complementarity can result in

both theoretical and numerical difficulties. For example, many of the local superlinear and

quadratic convergence results for interior point methods depend on the strict complemen-

tarity assumption, e.g. [84, 50, 4, 64, 59]. Also, the convergence of the central path to the

analytic center of the optimal face relies on strict complementarity, see [46]. However, it has

been proved that strict complementarity holds generically, see [4] and [81].

5.2 Central Path

Similar to the LP case, we can add a barrier function to the objective function and thus we

define a pair of families of perturbed barrier problems, parameterized by µ > 0.

(SDPµ) min trace (CX)− µ ln det X

AX = b

(X Â 0)

CHAPTER 5. FUNDAMENTALS OF SEMIDEFINITE PROGRAMMING 101

(DSDPµ) max bT y + µ ln det Z

A∗y + Z = C

(Z Â 0) .

Here the ln det(·) operator takes the determinant of the matrix and then takes the natural

logarithm of the determinant. Using some matrix calculus, for example, see the online Matrix

Reference Manual [14], we see that (assume X is symmetric positive definite)

det ′X = det X ·X−1,

and

− ln det ′X = −X−1.

The second derivative is

− ln det ′′X = −(X−1)′ = X−1(·)X−1.

Notice that X−1(·)X−1 is positive definite because for any matrix U 6= 0, we have

trace (X−1(U)X−1U) = trace (X−1/2UX−1/2)2 > 0.

Thus the barrier function − ln det(·) is strictly convex. So, we have that the KKT conditions

for the (SDPµ) and (DSDPµ) are both sufficient and necessary. The KKT conditions for

both the (SDPµ) and (DSDPµ) are equivalent to (after an appropriate multiplication of Z

or X to the third equation)

AX = b, X Â 0 ,

A∗y + Z = C, Z Â 0 , (5.3)

XZ = µI .

The existence and uniqueness of a solution for system (5.3) is stated in the following

theorem.

Theorem 5.2 Suppose both (SDP) and (DSDP) have strictly feasible solutions. Then for a

fixed µ > 0, there is a unique solution X(µ) of (SDPµ) and unique solution y(µ), Z(µ) of

(DSDPµ). This solution X(µ), y(µ), Z(µ) is also the unique solution to system (5.3).

CHAPTER 5. FUNDAMENTALS OF SEMIDEFINITE PROGRAMMING 102

The proof is similar to the LP case as shown in Theorem 2.5. For a complete proof, please

see [72].

We call the set of solution (X(µ), y(µ), Z(µ)) to system (5.3), the central path of SDP.

However, we have not proved that the set of solution are analytic in µ. The Implicit function

theorem can be used to prove the analyticity. (We used the version in Dieudonné [25,

Theorem 10.2.4].)

Theorem 5.3 (Implicit function theorem) Let f : Rn+m 7→ Rm be an analytic function

of w ∈ Rn and z ∈ Rm such that:

1. There exist w̄ ∈ Rn and z̄ ∈ Rm such that f(w̄, z̄) = 0.

2. The Jacobian of f with respect to z is nonsingular at (w̄, z̄).

Then there exist open sets Sw̄ ⊂ Rn and Sz̄ ⊂ Rm containing w̄ and z̄ respectively, and an

analytic function φ : Sw̄ 7→ Sz̄ such that z̄ = φ(w̄) and f(w, φ(w)) = 0 for all w ∈ Sw̄.

Moreover

5φ(w) = −5z f(w, φ(w))−1 5w f(w, φ(w)).

Remark 5.4 To prove the analyticity of the central path, De Klerk[19] defines the function

f as follows.

f(X, y, Z, µ) :=



A∗y + Z − C

AX − b

XZ − µI


 . (5.4)

He proceeds to argue that the symmetric requirement in the above equation is redundant on

the central path because Z is symmetric by the symmetry of C and A∗y and X is symmetric

by XZ = µI. Thus the function f (5.4) can be viewed as a function mapping Rn2 × Rm ×
Rn2 ×R 7→ Rn2 ×Rm ×Rn2

. He then argues that the Jacobian of f with respect to (X, y, Z)

is nonsingular. Using the implicit function theorem, he shows that (X(µ), y(µ), Z(µ) is

analytic.

Monteiro and Todd [72] use a slight different approach to show the analyticity of the cen-

tral path. Instead of working on the function f(X, y, Z, µ) in (5.4), they define an equivalent

CHAPTER 5. FUNDAMENTALS OF SEMIDEFINITE PROGRAMMING 103

function

g(X, y, Z, µ) :=



A∗y + Z − C

AX − b

Z − µX−1


 . (5.5)

This function g maps from Sn ×Rm × Sn ×R to Sn ×Rm × Sn. They then proceed to show

that the Jacobian of g with respect to (X, y, Z) is nonsingular. Using the implicit function

theorem, they show the analyticity of the central path.

Unlike the LP case, central path in SDP does not necessarily converge to the analytical

center of the optimal faces (see [64] and [46] for the definition of the analytical center of the

optimal faces). Halická, De Klerk, and Roos [46] show that the central path converges to

some optimal solution in the limit. However, without the strict complementarity condition,

the central path may converge to some point which is not the analytical center of the optimal

face. With the strict complementarity condition, Luo, Sturm, and Zhang [64] show that the

convergence of the central path to the analytical center of the optimal face.

5.3 Algorithm

The framework of interior point methods for SDP is mostly similar to the LP case (See

Algorithm 1 (p11)).

Following the approach for LP, we perturb the optimality conditions by adding a barrier

parameter µ:

Fµ(X, y, Z) :=



A∗y + Z − C

AX − b

XZ − µI


 = 0. (5.6)

Currently, the popular primal-dual interior point path following algorithms use a damped

Newton’s method to approximately solve this system of equations with (X, Z) Â 0. This is

done in conjunction with decreasing µ to 0. The linearization is

F ′
µ(X, y, Z)




dX

dy

dZ


 =




0 A∗ I

A 0 0

(·)Z 0 X(·)







dX

dy

dZ


 = −Fµ(X, y, Z). (5.7)

CHAPTER 5. FUNDAMENTALS OF SEMIDEFINITE PROGRAMMING 104

However, since the operator F ′
µ(X, y, Z) maps from Sn ×Rm×Sn to Sn ×Rm×Mn and F ′

µ

is an overdetermined system, where Mn is the space of n× n matrices, we can not directly

use Newton’s method here.

One natural change to the over-determined system is make the third block of (5.6) sym-

metric by changing the equation ZX − µI to

(XZ + ZX)/2− µI.

The linearization now gives the following equations for the search direction in addition to

the linearization of the feasibility equation:

(dXZ + Z dX + X dZ + dZ X)/2 = µI − (XZ + ZX)/2.

This direction is the AHO direction in Alizadeh, Haeberly, Overton [5]. However, the AHO

direction is not well defined for every pair of primal-dual interior-points. For sufficient

conditions that guarantee existence and uniqueness of the AHO direction, see [98] and the

references therein.

Another popular search direction is derived by allowing dX to be non-symmetric first

and solve (5.7) anyway. Once we have the dX, which might not be symmetric, we then

symmetrize it. The un-symmetrized dX satisfies the equation

dXZ + X dZ = µI −XZ,

or

dX + X dZ Z−1 = µIZ−1 −X.

The symmetrization process is thus equivalent to the following system

dX + (X dZ Z−1 + Z−1 dZ X)/2 = µIZ−1 −X.

We call this direction the HRVW/KSH/M direction. It was discovered by Helmberg, Rendl,

Vanderbei, and Wolkowicz [48], Kojima, Shindoh, and Hara [60], and Monteiro [71].

The third popular search direction is the NT direction named in Nesterov and Todd

[75, 76]. The main motivation is to obtain primal-dual symmetry. In another words, we

CHAPTER 5. FUNDAMENTALS OF SEMIDEFINITE PROGRAMMING 105

want to find a linear transformation T such that X = T 2(Z) and Z−1 = T 2(X−1). Such a

linear transformation T 2 is uniquely determined:

T 2 = Z−1/2(Z1/2XZ1/2)1/2Z−1/2(·)Z−1/2(Z1/2XZ1/2)1/2Z−1/2.

Thus the last equation XZ − µI is changed to

(T−1(X)T (Z) + T (Z)T−1(X))/2− µI = 0.

The linearization gives

dX + T 2(dZ) = µZ−1 −X.

or

T−2(dX) + dZ = µX−1 − S.

These two equations are equivalent because X = T 2(Z).

Another more direct approach to tackle the over-determined system (5.6) is using the

Gauss-Newton method directly on the system. This was proposed by Kruk et al. [61, 62].

It is shown more accurate solution can be obtained. De Klerk, Peng, Roos and Terlaky [20]

showed polynomial convergence for the scaled version of the Gauss-Newton method.

Zhang [121] gave a unified approach to the above three search directions (AHO, HRVW/KSH/M,

and NT). Todd [95] studied about twenty search directions and their theoretical and com-

putational proprieties. For other discussions of search directions see e.g. [108].

5.4 Numerical Stability Issue in Semidefinite Program-

ming

SDP algorithms in general obtain lower accuracy in practice than LP algorithms. One issue

that SDP has but LP does not have is the cancellation error. For two quantity α and β, if the

magnitude of an operation is much smaller than α and β, i.e., (α +/− β)/(|α| + |β|) << 1,

a large cancellation error can occur. For example, on a machine with only 4 digits precision,

the computation fl(fl(1.2342678)− fl(1.2331234)) = fl(1.234− 1.233) = .001 only has 1 digit

accuracy. Sturm [93] observed that SDP problems have large cancellation errors as X, Z

CHAPTER 5. FUNDAMENTALS OF SEMIDEFINITE PROGRAMMING 106

approach the optimum. This is because the quantity XZ approaches 0 while some elements

in X, Z are not small.

Another error comes from the computation of X−1 or Z−1. Since X and Z become ill-

conditioned as they approach the optimum, the computation of X−1 and Z−1 becomes less

and less reliable.

