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Numerical and theoretical aspects of solving optimal control problems for a contin-

uous flow (suppression of the Karman vortex street for a flow around a cylinder) and for a

discontinuous flow (changing the location of discontinuities for the shock-tube problem) are

considered.

The minimization algorithms require the gradient (or a subgradient) for the smooth

(respectively non smooth) cost functional. The numerical value of the gradient (respectively

a subgradient) is obtained using the adjoint method.

The optimal solutions are verified using their physical interpretation. A very convincing

argument for the validity of the numerical optimal solutions is obtained comparing the

values corresponding to observed physical phenomena to the above-mentioned numerical

optimal controls.

Sensitivity analysis of a discontinuous flow, namely for the shock-tube problem of gas

dynamics, was also studied. Better results are obtained compared to the available literature,

due to the use of adaptive mesh refinement.



THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

OPTIMAL CONTROL OF CONTINUOUS AND DISCONTINUOUS FLOW

By

CRISTIAN A. HOMESCU

A dissertation submitted to the
Department of Mathematics
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Degree Awarded:
Summer Semester, 2002



The members of the Committee approve the dissertation of CRISTIAN A. HOMESCU

defended on July 15, 2002.

I.M. Navon
Professor Directing Thesis

R. Pfeffer
Outside Committee Member

M.Y. Hussaini
Committee Member

G. Erlebacher
Committee Member

S. Blumsack
Committee Member

Approved:

DeWitt Sumners, Chair
Department of Mathematics



To my family: my mother, my father and my sister. . .

iii



ACKNOWLEDGEMENTS

I would like to express my profound gratitude to Prof I.M. Navon, who directed this
research. First by choosing a topic which proved to be very interesting and challenging as
well as applicable in many domains, then by constant encouragements and advice, Prof.
Navon was a perfect mentor. His expertise in the field proved to be extremely valuable for
the completion of my research.

I am also very grateful to Prof. M.Y. Hussaini for his many insightful comments.
Prof. Hussaini encouraged me constantly to look beyond the mathematical results and
understand the physical phenomena corresponding to these results.

I would like to thank Prof. G. Erlebacher for finding the time to help me understand
many numerical and flow visualization subtleties.

I would like to thank also Prof. S. Blumsack and Prof. R. Pfeffer for being members of
my PH.D committee. It is an honor to present my research in front of such accomplished
scientists.

The support of the Department of Mathematics and of the School of Computational
Science and Information Technology at Florida State University is gratefully acknowledged.

Finally I would like to thank all my friends here in Tallahassee, too many to enumerate,
who made my stay at F.S.U. a very enjoyable experience.

iv



TABLE OF CONTENTS

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Optimal control for flow past a circular cylinder . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Sensitivities for a flow with discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Optimal control of the 1-D Riemann problem of gas dynamics . . . . . . . . . . . 5

2. THEORETICAL FRAMEWORK FOR OPTIMAL CONTROL AND
SENSITIVITY ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 General characteristics of an optimal control problem . . . . . . . . . . . . . . . . . . 8
2.2 The adjoint approach for solving an optimal control problem . . . . . . . . . . . . 9
2.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. NUMERICAL IMPLEMENTATION OF THE
ADJOINT METHOD FOR COMPUTING THE
GRADIENT OF THE COST FUNCTIONAL . . . . . . . . . . . . . . . . . . . . . 15

3.1 The general expression of the cost functional . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Numerical gradient of the cost functional using the adjoint method . . . . . . . 17
3.3 Coding the adjoint and the tangent linear method . . . . . . . . . . . . . . . . . . . . 20
3.4 Accuracy of the gradient for the continuous cost functional . . . . . . . . . . . . . . 20
3.5 Accuracy of the gradient of the non smooth cost functional . . . . . . . . . . . . . . 21
3.6 Checkpointing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Automatic differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4. OPTIMIZATION ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Non differentiable minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.1 The subgradient methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 The bundle methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.3 The hybrid algorithm (PVAR) for nonsmooth minimization . . . . . . . . 27

4.2 Differentiable optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.1 The Q-N algorithm for unconstrained minimization . . . . . . . . . . . . . . . 28
4.2.2 The L-BFGS unconstrained optimization algorithm . . . . . . . . . . . . . . . 29
4.2.3 Sequential Quadratic Programming SQP for constrained optimization . 30

v



5. REGULARIZATION OF ILL-POSED PROBLEMS . . . . . . . . . . . . . . . . 34

5.1 Tikhonov regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Singular value decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Hybrid methods: projection plus regularization . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Parameter selection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6. DESCRIPTION OF THE PHYSICAL PHENOMENA FOR THE
FLOW AROUND A CYLINDER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 The laminar state of flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 The transition states of flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 Fully turbulent state of flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4 Evolution of the fluid-dynamic section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.5 Additional considerations for the flow corresponding to the Reynolds num-

ber in the range 0 < Re < 1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7. OPTIMAL CONTROL OF A FLOW AROUND A ROTATING
CYLINDER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1 The governing equations of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Space and time discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.3 Formulation of the optimal control problem . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.4 Existence of the optimal solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.5 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.6 Overview of numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.7 Suppression of Karman vortex shedding in the constant rotation case . . . . . . 56
7.8 The time histories of the drag coefficient in the constant rotation case . . . . . 57
7.9 Suppression of Karman vortex shedding for the time harmonic rotary

oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.10 The time histories of the drag coefficient for the time harmonic rotary

oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.11 Description of the physical phenomena corresponding to the computational

results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8. DESCRIPTION OF THE PHYSICAL PHENOMENA FOR THE
SHOCK-TUBE PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9. SENSITIVITIES FOR A FLOW WITH DISCONTINUITIES . . . . . . . 81

9.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.2 Tangent linear system approach for the sensitivity computation . . . . . . . . . . 82
9.3 Linearization of the Euler equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.4 L2 estimates for the solution of the linearized Euler equations . . . . . . . . . . . . 84
9.5 Numerical model using Adaptive Mesh Refinement . . . . . . . . . . . . . . . . . . . . 85
9.6 Numerical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

vi



10. OPTIMAL CONTROL OF FLOW WITH DISCONTINUITIES . . . . . 95

10.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.2 Description of the numerical models: AVM and HRM . . . . . . . . . . . . . . . . 97

10.2.1 The numerical model with artificial viscosity AVM . . . . . . . . . . . . . . . . 97
10.2.2 Numerical high-resolution model HRM . . . . . . . . . . . . . . . . . . . . . . . . . 99

10.3 Existence of the solution of the optimal control problem . . . . . . . . . . . . . . . . 100
10.4 Detection of discontinuities in data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
10.5 Overview of numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.6 Numerical results for the high-resolution model HRM . . . . . . . . . . . . . . . . . 106
10.7 Numerical results for the artificial viscosity model AVM . . . . . . . . . . . . . . . 106
10.8 Additional numerical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

11. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

BIOGRAPHICAL SKETCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

vii



LIST OF TABLES

7.1 The mean value of the drag coefficient C̄D for various Reynolds numbers . . . . 63

10.1 Optimization results for the high-resolution model . . . . . . . . . . . . . . . . . . . . . 109

10.2 Optimization results for the artificial viscosity model . . . . . . . . . . . . . . . . . . . 110

viii



LIST OF FIGURES

3.1 The accuracy check: the gradient of the cost functional vs. log (η) for the
flow around the cylinder in the constant rotation case ([a]) and, respectively,
time-dependent rotation case ([b]); a subgradient of the cost functional vs.
log (η) for the shock-tube flow at time=0.24 for AVM model ([c]) and,
respectively, HRM model ([d]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.1 Staggered grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2 Domain with boundary cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.3 Comparison between our results (�) and the results obtained by Kang et
al.(1999): the speed ratio α vs. the Reynolds number Re . . . . . . . . . . . . . . . . . 63

7.4 The optimal speed ratio α vs. the Reynolds number Re . . . . . . . . . . . . . . . . . . 64

7.5 Regularization parameter vs. Reynolds number Re . . . . . . . . . . . . . . . . . . . . . 64

7.6 Streaklines for the ”desired” flow at Re = 2 and speed ratio α = 2.0 . . . . . . . . 65

7.7 Streaklines for uncontrolled flow at Re = 100 and speed ratio α = 0.5 . . . . . . . 66

7.8 Streaklines for controlled flow at Re = 100 with optimal speed ratio α = 1.84 . 67

7.9 Streaklines for controlled flow at Re = 400 with optimal speed ratio α = 2.18 . 68

7.10 Streaklines for controlled flow at Re = 1000 with optimal speed ratio α = 2.35 69

7.11 Streaklines for the uncontrolled flow at Re = 100 and speed ratio α(t) =
2.5 sin (1.0πt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.12 Streaklines for the controlled flow at Re = 100 with optimal parameters
A = 6.5 and F = 1.13; α(t) = A sin (2πFt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.13 Streaklines for the controlled flow at Re = 1000 with optimal parameters
A = 6.0 and F = 0.86; α(t) = A sin (2πFt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.14 The variation of the drag for the constant rotation in the controlled (dotted
line) and uncontrolled case (continuous line) for [a] Re = 100 and [b]
Re = 1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.15 The variation of the drag for the time-dependent speed ratio α(t) in the
controlled (dotted line) and uncontrolled case (continuous line) for [a] Re =
100 and [b] Re = 1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.1 The shock-tube problem at time t=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.2 The solution shock-tube problem at time t = T . . . . . . . . . . . . . . . . . . . . . . . . 78

ix



8.3 Evolution of the flow for the shock-tube problem . . . . . . . . . . . . . . . . . . . . . . 79

8.4 The trajectory of the fluid particles for the shock-tube problem . . . . . . . . . . . 79

8.5 Exact solution of the shock-tube problem at time t = 0.24: [a] pressure, [b]
density and [c] velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9.1 The process of adaptive mesh refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.2 Exact solution of the shock-tube problem: numerical and exact values for [a]
pressure, [b] density and [c] velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9.3 Sensitivity with respect to the high initial pressure: numerical and exact
values for pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.4 Sensitivity with respect to the high initial pressure: numerical and exact
values for velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.5 Sensitivity with respect to the high initial pressure: numerical and exact
values for density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

10.1 Pressure, velocity and density: initial guess (�) and exact observation (red
line) at time=0.24 for the HRM model: first set of observations ([a], [c], [e])
and the second set of observations ([b], [d], [f ]) . . . . . . . . . . . . . . . . . . . . . . . 111

10.2 Pressure, velocity and density: initial guess (�) and exact observation (red
line) at time=0.24 for the AVM model: first set of observations ([a], [c], [e])
and the second set of observations ([b], [d], [f ]) . . . . . . . . . . . . . . . . . . . . . . . 112

10.3 Pressure, velocity and density: initial guess (�) and exact observation (red
line) at time=0.24 for the third set of observations: for the HRM model ([a],
[c], [e]) and for the AVM model ([b], [d], [f ]) . . . . . . . . . . . . . . . . . . . . . . . . 113

10.4 Evolution of the logarithm of cost functional vs. number of iterations during
non smooth minimization PVAR for the HRM model at time=0.24: first set
of observations without ([a]) or with ([b]) distributed observations; second
set of observations without ([c]) or with ([d]) distributed observations; third
set of observations [e] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

10.5 Evolution of the logarithm of cost functional vs. number of minimization iter-
ations with the AVM model at time=0.24: non smooth optimization PVAR
and first ([a]) or second ([c]) set of observations; L-BFGS optimization with
weight=0.0 for the first ([b]) or second ([d]) set of observations; (L-BFGS)
scaled optimization for the final set of observations [e] . . . . . . . . . . . . . . . . . . 115

10.6 Pressure, density and velocity: observations (red line) and numerical solution
(�) of non smooth optimization PVAR for the HRM model at time=0.24:
first set of observations ([a], [c], [e]) and second set of observations ([b], [d]
and [f ]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

10.7 Pressure ([a]), density ([b]) and velocity ([c]): first set of observations (red
line) and numerical solution (�) of L-BFGS optimization (with weight=0.0)
for the AVM model at time=0.24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

x



10.8 Discontinuity detection for the AVM model: the selected points (red) for
pressure ([a]), density ([b]) and velocity ([c]) . . . . . . . . . . . . . . . . . . . . . . . . . 118

10.9 Pressure ([a]), density ([b]) and velocity ([c]): Numerical (�) and analytical
(red line) solution of high-resolution model for the shock-tube problem at
time=0.30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

10.10 Pressure ([a]), density ([b]) and velocity ([c]): observations (red line) and
numerical solution(�) of PVAR for the HRM model at time=0.24 for the
final set of observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

10.11 Evolution of numerical (�) and analytical (red line) entropy (shown at final
time t = 0.24 for the HRM model and for the first set of observations)
during non smooth minimization PVAR: [a] iteration=0, [b] iteration=5,
[c] iteration=10, [d] iteration=15, [e] iteration=20, [f ] final iteration . . . . . . 121

10.12 Evolution of numerical (�) and analytical (red line) entropy (shown at final
time t = 0.24 for the HRM model and for the second set of observations)
during non smooth minimization PVAR: [a] iteration=0, [b] iteration=10,
[c] iteration=20, [d] iteration=35, [e] iteration=45, [f ] final iteration . . . . . . 122

10.13 Pressure, density and velocity: numerical (�) and analytical (red line) solution
for the shock-tube problem at time=0.24 for HRM model ([a], [c] and [e]),
respectively for the AVM model ([b], [d] and [f ]) . . . . . . . . . . . . . . . . . . . . . . 123

10.14 Pressure, density and velocity: numerical solution (�) after non smooth
optimization PVAR and first set of observations (red line) for the shock-tube
problem at time=0.24 for HRM model ([a], [c] and [e]), respectively for the
AVM model ([b], [d] and [f ]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

10.15 Pressure, density and velocity: numerical solution (�) after non smooth
optimization PVAR and second set of observations (red line) for the shock-
tube problem at time=0.24 for HRM model ([a], [c] and [e]), respectively
for the AVM model ([b], [d] and [f ]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

10.16 Pressure, density and velocity: numerical solution (�) after L-BFGS opti-
mization and second set of observations (red line) for the shock-tube problem
at time=0.24 for HRM model ([a], [c] and [e]), respectively for the AVM
model ([b], [d] and [f ]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10.17 Pressure, density and velocity: numerical solution after L-BFGS optimiza-
tion (�) and first set of observations (red line) for the shock-tube problem at
time=0.24 for the AVM model for weight=0.0 ([a], [c] and [e]), respectively
for no weight considered ([b], [d] and [f ]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

10.18 Pressure: numerical solution (�) and exact observation (red line) at time=0.24
for the third set of observations and for the HRM model during PVAR
minimization: [a] iteration=0; [b] iteration=50; [c] iteration=100; [d] itera-
tion=150; [e] iteration=200; [f ] iteration=268 . . . . . . . . . . . . . . . . . . . . . . . . . 128

xi



10.19 Density: numerical solution (�) and exact observation (red line) at time=0.24
for the third set of observations and for the HRM model during PVAR
minimization: [a] iteration=0; [b] iteration=50; [c] iteration=100; [d] itera-
tion=150; [e] iteration=200; [f ] iteration=268 . . . . . . . . . . . . . . . . . . . . . . . . 129

10.20 Velocity: numerical solution (�) and exact observation (red line) at time=0.24
for the third set of observations and for the HRM model during PVAR
minimization: [a] iteration=0; [b] iteration=50; [c] iteration=100; [d] itera-
tion=150; [e] iteration=200; [f ] iteration=268 . . . . . . . . . . . . . . . . . . . . . . . . 130

xii



ABSTRACT

Numerical and theoretical aspects of solving optimal control problems for a continuous

flow (suppression of the Karman vortex street for a flow around a cylinder) and for a

discontinuous flow (changing the location of discontinuities for the shock-tube problem) are

considered.

The minimization algorithms require the gradient (or a subgradient) for the smooth

(respectively non smooth) cost functional. The numerical value of the gradient (respectively

a subgradient) is obtained using the adjoint method.

The optimal solutions are verified using their physical interpretation. A very convincing

argument for the validity of the numerical optimal solutions is obtained comparing the

values corresponding to observed physical phenomena to the above-mentioned numerical

optimal controls.

Sensitivity analysis of a discontinuous flow, namely for the shock-tube problem of gas

dynamics, was also studied. Better results are obtained compared to the available literature,

due to the use of adaptive mesh refinement.
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CHAPTER 1

INTRODUCTION

Real-world applications arising from very different fields: fluid dynamics (Sritharan
[179], Gunzburger [91]), engineering (Siouris [176]), mechanics (Akulenko [3]), credit risk
(Cossin [40]), management science and economics (Sethi [173], Seierstad [172]), thermo-
dynamics (Berry [15]), chemistry (Edgar [50]), biomedicine (Swan [181]), electric power
systems (Christensen [33]), distributed nuclear reactors (Christensen [34]), hydrosystems
(Mays [142]) can be formulated as optimal control problems following a general description:

Influence the behavior of the system
so as to achieve a desired goal.

This is the equivalent to controlling the system by selecting a certain set of the pa-
rameters that determine its behavior. The optimal parameters are obtained by performing
the minimization of a given cost functional measuring the discrepancy between model and
observations in a given time interval.

The characteristics of the cost functional determine which optimization method is better
suited for solving the minimization problem. For the subset of differentiable cost functions
smooth optimization methods are more efficient, while non smooth optimization algorithms
are more appropriate for the subset of non differentiable cost functionals. The object of
this dissertation is to provide both a theoretical analysis as well as a numerical solution for
optimal control problems representative of each category.

An optimal control problem for a viscous flow past a circular cylinder is chosen for
the case of a differentiable cost functional. Optimal control for the shock-tube problem
is considered for the case of a non smooth cost functional. Sensitivity analysis for the
discontinuous flow case is also studied.

1.1 Optimal control for flow past a circular cylinder

The viscous flow past a circular cylinder has been extensively studied due to its simple
geometry and its representative behavior of general bluff body wakes. A deep understanding
of the control strategies necessary to control flows past rotating bluff bodies could be applied
in areas like drag reduction, lift enhancement, noise and vibration control, aerodynamics
etc.

A very important characteristic of this flow is the Karman vortex shedding (which has
been extensively studied for the last 90 years, starting with the pioneering work of Von
Karman [119]).

Research on the problem of a flow past a cylindrical rotating body has been the subject
of many experimental (Badr et al. [8], [9], Tokumaru and Dimotakis [188]), and numerical
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investigations (Chen et al. [28], Baek and Sung [10], Dennis et al. [46], Juarez et al. [117],
Chou [31]). However most of these results are primarily focused on the study of formation
and development of vortices in a cylinder wake and they do not attempt to suppress vortex
shedding.

Examples of applying active control of vortex shedding in experiments are given by
Gad-el-Hak [60], [61] and Modi [144]. Modi’s experiments are related to the moving surface
boundary layer control for airfoils. The moving surfaces are provided by rotating cylinders
located at the leading edge and/or trailing edge as well as the top surface of an airfoil.
It has been shown that this mechanism of moving surfaces can prevent flow separation
by retarding the initial growth of the boundary layer, with important consequences for
lift enhancement and stall delay. The control parameter used was the speed ratio (which
represents the ratio of cylinder speed to the free stream speed). This speed ratio can
be either constant in time or time-dependent (e.g., if the airfoil is undergoing a rapid
maneuver). This type of result provided us with the motivation to consider flow control
for either a constant or time-dependent angular rotation of the cylinder.

Different approaches for the control of a flow around a cylinder have been successfully
employed in the last two decades. For example, Tang and Aubry [184] suppressed vortex
shedding by inserting two small vortex perturbations in the flow; Gillies [68] used neural
networks; Gunzburger and Lee [89] determined the amount of fluid injected or sucked
on rear of the cylinder from a feedback law depending on pressure measurements at
stations along the surface of the cylinder; Huang [106] suppressed vortex shedding by
feedback sound; Joslin et al. [116] showed that flow instabilities can be controlled by wave
cancellation; Kwon and Choi [123], Ozono [156] and You et al. [207] employed splitter plates
attached to the cylinder; Park et al. [157] used a pair of blowing/suction slots located on
the surface of the cylinder; Sakamoto and Haniu [167] introduced a smaller cylinder near
the main cylinder, with experiments conducted by changing the gap between the cylinders
and the angle along circumference from the front stagnation point of the main cylinder; the
flow is controlled via cylinder rotation (e.g., Tang et al. [183], Tao et al. [185], Warui and
Fujisawa [203], He et al. [98], or Tokumaru and Dimotakis [189]); Pentek and Kadtke [159]
implemented a chaos control scheme to capture and stabilize a concentrated vortex around
the cylinder, the control being actuated by uniformly rotating the cylinder and actively
changing the background flow velocity far from the body.

Due to the complexity and large dimensions of the control problem, suboptimal control
strategies have been considered and implemented. The concept of instantaneous control
(e.g., control at every time step of the underlying dynamical systems) was applied in Choi
et al. [30]. Another approach involves two stages:first the approximation of the equations
of the fluid flow using reduced order models and second an exact optimization for the
reduced system, the difference among various research efforts consisting in the choice of
the basis functions used for the reduced models. In the reduced basis approach one uses
as basis functions the terms which arise in series expansion of the solution with respect to
a parameter (e.g., Ito and Ravindran [112]). The proper orthogonal decomposition (POD)
approach is applied by Graham et al. [77], [78] and Afanasiev and Hinze [2] .

Optimal control methods (OCM) have been employed for flow control. Distributed
controls were used by Abergel and Temam [1], Gunzburger et al. [88], Hou et al. [105],
[104]; blowing and suction on the surface of the cylinder was studied by Berggren [14],
Bewley [17], Ghattas and Bark [63], Li et al. [131]; velocity tracking (boundary velocity
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controls) was employed by Gunzburger and Manservisi [90], Gunzburger et al. [87], Hou
and Ravindran [103], [102].

A key component of the process of flow control is the minimization of a cost functional
aiming at the optimization of some of the flow characteristics.

Abergel and Temam [1] minimized the turbulence for a flow respectively driven by
volume forces, a gradient of temperature and a gradient of pressure (the turbulence being
measured by a L2 norm of the curl of v (‖∇×v‖L2) or, alternatively, by studying the stress
at the boundary); Berggren [14] minimized the vorticity field. Bewley et al. [17] reduced
the turbulent kinetic energy and drag; Ghattas and Bark [63] used as objective function
the rate at which energy is dissipated in the fluid.

Our research presents the numerical solution to the problem of controlling vortex
shedding for a flow past a rotating cylinder using optimal control methods. It is shown that
the nature of the vortex shedding process is significantly altered by cylinder rotation. We
employ a global control approach (the entire body is subjected to prescribed motion), as
compared to a local control method (e.g., blowing/suction as reported by Li et al. [131]).

The mathematical formulation of the problem implies minimization of a cost functional.
Since all efficient local minimization algorithms require the computation of the gradient
of an objective functional (functional described in chapter 7) with respect to the control
parameters, part of this effort was dedicated to the gradient computation.

The adjoint method was employed to obtain the gradient of the discrete cost functional.
The adjoint was constructed directly from the source code of the original discrete nonlinear
model, circumventing difficulties which would appear if one were to first obtain the
continuous adjoint model and then discretize the adjoint equations (the differences between
the differentiate-then-discretize approach and the discretize-then-differentiate approach are
discussed by Gunzburger [86]).

The objective functional included a regularization term since preliminary numerical
results suggested ill-posedness of the optimization problem. We chose the regularization
term to be from the class of Tikhonov regularization (Tikhonov and Arsenin [187]). Another
important characteristic is the length of the ”control” window (the time window employed
for minimization). It was found that the length of this time window should be larger than
the vortex shedding period if the angular velocity (which serves as the control parameter)
is time-dependent. However, if the angular velocity is constant in time, the length of the
time window should only exceed a certain threshold value which can be smaller than the
vortex shedding period.

The results obtained show that vortex shedding is suppressed for the Reynolds number
in the range: 40 ≤ Re ≤ 1000. The regimes of flow change for different subsets of the range
considered. The flow characteristics are different for 40 ≤ Re ≤ 150, 150 ≤ Re ≤ 250 and
250 ≤ Re ≤ 1000 respectively. For the same values of optimal rotation rate employed to
achieve the elimination of the vortex shedding, the time histories of the drag coefficient
show that a significant reduction in the amplitude of its variation is obtained compared to
the case of the fixed cylinder.

As far as we know our research is the first apply numerical optimal control methods for
the flow control problem around a rotating cylinder. Our method converged for both cases
considered: constant rotation in time or time-dependent rotation.

Comparable results were obtained for constant rotation (Kang et al. [118], Chew et
al. [29], Badr et al. [9] and Chou [32]) and, respectively, for the time-dependent rotation
(Tokumaru and Dimotakis [188], Baek and Sung [10] and He et al. [98]). The main
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difference between our approach and their research is the following: they obtained the
values of the rotation parameters for which the flow has the required characteristics by
experiments or active control applied to numerical simulations.

1.2 Sensitivities for a flow with discontinuities

Sensitivities (for both continuous and discontinuous flows) are derivatives of the
variables or cost functionals that describe the model with respect to parameters that
determine the behavior of the model (e.g., initial conditions, boundary conditions, shape
parameters). They provide information about what, where and when these parameters most
influence the model output. Employed in an optimization setting they help determine the
gradient of the objective functional used in the optimization process.

The sensitivity analysis (SA) means very different things to different people (compare
the reviews of Turanyi [191], Janssen et al. [115], Helton [99] and Goldsmith [72]) but
all its applications share a common goal: to investigate how a given computational model
responds to variations in its inputs.

We studied SA for a fluid dynamics problem (characterized by several types of
discontinuities). Besides fluid dynamics, SA proved to be very useful in many other
scientific fields. To exemplify the extent of SA applications we mention a very recent
SA handbook by Satelli et al. [170] which describes the principles of sensitivity analysis in
various settings and presents many SA methodologies for ecology, chemistry, mechanics,
economics and policy-making, to mention but a few.

The vast majority of SA applications were obtained for problems involving continuous
functions. Research was also performed in the presence of discontinuities but many
questions in this area remain yet unanswered. Sensitivity analysis in the case of a model
with discontinuities was applied in fluid dynamics, aerodynamics, chemistry, financial
analysis, meteorology or environmental studies, and the list goes on.

Discontinuous SA studies include shape optimization for fluids (Burgreen and Baysal
[22], Newman et al. [149], Taylor et al. [186], Mohammadi and Pironneau [145]), noise
analysis and optimization of electronic circuits (Nguyen et al. [150]), control of contaminant
releases in rivers (Piasecki and Katopodes [160]), control of water movement through
systems of irrigation canals (Sanders and Katopodes [168]), shallow water wave control
(Sanders and Katopodes [169]), aeroelastic analysis (Giunta and Sobiesczanski-Sobieski
[69]), shock sensitivity evaluations of dynamic financial strategies (Gourieroux and Jasiak
[75]) and meteorological applications (Zhang et al. [212]).

Theoretical and computational aspects of sensitivity calculation in the presence of
discontinuities were also presented by Ulbrich [193], Cliff et al. [36], Godlewski and Raviart
[71], Bouchut and James [21] and DiCesare and Pironneau [47].

Numerical sensitivities were computed by Narducci et al. [147] for optimization of duct
flow with a shock using quasi-one-dimensional Euler equations. In their research they em-
ployed continuous (differentiate-then-discretize) and discrete (discretize-then-differentiate)
methods to compute the design sensitivities. The continuous method requires analytical
expressions for the derivatives of the velocity and shock location with respect to the
design variables derived from the governing equations and the shock jump conditions
(the difference between direct and adjoint method in this case is that the adjoint method
avoids computing these derivatives directly). For the discrete method a coordinate-straining
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approach with a shock penalty was employed (to avoid difficulties caused by the presence
of non smooth functions).

For the same problem as Narducci et al. (quasi-one dimensional duct flow) Cliff et al.
[36] introduced the shock location as an explicit variable which allowed one to fit the shock
and yielded a problem with sufficiently smoothed functions.

Cliff et al. [37] carried out sensitivity calculations for the 1-D Euler system. No
numerical calculations were performed however.

Our research is focused on the numerical computation of flow sensitivities with respect
to an initial flow parameter for the shock-tube problem (1-D Riemann problem for the
Euler equations) for which the exact values of the flow sensitivities are known.

We chose the discrete (discretize-then-differentiate) approach which in our opinion is
more suitable than the continuous approach for flows with discontinuities. Our numerical
results were compared to the results presented by Gunzburger [86] and they proved to solve
better the regions with discontinuities due to the use of adaptive mesh refinement.

1.3 Optimal control of the 1-D Riemann problem of gas
dynamics

Recently optimal control involving non smooth functions has attracted the attention of
an increasing number of researchers due to availability of new methods of non differentiable
optimization employing subgradients following the seminal work of Lemarechal [125] (e.g.,
Lemarechal [126], Bonnans et al. [20], Schramm and Zowe [171], Luksan and Vlcek [136],
Makela and Neittaanmaki [138] to cite but a few).

Non smooth cost functionals were employed in variational data assimilation in at-
mospheric sciences (Zhang et al. [212]), for inverse design problems involving transonic
diffusers : 1-D (Narducci et al. [147]) or 2-D (Dadone et al. [44]), in acoustics (Habbal
[93]), for the research of a convex hull with bounded curvature of a given set of points
(Hassold [97]), in mechanical structures (minimizing the maximal stress over an arch
structure Habbal [92]), for chromatography (James and Sepulveda [113]), capital asset
management (Leonard and Long [127]), in the design of a duct flow with a shock (Frank
and Shubin [58], Cliff et al. [36], Iollo et al. [111]), for airfoil design (Jameson [114],
Matsuzawa and Hafez [140], [141], Iollo and Salas [110] and Giles and Pierce [66]).