Based on these observations, Sturm proposed the U-factor approach, which comes from

the idea in Higham [49, Lemma 8.6]. Instead of keeping the X and Z variables, the implemen-

tation factored the variable X and Z using a product of stable U-factors (a special triangular

matrix) and a well conditioned matrix. Over the iterations, the algorithm updated the stable

U-factors and the well conditioned matrix. His implementation then achieved relative high

accuracy for the NT direction for some of the problems in SDPLIB [11].

Another issue in SDP that can cause numerical instability comes from strict complemen-

tarity and Slater’s condition. In the following Chapter, we present results on this issues.

Chapter 6

Hard Instances in Semidefinite

Programming

6.1 Introduction

In this chapter we present an algorithm for generating hard instances of SDP, i.e. by hard

we mean problems where strict complementarity fails. We use this set of hard problems to

study the correlation between the loss of strict complementarity and the number of iterations

needed to obtain optimality to a desired accuracy by interior point algorithms. We compare

and contrast our results to recent work by Freund, Ordóñez, and Toh [31], who found that

the number of iterations needed by practical interior point methods correlated well with the

their aggregated geometrical measure as well as with Renegar’s condition number.

We consider the SDP in the form of (5.1) (p99). The set of optimal primal (resp. dual)

solutions is denoted P∗ (resp. D∗).

The SDP model has important applications, elegant theory, and efficient solution tech-

niques, see [108]. Moderate sized problems can be solved to near optimality using primal-dual

interior point (p-d i-p) methods. These methods are based on Newton’s method with path

following, i.e. the (Newton) search direction is found using a linearization of the (perturbed,

symmetrized) optimality conditions. The iterates follow the central path, i.e. primal-dual

feasible solutions with ZX − µI = 0, µ > 0. On the central path, X and Z are mutually

orthogonally diagonalizable, X = QDXQT , Z = QDZQT ; and their corresponding vectors of

107

CHAPTER 6. HARD INSTANCES IN SEMIDEFINITE PROGRAMMING 108

eigenvalues, λX = diag (DX), λZ = diag (DZ), satisfy

λX ◦ λZ = µe, (6.1)

where ◦ denotes the Hadamard or elementwise product of the vectors, and diag (W) is the

vector formed from the diagonal of W . The optimum dual pair of SDP is attained in the

limit as µ ↓ 0; strict complementarity is indicated at µ = 0 if X + Z Â 0, i.e. strict positive

definiteness. Therefore, as in linear programming, either (λX)i ↓ 0, (λZ)i → O (1) holds,

or (λZ)i ↓ 0, (λX)i → O (1) holds. However, examples exist where the optimal X,Z have

a nontrivial nullspace vector in common, i.e. strict complementarity fails. From (6.1), this

means there exists i with both (λZ)i ↓ 0, (λX)i ↓ 0 but (λZ)i(λX)i
∼= µ, i.e. the value

of each eigenvalue is order
√

µ. For example, if the p-d i-p algorithm stops with a near

optimal solution with duality gap µ = trace ZX/n = O (10−12), then we can expect the

value of both eigenvalues to be as large as
√

µ = 10−6. In addition, the Jacobian of the

optimality conditions at an optimum is singular, raising the question of slowed convergence.

(See Remark 6.7.) These problems result in hard instances of SDP. P-d i-p methods typically

run into difficulties such as slow (linear rate) convergence and low accuracy of the optimum.

6.1.1 Outlines

In this chapter we outline a procedure for generating hard instances of SDP. We then

introduce two measures of hardness. We empirically show that: (i) these measures can be

evaluated accurately; (ii) the size of the strict complementarity gaps correlate well with

the number of iteration for the SDPT3 [99] solver, as well as with the local asymptotic

convergence rate; and (iii) larger strict complementarity gaps coupled with the failure of

Slater’s condition correlate with loss of accuracy in the solutions. In addition, the numerical

tests show that there is no correlation between the strict complementarity gaps and the

geometrical measure used in [31], or with Renegar’s condition number.

We include tests on the SDPLIB problem set. Here we only found weak correlations due

to lack of accuracy in the optimal solutions.

The procedure for generating hard problems has been submitted to the Decision Tree for

Optimization Software, URL: plato.la.asu.edu/guide.html. See also SDPLIB e.g. [11],

http://plato.la.asu.edu/guide.html

CHAPTER 6. HARD INSTANCES IN SEMIDEFINITE PROGRAMMING 109

URL: www.nmt.edu/˜sdplib/. The MATLAB programs are available with URL:

orion.math.uwaterloo.ca:80/˜hwolkowi/henry/software/readme.html

6.2 Generating Hard SDP Instances

In this section we show how to generate the hard SDP instances; i.e. the problems where

strict complementarity fails.

Definition 6.1 A primal-dual pair of optimal solutions (X̄, Z̄) ∈ P∗ × D∗ is called a

maximal complementary solution pair to the problems (PSDP) and (DSDP), if the pair max-

imizes the sum rank (X) + rank (Z) over all primal-dual optimal solution pairs (X,Z).

A primal-dual pair of optimal solutions (X̄, S̄) is maximal complementary if and only if

R(X̂) ⊆ R(X̄), ∀X̂ ∈ P∗, R(Ŝ) ⊆ (S̄), ∀Ŝ ∈ D∗, (6.2)

where R denotes range space. This follows from the fact that

X̂S̄ = X̄Ŝ = X̂Ŝ = 0, ∀X̂ ∈ P∗,∀Ŝ ∈ D∗,

i.e. all optimal solution pairs are mutually orthogonally diagonalizable.

Definition 6.2 The strict complementarity gap is defined as g = n− rank (X̄)− rank (Z̄),

where (X̄, Z̄) is a maximal complementary solution pair.

Note that g is equal to the minimum of the number of zero eigenvalues of X + Z, where the

minimum is taken over all optimal solution pairs (X, Z).

For more details and proofs of these characterizations see [21], [39] and the references

therein.

We assume the linear operator A : Sn 7→ Rm in our SDP problem (PSDP) in matrix

form is

A(X) := [trace (A1X), trace (A2X), . . . , trace (AmX)]T ,

where A1, A2, . . . , Am ∈ Sn are linearly independent. The adjoint of A is A∗ : Rm 7→ Sn .

A∗(y) :=
m∑

i=1

Aiyi.

http://www.nmt.edu/~sdplib/
http://orion.math.uwaterloo.ca:80/~hwolkowi/henry/software/readme.html

CHAPTER 6. HARD INSTANCES IN SEMIDEFINITE PROGRAMMING 110

Algorithm 6.3 Constructing Hard SDP Instances with gap g

1. Given: positive integers r > 0 and m > 1 are the rank of an optimum X and the

number of constraints, respectively.

2. Let Q = [QP |QN |QD] be an orthogonal matrix, where the dimensions of QP , QN ,

QD are n× r, n× g, n× (n− r− g), respectively, and r > 0. Construct positive

semidefinite matrices X and Z as follows:

X := QP DXQT
P , Z := QDDZQT

D,

where DX and DZ are diagonal positive definite.

3. Define

A1 = [QP |QN |QD]




0 0 Y T
2

0 Y1 Y T
3

Y2 Y3 Y4


 [QP |QN |QD]T , (6.3)

where Y1, Y2, Y3, and Y4 are block matrices of appropriate dimensions, Y1 Â 0,

and QDY2 6= 0.

4. Choose Ai ∈ Sn , i = 2, . . . , m, such that {A1QP , A2QP , . . . , AmQP} is a linearly

independent set. (Note that A1QP = QDY2 6= 0.)

5. Set

b := A(X), C := A∗(y) + Z, with y ∈ Rm randomly generated.

Theorem 6.4 The data (A, b, C) constructed in Algorithm 6.3 gives a hard SDP instance

with a strict complementarity gap g.

Proof. Suppose that X, y, Z are constructed by the algorithm. Step 2 guarantees that

X,Z are positive semidefinite and ZX = 0 (complementary slackness holds). Step 5 guaran-

tees that X, y, Z are primal-dual feasible. Therefore, our construction implies that X, (y, Z)

are a primal-dual optimal pair.

Choose any X̄, Z̄ ∈ P∗×D∗ with R(X) ⊆ R(X̄) and R(Z) ⊆ R(Z̄). We now show that

R(X) = R(X̄) and R(Z) = R(Z̄), i.e. by (6.2) X, Z are a maximal complementary pair.

CHAPTER 6. HARD INSTANCES IN SEMIDEFINITE PROGRAMMING 111

Since X̄ and Z must also be an optimal pair, i.e X̄Z = 0, we get that R(X̄) ⊆ R(Z)⊥ =

R([QP |QN]). So, we can write

X̄ = [QP |QN]

[
DP,X̄ W T

X̄

WX̄ DN,X̄

]
[QP |QN]T ,

where, in particular, DN,X̄ º 0. Let

∆X = X̄ −X = [QP |QN]

[
DP,X̄ −DX W T

X̄

WX̄ DN,X̄

]
[QP |QN]T .

Since

trace (A1∆X) = trace (A1X̄ − A1X) = 0,

We have

trace

([
QP |QN

]T

A1

[
QP |QN

] [
DP,X̄ −DX W T

X̄

WX̄ DN,X̄

])
= 0

From the structure of A1, we see that

[QP |QN]T A1[QP |QN] =

[
0 0

0 Y1

]
.

So

0 = trace (A1∆X) = trace

([
0 0

0 Y1

][
DP,X̄ −DX W T

X̄

WX̄ DN,X̄

])
= trace

(
Y1DN,X̄

)
.

By Y1 Â 0 and DN,X̄ º 0, we have that DN,X̄ = 0. Since X̄ is positive semidefinite, we have

WX̄ = 0 and R(X̄) = R(QP) = R(X).

Similarly, we see that R(Z̄) ⊆ R(QN , QD) from XZ̄ = 0. Let ∆Z = Z̄ − Z and

∆y = ȳ − y, where A∗(ȳ) + Z̄ = C. Then we have A∗(∆y) = −∆Z. Since QP is a subspace

of the the null space of both Z̄ and Z, we have −∆ZQP = 0, i.e. A∗(∆y)QP = 0. We write

it in matrix form,
m∑

i=1

AiQP ∆yi = 0.

CHAPTER 6. HARD INSTANCES IN SEMIDEFINITE PROGRAMMING 112

Since {AiQP} are nonzero and linearly independent, we see that ∆yi = 0 for all i. Thus,

Z̄ = Z.

Therefore X, Z is a maximal complementary pair. Since, by construction, rank (X) +

rank (Z) = n−g, we have shown that the SDP is a hard instance with strict complementarity

gap g.

To avoid conflicts between the loss of strict complementarity and the loss of strict

feasibility, we can use the following additional condition.

Corollary 6.5 Suppose that the data (A, b, C) is constructed using Algorithm 6.3 with the

additional condition that A2 satisfies

[QP |QN]T A2[QP |QN] Â 0. (6.4)

Then Slater’s condition holds for the dual program (DSDP).

Proof. Suppose that X, y, Z are as constructed by the algorithm. Then Z = C−A∗(y) =

QDDZQT
D º 0. From [13, Theorem 7.1], we get that Slater’s condition fails for (DSDP) if

and only if

∃R º 0 with R 6= 0, RZ = 0,∇ytrace R(A∗y − C) = A(R) = 0.

Now RZ = 0 implies that R = [QP |QN]DR[QP |QN]T , for some symmetric DR of appropriate

size. Therefore, A(R) = 0 implies that

0 = trace A2R = trace A2[QP |QN]DR[QP |QN]T = trace ([QP |QN]T A2[QP |QN])DR.

The assumption (6.4) now implies that DR = 0 and so also R = 0. Therefore, Slater’s

condition holds.

6.3 Measures for Strict Complementarity Gaps

In [31], the authors indicate the following difficulties in measuring the existence and size of

the strict complementarity gap.

CHAPTER 6. HARD INSTANCES IN SEMIDEFINITE PROGRAMMING 113

“Furthermore, in interior point methods for either linear or semidefinite program-

ming, we terminate the algorithm with a primal-dual solution that is almost op-

timal but not actually optimal. Hence there are genuine conceptual difficulties

in trying to quantify and compute the extent of near-non-strict-complementarity

for an SDP instance.”

The measure, κ in (6.10), is proposed in [31]. However, this measure does not distinguish

between a small or large strict complementarity gap g. But, as our numerical tests in

Section 6.4 indicate, large values of g are well correlated with large iterations numbers. This

motivates the introduction of our following two new measures.

6.3.1 Strict Complementarity Gap Measures gt and gs

Measure gt

For barrier parameter µ > 0, µ ↓ 0, and corresponding feasible pairs X = Xµ, Z = Zµ on the

central path, let the orthogonal eigenvalue decomposition be X = QΛXQT and Z = QΛZQT .

Consider the eigenvalue ratios wd
i := ΛZi/ΛXi. Then

XZ = QΛXQT QΛZQT = ΛXΛZ = µI, wd
i =

µ

(ΛX)2
i

.

Suppose that X → X̄, Z → Z̄. We then expect the following behaviour.

wd
i →





∞ if ΛX̄ i + ΛZ̄ i > 0 (no gap) and ΛXi → 0

0 if ΛX̄ i + ΛZ̄ i > 0 (no gap) and ΛZi → 0

O(1) if ΛX̄ i + ΛZ̄ i = 0 (a gap).

Empirical evidence suggests that the sequence
{
wd

i

}
converges when there is a strict com-

plementarity gap. The measure we define exploits this behaviour. In practice, we use the

vector of eigenvalues

wd =
1

2
λ

(
X−1Z + ZX−1

)
. (6.5)

(Note that the eigenvalues of X−1Z interlace the eigenvalues of 1
2
(X−1Z + ZX−1), e.g.

[66].) For given tolerances Tu and Tl, we estimate the strict complementarity gap using the

cardinality

gt := |{wd
i : Tl < wd

i < Tu}|. (6.6)

CHAPTER 6. HARD INSTANCES IN SEMIDEFINITE PROGRAMMING 114

Measure gs

The second measure exploits the idea from [31]. We let X and Z to be a solution pair on

the central path corresponding to µ > 0. The eigenvalue decompositions of X and Z are

X = QΛXQT and Z = QΛZQT . The measure uses the numerical rank (e.g. [92, 47]) of

X + Z. We compute

ws :=
1

2
√

µ
λ (X + Z) , (6.7)

where µ = trace ZX/n. Given a tolerance T > 0, we estimate the strict complementarity

gap g using the cardinality

gs := |{ws
j : ws

j ≤ T}|. (6.8)

Remark 6.6 Note that on the central path, X, Z are mutually diagonalizable. Therefore,

the eigenvalues of the sum X +Z is the same as the sum of the eigenvalues. However, this is

not necessarily true off the central path, see the recent paper [57]. In this remarkable paper

the author solves a classical problem about the eigenvalues of sums of Hermitian operators,

connecting it to the Schubert calculus for the homology of Grassmannians and the moduli of

vector bundles.

However, we should point out that this measure gs may incorrectly include some indices

which do not belong to the strict complementarity gap when the solution estimates X, Z

are not accurate enough. Consider the following results from a randomly generated prob-

lem instance with strict complementarity gap 1. The first 7 eigenvalues from the solution

estimates X and Z (obtained using SDPT3) are

λX =




7.3× 10−7

1.8× 10−6

2.0× 10−6

1.4× 10−5

6.2

8.6× 103

9.2× 103




, λZ =




65

59

54

2.4

2.1× 10−5

4.7× 10−9

4.5× 10−9




. (6.9)

CHAPTER 6. HARD INSTANCES IN SEMIDEFINITE PROGRAMMING 115

Note that

(λX)4 << (λX)5 << (λX)6, (λZ)6 << (λZ)5 << (λZ)4,

i.e. the fifth elements are relatively small/large compared to the next/previous larger/smaller

elements. This indicates that there is a strict complementarity gap g = 1. However, the sum

of these two eigenvalues fails to correctly estimate the size of the gap,

λX + λZ =




65

59

54

2.4

6.2

8.6× 103

9.2× 103




.

Higher accuracy in the approximate optimal solutions X, Z often corrects this issue, see the

numerics in Section 6.4.

6.3.2 Measure κ

The last measure we introduce is κ used in [31]. For a given tolerance T , define the following

index set T s := {j : ws
j ≤ T}, where ws is defined in (6.7). Then

κ := −
∑
j∈T s

ln(ws
j)/|T s|. (6.10)

When strict complementarity holds (resp. fails), we expect to see a relatively large (resp.

small) κ.

6.4 Numerics

We now compare the various measures on randomly generated instances with guaranteed

strict complementarity gaps as well as on problems from the SDPLIB test set, [11].

CHAPTER 6. HARD INSTANCES IN SEMIDEFINITE PROGRAMMING 116

6.4.1 Randomly Generated Instances

We use Algorithm 6.3 to generate the hard instances. To implement the algorithm, we

generate a random orthogonal matrix Q and random diagonal DX and DZ . The elements of

DX and DZ are uniformly distributed in the range of [0.1, 100.1] to ensure positivity of DX

and DZ . The optimal solution of this hard SDP instance is then determined from step 2 in

Algorithm 6.3. For the special matrix A1, we construct Y1 according to:

1. generate the random symmetric matrix Y1 with uniformly distributed elements in

[−10000, 10000];

2. add rI to the above matrix Y1, where r is a random number in [0, 20000];

3. if Y1 is not sufficiently positive definite, repeat the process from step 1.

All the elements of the random matrices Y2, Y3, and Y4, are uniformly distributed in the

interval [−10000, 10000]. If necessary, we symmetrize the matrices. If QDY2 is close to a

zero matrix, we repeat the process for Y2. Our special matrix A1 is then constructed from

Step 3 in Algorithm 6.3. Once we have such a special matrix, we generate random symmetric

uniformly distributed matrices Aj. If one of the AjQp is not properly linearly independent,

then we add a new Aj to the list. To guarantee that Slater’s condition holds, we apply the

condition in Corollary 6.5.

We present the average of results from 100 groups of tests. Each group consists of SDP

instances with 26 different gap values. We set the following parameters: m = 10, n =

30, gap = 0, . . . , 25. The rank for the dual optimal solution is fixed at 4. The name of the

instance shows how large the gap is, e.g. gap5. The accuracy of solutions is given by the err

term:

err := max

{‖A(X)− b‖+ |min(eig(X), 0)|
1 + ‖b‖∞ ,

‖A∗(y) + Z − C‖+ |min(eig(Z), 0)|
1 + ‖C‖∞ ,

|C ·X − bT y|
1 + |bT y|

}
(6.11)

When computing gt (6.6), we set the tolerances Tu, Tl dynamically. More precisely, we

sort the wd
i (6.5) in ascending order. We then use the ratios w̄d

i := wd
i /w

d
i+1, to measure how

CHAPTER 6. HARD INSTANCES IN SEMIDEFINITE PROGRAMMING 117

fast the wd
i are changing. If there is only one small (< 0.02) w̄d

i , we assume that there is no

gap. Otherwise, we find the two smallest valued w̄d
i and set the two indices to be j and k

(j < k). Then Tl := wj + ε and Tu := wk + ε. In practice, once we have found the indices j

and k, the estimated gap gt is returned by using the value of k − j.

When computing gs in (6.8), we set the tolerance T = max{100, mini(w
s
i)}, where ws is

defined in (6.7). The tolerance T for the measure κ is the same as the one used for gs. This

is the same tolerance as that used in [31].

6.4.2 Plots for Randomly Generated Instances

To illustrate the relationships among the various measures we consider three groups of figures.

To illustrate the influence of accuracy in the solutions, each group consists of three figures

with decreasing stop tolerances 10−8, 10−10, and 10−12, respectively.

The x-axis of each figure represents the strict complementarity gap ranging from 0 to 24.

The y-axes, from left to right, represent, respectively:

iteration numbers,

negative log (base 10) of errors (6.11),

measure gt,

measure gs,

measure κ,

local convergence rate (discussed in Item 5 (p119)).

• The first three Figures 6.1, 6.2, 6.3, are average results from 100 instances. We apply

Corollary 6.5 to guarantee that Slater’s condition holds for the dual.

• The next three figures 6.4, 6.5, 6.6, show the behaviour of a typical single instance

without applying Corollary 6.5. We see in Table 6.1 that Slater’s condition generally

holds for all the primal but generally fails for the dual of problems gap0–gap21 as

the quantity Dp is very large. (See also the discussion in Section 6.4.3 (p123) on the

computation and meaning of the quantities Dp.)