The presence of discontinuities creates serious theoretical and numerical difficulties.
Good shock-capturing schemes with low continuity properties often cannot be combined
successfully with efficient optimization methods requiring smooth functions (e.g., gradient-
based methods). To alleviate this problem one can use methods that are relatively
insensitive to the non smoothness of the cost function. Stochastic optimization methods
were applied for the design of a minimum time changeover operation for a pressure vessel
avoiding the formation of explosive mixtures (Barton et al. [12]) or for aerodynamic shape
optimization (Huyse and Lewis [108]). Genetic algorithms (Oyama et al. [155]) were also
used for wing optimization. For these non-gradient-based methods the drawback is the very
large number of analyses required (i.e., large memory demands) as the number of variables
increases.

In the case of gradient-based methods different remedies to alleviate the influence of
the discontinuities were employed. For variables continuous across the shock one can avoid
dealing with shocks by considering cost functions based on the above variables (e.g., the
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surface flux for inverse nozzle design as used by Matsuzawa and Hafez [140]). For most
cases the shocks were smoothed using numerical dissipation. It was shown that sometimes
smoothing is equivalent to modifying the cost function (Matsuzawa and Hafez [140]). An
alternative smoothing procedure has been introduced by Valorani and Dadone [197], namely
a filtering process which was obtained by modifying a set of sensitivity equations by adding
artificial dissipative terms. The optimization search was performed on the original non
smooth objective function computed with an accurate (non smoothed) flow analysis but
with smoothed flow sensitivities.

If the shocks are weak at design conditions (e.g., transonic flows) acceptable results
can be obtained by addition of artificial dissipation. However, accurate treatment of the
shock waves is essential in other cases (e.g., supersonic flows). The alternative approach to
shock smearing is shock fitting which involves careful integration of the objective function
through the shock wave (Narducci et al. [147]). Perturbation of a discontinuous function
produces delta functions and formulations based on variations of smooth functions have to
be modified (Iollo et al. [111]). Another approach was to introduce the shock location as an
explicit control variable (Cliff et al. [36]). A coordinate straining method was also employed
by Narducci et al. [147]. It consists of a coordinate transformation aimed at aligning the
calculated shock with the target, followed by addition of a penalty term proportional to
the square of distance between the shocks.

Results for the optimal control of the Euler equations were obtained, among others,
by Anderson and Venkatakrishnan [6] (in 2-D), Arian and Salas [7] (in 2-D), Dadone and
Grossman [43], [42] (2-D and 3-D), Cliff et al. [35], [36], [37], [38]) (1-D and 2-D).

Theoretical contributions (combined with practical applications in certain cases) for
the adjoint method were provided by Giles and Pierce [64], [65], [66], [67] (for Euler
equations) and Ulbrich [192], [193], [195], [194] (in the setting of optimal control for scalar
conservation laws). A generalized adjoint for physical processes in atmospheric sciences
with parameterized discontinuities was studied by Xu [206]. Numerical aspects of the
adjoint model for discontinuous nonlinear atmospheric models were discussed by Zhang et
al. [211].

Problems with discontinuities in an optimal control setting or in sensitivity-based
control were studied by Mohammadi and Pironneau [145], Gunzburger [86], [85], Tolsma
and Barton [190] and Zhang et al. [212].

Practical aspects of control of problems with shocks were presented by Iollo and Salas
[109], Birkemeyer et al. [18], Stanewsky [180], Jameson [114], Bein et al. [13] or Wang et
al. [202].

Our research consists of theoretical and numerical results for an optimal control problem
of the unsteady 1-D Riemann problem of Euler equations (shock-tube). The numerical
solutions of the optimal control problem were obtained using both non smooth and smooth
optimization algorithms.

This specific problem was chosen due to the fact that it has an analytical solution
which is characterized by the presence of several types of discontinuities: shocks, contact
discontinuities and wave rarefaction regions. This Riemann problem may be briefly
described in the following way: a gas tube is divided by a membrane into two regions
with different values for pressure and density fields and a zero velocity field. After the
membrane is suddenly removed the gas moves freely.

Our optimal control problem has very interesting aerodynamic applications, consisting
in moving the regions of discontinuities to desired locations by matching the desired flow
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to the numerical flow. The control parameters consist of the initial values of pressure and
density to the left and to the right of the membrane. We consider the initial velocity to
the left and to the right of the membrane to be zero. The cost functional is the weighted
L2 difference between the observations and the numerical values for density, pressure and
velocity fields. The observations are computed from the analytical solution of the Riemann
problem in two ways: either at the end of the assimilation window or distributed in time
within the assimilation window.

Two numerical models were chosen, representative of possible approaches for solving
a flow with discontinuities: a high-resolution model (HRM) and a model with artificial
viscosity (AVM).

We employed a non smooth optimization algorithm (PVAR), developed by Luksan
and Vlcek [136], [137], [198]. We also used a smooth optimization algorithm (L-BFGS),
described in Nocedal [151] and Liu and Nocedal [134]). Both methods require the
computation of a subgradient (respectively the gradient) of the cost functional. This
subgradient (respectively gradient) is obtained from the adjoint model derived from the
original numerical model. Accuracy tests for both the gradient and subgradient obtained
via the adjoint method are presented.

We considered two time horizons which are representative for the time evolution of the
flow. Their length was chosen for two main reasons. First we wanted to ensure that all
desired characteristics of the discontinuities are still present in the flow at the end of each
time window. Second, we selected the larger time window such that if we were to slightly
increase it some of the discontinuity characteristics will disappear from the spatial domain
considered.

We obtained excellent results using non smooth optimization for both models and for
both time horizons. The numerical flow corresponding to the optimized initial conditions
matches closely the observations and the location of the discontinuities was changed to
the desired location. The figures describing the evolution of entropy at various stages of
the minimization process show that the numerical solution satisfies the entropy condition
which is a requirement for a physical solution of the shock-tube problem.

The L-BFGS algorithm did not converge in many cases. Even for the cases where con-
vergence was obtained one may notice a large difference between the L-BFGS optimization
results and the desired values of the control parameters.

For the model with artificial viscosity a discontinuity detection method was used to
eliminate the points where the shock is located from the computation of the cost functional
and its gradient (or subgradient). As a result, the optimized results were obtained at the
same level of accuracy but in fewer minimization iterations.
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CHAPTER 2

THEORETICAL FRAMEWORK FOR OPTIMAL

CONTROL AND SENSITIVITY ANALYSIS

2.1 General characteristics of an optimal control problem

Every problem of optimal control is characterized by several main features.
It has an objective, i.e. a reason why one wants to control the system. There are

numerous objectives of interest in applications, e.g., drag minimization, lift enhancement,
preventing transition to turbulence, reducing noise, personnel task scheduling, shape
optimization, control of heat transfer, operation of a cascade of power stations, mineral
resource extraction in an open economy, stock selections. Mathematically, such an objective
is expressed as a cost functional.

Constraints must be imposed on candidate optimizers. The constraints are derived
from the given law according to which the system evolves. They are expressed in terms of
a specific set of equations. One may mention here partial differential equations PDE
(e.g., Navier-Stokes or Euler equations for incompressible or compressible flows, heat
equation, shallow-water equations, Black-Scholes equations for financial mathematics),
ordinary differential equations ODE (chemical reactions, spreading of diseases), stochastic
differential equations SDE (noisy evolution of stock values or porous media flow) and
differential-algebraic equations DAE (for dynamical models).

The nature of the state equations and of the boundary conditions is determined by
the mathematical model adopted. For this model one can identify a group of dependent
variables called state variables (e.g., velocity, pressure, density, temperature, energy).

Finally one has control parameters which determine the behavior of the system. For
the fluid applications one can have boundary value controls (injection or suction, heating or
cooling), distributed controls (heat sources or magnetic fields) or shape controls (exit area
for a nozzle, movable walls, leading or trailing edge flaps).

The optimal control problem (OCP) is then stated as:
Find controls g and states Φ such that the cost functional J (Φ, g) is minimized
subject to the flow equations FLOW(Φ, g) = 0 (OCP)

The set of admissible controls is the set of all controls g allowed by the physical limitation
of the problem. The optimal control g∗ which solves (OCP) is selected from the set of
admissible controls denoted by Uad.
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2.2 The adjoint approach for solving an optimal control
problem

We follow the adjoint approach as introduced by Talagrand and Courtier ([182]).
The following two basic properties of Hilbert spaces form the basis of this approach.
If B is a Hilbert space with inner product denoted by (, ) and v→ F(v) a differentiable

scalar function defined on B, then the differential of F can be expressed as

δF = (∇vF, δv) (2.1)

where ∇vF is the “gradient” of F with respect to v.
Let C be another Hilbert space with inner product denoted by <,> and L a continuous

linear operator from B to C. There exists a unique continuous linear operator L∗, called
the adjoint operator of L, from C to B such that

(v,Lz) =< L∗v, z > (2.2)

for any v ∈ C and any z ∈ B.
Consider a differentiable function z → v = G(z) of B into C. The function F is a

composite function of z (F(v) = F[G(z]). Then the differential of v is equal to

δv = G
′
δz (2.3)

where G
′
is the linear operator obtained by differentiation of G.

Introducing the adjoint G
′∗ of G′

and using (2.3) one obtains

δF = (∇vF,G
′
δz) =< G

′∗∇vF, δz > (2.4)

This shows that the gradient ∇uF of F with respect to z is equal to

∇zF = G
′∗∇vF (2.5)

The formula (2.5) is at the basis of the use of adjoint equations in control theory.
Assuming that the operation z → v = G(z) denotes the integration of the numerical
model, the formula (2.5) provides a very efficient way for the numerical computation of the
gradient ∇zF.

We present now details of the numerical computation of the gradient based on the above
discussion. Let us assume that the model evolution equation is written as

dU(X,Y, t)
dt

= F(U,Y, t) (2.6)

U(t0) = U0

where X = (X1, . . . ,Xm) ⊂ R
m is the position vector, U(X) = [U1(X), . . . , UK(X)] is the

state vector which belongs to a Hilbert space whose inner product is denoted by <,> and
Y(X) = [Y1(X), . . . , YP (X)] the vector of system parameters.

We consider the cost functional

J =
∫ tW

t0

H[U,Uobs, t] dt (2.7)

where [t0, tW ] is the length of the assimilation window and H is a functional depending on
the state vector U and the observations Uobs available at time t.
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For a given initial condition U0 and a given vector of system parameters Y there exists
a solution U(t) of (2.6). The first order variation δJ is equal to

δJ =
∫ tW

t0

< ∇UH(t), δU(t) > dt (2.8)

where ∇UH(t) is the gradient of H with respect to U taken at point (U(t), t) and δU(t)
is the first-order variation of U(t) resulting from the perturbations δU0 and δY of U0 and
respectively Y.

The variation δU(t) is obtained from δU0 and δY by integrating the tangent linear
model relative to the solution U

d[δU(t)]
dt

= F
′
(t)δU (2.9)

where F
′
is the operator obtained by differentiating F with respect to U, taken at point

U(t). The solution of the linear equation (2.9) can be written as

δU(t) = R(t, t0)δU0 (2.10)

where R(t, t0) is a linear operator called the resolvent between times t and t0.
Equation (2.8) can now be rewritten as

δJ =
∫ tW

t0

< ∇UH(t),R(t, t0)δU0 > dt

=
∫ tW

t0

< R∗(t, t0)∇UH(t), δU0 > dt

=
〈∫ tW

t0

R∗(t, t0)∇UH(t) dt, δU0

〉
(2.11)

where R∗(t, t0) is the adjoint of R(t, t0).
We can see from (2.8) and (2.11) that the gradient of J with respect to U0 is

∇U0J =
∫ tW

t0

R∗(t, t0)∇UH(t) dt (2.12)

We introduce the adjoint equation of (2.9), using the adjoint vector δ
′
U(t) corresponding

to δU(t):

−d[δ
′
U(t)]
dt

= F
′∗(t)δ

′
U (2.13)

where F
′∗ is the adjoint of F′

.
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We denote by S(t
′
, t) its resolvent between times t and t

′
:

δ
′
U(t) = S(t

′
, t)δ

′
U(t

′
) (2.14)

For any two solutions δU(t) and δ
′
U(t) of the direct and adjoint equations (2.9) and (2.13)

respectively, the inner product < δU(t), δ
′
U(t) > is constant in time since

d

dt
< δU(t), δ

′
U(t) >=

〈
dδU(t)
dt

, δ
′
U(t)

〉
+
〈
δU(t),

dδ
′
U(t)
dt

〉
=< F

′
(t)δU(t), δ

′
U(t) > − < δU(t),F

′∗δ
′
U(t) >= 0

Let Z and Z
′
be any two elements in the Hilbert space considered. The solution of the

direct equation (2.9) defined by the initial condition Z at time t assumes at time t
′
the

value R(t
′
, t)Z while the solution of the adjoint equation (2.13) defined by the condition

Z
′
at time t

′
assumes at time t the value S(t, t

′
)Z

′
. Therefore we have

< R(t
′
, t)Z,Z

′
>=< Z,S(t, t

′
)Z

′
> (2.15)

The relation (2.15) is valid for any elements Z and Z
′
, which shows that S(t, t

′
)is the

adjoint of R(t
′
, t). In other words the resolvent of the adjoint equation between t

′
and t is

the adjoint of the resolvent of the direct equation between t and t
′
.

The expression (2.12) then becomes

∇U0J =
∫ tW

t0

S(t0, t)∇UH(t) dt (2.16)

We consider next the “inhomogeneous adjoint equation”:

−dδ
′
U

dt
= F

′∗(t)δ
′
U+∇UH(t) (2.17)

with initial condition:
δ
′
U(tW ) = 0 (2.18)

The solution of (2.17)-(2.18) is

δ
′
U(t) =

∫ tW

t
S(t, τ)∇UH(τ) dτ (2.19)

Comparing (2.16) and (2.19) we can see that

∇U0J = δ
′
U(t0) (2.20)

In summary, the gradient ∇U0J can be obtained, for given U0 and Y, by performing
the following operations:

• Starting from U0 at time t0 for state parameters Y we integrate the basic evolution
equation (2.6) from t0 to tW ; we store the values thus computed forU for t0 ≤ t ≤ tW .
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• Starting from δ
′
U(tW ) = 0 we integrate backwards in time (from tW to t0) the adjoint

equation (2.17). The operator F
′∗(t) and the gradient ∇UH are determined, at each

time t, from the values U(t) computed in the direct integration of (2.6).

• The final value δ
′
U(t0) is the required gradient. ∇U0J

This adjoint approach was implemented in our research for two optimal control
problems. The first problem has the objective of suppressing the Karman vortices for
a flow around a rotating cylinder. The second problem, for the shock-tube problem, is
related to the change of discontinuity location to a “desired” location.

We have studied the optimal control problems from a theoretical point of view (proving
the existence of the solutions) as well as from a numerical perspective.

2.3 Sensitivity analysis

Sensitivity analysis (SA) studies the influence, quantitatively and qualitatively, of
different internal or external parameters upon the model output (numerical and otherwise).

A general sensitivity theory for nonlinear systems was formulated by Cacuci [24], [25].
The physical problem under consideration is represented by the following system of K
coupled nonlinear equations written in operator form as

N[U(X),Y(X)] = Q[Y(X),X] (2.21)

where X = (X1, . . . ,Xm) ⊂ R
m is the position vector, U(X) = [U1(X), . . . , UK(X)]

is the state vector and Y(X) = [Y1(X), . . . , YP (X)] the vector of system param-
eters. Q[Y(X),X] represents inhomogeneous source terms and the components of
N[U(X),Y(X)] = [N1(U,Y), . . . , NK(U,Y)] are nonlinear operators acting not only on
the state vector U(X) but also on the vector of system parameters Y(X).

The system response R = R(U,Y) associated with the problem modeled by Eq. (2.21)
must also be specified. The response considered here R = R(e) is a general nonlinear
functional of e = (U,Y) with values in the set of real numbers.

The most general definition of a response to variations in the system parameters is
the Gateaux differential (G-differential). The G-differential VR(e0;h) of R(e) at e0 with
increment h = (hU, hY) is defined as

VR(e0,h) = lim
ε→0

R(e0 + εh)−R(e0)
ε

(2.22)

A property of the G-differential is that R need not be continuous in U and/or Y for
VR(e0;h) to exist at e0 = (U0,Y0) (Cacuci [24]). This property will be employed for the
sensitivities of a flow with discontinuities which are discussed in chapter 9.

Given the vector of changes hY around Y0, the sensitivity VR(e0,h) at e0 can be
evaluated only after determining the vector hU, since hY and hU are not independent. A
relationship between hY and hU is obtained by taking the G-differential of equation (2.21):

VN(e0;h)− VQ(Y0;hY) = 0 (2.23)

Once hU is determined it can be employed to evaluate the sensitivity VR(e0;h) of the
response R(e) at e0.
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We exemplify this approach for the same model discussed in the previous section

dU(X)
dt

= F(t;U(X),Y(X)) (2.24)

Following Cacuci, sensitivity analysis can be applied to responses which are either
functionals (i.e., scalar-valued operators) or operators (time-dependent or time/space
dependent) of the model’s parameters and variables. We present the case when the specific
response is a functional of U and Y.

In a similar way one approaches sensitivity analysis for responses which are operators
(time-dependent or time/space dependent) of the model’s parameters and variables.

We consider

R(U,Y) =
∫ tW

t0

r(t;U,Y) dt (2.25)

where r(t;U,Y) depends on model variables U, the parameters Y and the time interval
[t0, tW ] represents the selected time window. The G-differential VR(U0,Y0;hU,hY) of
the response function is given by

VR(U0,Y0;hU,hY) =
∫ tW

t0

r
′
U · hU dt+

∫ tW

t0

r
′
Y · hY dt (2.26)

where

r
′
U =

(
∂r

∂U1
, . . . ,

∂r

∂UK

)∣∣∣∣
(U0,Y0)

r
′
Y =

(
∂r

∂Y1
, . . . ,

∂r

∂YP

)∣∣∣∣
(U0,Y0)

with K the dimension of the model parameters and P the dimension of the model variable
Y.

Taking the G-differential of (2.24) we obtain the linear system

L(U0(t),Y0)hU(t) = Q(U0(t),Y0)hY(t) (2.27)
hU|t=t0 = 0

where

L(U0(t),Y0) =
d

dt
I− ∂F

∂U

Q(U0(t),Y0) =
∂F
∂Y

and I is a unit matrix.
The value of hU may be obtained by integrating (2.27) and, as discussed above, it can be

employed to evaluate the sensitivity VR. This approach is denoted as forward sensitivity
formalism. However, when the dimension of the initial state vector and the number of
parameters are large, the computational cost of calculating hU is very high. Therefore we
eliminate hU by using the adjoint sensitivity formalism.
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The adjoint operator L∗ is defined through the relationship

∫ tW

t0

hU · (L∗q) dt =
∫ tW

t0

q · (LhU) dt − [hU · q]
∣∣∣∣
tW

t0

(2.28)

where q is an arbitrary vector of dimension P .
Defining the adjoint model as

L∗q = r
′
U (2.29)

q(tW ) = 0

we write equation (2.28) as
∫ tW

t0

r
′
U · hU dt =

∫ tW

t0

q · (LhU) dt+ hU(t0) · q(t0) (2.30)

Substituting (2.27) into (2.30) we get
∫ tW

t0

r
′
U · hU dt =

∫ tW

t0

q · (QhY) dt + hU(t0) · q(t0) (2.31)

A comparison (2.31) and (2.26) shows that

VR =
∫ tW

t0

r
′
Y · hY dt +

∫ tW

t0

q · (QhY) dt + hU(t0) · q(t0) (2.32)

We note that the adjoint variable q(t) is the solution of the adjoint equations (2.29),
which are independent of hU and hY.

The value of hU, determined by the equation (2.27), does not depend on response and
has to be computed only once. Therefore a single adjoint model calculation suffices to
obtain the sensitivities to all the model parameters’ variation. However, the forcing term
r
′
U in the adjoint model depends on the functional defining the response, so that for each
response the adjoint equations model must be integrated again.

We conclude this section by mentioning that our research employed local sensitivity
analysis as compared to global sensitivity analysis (Cacuci [26]) The objective of local sen-
sitivity analysis is to analyze the behavior of the system responses locally around a chosen
point or trajectory in the combined phase-space of parameters and state variables. On the
other hand, the objective of global sensitivity analysis is to determine all of the system’s
critical points (namely bifurcations, turning points, extrema) in the combined phase-space
formed by the parameters, state variables and adjoint variables and subsequently to analyze
these critical points by local sensitivity analysis.
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CHAPTER 3

NUMERICAL IMPLEMENTATION OF THE

ADJOINT METHOD FOR COMPUTING THE

GRADIENT OF THE COST FUNCTIONAL

In this chapter we present the numerical adjoint approach for the computation of the
gradient of the cost functional with respect to the control parameters. First we describe a
general form of the cost functional, which takes into account many additional influences:
e.g., errors from observations, numerical computation errors or background terms.

3.1 The general expression of the cost functional

We recall that the collection of numbers needed to represent the state of the model is
collected as a column matrix called the state vector X. How the vector components relate
to the real state depends on the choice of discretization, which is mathematically equivalent
to a choice of basis.

One must distinguish between reality itself (which is more complex that what can be
represented as a state vector) and the best possible representation of reality as a state
vector, which we shall denote Xtrue, the true state at the time of analysis. Another
important value is Xbg, the a priori or background estimate of the true state before the
analysis is carried out, valid at the same time. Finally the analysis is denoted by Xan and
this is what we are looking for.

In practice is often inconvenient to solve the analysis problem for all components of the
model state. In these cases the work space of the analysis is not the model space but the
space allowed for the corrections to the background. Then the analysis problem is to find
a correction δX such that

Xan = Xbg + δX (3.1)

is as close as possible to Xtrue.
For a given analysis we use a number of observed values. They are gathered into an

observation vector Xobs. To use them in the analysis procedure it is necessary to be able
to compare them with the state vector. In practice it is very common that there are
fewer observations than variables in the model and they are irregularly distributed, so that
the only correct way to compare observations with the state vector is through the use
of a function from model state space to observation space called an observation operator
denoted by H. This operator generates the values H(X) that the observations would take
if both they and the state vector were perfect, in the absence of any modeling error. In
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practice H is a collection of interpolation operators from the model discretization to the
observation points and conversions from model variables to the observed parameters. To
evaluate the discrepancies between the observations and the state vector we consider the
vector of departures at the observation points Xobs −H(X).

In practice we may assume that there are errors between the above presented vectors
and their true counterparts. They are modeled as follows:

• background errors εbg = Xbg − Xtrue. They are estimation errors of the
background state, i.e. the difference between the background state vector vector
and its true value. They do not include discretization errors.

• observation errors εobs = Xobs−H(Xtrue). They contain errors in the observation
process (instrumental errors), errors in the design of the operatorH and discretization
errors which prevent Xtrue from being a perfect image of the true state

• analysis errors εan = Xan − Xtrue. They are estimation errors of the analysis
state, which is what we want to minimize.

To represent the fact that there is some uncertainty in the background, in the
observations and in the analysis we assume some probability density function for each
kind of error. We can calculate statistics such as averages, variances and histograms of
frequencies for the errors εbg, εobs, εan.

As an example let us consider the case of background error εbg. If we were able to repeat
each analysis experiment a large number of times, under exactly the same conditions, but
with different realizations of errors generated by unknown cases, εbg would be different each
time. In the limit of a very large number of realizations we expect the statistics to converge
to values which depend only on the physical processes responsible for the errors and not
on any particular realization of these errors.

For practical purposes some useful information on the average values of the statistics of
errors can be gathered by different methods: for example, one can use forecast differences
as surrogates to short-range forecast errors or one can estimate flow-dependent error
covariances directly from a Kalman filter.

Uncertainty analysis methods can also be applied to ascertain the credibility of
simulations using the numerical model. A review by Walters and Huyse [201] presents
deterministic and probabilistic methods for uncertainty analysis.

We include the above mentioned terms in the expression of the cost functional. Over
a given time interval, the analysis being at the initial time and the observations being
distributed among nT times in the interval, we denote by the subscript i the quantities at
any given observation time i. Hence Xobs

i ,Xi and Xtrue,i are the observations, the model
and the true states at time i. Ri is the error covariance matrix for the observation errors
Xobs

i − Hi(Xtrue,i). The background error covariance matrix B is only defined at initial
time (which is also the time of the background Xbg and of the analysis Xan). We also
consider a weighting matrix W.

Then the cost functional will be written as a sum of a background term J BG and an
observation term J OBS :

J (X) = J BG(X) + J OBS(X) (3.2)

= (X−Xbg)TB−1(X−Xbg) +
nT∑
i=0

(Xobs
i −Hi(Xi)TWiR−1

i (Xobs
i −Hi(Xi)
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Thus solving the optimal control problem is reduced to the minimization of the above
cost functional subject to the strong constraint that the sequence of model states Xi must
verify

Xi =M0→i(X) (3.3)

whereM0→i is the numerical model from initial time to the i-th time.
Since our model is computed using time integration from initial time to the final time

we may assume that the numerical model can be expressed as the product of intermediate
operators Mi

XnT =MnTMnt−1 · · ·M1X0 (3.4)

where nT corresponds to the final time and X0 is the initial condition.
We assume that we can linearize the operators Hi and M0→i, i.e.,

Xobs
i −HiM0→i(X) = Xobs

i −HiM0→i(Xbg)−HiM0→i(X−Xbg) (3.5)

obtaining the tangent linear model. The existence of the tangent linear model depends on
the model itself as well as on the length of the time interval considered.

3.2 Numerical gradient of the cost functional using the
adjoint method

For simplicity, we employ a cost functional without the terms involved in error analysis
to derive the algorithm of computing the numerical gradient of the cost functional using
the adjoint method. Then we will present the a similar algorithm at the end of this section,
this time for the general form of the cost functional (3.2).

Let us consider the cost functional as follows:

J [X,Λ] =
1
2

nT∑
k=0

[X(tk)−Xobs(tk)]TW(tk)[X(tk)−Xobs(tk)] (3.6)

where W(tk) a diagonal weighting matrix, Λ is the vector of control parameters, t0 ≤
tk ≤ tR, [t0, tnT ] is the minimization window and nT is the number of time steps in the
minimization window.

To find the minimum of the cost functional, efficient minimization algorithms require
the calculation of the gradient of the cost functional with respect to the control parameters:
(∇ΛJ [Λ])T .

Near X(τ) (the state vector at time τ) the nonlinear model can be written as:

X(τ +∆t) = F(X(τ))].

To calculate the gradient of the cost functional with respect to the control parameters
we define the change in the cost function resulting from a small perturbation δΛ about the
model control parameters Λ:

δJ [X,Λ] = J [X,Λ + δΛ] −J [X,Λ] (3.7)
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As we take the limit ||δΛ|| → 0, δJ[X,Λ] is the directional derivative in the δΛ direction
and it is given by:

δJ [X,Λ] = {∇ΛJ [Λ]}T δΛ (3.8)

On the other hand, δJ [X,Λ] may also be expressed in the following form (using
definition (3.6) of the cost functional):

δJ[X,Λ] =
nT∑
k=0

(W(tk)[X(tk)−Xobs(tk)])T δX(tk) (3.9)

where δX(tk) is the perturbation of the state vector obtained from the perturbation of the
model parameters δΛ.

Combining relations (3.8) and (3.9) we obtain:

{∇ΛJ [X,Λ]}T δΛ =
nT∑
k=0

(W(tk)[X(tk)−Xobs(tk)])T δX(tk) (3.10)

From the above relation it is clear that we should express δX(tk) as a function of δΛ
in order to obtain an expression for ∇ΛJ [X,Λ].

We start by linearizing the model about the current model solution:

δX(t0 +∆t) =
∂F(X)(t0)

∂Λ
δΛ (3.11)

Using (3.11) for each time step we obtain:

δX(tk) = N(tk −∆t)δX(tk −∆t)
= N(tk −∆t)N(tk − 2∆t)δX(tk − 2∆t)
= N(tk −∆t)N(tk − 2∆t)N(tk − 3∆t)δX(tk − 3∆t)
= · · ·
= QkδΛ (3.12)

where N(t) ≡ ∂F[X(t)]
∂Λ and Qk represents the result of applying all the operator matrices

in the linear model to obtain δX(tk) from δΛ.
With the relation δX(tk) = QkδΛ, equation (3.10) becomes:

∇ΛJ [X,Λ] =
nT∑
k=0

QT
kW(tk)[X(tk)−Xobs(tk)] (3.13)

We define the adjoint equations for the adjoint variables Λ̂(k):

Λ̂(k)(t0) = QT
k Λ̂

(k)(tk), for k = 1, . . . , nT (3.14)

If the adjoint variable Λ̂(k)(t) at time tk is initialized as:

Λ̂(k)(tk) = W(tk)[X(tk)−Xobs(tk)]
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then the gradient of the cost function with respect to the control parameters is:

∇ΛJ [X] =
nT∑
k=0

Λ̂(k)(tk)

Now we can write the algorithm for computing the gradient of the general cost functional
(3.2).