• The last three Figures 6.7, 6.8, 6.9 consider the average behaviour on 100 instances.

Again, we do not apply Corollary 6.5.

CHAPTER 6. HARD INSTANCES IN SEMIDEFINITE PROGRAMMING 118

0 10 20
8

10

12

14

16

vs iters
0 10 20

8.2

8.4

8.6

8.8

vs −log10(err)
0 10 20

0

10

20

30

vs g
t

0 10 20
0

10

20

30

vs g
s

0 10 20
−3

−2.5

−2

−1.5

−1

vs κ
0 10 20

0

0.1

0.2

0.3

0.4

vs local

cvgnce

Figure 6.1: Slater’s holds; stop tolerance 10−8; strict complementarity gaps from 0 to 24

versus average of: iterations, − log10 err, gt, gs, κ, local convergence; 100 instances.

0 10 20
10

15

20

vs iters
0 10 20

10.2

10.4

10.6

10.8

vs −log10(err)
0 10 20

0

10

20

30

vs g
t

0 10 20
0

10

20

30

vs g
s

0 10 20
−5

−4

−3

−2

−1

vs κ
0 10 20

0

0.1

0.2

0.3

0.4

vs local

cvgnce

Figure 6.2: Slater’s holds; stop tolerance 10−10; strict complementarity gaps from 0 to 24

versus average of: iterations, − log10 err, gt, gs, κ, local convergence; 100 instances.

Observations from the nine figures 6.1 to 6.9:

1. There is a strong correlation between the iteration number to achieve the desired stop-

ping tolerance and the size of the strict complementarity gap. In the case that the

Slater’s condition holds (Figure 6.1–6.3), we see the larger the strict complementarity

gap, the more steps SDPT3 needs to get higher accuracy. In the case that the Slater’s

condition generally fails (Figure 6.7–6.9), we observe that such a correlation is even

stronger, i.e. we almost have a straight line between iterations numbers and gaps when

the gap is less than 21. Although it is possible that such a correlation may due to other

unknown facts, we believe such controlled environment to generating random problems

on different strict complementarity gaps is the best we can do empirically so far.

CHAPTER 6. HARD INSTANCES IN SEMIDEFINITE PROGRAMMING 119

0 10 20

12
14
16
18
20
22
24

vs iters
0 10 20

11.2

11.4

11.6

11.8

vs −log10(err)
0 10 20

0

10

20

30

vs g
t

0 10 20
0

10

20

30

vs g
s

0 10 20
−6

−4

−2

0

vs κ
0 10 20

0

0.1

0.2

0.3

0.4

vs local

cvgnce

Figure 6.3: Slater’s holds; stop tolerance 10−12; strict complementarity gaps from 0 to 24

versus average of: iterations, − log10 err, gt, gs, κ, local convergence; 100 instances.

0 10 20

10

15

20

25

vs iters
0 10 20

6

7

8

9

10

vs −log10(err)
0 10 20

0

10

20

30

vs g
t

0 10 20
0

10

20

30

vs g
s

0 10 20
−4

−3

−2

−1

0

vs κ
0 10 20

0

0.2

0.4

0.6

0.8

vs local

cvgnce

Figure 6.4: Slater’s fails for gap0–gap21; stop tolerance 10−8; strict complementarity gaps

from 0 to 24 versus: iterations, − log10 err, gt, gs, κ, local convergence; single instance.

2. It can be seen from Figure 6.1–6.3 that the accuracy is not a problem for strict com-

plementarity gaps in general. They almost all achieved desired accuracy except that

in Figure 6.3 we have slightly larger than desired error. However, the failure of Slater’s

condition coupled with the large strict complementarity gaps cause significant error for

SDPT3 as shown in Figure 6.4–6.6 and Figure 6.7–6.9.

3. The measures gt, gs both improve dramatically as the accuracy increases in Figures 6.1,

6.2, 6.3. We see this same phenomenon in the other two groups of figures.

4. The measure κ also improves with smaller stopping tolerances.

5. Local Asymptotic Convergence Rate vs Strict Complementarity Gap: in the literature,

e.g. [84] [50] [4] [64] [59], local superlinear or quadratic convergence results depend on

CHAPTER 6. HARD INSTANCES IN SEMIDEFINITE PROGRAMMING 120

0 10 20

10

15

20

25

vs iters
0 10 20

6

8

10

12

vs −log10(err)
0 10 20

0

10

20

30

vs g
t

0 10 20
0

10

20

30

vs g
s

0 10 20
−6

−4

−2

0

vs κ
0 10 20

0

0.2

0.4

0.6

0.8

vs local

cvgnce

Figure 6.5: Slater’s fails for gap0–gap21; stop tolerance 10−10; strict complementarity gaps

from 0 to 24 versus: iterations, − log10 err, gt, gs, κ, local convergence; single instance.

0 10 20
10

15

20

25

vs iters
0 10 20

6

8

10

12

vs −log10(err)
0 10 20

0

10

20

30

vs g
t

0 10 20
0

10

20

30

vs g
s

0 10 20
−6

−4

−2

0

vs κ
0 10 20

0

0.2

0.4

0.6

0.8

vs local

cvgnce

Figure 6.6: Slater’s fails for gap0–gap21; stop tolerance 10−12; strict complementarity gaps

from 0 to 24 versus: iterations, − log10 err, gt, gs, κ, local convergence; single instance.

the assumption of strict complementarity. Thus it is intuitive to expect this in practice

as well. Our numerical results confirm this conjecture. The convergence rate is defined

by the ratio of the relative duality gap at successive iterations. We list the geometrical

mean of the convergence rate for the last five iterations. This is illustrated in the

rightmost picture in the figures. It is evident from Figure 6.1–6.3 that the larger the

strict complementarity gaps, the slower the convergence rate is.

6. Slater’s condition’s effect: by a comparison between Figure 6.1–6.3 and Figure 6.7–6.9,

we can see that the failure of Slater’s condition can

(a) strengthen the correlation between the iteration numbers and strict complemen-

tarity gaps;

CHAPTER 6. HARD INSTANCES IN SEMIDEFINITE PROGRAMMING 121

0 10 20

10

15

20

vs iters
0 10 20

7.5

8

8.5

9

vs −log10(err)
0 10 20

0

10

20

30

vs g
t

0 10 20
0

10

20

30

vs g
s

0 10 20
−3

−2.5

−2

−1.5

−1

vs κ
0 10 20

0

0.2

0.4

0.6

0.8

vs local

cvgnce

Figure 6.7: Slater’s generally fails; stop tolerance 10−8; strict complementarity gaps from 0

to 24 versus average of: iterations, error, gt, gs, κ, local convergence; 100 instances.

0 10 20

10

15

20

25

vs iters
0 10 20

7

8

9

10

11

vs −log10(err)
0 10 20

0

10

20

30

vs g
t

0 10 20
0

10

20

30

vs g
s

0 10 20
−4

−3

−2

−1

vs κ
0 10 20

0

0.2

0.4

0.6

0.8

vs local

cvgnce

Figure 6.8: Slater’s generally fails; stop tolerance 10−10; strict complementarity gaps from

0 to 24 versus average of: iterations, error, gt, gs, κ, local convergence; 100 instances.

(b) increase the errors when strict complementarity gaps increase;

(c) make the computation of strict complementarity gaps measures (gt and gs) more

accurate;

(d) slow the local convergence rate when strict complementarity gaps increase.

Remark 6.7 The slow convergence rates can be partially explained by the singularity of the

Jacobian, which occurs in the presence of a strict complementarity gap.

Suppose that strict complementarity fails for the optimum pair estimate X, Z. Then we

CHAPTER 6. HARD INSTANCES IN SEMIDEFINITE PROGRAMMING 122

0 10 20
10

15

20

25

vs iters
0 10 20

6

8

10

12

vs −log10(err)
0 10 20

0

10

20

30

vs g
t

0 10 20
0

10

20

30

vs g
s

0 10 20
−6

−4

−2

0

vs κ
0 10 20

0

0.2

0.4

0.6

0.8

vs local

cvgnce

Figure 6.9: Slater’s generally fails; stop tolerance 10−12; strict complementarity gaps from

0 to 24 versus average of: iterations, error, gt, gs, κ, local convergence; 100 instances.

can assume the joint diagonalization structure

X = Q




DX 0 0

0 0 0

0 0 0


QT , Z = Q




0 0 0

0 0 0

0 0 DZ


 QT

for some orthogonal matrix Q and positive definite diagonal matrices DX , DZ. Then we can

rewrite the Jacobian of the SDP optimality conditions as




0 Ā∗ I

Ā 0 0


DX 0 0

0 0 0

0 0 0


 0




0 0 0

0 0 0

0 0 DZ










∆X̄

∆ȳ

∆Z̄


 = 0,

where ∆X̄ = QT ∆XQ,∆Z̄ = QT ∆ZQ and the symmetric matrices Ai defining the linear

transformation A are changed to QT AiQ for Ā. If we assume that both ∆X̄, ∆Z̄ are diagonal,

then this reduces the problem to an ordinary square system and the resulting Jacobian is

singular due to the zero row. The diagonal assumption does not change the feasibility of

the first and third blocks of equations. We can then modify the off-diagonal part of ∆Z̄ to

guarantee the feasibility of the second block of equations.

The singularity of the Jacobian means that we should expect loss of both quadratic and

superlinear convergence for Newton type methods.

CHAPTER 6. HARD INSTANCES IN SEMIDEFINITE PROGRAMMING 123

6.4.3 Geometrical Measure vs Large Strict Complementarity Gaps

In [31], the authors use SDPT3 and the SDPLIB test set. They show that the aggregate ge-

ometrical measure gm, i.e. the geometric mean of the four geometric measures Dp, gp, Dd, gd,

in Table 6.1, is (generally) well correlated with the iteration number. They also show that

the correlation holds for Renegar’s condition number, see also Table 6.2. Briefly, the geo-

metrical measure Dp is the maximum norm over all ε-optimal solutions; the measure gp will

be smaller if the feasible region of the primal SDP contains a point X whose norm is not

too large and whose distance from the boundary of the Semidefinite cone is not too small.