The first stage is direct integration of the model from the initial time to the final time
and the computation of the observation term in the cost functional:

1. Integration of the model from initial time to observation time i:

Xi =MiMi−1 · · ·M1X0 (3.15)

2. Compute and store the “normalized departures”

di = R−1
i (Xobs −Hi(Xi)) (3.16)

3. Compute the contributions to the cost function

J OBS,i(X) = (Xobs −Hi(Xi))Tdi (3.17)

4. Finally compute J OBS(X) =
nT∑
i=0

J OBS,i(X)

The second stage is the computation of the gradient of the cost functional ∇J . First
we perform a slightly complex factorization of ∇J OBS:

−1
2
∇J OBS = −1

2

nT∑
i=0

∇J OBS,i

=
nT∑
i=0

MT
1 · · ·MT

i Hidi

= HT
0 d0 +MT

1 [H
T
1 d1 +MT

2 [H
T
2 d2 + · · ·+HT

nTdnT ] . . . ]

where Mi and Hi are the linearized operators corresponding toMi and Hi.
The last expression is evaluated from right to left in the following steps:

1. Initialize the adjoint variable X̂ to zero at final time: X̂nT = 0.

2. For each time step i− 1 the variable X̂i−1 is obtained by adding the adjoint forcing
HT

i di to X̂i and by performing the adjoint integration by multiplying the result by
MT

i , i.e.
X̂i−1 = MT

i (X̂i +HT
i di) (3.18)

19



3. At the end of the recurrence the value of the adjoint variable X̂0 gives the required
result for the gradient of the observation term in the cost functional

X̂0 = −
1
2
∇J OBS(X) (3.19)

Finally add the gradient of the background term to compute the numerical value of the
gradient of the cost functional (3.2)

∇J (X) = 2B−1(X−Xbg) +∇J OBS(X) (3.20)

The terminology employed in the algorithm reflects the fact that the computations look
like the integration of an adjoint model backward in time with a time-stepping defined by
the transpose time-stepping operators MT

i and an external forcing HT
i di, which depends

on the distance between the model trajectory and the observations.

3.3 Coding the adjoint and the tangent linear method

If we linearize the nonlinear model we obtain the tangent linear model (TLM). The
transpose of the TLM is the adjoint model.

For coding the TLM, we linearize the original nonlinear forward model code line by
line, DO loop by DO loop and subroutine by subroutine.

If we view the tangent linear model as the result of the multiplication of a number of
operator matrices: A1A2 · · ·AM where each matrix Ai, (i = 1, . . . ,M) represents either a
subroutine or a single DO-loop, then the adjoint model can be viewed as being a product
of adjoint subproblems: AT

MAT
M−1 · · ·AT

1 .
The correctness of the adjoint of each operator was checked using the following identity:

(AQ)T (AQ) = QT (AT (AQ))

where Q represents the input of the original code and A can be either a single DO loop or
a subroutine. All subroutines of the adjoint model were subjected to this test.

3.4 Accuracy of the gradient for the continuous cost
functional

The accuracy of the gradients calculated by the adjoint method should be at the level
of machine precision. Errors could result due to coding mistakes, round-off errors or the
presence of non differentiable functions.

A method for the gradient check is described below, using the following Taylor expansion
of the cost functional:

J (X+ ηh) = J (X) + ηhT∇J (X) +O(η2) (3.21)

where ||h|| = 1, η scalar and ∇J (X) is the gradient of the cost functional J (X) with
respect to X computed using the adjoint code.
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Rewriting the above formula, a function of η can be defined as (see Navon et al. [148]):

Φ(η) =
J (X+ ηh))−J (X)

ηhT∇J (X)
(3.22)

The gradient computed using the adjoint model can be assumed to be completely
accurate (up to the machine error) when lim

η→0
|Φ(η)| = 1. A validity region of the gradient

test is normally obtained for 10−3 ≥ η ≥ ε (where ε is the machine accuracy). For η > 10−3

we have truncation error and for η near the machine accuracy roundoff errors prevail.
The results of the gradient check test are displayed in Fig. 3.1.

3.5 Accuracy of the gradient of the non smooth cost
functional

If the cost functional is non smooth the gradient of the cost functional does not exist
everywhere. In this case the adjoint method computes a subgradient of the cost functional.

We considered the subgradient obtained from the adjoint model to be sufficiently
accurate if the following tolerances were satisfied

lim
η→0

|Φ(η)| = δ (3.23)

for 10−3 ≥ η ≥ 10−10

where δ is a constant number which depends on the problem parameters. Fig. 3.1 presents
the subgradient check test.

We can see that the subgradient ratio tends to a constant number, a number which
decreases slightly as we increase the time window.

3.6 Checkpointing

According to theoretical bounds (e.g., Griewank [80]) the reverse mode of differentiation
allows the generation of an adjoint code involving at most five times the number of
operations of the original model. However this low operation count requires the storage of
the full trajectory, which is formed by the values of the variables of the original model
that may be used for the evaluation of linearized statements. The calculation of the
trajectory has to be performed before (or during) the backward integration of the adjoint
code. When the differentiated codes require too large an amount of memory, a possible
solution to alleviate this problem is to implement a checkpointing algorithm (Griewank
[81], [84]), which provides an optimal logarithmic behavior in terms of time and memory
requirements.

The strategy to solve the trajectory problem arising in adjoint computations is based
on “divide et impera”. Griewank [81] proposed to save the state of the system from time
to time during runs of the original code.

These are called checkpoints and they allow for the computation of parts of the trajectory
without systematically coming back to the initial point. Checkpoints are stored on a stack
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in a Last-In-First-Out manner. Forward sweeps and reverse sweeps are then done, part by
part, from checkpoints.

An example of a checkpointing algorithm is presented below:

1. run the original code and store the checkpoints

2. for all the checkpoints, taken in reverse order

(a) restore the checkpoint

(b) perform a forward sweep from the checkpoint to the previously removed one
(or to a given iteration)

(c) perform a reverse sweep down to the checkpoint

(d) remove the checkpoint from the stack

Checkpointing is easy to implement for time-stepping problems, where a natural point is
the beginning of a timestep. Using checkpointing introduces extra forward steps of the
original model.

A practical implementation faces two challenges. The first task is the selection of
checkpoints. The question is at which points of the whole computational process one
should place the checkpoints to achieve an optimal reduction of the storage requirement.
The second task is to manage all the information at every checkpoint that is necessary.
This requires to save the system state at the checkpoint and to restore it in order to repeat
the next computational steps, when that becomes necessary. Also the values of the adjoints
must be managed to perform the successive reverse sweeps. This is a trade-off between
memory and CPU time.

From the user’s point of view the choice of a checkpointing scheme depends essentially
on the particular code and the particular computer architecture the user deals with. A
large variety of checkpointing schedules are discussed in the research of Charpentier [27]
and Restrepo et al. [164].

3.7 Automatic differentiation

Automatic differentiation AD is a technique for augmenting computer programs
with derivative computations. It exploits the fact that every computer program, no
matter how complicated, executes a sequence of elementary arithmetic operations such as
additions or elementary functions such as exp(). By applying the chain rule of derivative
calculus repeatedly to these operations, derivatives of arbitrary order can be computed
automatically and accurate to working precision.

In contrast to other methods like finite-difference gradients AD computes the exact
derivative of the given code without any additional truncation error and without much
additional theoretical work. Any computer code can be viewed as a concatenation of many
evaluations of the intrinsic operators and functions. After finding the computational graph
from the specified independent variable to the dependent variables, the derivative of such
a concatenation can be obtained by applying the chain rule. This means formally the
multiplications of all Jacobians of the intrinsic functions.
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The main techniques in AD are described in Griewank and Corliss [83], Berz et al. [16]
and Griewank [82]. The given source code is either transformed into a new code computing
the desired derivatives (by tools working with source transformation) or linked with
libraries that include overloaded versions of the intrinsic functions and operators of th used
programming language (by tools based on operator overloading).

Based on how the chain rule is used to propagate derivatives through the computation
two approaches to automatic differentiation have been developed: the forward mode for
which the chain rule is applied from the beginning to the end of the “active” section of the
program and, respectively, the reverse mode if the computation is going from the end back
to the beginning.

The forward mode propagates derivatives of intermediate variables with respect to the
independent variables. Let us assume that X = (X1, . . . ,Xn) are the independent variables
and Y = (Y1, . . . , Ym) are the dependent variables. The linearity of differentiation allows
the forward mode to compute arbitrary linear combinations J∗S, where S is a n×p matrix
and J is the Jacobian

J =




∂Y1

X1
. . .

∂Y1

Xn
. . . . . . . . .
∂Ym

X1
. . .

∂Ym

Xn


 (3.24)

The effort required is roughly O(p) times the runtime and memory of the original
program. In particular, when S is a vector s, we compute the directional derivative

lim
h→0

F (X+ h ∗ s)− F (X)
h

(3.25)

This type of differentiation is also used to obtain the tangent linear model.
The reverse mode of automatic differentiation propagates derivatives of the final result

with respect to an intermediate quantity called the adjoint quantity. To propagate the
adjoint one must be able to reverse the flow of the program and must remember or
recompute any intermediate values that nonlinearly impacts the final result.

For a matrix q×mW, the reverse mode allows us to compute the row linear combination
W ∗ J with O(q) times as many floating-point operations as required for the evaluations
of F . The storage requirements are harder to predict and depend to a large extent on the
nonlinearity of the program and the implementation approach chosen. The reverse mode
also corresponds to a method for obtaining the discrete adjoint.

In general the forward mode is appropriate if the number of independent variables is
higher than the number of the dependent variables and the reverse mode in the contrary
case.

The most important scientific AD codes are the following:

1. ADIFOR/ADIC available from Argonne National Laboratory/Rice University for
Fortran77/C

2. ODY SSEE available from INRIA for Fortran77

3. T AMC by Ralf Giering for Fortran77/Fortran90

4. ADOL− C available from TU Dresden for C++
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[a] [b]

[c] [d]

Figure 3.1. The accuracy check: the gradient of the cost functional vs. log (η) for the flow
around the cylinder in the constant rotation case ([a]) and, respectively, time-dependent
rotation case ([b]); a subgradient of the cost functional vs. log (η) for the shock-tube flow
at time=0.24 for AVM model ([c]) and, respectively, HRM model ([d])
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CHAPTER 4

OPTIMIZATION ALGORITHMS

Consider the following nonlinear constrained optimization problem

minimize F (X) (4.1)
subject to X ∈ G

where the objective function F : Rn → R is a locally LIPSCHITZ function on the feasible
set G ⊂ Rn (if G = Rn then the problem is unconstrained).

A general iterative algorithm to solve the problem (4.1) is as follows

• Step 0. INITIALIZATION. Find a feasible starting point X1 ∈ G and set k = 1

• Step 1. DIRECTION FINDING. Find a feasible descent direction dk ∈ Rn

F (Xk + tdk) < F (Xk) and Xk + tdk ∈ G for some t > 0 (4.2)

• Step 2. STOPPING CRITERION. If Xk is “close enough” to the required solution
then STOP

• Step 3. LINE SEARCH. Find a step size tk > 0 such that

tk = argmin
t>0

F (Xk + tdk) and Xk + tkdk ∈ G (4.3)

• Step 4. UPDATING. Set Xk+1 = Xk + tkdk and go to Step 1

4.1 Non differentiable minimization

If the function F to be minimized is non smooth then methods of non differentiable
optimization are required. They can be divided into two main classes: subgradient methods
and bundle methods.

Since the gradient of a non smooth function F exists only almost anywhere we have to
replace the gradient by the generalized gradient

∂F (X) = conv{g| there exists a sequence (Xi)i∈N such that lim
i→∞

Xi = X,

F differentiable at Xi, i ∈ N, and lim
i→∞

∇F (Xi) = g}

where “conv” stands for convex hull and it is defined as the closure of the set which contains
all convex linear combinations of subgradients (an element of the generalized gradient is
called subgradient).

25



The non smooth optimization methods are based on the assumptions that the function
F is locally Lipschitz continuous and we can evaluate the function and its arbitrary
subgradient at each point.

4.1.1 The subgradient methods

The history of subgradient methods starts in the 60s: Shor (1962), Polyak (1964),
Ermolev (1967).

The main idea is to employ only one subgradient ξk ∈ ∂F (Xk) instead of the gradient
∇F (Xk). Hence the natural generalization of gradient method is to replace the gradient
by the normalized gradient in the formula for dk defined in Step 2:

dk = −ξk/||ξk|| (4.4)

The above strategy of generating dk do not ensure descent and hence minimizing line
searches becomes unrealistic. Also the standard stopping criterion can no longer be
applied since an arbitrary subgradient contains no information on the optimality condition
0 ∈ ∂F (X).

Due to these facts we are forced to use a priori choice of step sizes tk to avoid line
searches and the stopping criterion. Thus we define the next iteration point by

Xk+1 = Xk − tk
ξk
||ξk||

(4.5)

where ξk ∈ ∂F (Xk) and a suitable tk > 0 was chosen.
In order to accelerate the rate of convergence we may try to generalize more smooth

methods than the gradient method. The most efficient methods at the moment are based
on generalized Quasi-Newton methods: ellipsoid and space dilation algorithms by Shor
[175] and the variable metric method by Uryasev [196].

4.1.2 The bundle methods

The guiding principle behind them is to exploit the previous iterations by gathering
the subgradient information into a bundle of subgradients. The pioneering bundle method,
the ε-steepest descent method, was developed by Lemarechal [125]. The main difficulty in
Lemarechal’s method is the a priori choice of an approximation tolerance which controls
the radius of the ball in which the bundle model is thought to be a good approximation of
the objective function.

A different approach was presented by Kiwiel [121], based on the cutting plane method.
The basic idea is to form a convex piecewise linear approximation to the objective function
using the linearizations generated by subgradients. Kiwiel also presented two strategies
to bound the number of stored subgradients: subgradient selection and aggregation. The
main disadvantage of Kiwiel’s method is its sensitivity to scaling of the objective function.
Also the uncertain line search may require, in general, many function evaluations compared
with the number of iterations.

In spite of different backgrounds, both methods (Lemarechal and Kiwiel) generate the
search direction at each direction by solving quadratic detection finding problems.
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A new approach that combines the bundle idea with the trust region method was
adopted by Schramm and Zowe (Bundle Trust Region method [171]) and by Kiwiel
(Proximal Bundle method [122]).

The following two features are characteristic to bundle methods:

• the gathering of subgradient information from past iterations into a bundle

• the concept of serious step and null step in line search

Let Yk+1 = Xk + tkdk for some tk > 0 and ξk+1 ∈ ∂F (Yk+1). Then we have the following
sequence:

1. Make a serious step Xk+1 = Yk+1 if
F (Yk+1) ≤ F (Xk)− δk for some δk > 0; add ξk+1 into bundle

2. Otherwise make a null step Xk+1 = Xk; add ξk+1 into bundle

4.1.3 The hybrid algorithm (PVAR) for nonsmooth minimization

The most efficient globally convergent algorithms for nonconvex non smooth optimiza-
tion are based on versions of the bundle methods (e.g. Lemarechal [126], Bonnans et al.
[20], Schramm and Zowe [171], Makela and Neittaanmaki [138]). We employed a hybrid
method (described in Vlcek and Luksan [198] and Luksan and Vlcek [137]) which combines
the characteristics of the variable metric method and the bundle method.

The algorithm generates a sequence of basic points (xk)k∈N and a sequence of trial
points (yk)k∈N satisfying

xk+1 = xk + tkLdk, yk+1 = xk + tkRdk

with y1 = x1, where tkR ∈ (0, tmax], tkL ∈ [0, tkR] are appropriately chosen step sizes,
dk = −Hkg̃k is a direction vector and g̃k is an aggregate subgradient.

The matrix Hk accumulates information about the previous subgradients and represents
an approximation of the inverse Hessian matrix if the function F is smooth.

If the descent condition F (yk+1) ≤ F (xk)− cLt
k
Rwk is satisfied with suitable tkR, where

cL ∈ (0, 0.5) is fixed and −wk < 0 represents the desirable amount of descent, then
xk+1 = yk+1 (descent step).

Otherwise a null step is taken which keeps the basic points unchanged but accumulates
information about the minimized function.

The construction of the aggregate subgradient is presented below.
Let us denote by m the lowest index j satisfying xj = xk (index of the iteration after

last descent step).
We define g̃k+1 as a convex combination of the following (known) subgradients: the

basic subgradient gm ∈ ∂f(xk), the trial subgradient gk+1 ∈ ∂f(yk+1), and the current
aggregate subgradient g̃k

g̃k+1 = λk,1gm + λk,2gk+1 + λk,3g̃k

The multipliers λk can be determined easily by minimizing a simple quadratic function
which depends on these three subgradients and two subgradient locality measures (this
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approach replaces the solution of a rather complicated quadratic programming problem
which appears in the standard bundle method Lemarechal [126]).

The matrices Hk are generated using a symmetric quasi-Newton rank-one update after
the null steps (to preserve the property of being bounded and other characteristics required
for the global convergence) or the standard BFGS update after the descent steps.

For a more in-depth discussion about both types of updates the reader is referred to
Fletcher [57].

4.2 Differentiable optimization

4.2.1 The Q-N algorithm for unconstrained minimization

A Quasi-Newton (Q-N) algorithm (also called variable metric method) was employed
for the minimization of the cost functional for the flow past a cylinder. Instead of obtaining
an estimate of the Hessian matrix at a single point, this method gradually builds up an
approximate Hessian matrix by using gradient information from some or all of the previous
iterates visited by the algorithm.

We started with the identity matrix and then a better approximation Hk to the inverse
Hessian matrix was built up, iteratively, in such a way that the matrixHk preserves positive
definiteness and symmetry.

Given the current iterate xi, and the approximate Hessian matrix Hk at xk , the linear
system

Hkxk = −∇J (xk) (4.6)

is solved to generate a direction pk. The next iterate is then found by performing a line
search along pk and setting

xk+1 = xk +Hk+1 · (∇J (xk+1)−∇J (xk)) (4.7)

where the new approximation to the inverse Hessian Hk+1 is constructed using using the
Davidon-Fletcher-Powell (DFP) rank-2 update formula.

We can make Hk+1 to mimic the behavior of ∇2J by enforcing the Quasi-Newton
condition

Hi+1si = yi (4.8)

where sk = xk+1 − xk and yk = ∇J (xk+1)−∇J (xk).
This condition can be satisfied by making a simple low-rank update to Hk. The most

commonly used family of updates is the Broyden class of rank-two updates, which have the
form

Hk+1 = Hk −
Hksk(Hksk)T

sTkHksk
+

ykyT
k

yT
k sk

+Φk[sTkHksk]vkvT
k (4.9)

where Φk ∈ [0, 1] and

vk =
yk

yT
k sk

− Hksk
sTkHksk

(4.10)

The choice Φk = 0 gives the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update. The
Davidon-Fletcher-Powell update, which was proposed earlier, is obtained by setting Φk = 1.
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We employed a modified version of the backtracking strategy implemented in Numerical
Recipes [162] to choose a step along the direction of the Newton step p. The goal was to
move to a new point xnew along the direction of the Newton step p:

xnew = xold + λp, 0 < λ ≤ λ0 ≤ 1

such that the function
g(λ) = (J xold + λp)

showed a sufficient decrease.
The convergence criteria used here are

J (xnew) ≤ J (xold) + σ∇J · (xnew − xold), 0 < σ < 1

or ||∇J (xnew)|| < 10−5.

4.2.2 The L-BFGS unconstrained optimization algorithm

We also implemented the L-BFGS method (Nocedal [151], Liu and Nocedal [134],
Nocedal and Wright [152]) which performs the unconstrained minimization of a smooth
nonlinear function for which the gradient is available. L-BFGS is a limited memory
method based on the well-known BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm.

The main idea of this method is to use curvature information only from the most recent
iterations to construct the Hessian approximation. Instead of storing fully dense n × n
approximations, this approach saves just a few vectors (of length n) that represent the
approximations implicitly.

Each step of the original BFGS method has the form

xk+1 = xk − αkHk∇J k, k = 0, 1, 2, . . .

where αk is the step length and J is the cost functional. Hk is updated at each iteration
by means of the formula

Hk+1 = V T
k HkVk + βksks

T
k (4.11)

where
βk =

1
yTk sk

VK = I − βkyks
T
k (4.12)

and
sk = xk+1 − xk yk = ∇J k+1 −∇J k (4.13)

J k being the cost functional at step k of the minimization iteration.
We say that the matrix Hk+1 is obtained by updating Hk using the pair (sk, yk). For

L-BFGS a modified version of Hk is stored implicitly, by using a certain number (say m)
of the vector pairs (sl, yl) that are used in the formulae (4.11)-(4.13).

The product HkJ∇k can be obtained by performing a sequence of inner products and
vector summations involving ∇J k and the pairs (sl, yl). After the new iterate is computed,
the oldest vector pair in the set of pairs (sl, yl) is deleted and replaced by the new pair
(sk, yk) obtained from the current step (4.13). In this way the set of vector pairs includes
curvature information from the m most recent iterations (usually 3 ≤ m ≤ 10).
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For numerical experiments using the L-BFGS method the reader is referred to Zou et
al. [213].

We would like to conclude this section discussing our preference for L-BFGS over other
smooth minimization algorithms. One may argue that for our case the number of control
parameters may not justify the selection of a limited memory method.

While this may be true, we consider that our approach (using the adjoint method for
the gradient computation) may be easily and successfully implemented for optimal control
problems with a much greater number of control variables. In that case improvements in
the efficiency of the numerical optimization will be determined not only by choosing the
adjoint method over other methods for the gradient calculation but also by selecting a
limited memory minimization algorithm.

4.2.3 Sequential Quadratic Programming SQP for constrained optimiza-
tion

One of the most effective methods for nonlinearly constrained optimization is to generate
steps by solving quadratic problems. This sequential quadratic programming (SQP)
approach can be used both in line-search and trust region frameworks and it is appropriate
for small or large problems.

Although we did not employ it in our research, it is described since it serves as an
efficient minimization algorithm in large optimal control applications. A version of SQP
coupled with trust-region methods and interior-point techniques was implemented in the
package TRICE [45].

Let us consider an equality-constrained problem

minF (X) (4.14)
subject to C(X) = 0 (4.15)

where F : Rn → R and C : Rn → Rm are smooth functions.
The essential idea of SQP is to model (4.14)-(4.15) at the current iterate Xk by a

quadratic programming subproblems and to use the minimizer of this subproblem to define
a new iterate Xk+1.

The challenge is how to design the quadratic subproblem so that it yields a good step
for the underlying constrained optimization problem while the overall SQP algorithm has
good convergence properties and good practical performance.

We denote by L(X,λ) = F (X)− λTC(X) the Lagrangian.
A is the Jacobian matrix of the constraints

A(X)T = [∇C1(X),∇C2(X), . . . ,∇Cm(X)] (4.16)

and by W(X,λ) = ∇2
XXL(X,λ) the Hessian of the Lagrangian.

At iteration (Xk, λk) we define the quadratic problem

min
p

1
2
pTWkp+∇F T

k p (4.17)

subject to Akp+ Ck = 0

with Ak and Wk the approximations for A and respectively W.
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If the constraint Jacobian Ak has full row rank and the matrix Wk satisfies dTWkd > 0
on the tangent space of constraints (i.e. for all d �= 0 such that Akd = 0) then the problem
(4.17) has a unique solution (pk, µk) that satisfies

Wkp+∇F T
k p−AT

k µk = 0
Akpk + Ck = 0

If p is the vector of descent and λk+1 is the step for descent obtained from solving the
system [

Wk −AT
k

Ak 0

] [
p

λk+1

]
=
[
−∇Fk

Ck

]
(4.18)

then it can be shown that p = pk and λ = µk.
To be practical, an SQP method must be able to converge from remote starting points

and on nonconvex problems. If Wk is positive definite on the tangent space of constraints,
the quadratic subproblem (4.17) can be solved without any additional considerations.
When Wk does not have this property, line-search methods either replace it by a positive
definite approximation Bk or modifyWk directly during the process of matrix factorization.
Another approach is given by the trust-region methods, which add a constraint to the
subproblem, limiting the step to a region where the model (4.17) is considered to be reliable.

Complications may arise, however, because the inclusion of the trust region may cause
the subproblem to become infeasible. At some iterations it is necessary to relax the
constraints, which complicates the algorithm and increases its computational cost. Due
to these trade-offs, neither one of the two SQP approaches (line-search or trust region)
can be regarded as clearly superior to the other.

Let us now consider the choice of the matrix Wk in the quadratic model. Various
implementations of SQP based on specific choices of Wk have performed well on many
problems. They yielded poor performance or even failure for other problems, however.

For this reason there is not a unique choice for Wk. We present here some of the most
employed choices of Wk, based on Nocedal and Wright [152].

The first choice is based on maintaining a quasi-Newton approximation Bk to the full
Hessian of the Lagrangian ∇2

XXL(Xk, λk) using a BFGS update. The update for Bk makes
use of vectors sk and Yk

sk = Xk+1 −XK Yk = ∇XL(Xk+1, λk+1)−∇XL(Xk, λk+1) (4.19)

The new approximation Bk+1 is then computed using the BFGS formula. For this
approach the iteration will converge robustly and rapidly. If, however, ∇2

XXL contains
negative eigenvalues the BFGS approach of approximating it with a positive matrix may
be ineffective.

A more effective modification is the damped BFGS updating which ensures that the
update is always well-defined by modifying the definition of Yk. If we define sk and Yk as
in (4.19) and set

rk = θkYk + (1− θk)Bksk (4.20)

where the scalar θk is defined as

θk =
{

1 if sTk Yk ≥ 0.2sTk Bksk
(0.8sTk Bksk)/(sTk Bksk − sTk Yk) if sTk Yk < 0.2sTk Bksk
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Bk is updated as follows

Bk+1 = Bk −
Bksk(Bksk)T

sTk Bksk
+
rkr

T
k

sTk rk
(4.21)

which guarantees that Bk+1 is positive definite.
But this method still fails to address the underlying problem that the Lagrangian

Hessian may not be positive definite.
A different approach modifies the Lagrangian Hessian directly by adding terms to the

Lagrangian function, the effect of which is to ensure positive definiteness.

Lmodif (X,λ; ν) = F (X) − λTC(X) +
1
2µ
||C(X)||2 (4.22)

for some 0 < ν < µ∗, where µ∗ is chosen such that the Hessian of the modified Lagrangian
is positive definite. We could now choose the matrix Wk to be ∇2

XXLmodif or some
quasi-Newton approximation Bk to this matrix.

The main difficulty here is the choice of µ∗, which depends on quantities which are not
normally known (e.g., bounds on the second derivatives of the problem functions).

To ensure that the SQP method converges from remote starting points a merit
function Φ is employed. This function Φ is used:

• to control the size of the steps (in line search methods)

• to determine whether a step is acceptable or whether the trust-region radius needs
to be modified (in trust-region methods)

It plays the role of the objective function in unconstrained optimization since we insist that
each step provides a sufficient reduction in it.

The most employed are the l1 merit function and the Fletcher’s merit function.
The l1 merit function is defined as:

Φ1(X;µ) = F (X) +
1
µ
||C(X)||1 (4.23)

The Fletcher’s merit function has the formula:

Φ1(X;µ) = F (X)− λTC(X) +
1
2µ

∑
Ci(X)2 (4.24)

The majority of line-search algorithms assume that the iteration step is obtained by
means of (4.18). Other variants of SQP such as reduced-Hessian methods and trust region
approaches compute the search direction differently.

Reduced-Hessian quasi-Newton methods are designed for solving problems in which
second derivatives are difficult to compute, and for which the number of degrees of freedom
in the problem, (n−m), is small.

This approach is employed if we want to approximate only the reduced Hessian of the
Lagrangian ZT

k WkZk, where Zk is a matrix which spans the range of Ak. The update is
Mk, an (n−m)× (n−m) version of the reduced-Hessian approximation.

As (n − m) is small, Mk will be of high quality and the line-search computation is
inexpensive. Also the reduced Hessian is much more likely to be positive definite, even when
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the current iterate is some distance from the solution, so that the safeguarding mechanism
in the quasi-Newton update will be required less often in line search implementation.

For the trust region approach a modified model is considered:

min
p

1
2
pTWkp+∇F T

k p (4.25)

subject to Akp+ Ck = 0 (4.26)
||p|| ≤ ∆k (4.27)

The trust region radius ∆k will be updated depending on how the predicted reduction in the
merit function compares to actual reduction. If there is good agreement, the trust-region
radius is unaltered or increased, whereas the radius is decreased if the agreement is poor.

Although we can simply increase ∆k until the set of steps p satisfying the linear
constraints (4.26) intersect the trust region, this approach is likely not to resolve the conflict
between satisfying the linear constraints (4.26) and the trust-region constraint (4.27). A
more appropriate viewpoint is to improve the feasibility of these constraints at each step
and to satisfy them exactly only in the limit.
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CHAPTER 5

REGULARIZATION OF ILL-POSED

PROBLEMS

The computation of solutions to optimal control problems is ill-conditioned in many
cases. That is, relatively large variations of parameter values are allowed for small variations
of constraints and/or objective values.

The primary difficulty with ill-posed problems is that they are practically undetermined
due to the condition number of the numerical implementation. Hence it is necessary to
incorporate further information about the desired solution in order to stabilize the problem
and to single out a useful and stable solution.

The aim of regularization is to make the computation better conditioned while changing
the value of the objective only slightly. The numerical solution of the optimal control
problem is obtained by minimizing a cost functional which describe the objective

min
u∈Uad

J (u) (5.1)

where u is the control variable, Uad is the set of admissible controls and J is the cost
functional.

Following Hansen [94], the dominant approach to regularization is to allow a certain
residual to be associated with the regularized solution, with residual norm ρ(u), and then
use one of the following schemes:

1. Minimize ρ(u) subject to the constraint that u belongs to a specified subset of Uad

2. Minimize ρ(u) subject to the constraint that a measure ω(u) of the “size” of u is less
than some specified upper bound δ, i.e., ω(u) ≤ δ

3. Minimize ω(u) subject to the constraint ρ(u) ≤ α

4. Minimize a linear combination of (ρ(u))2 and (ω(u))2

min
{
(ρ(u))2 + λ2(ω(u))2

}
(5.2)

where λ is a specified weighting factor.