The meanings for measures Dd and gd are almost identical except that they are applied to

the dual SDP. In [31], the authors state that

For primal and dual feasible conic problem, the objective function level sets of

the primal problem are unbounded (Dp = ∞) if and only if the dual problem

contains no slack vector in the interior of the dual cone (gd = ∞).

For more details on the geometrical measure and Renegar’s condition number and their

computation, please see [31] and the references therein.

The values for these measures for the SDP instance in Figures 6.7, 6.8, 6.9 are given in

Tables 6.1, 6.2. We use the same code used in [31] to compute the geometrical measure gm

and Renegar’s condition number. 1

As pointed out in [31], the strict complementarity gap might not be theoretically related

to the geometrical measures or Renegar’s condition number. In fact, our numerical compu-

tations on our generated instances confirm this, see Tables 6.1, 6.2. The geometric measures

and Renegar’s condition measure show no correlation with the size of the strict complemen-

tarity gap. Our numerics suggest that there is no strictly feasible point for most of the duals

(when gap ≤ 21) for the generated hard instances, since the gd, and DP measures are large or

infinity in Table 6.1. Since the distances to dual infeasibility are small, Renegar’s condition

numbers in Table 6.2 are also large, regardless of the change in the strict complementarity

gaps.

1Acknowledgment: The authors thank Professor Ordóñez, University of Southern California, for pro-
viding the software for the measure evaluations.

2 In [31] it is shown that gd = ∞ ⇐⇒ ρD(d) = 0. However, due to inaccuracy from SDPT3, we get
inconsistencies here.

CHAPTER 6. HARD INSTANCES IN SEMIDEFINITE PROGRAMMING 124

Problem Dp gp Dd gd gm

gap0 Inf 1.9e+02 1.5e+02 Inf Inf

gap1 1.2e+12 1.5e+02 2.4e+02 Inf Inf

gap2 2.9e+08 1.6e+02 2.3e+02 Inf Inf

gap3 3.1e+08 1.4e+02 1.7e+02 Inf Inf

gap4 1.1e+11 1.8e+02 1.9e+02 MAXIT N/A

gap5 1.6e+08 1.1e+02 2.4e+02 Inf Inf

gap6 4.5e+08 9.9e+01 2.8e+02 Inf Inf

gap7 1.9e+08 1.6e+02 1.1e+02 Inf Inf

gap8 1.4e+09 2.1e+02 1.3e+02 Inf Inf

gap9 1.4e+09 1.8e+02 1.8e+02 Inf Inf

gap10 2.1e+09 1.3e+02 4.0e+02 6.2e+04 4.7e+00

gap11 1.0e+09 1.7e+02 1.4e+02 Inf Inf

gap12 Inf 1.3e+02 3.2e+02 Inf Inf

gap13 Inf 1.6e+02 2.6e+01 Inf Inf

gap14 Inf 1.6e+02 Nacc Inf N/A

gap15 Inf 1.7e+02 6.9e+01 Inf Inf

gap16 3.0e+10 2.5e+02 2.2e+02 Inf Inf

gap17 Inf 2.6e+02 2.1e+02 Inf Inf

gap18 Inf 1.5e+02 2.6e+02 Inf Inf

gap19 1.2e+10 1.1e+02 2.6e+02 Inf Inf

gap20 6.3e+10 1.8e+02 2.3e+02 Inf Inf

gap21 1.2e+10 2.2e+02 1.4e+02 Inf Inf

gap22 2.7e+02 1.2e+02 2.3e+02 MAXIT N/A

gap23 1.8e+02 2.5e+02 1.4e+02 Nacc N/A

gap24 3.6e+01 2.5e+02 1.1e+02 MAXIT N/A

Table 6.1: Notation from [31]: (Dp, gp) - primal geometrical measure; (Dd, gd) - dual

geometrical measure; (gm) - aggregate geometrical measure, i.e. geometrical mean of Dp, gp,

Dd, and gd. MAXIT - max iteration limit reached; Nacc - no accurate/meaningful solution.

CHAPTER 6. HARD INSTANCES IN SEMIDEFINITE PROGRAMMING 125

Problem ρP (d) ρD(d) ‖d‖l ‖d‖u C(d)l C(d)u

gap0 2.8e+04 7.4e-04 1.1e+09 1.1e+09 1.5e+12 1.5e+12

gap1 3.1e+04 9.9e-04 2.2e+09 2.2e+09 2.2e+12 2.2e+12

gap2 2.9e+04 1.3e-03 2.5e+09 2.5e+09 2.0e+12 2.0e+12

gap3 3.2e+04 2.5e-04 7.3e+08 7.3e+08 2.9e+12 2.9e+12

gap4 3.4e+04 1.1e-03 8.0e+08 8.0e+08 7.3e+11 7.3e+11

gap5 2.9e+04 2.4e-03 8.1e+08 8.1e+08 3.4e+11 3.4e+11

gap6 3.0e+04 1.9e-04 1.0e+09 1.0e+09 5.3e+12 5.3e+12

gap7 3.0e+04 1.4e-03 4.3e+09 4.3e+09 3.0e+12 3.0e+12

gap8 3.1e+04 2.4e-04 1.1e+09 1.1e+09 4.6e+12 4.6e+12

gap9 2.7e+04 2.6e-03 3.2e+09 3.2e+09 1.3e+12 1.3e+12

gap10 3.1e+04 4.2e-03 8.5e+08 8.5e+08 2.0e+11 2.0e+11

gap11 3.2e+04 2.6e-04 4.3e+09 4.3e+09 1.7e+13 1.7e+13

gap12 2.8e+04 6.7e-03 1.9e+09 1.9e+09 2.9e+11 2.9e+11

gap13 2.5e+04 1.1e-03 6.9e+08 6.9e+08 6.1e+11 6.1e+11

gap14 2.4e+04 6.4e-03 9.8e+08 9.8e+08 1.5e+11 1.5e+11

gap15 2.5e+04 2.8e-04 2.1e+09 2.1e+09 7.2e+12 7.2e+12

gap16 2.4e+04 3.1e-03 5.0e+09 5.0e+09 1.6e+12 1.6e+12

gap17 2.4e+04 2.4e-04 7.1e+08 7.1e+08 3.0e+12 3.0e+12

gap18 2.1e+04 3.0e-04 7.1e+08 7.1e+08 2.3e+12 2.3e+12

gap19 2.5e+04 5.1e-03 1.9e+09 1.9e+09 3.7e+11 3.7e+11

gap20 2.0e+04 4.2e-03 1.4e+09 1.4e+09 3.3e+11 3.3e+11

gap21 1.6e+04 1.1e-03 4.1e+09 4.1e+09 3.7e+12 3.7e+12

gap22 2.3e+04 4.0e-03 7.0e+08 7.0e+08 1.7e+11 1.7e+11

gap23 1.5e+04 1.9e-03 4.5e+09 4.5e+09 2.3e+12 2.3e+12

gap24 1.5e+04 8.0e-03 2 4.4e+09 4.4e+09 5.4e+11 5.4e+11

Table 6.2: Renegar’s condition number on SDPswith strict complementarity gaps. Notation

from [31]: (ρP (d)) - distance to primal infeasibility; (ρD(d)) - distance to dual infeasibility;

(‖d‖l, ‖d‖u) - lower and upper bounds of the norm of the data; (C(d)l, C(d)u) - lower and

upper bounds on Renegar’s condition number, C(d) = ‖d‖
min{ρP (d),ρD(d)} .

CHAPTER 6. HARD INSTANCES IN SEMIDEFINITE PROGRAMMING 126

6.4.4 SDPLIB Instances

Our results in Section 6.4 show that, generally, measure gt can accurately measure the gap

g, though it can give large errors when the solution estimates are not accurate enough. The

measure gs is more consistent in measuring the strict complementarity gap, g. The measure

κ is also sensitive to the accuracy of the solution.

We applied these measures gt, gs, and κ to the SDPLIB [11] problem set. Though we used

10−10 as the stop tolerance in SDPT3, it was rarely attained. For some of the problems, there

were big discrepancies between the two measures gt and gs. There was also no significant

correlation between the iteration numbers and the three measures:

corr (gt, its) = −0.01, corr (gs, its) = −0.067, and corr (κ, its) = 0.2856.

However, if we only consider those SDP instances (47 such instances), where the error ob-

tained was less than 10−7, then we see a significant increase in the correlations between the

measures and the iteration numbers:

corr (gt, its) = 0.1472, corr (gs, its) = 0.4509, and corr (κ, its) = 0.4371.

Their plots are shown in Figure 6.10.

6.5 Summary

We have presented an algorithm for generating hard SDP instances, i.e. problem instances

where we can control the strict complementarity gap, g. We then tested several measures

on randomly generated instances. The tests confirm the intuitive expectation: The number

of iterations for interior point methods are closely related to the size of the strict comple-

mentarity gaps. In addition, we tested three measures gt, gs, and κ on the generated hard

SDP instances. These measures gt, gs generally provide accurate measurement of the strict

complementarity gaps; with the measure gs being more consistent. All three measures are

negatively affected by inaccurate solution estimates.

Our numerics show that the failure of Slater’s condition coupled with large strict com-

plementarity gap give the hardest problem for SDPT3. For these problems, SDPT3 general

CHAPTER 6. HARD INSTANCES IN SEMIDEFINITE PROGRAMMING 127

0 100 200 300 400 500
10

12

14

16

18

20

22

24

26

g
t

ite
ra

tio
ns

0 10 20 30 40
10

12

14

16

18

20

22

24

26

g
s

−15 −10 −5 0
10

12

14

16

18

20

22

24

26

κ

Figure 6.10: Scatter plots of gt, gs, κ versus # iterations for SDPLIB instances with attained

tolerance < 10−7.

takes more iterations and can not get desired accuracy. Also, the local convergence rate

is slow. However, the fail of Slater’s condition gives a better estimates for those measures

(gt, gs, κ) for the strict complementarity gap compared to the case that the Slater’s condition

holds.