Here α, δ and λ are known as regularization terms which have to be determined and
the function ω is sometimes referred to as the smoothing norm. The fourth scheme is the
well-known Tikhonov regularization scheme [187].
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Let us consider that our discrete ill-posed problem has the form

min ||Au− b||2 (5.3)

where A is a matrix m×n (m ≥ n) which is ill-conditioned in the sense that all its singular
values decay gradually to zero, with no gap anywhere in the spectrum.

Typically the term b may contain noise due to measurement and/or approximation
error. This noise, in combination with the ill-conditioning of A, means that the exact
solution of (5.3) has little relationship to the noise-free solution. Instead, a regularization
method is employed to determine a solution that approximates the noise-free solution. The
regularization method replaces the original operator by a better-conditioned but related
one. Sometimes the regularized solution is too large to solve exactly. In that case an
approximate solution is computed by projection onto a smaller dimensional space, perhaps
via iterative methods based on Krylov subspaces.

The conditioning of the new problem is controlled by one or more regularization
parameters specific to the method. A large regularization parameter yields a new well-
conditioned problem, but its solution may be far from the noise-free solution since the new
operator is a poor approximation to A. A small regularization parameter generally yields a
solution very close to the noise-contaminated solution of (5.3) and hence its distance from
the noise-free solution also can be large. Thus a key issue in regularization methods is to
choose a regularization parameter that balances the error due to the noise with the error
due to regularization.

For problems small enough that a singular value decomposition of A can be computed,
there are well-studied techniques for computing a good regularization parameter. These
techniques include the Discrepancy Principle, Generalized Cross-Validation and the L-
curve.

For larger problems treated the parameter choice is much less understood. Standard
regularization methods for such a case include Tikhonov regularization or the truncated
singular value decomposition. If regularization is applied to the projected problem gener-
ated by the iterative method we have an extra regularization parameter, controlling the
number of iteration taken. This introduces the possibility that the standard regularization
parameter that is correct for the (large) discretized problem may not be the optimal one
for the lower-dimensional problem actually solved by the iteration. But the extra work due
to the possible difference between the regularization parameters is offset by the fact that,
in fact, we are regularizing a lower dimensional problem after projection by the iterative
method.

5.1 Tikhonov regularization

One of the most common methods or regularization is Tikhonov regularization
(Tikhonov and Arsenin [187]). In this method the problem (5.3) is replaced by

min (||Au− b||22 + λ2||Lu||22) (5.4)

where L denotes a matrix, often chosen to be the identity matrix I, a diagonal weighting
matrix or a discrete derivative operator and λ is a positive scalar regularization parameter.
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If an a priori estimate ũap of the desired regularized solution is available, then this
information can be taken into account by including ũap in the discrete smoothing norm

min ||Au− b||22 + λ2||L(u− ũap)||22 (5.5)

The Tikhonov problem (5.4) has alternative formulations

(A∗A+ λ2L∗L)u = A∗b (5.6)

and

min
∣∣∣∣∣∣ ( A

λL

)
u−
(

b
0

) ∣∣∣∣∣∣
2

(5.7)

Underlying the formulation in (5.4) is the assumption that the errors in the right-hand
side are uncorrelated and with covariance matrix σ2

0Im. If the covariance matrix is of more
general form CCT , where C has full rankm, then one should scale the least square residual
with C−1 and solve the scaled problem

min ||C−1(Au− b)||22 + λ2||Lu||22 (5.8)

The most efficient and numerically stable way to compute the solution to the Tikhonov
problem in (5.4) is the bidiagonalization algorithm (Elden [52]). First we want to transform
the general-form problem (5.5) into the following standard-form problem

min ||Āū− b̄||22 + λ2||(ū− ū∗)||22 (5.9)

The standard-form quantities Ā, ū∗ and b̄ take the form

Ā = AL†
A b̄ = b−Au� ū∗ = Lũap (5.10)

where L†
A is the A-weighted generalized inverse of L.

L†
A is defined using L†, the pseudo-inverse of L:

L†
A =

(
In −

(
A(In − L†

AL)
)†

A
)
L† (5.11)

and u� is the unregularized component of u which is not affected by the regularization
scheme:

u� ≡
(
A(In − L†

AL)
)†

b (5.12)

The standard-form problem is then treated as a least squares problem of the form

min
∣∣∣∣∣∣ ( Ā

λIm

)
ū−
(

b̄
λũap

) ∣∣∣∣∣∣ (5.13)

This problem can be reduced to an equivalent sparse and highly structured problem. The
key idea is to transform Ā into a m×m upper bidiagonal matrix B̄ by means of alternating
left and right orthogonal transformations

Ā = ŪB̄V̄T (5.14)

Software for performing the bidiagonal reduction is available in many mathematical libraries
(LAPACK, LINPACK, NAG, Numerical Recipes).

36



Once Ā has been reduced to a bidiagonal matrix B̄ we make the substitution ū = V̄ȳ
and obtain the problem

min
∣∣∣∣∣∣ ( B̄

λIm

)
ȳ −
(

ŪT b̄
λV̄T ũap

) ∣∣∣∣∣∣ (5.15)

which can be solved for ȳ in only O(m) operations.
A fundamental observation regarding Tikhonov regularization is that the ill-conditioning

of A is circumvented by introducing a new problem with a new well-conditioned coefficient
matrix with full rank. A different way to treat the ill-conditioning of A is to derive a new
problem with a well-conditioned rank-deficient coefficient matrix. This is the philosophy
behind methods based on singular value decomposition (SVD): truncated SVD, modified
SVD and generalized SVD. This technique is computationally more expensive than the
above approach using Ā and B̄, but it provides much more insight into the regularization
problem.

5.2 Singular value decomposition

Let us remember that A is a m×n rectangular matrix, with m ≥ n. The singular value
decomposition (SVD) of A is a decomposition of the form

A = UΣVT =
n∑

i=1

UiσiV
T
i (5.16)

where U = (U1, . . . , Un) ∈ Rm×n and V = (V1, . . . , Vn) ∈ Rn×n are matrices with orthonor-
mal columns, UUT = VTV = In and where the diagonal matrix Σ = diag(σ1, . . . , σn) has
nonnegative diagonal elements appearing in non-increasing order such that

σ1 ≥ σ2 ≥ · · · ≥ σn (5.17)

The numbers σi are called the singular values of A while the vectors Ui and Vi are the left
and right singular vectors of A, respectively.

Discrete ill-posed problems are very often characterized by the following two features
of the SVD:

• The singular values σi decay gradually to zero with no particular gap in the spectrum.
An increase of the dimensions of A will increase the number of small singular values.

• The left and right singular vectors Ui and Vi tend to have more sign changes in their
elements as the index i increases, i.e., as σi decreases.

To see how the SVD gives insight into the ill-conditioning of A, consider the following
relations which follows directly from (5.16):

AVi = σiUi ||AVi||2 = σi

ATUi = σiVi ||AUi||2 = σi

If a singular value σi is small compared to σ1 = ||A||2, that means that there exists a
certain linear combination of the columns of A, characterized by the elements of the right
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singular vector Vi such that ||AVi||2 = σi is small. The same holds true for Ui and the
rows of A. In other words, a situation with one or more small σi implies that A is nearly
rank deficient and the vectors Ui and Vi associated with the small σi are the numerical null
vectors of AT and A, respectively.

Another use of the SVD is for the solution of the least squares problem ||Ax − b||2.
We can write x and respectively Ax using the SVD vectors of A:

x =
n∑

i=1

(V T
i x)Vi Ax =

n∑
i=1

σi(V T
i x)Ui (5.18)

If A is invertible, then its inverse is given by

A−1 =
n∑

i=1

Viσ
−1
i UT

i (5.19)

and therefore the solution to Ax = b is

x =
n∑

i=1

σ−1
i (UT

i b)Ui (5.20)

Otherwise we define the generalized inverse (Golub and Van Loan [74]) A† as

A† ≡
rank(A)∑

i=1

Viσ
−1
i UT

i (5.21)

Then the least squares solution xLS to the least squares problem ||Ax−b||2 is given by

xLS = A†b =
rank(A)∑

i=1

UT
i b
σi

Vi (5.22)

The classical algorithm for computing the SVD of a dense matrix is due to Golub,
Kahan and Reinsch [74]. It consists of two main stages. In the first stage, A is transformed
into upper bidiagonal form B by means of a finite sequence of alternating left and right
Householder transformations. In the second (iterative) stage, the shifted QR algorithm is
applied implicitly to the matrix BTB and consequently B converges to Σ. The left and
right orthogonal transformations, if accumulated, produce the matrices U and V.

This algorithm, as well as other methods for computing the SVD of a dense rectangular
matrix, is available in many mathematical software libraries: IMSL, LAPACK, NAG,
Numerical Recipes. There are also few subroutines available for large sparse matrices
in the packages LANCZOS and SVDPACK.

If we consider the regularization matrix L ∈ Rp×n with m ≥ n ≥ p then we introduce
the generalized singular value decomposition (GSVD) of the matrix pair (A,L). The
generalized singular values of (A,L) are essentially the square roots of the generalized
eigenvalues of the matrix pair (ATA,LTL).
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Assuming that L has full row rank the GSVD is a decomposition of A and L in the
form

A = U
(

Σ 0
0 In−p

)
Z−1 L = V(M,0)Z−1 (5.23)

The columns of U ∈ Rm×n and V ∈ Rp×p are orthonormal, UTU = In and VTV = Ip.
Z ∈ Rn×n is nonsingular with columns that are ATA orthogonal. Σ = diag(σ1, . . . , σp) and
M = diag(ν1, . . . , νp) are p× p diagonal matrices. The diagonal elements are nonnegative,
ordered such that

0 ≤ σ1 ≤ · · · ≤ σp ≤ 1 1 ≥ νp ≥ · · · ≥ ν1 ≥ 0 (5.24)

and normalized such that
σ2
i + ν2

i = 1 (5.25)

Then the generalized singular values γi of (A,L) are defined as the ratios

γi =
σi

νi
(5.26)

Since

ZTATAZ =
(

Σ2 0
0 In−p

)
ZTLTLZ =

(
M2 0
0 0

)
(5.27)

we can see that (γ2
i , Zi) are the generalized eigensolutions of the pair (ATA,LTL)

associated with p finite generalized eigenvalues.
The following three characteristic features of GSVD are common for a discrete ill-posed

problem :

• The generalized singular values γi decay gradually to zero with no gap in the
spectrum. An increase of the dimensions of A will increase the number of small
generalized singular values.

• The singular vectors Ui, Vi and Zi tend to have more sign changes in their elements
as the corresponding γi decreases.

• If L approximates a derivative operator, then the last n − p columns Zi of Z have
very few sign changes, since they are the null vectors of L.

5.3 Hybrid methods: projection plus regularization

If the problem is too large one may consider regularization achieved through projection
onto a subspace (e.g., Fleming [56]). The truncated SVD (TSVD) is an example of such
projection: the solution is constrained to lie in the subspace spanned by the singular vectors
corresponding to the largest n − l singular values, where l is the number of terms to be
dropped from the sum.

Hybrids methods were introduced by O’Leary and Simmons [153]. These methods
combine a projection method with a direct regularization method like TSVD or Tikhonov
regularization. The problem is projected onto a particular subspace of dimension k,
but typically the restricted operator is still ill-conditioned. A regularization method is
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applied to the projected problem. Since the dimension k is usually small relative to n,
regularization of the restricted problem is much less expensive. Yet, with an appropriately
chosen subspace, the end results can be very similar to those achieved by applying the
same direct regularization technique to the original problem (Kilmer and O’Leary [120]).
Because the projected problems are usually generated iteratively by a Lanczos method, this
approach is useful when the matrix is sparse or structured in such a way that matrix-vector
products can be handled efficiently with minimal storage.

5.4 Parameter selection methods

No regularization method is complete without an algorithm for choosing the regular-
ization parameter. We discuss here several parameter-choice methods.

Without loss of generality restrict our discussion to the standard form case. This is
possible due to the relations

||Lu||2 = ||u||2 ||Au− b||2 = ||Āū− b̄||2 (5.28)

which ensure that application of a norm-based parameter-choice rule to the original problem
with A and b, or to the standard-form problem with Ā and b̄, yields exactly the same
regularization parameter.

We consider the norm of the error in the right hand side

||e||2 = ||b− bexact||2 (5.29)

Parameter-choice methods can be divided into two classes depending on their assumptions
about the error norm ||e||2:

1. Methods based on knowledge, or a good estimate, of ||e||2 (e.g., the Discrepancy
Principle).

2. Methods that do not require ||e||2, but instead seek to extract this information
from the given right-hand side (e.g., the Generalized Cross Validation and L-curve
Criterion).

The most widespread ||e||2-based method is the Discrepancy Principle DP (Morozov
[146]). We suppose that the ill-posed problem is consistent in the sense that Auexact =
bexact holds exactly. Under DP, we consider all solutions with ||Au− b||2 ≤ δε and select
from these solutions the one that minimizes the norm of u. This can be written as:

Minimize ||u||
subject to ||Au− b||2 ≤ δε

Generalized cross-validation GCV (Golub et al. [73], Wahba [199], [200]) is based on
statistical considerations, namely that a good value of the regularization parameter should
predict missing data values. The main idea is to find a parameter λ that minimizes the
GCV functional

G(λ) =
||(I −AA⊕

λ )b||2
(trace(I −AA⊕

λ ))
2

(5.30)

where A⊕
λ denotes the matrix that maps the right hand side b onto the regularized solution

xλ. GCV chooses aregularization parameter that is not too dependent on any one data
measurement.
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The final parameter-choice method discussed here is the L-curve criterion (LCC). The
L-curve is defined as a parametric plot of the norm of the regularized solution ||Lureg||2
versus the corresponding residual norm ||Aureg − b||2, with the regularization parameter
λ as the parameter. As the regularization parameter increases the norm of the solution
decreases while the residual increases.

The best regularization parameter should lie on the corner of the L-curve. For values
higher than this the residual increases without reducing the norm of the solution much,
while for values smaller than this, the norm of the solution increases rapidly without much
decrease in residual.

In practice only a few points on the L-curve are computed and the corner is located by
approximate methods, estimating the point of a maximum curvature (Hansen and O’Leary
[95]).
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CHAPTER 6

DESCRIPTION OF THE PHYSICAL

PHENOMENA FOR THE FLOW AROUND A

CYLINDER

When a fluid flows past a stationary body or, equivalently, when a body moves in a
fluid at rest, a region of disturbed flow is always formed around the body. The extent of
the disturbed flow region is largely dependent on the shape, orientation and size of the
body, the velocity and viscosity of the fluid and may be influenced by a wide variety of
small disturbances.

A particularly large and usually unsteady separated flow is generated by bluff bodies.
Bluff bodies may have sharp edges on their circumferences such as flat plates, triangular,
rectangular and polygonal cylinders or may be rounded like circular, elliptical and arbitrary
oval cylinders. The common feature of flows around bluff bodies is the development of
similar flow structures in the separated region.