We also tested the aggregated geometrical measure and Renegar’s condition number on

the generated hard SDP instances; and, we did not find any correlation between them and

the size of the strict complementarity gaps. It appears that these geometric measures are

more closely related to the distance to infeasibility, i.e. strict feasibility. Our randomly

generated hard SDP instances have consistently large aggregate geometrical measure and

large Reneger condition number, despite having different strict complementarity gap values.

Finally, we used the SDPLIB test set but had trouble coming to any concrete conclusions

since the approximate solutions we found were not accurate enough. We hope to obtain

improved solutions and redo these tests in the future.

Chapter 7

Conclusions

7.1 Contributions

We list below the main contributions of the thesis.

1. We give an analysis on the error bounds for the NEQ based search directions. Our

numerical examples show that all of these bounds are tight. These error bounds explain

well why we usually do not see significant numerical instability despite the extremely

large ill-conditioning for the underlying linear system. The error analysis suggests that

for certain degenerate cases, the NEQ based approach will not have major problem up

to 10−8. This explains why most of the popular solvers set the default stop tolerance

to 10−8.

2. Based on the error analysis for NEQ, we propose an alternative approach. We show

in theory that the underlying linear system for our approach is non-singular under a

non-degeneracy assumption. Our numerical tests show that this approach has better

numerical stability for both the NETLIB problems (even for degenerate problems) and

our randomly generated problems. However, due to the larger linear system, we are not

competitive in terms of CPU time for the NETLIB problems compared to NEQ. If the

data sets have some nice properties, i.e. well-conditioned, sparse, and large scale, our

proposed approach beats popular NEQ based approaches by a large margin. We also

analyze some special techniques which can be incorporated into our approach. They

128

CHAPTER 7. CONCLUSIONS 129

are purification, crossover, and no backtracking.

3. We present an algorithm to construct SDP instances with prescribed strict comple-

mentarity gap. We use this algorithm to construct a group of hard instances. We test

a few measures on the strict complementarity gaps and find out that high accuracy

solution can give correct measures. We also find out that the failure of the Slater’s

condition coupled with large strict complementarity gap yields the hardest problems.

SDPT3 needs significantly more iterations for these hard problems and gets less accu-

rate solutions. We empirically test the relation between the strict complementarity gap

and the geometrical measure and Renegar’s condition number; no relation is found.

7.2 Future Research Directions

1. To extend our LP error analysis to the SDP. This appears to be more challenging due

to the complicated structure of SDP.

2. We know from our error analysis that the eigenvalues of the matrix AXZ−1AT in LP

split into two parts. Each part of the eigenvalues is relatively close. It is well know

that the convergence rate of an iterative linear solver depends on the clustering of the

eigenvalues. Can we take advantage of this property and design a fast iterative solver

for the linear system of AXZ−1AT ? Also, Our error analysis shows the size of the error

on the matrix AXZ−1AT and the correspond right-hand side. These error sizes can

be a good suggestion of the stop tolerance for iterative linear solver. Moreover, our

error analysis shows that a centering direction usually has large errors. Since iterative

linear solver may not be as accurate as a direct linear solver, this may suggest that

when using iterative linear solver, we should avoid using a centering direction.

3. For the new simple stable approach, can we find any better preconditioners cheaply?

This is a challenge problem. Our iterative solver only works faster on well-conditioned

system due to the lack of good preconditioner. We may want to exploit the special

structure of the linear system.

4. Our algorithm for hard instances for SDP requires a special matrix A1 such that

CHAPTER 7. CONCLUSIONS 130

trace (A1X) = 0. Notice that the right-hand side has to be 0. Is it possible to design

an algorithm which does not require that one of the right-hand side is zero? This can

be useful for simulating certain classes of problems. For example, the SDP relaxation

for max-cut problems has right-hand side all 1s.

5. The hard instances chapter gives many interesting numerical results. For example,

we show that strict complementarity gaps are correlated with iteration numbers as

well as local convergence rate. We also show that the failure of Slater’s condition has

interesting effects on the iteration numbers, the numerical stability, local convergence

rate, and the accuracy of strict complementarity gaps measures gt, gs, and κ. It will

be interesting to have a theoretical explanation on these phenomena.

Bibliography

[1] F. ALIZADEH. Combinatorial optimization with interior point methods and semidef-

inite matrices. PhD thesis, University of Minnesota, 1991.

[2] F. ALIZADEH. Optimization over positive semi-definite cone; interior-point methods

and combinatorial applications. In P.M. Pardalos, editor, Advances in Optimization

and Parallel Computing, pages 1–25. North–Holland, 1992.

[3] F. ALIZADEH. Interior point methods in semidefinite programming with applications

to combinatorial optimization. SIAM Journal on Optimization, 5:13–51, 1995.

[4] F. ALIZADEH, J.-P. A. HAEBERLY, and M. L. OVERTON. Primal–dual interior–

point methods for semidefinite programming : Convergence rates, stability and numer-

ical results. SIAM Journal on Optimization, 8:746–768, 1998.

[5] F. ALIZADEH, J-P.A. HAEBERLY, and M.L. OVERTON. A new primal-dual

interior-point method for semidefinite programming. In J.G. Lewis, editor, Proceedings

of the Fifth SIAM Conference on Applied Linear Algebra, pages 113–117. SIAM, 1994.

[6] E.D. ANDERSEN and Y. YE. Combining interior-point and pivoting algorithms for

linear programming. Management Science, 42:1719–1731, 1996.

[7] K.M. ANSTREICHER. Linear programming in O((n3/ ln n)L) operations. SIAM

Journal on Optimization, 9(4):803–812 (electronic), 1999. Dedicated to John E. Dennis,

Jr., on his 60th birthday.

[8] E. R. BARNES. A variation on Karmarkar’s algorithm for solving linear programming

problems. Mathematical Programming, 36:174–182, 1986.

131

BIBLIOGRAPHY 132

[9] M. BENZI, C.D. MEYER, and M. TU̇MA. A sparse approximate inverse precondi-

tioner for the conjugate gradient method. SIAM Journal on Scientific Computing,

17(5):1135–1149, 1996.

[10] M. BENZI and M. TU̇MA. A sparse approximate inverse preconditioner for nonsym-

metric linear systems. SIAM Journal on Scientific Computing, 19(3):968–994, 1998.

[11] B. BORCHERS. SDPLIB 1.2, a library of semidefinite programming test problems.

Optimization Methods and Software, 11(1):683–690, 1999. Interior point methods.

[12] K.H. BORGWARDT and P. HUHN. A lower bound on the average number of pivot-

steps for solving linear programs. Valid for all variants of the simplex-algorithm. Math-

ematical Methods of Operations Research, 49(2):175–210, 1999.

[13] J.M. BORWEIN and H. WOLKOWICZ. Regularizing the abstract convex program.

Journal of Mathematical Analysis and Applications, 83(2):495–530, 1981.

[14] M. BROOKES. The matrix reference manual, 2005. [online] http://www.ee.ic.ac.

uk/hp/staff/dmb/matrix/intro.html.

[15] J.V. BURKE. On the identification of active constraints. II. The nonconvex case.

SIAM Journal on Numerical Analysis, 27(4):1081–1103, 1990.

[16] J.V. BURKE and J.J. MORÉ. On the identification of active constraints. SIAM

Journal on Numerical Analysis, 25(5):1197–1211, 1988.

[17] J.V. BURKE and J.J. MORÉ. Exposing constraints. SIAM Journal on Optimization,

4(3):573–595, 1994.

[18] G.B. DANTZIG. Linear Programming and Extensions. Princeton University Press,

Princeton, NJ, 1963, 1963.

[19] E. de KLERK. Aspects of Semidefinite Programming: Interior Point Algorithms and

Selected Applications. Applied Optimization Series. Kluwer Academic, Boston, MA,

2002.

http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html
http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html

BIBLIOGRAPHY 133

[20] E. de KLERK, J. PENG, C. ROOS, and T. TERLAKY. A scaled gauss–newton primal-

dual search direction for semidefinite optimization. SIAM Journal on Optimization,

11(4):870–888, 2001.

[21] E. de KLERK, C. ROOS, and T. TERLAKY. Initialization in semidefinite pro-

gramming via a self-dual skew-symmetric embedding. Operations Research Letters,

20(5):213–221, 1997.

[22] R. DE LEONE and O.L. MANGASARIAN. Serial and parallel solution of large scale

linear programs by augmented Lagrangian successive overrelaxation. In Optimization,

parallel processing and applications (Oberwolfach, 1987 and Karlsruhe, 1987), volume

304 of Lecture Notes in Econom. and Math. Systems, pages 103–124. Springer, Berlin,

1988.

[23] J.E. DENNIS Jr. and R.B. SCHNABEL. Numerical methods for unconstrained op-

timization and nonlinear equations, volume 16 of Classics in Applied Mathematics.

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. Cor-

rected reprint of the 1983 original.

[24] J.E. DENNIS Jr. and H. WOLKOWICZ. Sizing and least-change secant methods.

SIAM Journal on Numerical Analysis, 30(5):1291–1314, 1993.

[25] J. DIEUDONNÉ. Foundations of Modern Analysis. Academic Press, New York, 1960.

[26] I. I. DIKIN. Iterative solution of problems of linear and quadratic programming.

Doklady Akademii Nauk SSSR, 174:747–748, 1967. Translated in : Soviet Mathematics

Doklady 8:674–675, 1967.

[27] A.S. EL-BAKRY, R.A. TAPIA, and Y. ZHANG. A study of indicators for identifying

zero variables in interior-point methods. SIAM Review, 36(1):45–72, 1994.

[28] A.V. FIACCO and G.P. McCORMICK. Nonlinear Programming: Sequential Uncon-

strained Minimization Techniques. Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA, second (first 1968) edition, 1990.

BIBLIOGRAPHY 134

[29] A. L. FORSGREN and P. E. GILL. Primal-dual interior methods for nonconvex

nonlinear programming. SIAM Journal on Optimization, 8:1132–1152, 1998.

[30] R.M. FREUND. Complexity of convex optimization using geometry-based measures

and a reference point. Mathematical Programming, 99(2, Ser. A):197–221, 2004.

[31] R.M. FREUND, F. ORDÓÑEZ, and K.C. TOH. Behavioral measures and their cor-

relation with IPM iteration counts on semi-definite programming problems. USC-ISE

working paper #2005-02, MIT, 2005. url: http://www-rcf.usc.edu/˜fordon/.

[32] R.M. FREUND and J.R. VERA. Condition-based complexity of convex optimiza-

tion in conic linear form via the ellipsoid algorithm. SIAM Journal on Optimization,

10(1):155–176 (electronic), 1999.

[33] R.W. FREUND, M.H. GUTKNECHT, and N.M. NACHTIGAL. An implementation

of the look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM Journal on

Scientific Computing, 14:137–158, 1993.

[34] R.W. FREUND and F. JARRE. A QMR-based interior-point algorithm for solving

linear programs. Mathematical Programming, Series B, 76:183–210, 1996.

[35] K.R. FRISCH. The logarithmic potential method of convex programming. Technical

report, Institute of Economics, Oslo University, Oslo, Norway, 1955.

[36] P. E. GILL, W. MURRAY, M. A. SAUNDERS, J. A. TOMLIN, and M. H. WRIGHT.

On projected Newton barrier methods for linear programming and an equivalence to

Karmarkar’s projective method. Mathematical Programming, 36:183–209, 1986.

[37] M.X. GOEMANS and D.P. WILLIAMSON. .878-approximation algorithms for MAX

CUT and MAX 2SAT. In ACM Symposium on Theory of Computing (STOC), 1994.

[38] M.X. GOEMANS and D.P. WILLIAMSON. Improved approximation algorithms for

maximum cut and satisfiability problems using semidefinite programming. Journal of

the Association of Computing Machinery, 42(6):1115–1145, 1995.

BIBLIOGRAPHY 135

[39] D. GOLDFARB and K. SCHEINBERG. Interior point trajectories in semidefinite

programming. SIAM Journal on Optimization, 8(4):871–886, 1998.

[40] A.J. GOLDMAN and A.W. TUCKER. Theory of linear programming. In Linear

inequalities and related systems, pages 53–97. Princeton University Press, Princeton,

N.J., 1956. Annals of Mathematics Studies, no. 38.

[41] M. GONZALEZ-LIMA, H. WEI, and H. WOLKOWICZ. A stable iterative method

for linear programming. Technical Report CORR 2004-26, University of Waterloo,

Waterloo, Ontario, 2004.

[42] N.I.M. GOULD, D. ORBAN, A. SARTENAER, and Ph.L. TOINT. Component-

wise fast convergence in the solution of full-rank systems of nonlinear equations.

Tr/pa/00/56, CERFACS, Toulouse Cedex 1, France, 2001.

[43] A. GREENBAUM. Iterative methods for solving linear systems. Society for Industrial

and Applied Mathematics (SIAM), Philadelphia, PA, 1997.

[44] O. GÜLER, D. DEN HERTOG, C. ROOS, T. TERLAKY, and T. TSUCHIYA. Degen-

eracy in interior point methods for linear programming: a survey. Annals of Operations

Research, 46/47(1-4):107–138, 1993. Degeneracy in optimization problems.

[45] W.W. HAGER. The dual active set algorithm and the iterative solution of linear

programs. In Novel approaches to hard discrete optimization (Waterloo, ON, 2001),

volume 37 of Fields Inst. Commun., pages 97–109. Amer. Math. Soc., Providence, RI,

2003.

[46] M. HALICKÁ, E. de KLERK, and C. ROOS. On the convergence of the central

path in semidefinite optimization. SIAM Journal on Optimization, 12(4):1090–1099

(electronic), 2002.

[47] P.C. HANSEN and P.Y. YALAMOV. Computing symmetric rank-revealing decomposi-

tions via triangular factorization. SIAM Journal on Matrix Analysis and Applications,

23(2):443–458 (electronic), 2001.

BIBLIOGRAPHY 136

[48] C. HELMBERG, F. RENDL, R.J. VANDERBEI, and H. WOLKOWICZ. An interior-

point method for semidefinite programming. SIAM Journal on Optimization, 6(2):342–

361, 1996.

[49] N.J. HIGHAM. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia,

1995.

[50] J. JI, F.A. POTRA, and R. SHENG. On the local convergence of a predictor-corrector

method for semidefinite programming. SIAM Journal on Optimization, 10(1):195–210

(electronic), 1999.

[51] J.J. JÚDICE, J. PATRICIO, L.F. PORTUGAL, M.G.C. RESENDE, and G. VEIGA.

A study of preconditioners for network interior point methods. Computational Opti-

mization and Applications, 24(1):5–35, 2003.

[52] L.V. KANTOROVICH. Functional analysis and applied mathematics. Uspekhi Mat.

Nauk., 3:89–185, 1948. Transl. by C. Benster as N.B.S. Rept. 1509, Washington D.C.,

1952.

[53] N. K. KARMARKAR. A new polynomial–time algorithm for linear programming.

Combinatorica, 4:373–395, 1984.

[54] L. G. KHACHIYAN. A polynomial algorithm for linear progrmming. Soviet Math.

Dokl., 20:191–194, 1979.

[55] L. G. KHACHIYAN. Polynomial algorithms in linear programming. USSR Computa-

tional Mathematics and Math. Phys., 20:53–72, 1980.

[56] V. KLEE and G.J. MINTY. How good is the simplex algorithm. In O. Shisha, editor,

Inequalities - III. Academic Press Inc., New York and London, 1972.

[57] A.A. KLYACHKO. Stable bundles, representation theory and Hermitian operators.

Selecta Math. (N.S.), 4(3):419–445, 1998.

[58] D.E. KNUTH. The sandwich theorem. Electronic J. Combinatorics, 1:48pp, 1994.

BIBLIOGRAPHY 137

[59] M. KOJIMA, M. SHIDA, and S. SHINDOH. Local convergence of predictor–corrector

infeasible–interior–point algorithms for SDPs and SDLCPs. Mathematical Program-

ming, 80:129–160, 1998.

[60] M. KOJIMA, S. SHINDOH, and S. HARA. Interior-point methods for the monotone

semidefinite linear complementarity problem in symmetric matrices. SIAM Journal on

Optimization, 7(1):86–125, 1997.

[61] S. KRUK. High Accuracy Algorithms for the Solutions of Semidefinite Linear Pro-

grams. PhD thesis, University of Waterloo, 2001.

[62] S. KRUK, M. MURAMATSU, F. RENDL, R.J. VANDERBEI, and H. WOLKOWICZ.

The Gauss-Newton direction in linear and semidefinite programming. Optimization

Methods and Software, 15(1):1–27, 2001.

[63] L. LOVÁSZ. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory,

25(1):1–7, 1979.

[64] Z-Q. LUO, J. F. STURM, and S. ZHANG. Superlinear convergence of a symmetric

primal-dual path-following algorithm for semidefinite programming. SIAM Journal on

Optimization, 8:59–81, 1998.

[65] O.L. MANGASARIAN. Iterative solution of linear programs. SIAM Journal on Nu-

merical Analysis, 18(4):606–614, 1981.

[66] A.W. MARSHALL and I. OLKIN. Inequalities: Theory of Majorization and its Ap-

plications. Academic Press, New York, NY, 1979.

[67] L. McLINDEN. The analogue of Moreau’s proximation theorem, with applications to

the nonlinear complementarity problem. Pacific Journal of Mathematics, 88:101–161,

1980.

[68] S. MEHROTRA. On the implementation of a primal–dual interior point method.

SIAM Journal on Optimization, 2(4):575–601, 1992.

BIBLIOGRAPHY 138

[69] S. MEHROTRA and Y. YE. Finding an interior point in the optimal face of linear

programs. Mathematical Programming, 62(3, Ser. A):497–515, 1993.

[70] H. D. MITTELMANN. An independent benchmarking of SDP and SOCP solvers.

Mathematical Programming, 95(2, Ser. B):407–430, 2003. Computational semidefinite

and second order cone programming: the state of the art.

[71] R.D.C. MONTEIRO. Primal-dual path-following algorithms for semidefinite program-

ming. SIAM Journal on Optimization, 7(3):663–678, 1997.

[72] R.D.C. MONTEIRO and M.J. TODD. Path-following methods. In Handbook of

Semidefinite Programming, pages 267–306. Kluwer Acad. Publ., Boston, MA, 2000.

[73] Y.E. NESTEROV and A.S. NEMIROVSKI. Self–concordant functions and

polynomial–time methods in convex programming. Book–Preprint, Central Economic

and Mathematical Institute, USSR Academy of Science, Moscow, USSR, 1989. Pub-

lished in Nesterov and Nemirovsky [74].

[74] Y.E. NESTEROV and A.S. NEMIROVSKI. Interior Point Polynomial Algorithms in

Convex Programming. SIAM Publications. SIAM, Philadelphia, USA, 1994.

[75] Y.E. NESTEROV and M.J. TODD. Self-scaled barriers and interior-point methods

for convex programming. Mathematics of Operations Research, 22(1):1–42, 1997.

[76] Y.E. NESTEROV and M.J. TODD. Primal-dual interior-point methods for self-scaled

cones. SIAM Journal on Optimization, 8:324–364, 1998.

[77] J. NOCEDAL and S.J. WRIGHT. Numerical optimization. Springer-Verlag, New

York, 1999.

[78] A.R.L. OLIVEIRA and D.C. SORENSEN. A new class of preconditioners for large-

scale linear systems from interior point methods for linear programming. Linear Algebra

and its Applications, 394:1–24, 2005.

[79] C.C. PAIGE and M.A. SAUNDERS. LSQR: an algorithm for sparse linear equations

and sparse least squares. ACM Trans. Math. Software, 8(1):43–71, 1982.

BIBLIOGRAPHY 139

[80] J. PANG. Error bounds in mathematical programming. Mathematical Programming,

79(1-3, Ser. B):299–332, 1997. Lectures on mathematical programming (ismp97) (Lau-

sanne, 1997).

[81] G. PATAKI and L. TUNÇEL. On the generic properties of convex optimization prob-

lems in conic form. Mathematical Programming, 89(Ser. A):449–457, 2001.

[82] S. PEREZ-GARCIA. Alternative iterative primal-dual interior-point algorithms for

linear programming. Master’s thesis, Simon Bolivar University, Center for Statistics

and Mathematical Software (CESMa), Venezuela, 2003.

[83] S. PEREZ-GARCIA and M. GONZALEZ-LIMA. On a non-inverse approach for solv-

ing the linear systems arising in primal-dual interior point methods for linear program-

ming. Technical Report 2004-01, Simon Bolivar University, Center for Statistical and

Mathematical Software, Caracas, Venezuela, 2004.

[84] F.A. POTRA and R. SHENG. Superlinear convergence of a predictor-corrector method

for semidefinite programming without shrinking central path neighborhood. Bull.

Math. Soc. Sci. Math. Roumanie (N.S.), 43(91)(2):107–124, 2000.

[85] M.V. RAMANA, L. TUNÇEL, and H. WOLKOWICZ. Strong duality for semidefinite

programming. SIAM Journal on Optimization, 7(3):641–662, 1997.

[86] J. RENEGAR. Linear programming, complexity theory and elementary functional

analysis. Mathematical Programming, 70(3, Ser. A):279–351, 1995.

[87] A. SHAPIRO. Duality and optimality conditions. In HANDBOOK OF SEMIDEF-

INITE PROGRAMMING: Theory, Algorithms, and Applications. Kluwer Academic

Publishers, Boston, MA, 2000.

[88] N. SHOR. Utilization of the operation of space dilatation in the minimization of convex

functions. Kibernetika, 1:6–12, 1970. (In Russian). Translated in : Cybernetics, 6, 7-15.

[89] S. SMALE. On the average number of steps of the simplex method of linear program-

ming. Mathematical Programming, 27(3):241–262, 1983.

BIBLIOGRAPHY 140

[90] D. A. SPIELMAN and S.-H. TENG. Smoothed analysis of algorithms: why the sim-

plex algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–463

(electronic), 2004.

[91] G. W. STEWART and J.-G. SUN. Matrix Perturbation Theory. Academic Press,

Boston, 1990.

[92] G.W. STEWART. Updating a rank-revealing ULV decomposition. SIAM Journal on

Matrix Analysis and Applications, 14(2):494–499, 1993.

[93] J.F. STURM. Avoiding numerical cancellation in the interior point method for solving

semidefinite programs. Technical Report 2001-27, Tilburg University, The Netherlands,

2001.

[94] R. A. Tapia and Y. Zhang. On the quadratic convergence of the singular Newton’s

method. SIAG/OPT Views–and–News, A forum for the SIAM Activity Group on

Optimization, 1:6–8, 1992.

[95] M.J. TODD. A study of search directions in primal-dual interior-point methods for

semidefinite programming. Optimization Methods and Software, 11&12:1–46, 1999.

[96] M.J. TODD, K.C. TOH, and R.H. TÜTÜNCÜ. On the Nesterov-Todd direction in

semidefinite programming. SIAM Journal on Optimization, 8(3):769–796, 1998.

[97] L. Tunçel. On the convergence of primal–dual interior point methods with wide neigh-

borhoods. Computational Optimization and Applications, 4:139–158, 1995.

[98] L. TUNÇEL and H. WOLKOWICZ. Strengthened existence and uniqueness conditions

for search directions in semidefinite programming. Linear Algebra and its Applications,

400:31–60, 2005.

[99] R.H. TÜTÜNCÜ, K.C. TOH, and M.J. TODD. Solving semidefinite-quadratic-linear

programs using SDPT3. Mathematical Programming, 95(2, Ser. B):189–217, 2003.

Computational semidefinite and second order cone programming: the state of the art.

BIBLIOGRAPHY 141

[100] A. VAN der SLUIS. Condition numbers and equilibration of matrices. Numerische

Mathematik, 14:14–23, 1969/1970.

[101] A. VAN der SLUIS. Stability of solutions of linear algebraic systems. Numerische

Mathematik, 14:246–251, 1969/1970.

[102] R. J. VANDERBEI, M. S. MEKETON, and B. A. FREEDMAN. A modification of

Karmarkar’s linear programming algorithm. Algorithmica, 1(4):395–407, 1986.

[103] R.J. VANDERBEI. Linear Programming: Foundations and Extensions. Kluwer Acad.

Publ., Dordrecht, 1998.

[104] R.J. VANDERBEI. LOQO: an interior point code for quadratic programming. Opti-

mization Methods and Software, 11/12(1-4):451–484, 1999. Interior point methods.

[105] S.A. VAVASIS and Y. YE. A primal-dual interior point method whose running time

depends only on the constraint matrix. Mathematical Programming, 74(1, Ser. A):79–

120, 1996.

[106] H. WEI and H. WOLKOWICZ. Generating and solving hard instances in semidefinite

programming. Technical Report CORR 2006-01, University of Waterloo, Waterloo,

Ontario, 2005. in progress.

[107] H. WOLKOWICZ. Solving semidefinite programs using preconditioned conjugate gra-

dients. Optimization Methods and Software, 19(6):653–672, 2004.

[108] H. WOLKOWICZ, R. SAIGAL, and L. VANDENBERGHE, editors. HANDBOOK OF

SEMIDEFINITE PROGRAMMING: Theory, Algorithms, and Applications. Kluwer

Academic Publishers, Boston, MA, 2000. xxvi+654 pages.

[109] M.H. WRIGHT. Numerical methods for nonlinearly constrained optimization. PhD

thesis, Department of Computer Science, Stanford University, 1976.

[110] M.H. WRIGHT. The interior-point revolution in constrained optimization. In High

performance algorithms and software in nonlinear optimization (Ischia, 1997), vol-

ume 24 of Appl. Optim., pages 359–381. Kluwer Acad. Publ., Dordrecht, 1998.

BIBLIOGRAPHY 142

[111] M.H. WRIGHT. Ill-conditioning and computational error in interior methods for non-

linear programming. SIAM Journal on Optimization, 9(1):84–111 (electronic), 1999.

[112] S.J. WRIGHT. Stability of linear equations solvers in interior-point methods. SIAM

Journal on Matrix Analysis and Applications, 16(4):1287–1307, 1995.

[113] S.J. WRIGHT. Primal-Dual Interior-Point Methods. Society for Industrial and Ap-

plied Mathematics (SIAM), Philadelphia, Pa, 1996.

[114] S.J. WRIGHT. Modifying SQP for degenerate problems. Technical report, Argonne

National Laboratory, 1997.

[115] S.J. WRIGHT. Stability of augmented system factorizations in interior-point methods.

SIAM Journal on Matrix Analysis and Applications, 18(1):191–222, 1997.

[116] S.J. WRIGHT. Modified Cholesky factorizations in interior-point algorithms for lin-

ear programming. SIAM Journal on Optimization, 9(4):1159–1191 (electronic), 1999.

Dedicated to John E. Dennis, Jr., on his 60th birthday.

[117] Y. YE. Interior point algorithms. Wiley-Interscience Series in Discrete Mathematics

and Optimization. John Wiley & Sons Inc., New York, 1997. Theory and analysis, A

Wiley-Interscience Publication.

[118] Y. YE. Interior Point Algorithms: Theory and Analysis. Wiley-Interscience series in

Discrete Mathematics and Optimization. John Wiley & Sons, New York, 1997.

[119] Y. Ye, O. Güler, R. A. Tapia, and Y. Zhang. A quadratically convergent O(
√

nL)–

iteration algorithm for linear programming. Mathematical Programming, 59:151–162,

1993.

[120] D. YUDIN and A. NEMIROVSKII. Informational complexity and efficient methods

for the solution of convex extremal problems. Èkon.i Mat. Metody, 12:357–369, 1976.

(In Russian). Translated in : Matekon 13(2) 3-25.

[121] Y. ZHANG. On extending some primal-dual interior-point algorithms from linear

programming to semidefinite programming. SIAM Journal on Optimization, 8:365–

386, 1998.

BIBLIOGRAPHY 143

[122] Y. ZHANG. User’s guide to LIPSOL: linear-programming interior point solvers V0.4.

Optimization Methods and Software, 11/12(1-4):385–396, 1999. Interior point methods.

	Introduction
	Overview and Outline of Thesis
	Historical Perspective

	Fundamentals of Linear Programming
	Basic Theorems of Linear Programming
	Central Path
	Algorithms

	Numerical Stability in Linear Programming
	Introduction
	Preliminaries

	Properties of the Normal Equation System
	Roundoff Error in the Right-Hand Side
	The Structure of AXZ-1AT and fl(AXZ-1AT)

	Non-Degenerate Case
	Estimating the Magnitudes of dx, dy, dz
	Error in fl(dy)
	Error in fl(dx)
	Error in fl(dz)
	The Maximal Step Length
	Numerical Example for The Non-Degenerate Case

	The Degenerate Case with rank(AB) < m
	The Semi-Affine Direction (3.52)
	The Centering Direction
	The Maximal Step Length
	Numerical Example

	The Degenerate Case with |B| > m and rank(AB) = m
	The Maximal Step Length
	Numerical Example

	Numerical Examples on NETLIB Problems
	Summary

	A Simple Stable LP Algorithm
	Introduction
	Background and Motivation

	Block Eliminations
	Linearization
	Reduction to the Normal Equations
	Roundoff Difficulties for NEQ; Examples
	Simple/Stable Reduction
	Condition Number Analysis
	The Stable Linearization

	Primal-Dual Algorithm
	Preconditioning Techniques
	Crossover Criteria
	Purify Step

	Numerical Tests
	Well Conditioned AB
	NETLIB Set - Ill-conditioned Problems
	No Backtracking

	Summary

	Fundamentals of Semidefinite Programming
	Introduction to Semidefinite Programming
	Central Path
	Algorithm
	Numerical Stability Issue in Semidefinite Programming

	Hard Instances in Semidefinite Programming
	Introduction
	Outlines

	Generating Hard 1.2SDP Instances
	Measures for Strict Complementarity Gaps
	Strict Complementarity Gap Measures gt and gs
	Measure

	Numerics
	Randomly Generated Instances
	Plots for Randomly Generated Instances
	Geometrical Measure vs Large Strict Complementarity Gaps
	SDPLIB Instances

	Summary

	Conclusions
	Contributions
	Future Research Directions