Experiments showed the division of the disturbed flow field into four regions:

1. One narrow region of retarded flow

2. Two boundary layers attached to the surface of the cylinder

3. Two side-wise regions of displaced and accelerated flow

4. One wide downstream region of separated flow called the wake

The upstream retarded flow region presents high fluctuations in velocity. The inherently
unstable retarded flow forms unsteady flow structures in a streamwise direction.

The boundary layers around the cylinder are subject to a favorable pressure gradient
followed by a small region of adverse pressure gradient before separation. The separated
boundary layers continue to develop downstream as free shear layers and they initially
border the near-wake.

In the third region, the displaced flow is vigorously entrained by the low pressure in the
wake. The extent of the displaced region is strongly affected by the vicinity of confining
walls of wind or water tunnels, phenomenom known as the blockage effect.

Large flow structures are formed in the near wake and gradually decay along the wake.
The formation and decay of the flow structures depend on the state of flow which may be
laminar, transitional or turbulent.

Reynolds (1883) discovered that transition from laminar to turbulent flow in a smooth
pipe depends upon the fluid density ρ, the viscosity µ, the velocity V and the internal
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diameter of the pipe d. This transition takes place within a range of the Reynolds number

Re =
ρV d

µ
.

The state of flow may be fully laminar L, it may be in any of the three transitions TrW,
TrSL and TrBL, or, respectively, fully turbulent T.

6.1 The laminar state of flow

The laminar state of the disturbed flow can be subdivided into three basic flow regimes:

1. Non-separation regime: 0 < Re < (4− 5)

2. Closed near-wake regime: (4− 5) < Re < (30 − 48)

3. Periodic laminar regime: (30 − 48) < Re < (180− 200)

The flow in the first region is firmly attached to the surface of the cylinder all around
the circumference. The trail of steady and symmetric laminar shear layers does not form
a visible wake in the non-separation regime.

Separation initiates at Re = 4 to 5 when a distinct, steady, symmetric and closed
near-wake is formed. The free shear layers meet at the end of the near-wake at the
confluence point.

The elongated closed near-wake becomes unstable for Re > (30 − 48) and a sinusoidal
oscillation of shear layers commences at the confluence point. The amplitude of the trail
oscillation increases with rising Re. The final product is a staggered array of laminar
eddies.

Benard (1908) was the first to sketch the alternate procession of eddies behind a towed
circular cylinder in water based on visible dimples on the water surface. Von Karman (1911)
considered the stability of two rows of vortices theoretically and stimulated a widespread
interest. The alternating eddies develop gradually along the laminar wake. Taneda (1956)
proposed a subdivision of the periodic laminar regime into two separate phases: oscillating
free shear layers without eddies and a Karman vortex street formed behind the closed
near wake. The Karman vortices play an important role in the formulation of the optimal
control problem for flow around a rotating cylinder, since our goal was to suppress the
formation of these vortices using the rotation rate of the cylinder as the control parameter.

6.2 The transition states of flow

Dryden (1941) first noted the succession of transitions with Re in various regions of
the disturbed flow. Experiments showed the development of transitions in three disturbed
regions: wake (TrW), shear layers (TrSL) and boundary layers (TrBL).

The first transition TrW occurs in the wake and it was discovered by Roshko (1954) in
the range of Re being one order of magnitude lower than in pipe flow experiments. The
second transition TrSL appears in the free shear layers. It was first noted by Linke (1931)
then examined in detail by Bloor (1964) and Gerrard(1965). The third transition reaches
the boundary layers at separation. It was discovered by Wieselberger (1914) and Prandtl
(1916).
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The laminar periodic wake becomes unstable at higher Re farther downstream in the
wake. Gradually transition spreads upstream with increasing Re until the eddy becomes
turbulent during its formation.

Transition-in-wake state can be divided into two regimes:

• TrW1: Transition of laminar eddies in the wake for
(180 − 200) < Re < (220− 250)

• TrW2: Transition of an irregular eddy during its formation for
(220 − 250) < Re < (350− 400)

Between the two regimes TrW1 and TrW2 the laminar wake instability mode of eddy
formation and shedding is replaced by the turbulent eddy roll up and shedding mode from
the cylinder. The change of the eddy shedding mode is reflected by the different variation
in shedding frequency expressed through a non-dimensional Strouhal number St defined

by St =
fKD

U0
, where fK is the Karman vortex street frequency and D is the diameter of

the cylinder.
The second transition TrSL takes place along the free shear layers while the boundary

layers remain fully laminar. There are three phases of transition along the free-shear layers:

• TrSL1: Development of transition waves for
(350 − 400) < Re < (103 − 2× 103)

• TrSL2: Formation of transition eddies for
(103 − 2× 103) < Re < (2× 104 − 4× 104)

• TrSL3: Burst to turbulence for
(2× 104 − 4× 104) < Re < (105 − 2× 105)

The transition waves appear first as undulations of the free shear layers. As Re increases
the transition waves roll up into discrete eddies, along the free shear layer, before becoming
turbulent and then roll up in alternate eddies. Finally a sudden burst to turbulence occurs
in the free shear layers near the side of the cylinder and the formation of eddies takes place
close to the rear of the cylinder.

Five regimes were suggested for the transition-in-boundary-layers TrBL
(Zdravkovich [209]):

• TrBL0: Precritical regime for (105 − 2× 105) < Re < (3× 105 − 3.4× 105)

• TrBL1: One-bubble regime for (3× 105 − 3.4× 105) < Re < (3.8 × 105 − 4× 105)

• TrBL2: Two-bubble regime for (3.8 × 105 − 4× 105) < Re < (5× 105 − 106)

• TrBL3: Supercritical regime for (5× 105 − 106) < Re < (3.4 × 106 − 6× 106)

• TrBL4: Post-critical regime for (3.4 × 106 − 6× 106) < Re < (unknown)

The precritical regime is characterized by the first onset of transition in free shear layers
along separation lines. There is an initial fall in the drag coefficient while the eddy shedding
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remains prominent. TrBL0 terminates abruptly at certain Re with a discontinuous fall in
the drag coefficient and with a jump in the frequency of eddy shedding.

For the next regime, TrBL1, the pressure distribution is asymmetric. On one side of
the cylinder the free shear layers underwent sufficient transition to be able to reattach onto
the cylinder surface. The closed thin separated region was termed a separation bubble.
The asymmetric single-bubble regime TrBL1 terminates at higher Re with yet another
discontinuous fall in the drag and a jump in the shedding frequency when a second bubble
is formed on the other side of the cylinder.

The symmetric two-bubble regime TrBL2 represents an intricate combination of laminar
separation transition, reattachment and turbulent separation on the boundary layers on
both sides of the cylinder. Both TrBL1 and TrBL2 are very sensitive to disturbances and
can be eliminated by a sufficiently rough surface and/or turbulent free stream.

Further increase in Re brings transition to the primary laminar separation line in an
irregular manner. This leads to the disruption and fragmentation of separation bubbles
along the span of the cylinder. The irregularly fragmented separation lines prevent periodic
eddy shedding, which is the main feature of the super-critical regime TrBL3.

Roshko (1961) discovered that eddy shedding reappears at higherRe when the boundary
layers are turbulent before separation all along the span. This regime, TrBL4, is charac-
terized by the transition in boundary layers being somewhere between the stagnation and
separation lines. As Re increases, the transition advances asymptotically towards the
stagnation line and hence the value of Re for the upper end of TrBL4 is hard to define.

6.3 Fully turbulent state of flow

This state of flow is reached when all disturbed flow regions around the cylinder are
turbulent. It is not known at present at which value of Re the turbulent state starts.

The flow past the cylinder and the associated drag and eddy shedding are expected to be
invariant provided that the influencing parameters are kept small. However this becomes
hardly possible because compressibility effects in air and cavitation in water cannot be
avoided at very high Re and they become governing parameters.

6.4 Evolution of the fluid-dynamic section

The flow structures described in the previous sections determine the magnitude,
direction and time variation of the fluid-dynamic force exerted upon the cylinder. For
example, the symmetric flow regimes L1 and L2 in the laminar state give rise to a steady
resistance, while the laminar periodic regime L3 generates a regular periodic force with
components in both drag and lift direction (drag and lift forces represent the resultant
force along and respectively normal to the free stream velocity ).

The fluctuating drag and lift forces are denoted by C
′
D and C

′
L and the time-averaged

values by CD and CL. The drag force CD is produced by viscous friction along the surface
CDf

and by an asymmetric pressure distribution on the upstream and downstream side of
the cylinder CDP

:
CD = CDf

+ CDP
(6.1)
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The viscous friction CDf
is significant in the laminar state but becomes negligible

beyond the end of TrSL state of flow. The variation of pressure-drag CDP
is closely

related to the flow regimes. It oscillates, with three local minimum values corresponding
to the elongated, steady and closed near-wake at the end of L2, the longest length of eddy
formation region between TrSL1 and TrSL2 and the separation bubbles on both sides of
the cylinder in TrBL2 respectively.

The fall in CD and the appearance of mean CL occur at the beginning of the single-
bubble regime. TrBL1 is followed by another fall in CD and CL at the start of the
two-bubble regime TrBL2.

The fluctuating lift C
′
L is always greater than the fluctuating drag C

′
D. The latter has

two components: C
′
DS which is sinusoidal and C

′
DT which is random and produced by

turbulence. CL has also two similar components C
′
LS and C

′
LT (except in the L3 regime).

C
′
LS is dominant in TrW2 and TrSL3 and vanishes in TrBL3. In the post-critical state

TrBL4 C
′
LS has the same order of magnitude as C

′
LT .

6.5 Additional considerations for the flow corresponding to
the Reynolds number in the range 0 < Re < 1000

For our research we considered the flow around a cylinder for the Reynolds number in
the interval [40, 1000]. A more in-depth analysis of the flow in the range considered provides
better insight for the validity of the optimized numerical results, by relating the physical
phenomena to the corresponding numerical values obtained during and after the process of
flow optimization.

The flow at very low Reynolds number Re is dominated by viscous forces to such an
extent that all disturbed regions remain laminar. The separation appears for Re ≈ 5. The
most notable feature of the regime in the range 5 < Re < 40 is a steady separated region
in the form of a laminar closed near-wake behind the cylinder.

At Re = 3.5 it was observed that the cylinder is “pushing” and “dragging” thick
shear layers by the action of large viscous forces. This “pushing” and “dragging” becomes
self-evident by towing a cylinder through a fluid at rest. These two actions produce a large
resistance force. The sidewise and upstream displacement of fluid from cylinder can be
strongly influenced by the vicinity of side walls (it was observed that a cylinder confined in
a 500D wide container was still affected by the side walls at very small Reynolds numbers).

This influence, called the wall blockage, occurs in most experiments and it is not present
in applications. The confining walls of wind and water tunnels restrict the disturbed flow
sidewise and impose an additional pressure gradient. The blockage ratio G

D (where G is the
distance between the walls) is enhanced by thick boundary layers and it may become the
dominant parameter.

The magnitude of viscous forces decreases with increasing Re until separation occurs
at a certain Resep. The separation was first observed by using smoke visualization. The
blockage has a strong effect on Resep. It is difficult to determine Resep experimentally
because the size of the near-wake is small and separation occurs in a region where the
velocity is also very small. The appearance of a steady separated region confined in a
closed and symmetric near-wake is marked by a noticeable change in pressure distribution.
The adverse pressure gradient is relieved by separation.
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The closed near-wake characteristic for 5 < Re < (30 − 48) is symmetric, steady and
it is formed as the separated shear layers merge downstream. A metamorphosis of the
near-wake was observed if Re increases from 20 to 40. There is a sequence of elongation
and then obliteration of the initially closed near-wake. The formation of a new near-wake
is accomplished by secondary separations of the free shear layers from the near-wake.

Another unexpected feature of the closed near-wake regime is that the streamlines
displaced by the cylinder do not follow the shape of the near-wake boundaries. One may
observe a widening of the streamlines instead, which increases away from the cylinder.

The steady, elongated and closed near wake becomes unstable when Re > Reosc, where
the subscript osc stands for oscillation. The transverse oscillation starts at the end of the
near-wake and initiates a wave along the trail. As Re was increased from 40 to 60 the
development of secondary separations of the free shear layers from the near-wake boundary
is accompanied by the transverse oscillation of the trail. The secondary separations prevent
the free shear layers from meeting at the confluence point as they do behind the steady
and closed near-wake.

The near-wake instability initiates a wavy trail for Re > Reosc. The wavelength of the
trail gradually decreases with rising Re. At the same time the amplitude of crests and
troughs of the wavy trail increases with rising Re and the free shear layers begin to roll up
and form eddies.

A fully developed Karman vortex (eddy) street has three distinct features:

1. The staggered vortices are not shed from the cylinder but initiate at the end of the
closed near wake;

2. The roll up is gradual and takes place along the wake until the pattern becomes
“frozen”;

3. The widening of the wake is accomplished by the entrainment of the external
irrotational fluid.

We define the vortex shedding period (V SP ) as the inverse of the Strouhal number. The
plot St versus Re shows a logarithmic increase of St as we increase Re. From experimental
data it was observed that a discontinuous drop in shedding frequency occurs in the range
80 < Re < 130. This suggested the existence of cells of different shedding frequencies along
the span of the cylinder. But the coexistence of different shedding frequencies along the
span cannot explain the discontinuity which occurs at a certain Reynolds number Red. A
better explanation of the phenomenon, verified experimentally, is that the discontinuity
in the frequency is produced by a transition mode from one slanting shedding mode to
another slanted mode.

Flow in the laminar periodic wake is two-dimensional if all eddy filaments are parallel
to the cylinder axis. The flow is truly two-dimensional in the range 40 < Re < 80. For
80 < Re < 120 the wake is sensitive to disturbances and may become three-dimensional.
The majority of experiments showed that the laminar eddy filaments were either slanted
or wavy spanwise as Re ≥ 120. This implied that the periodic wake has three-dimensional
characteristics for that range of Re, although a small number of experiments obtained a
two-dimensional wake even for the range 120 < Re < 180.

Considerable effort has been devoted for discovering what causes the existence of two
modes of flow in the laminar periodic wake. The eddy filaments are more or less parallel
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to the cylinder axis in the initial phase of flow. The slanted eddy filaments developed
subsequently as the effect of the ends spread along the span. It was suggested that the
slantwise shedding is an intrinsic feature of the flow which arise from a difference in the
end effects, although the magnitude of the effect may depend on the particular end effects
of the cylinder.

Based on these observations researchers found methods to induce parallel vortex
shedding: by fitting end plates on both sides of the cylinder, by addition of two short
cylinders at both ends, by placing too cylinders of large diameters perpendicular to and
upstream of the model cylinder or by applying suction at both ends of the cylinder.

The eddy formation is completed when a maximum concentration of vorticity is
attained. The distance of that point from the cylinder is named the length of the eddy
formation region Lf . Beyond Lf the viscous dissipation and diffusion gradually reduce the
strength of eddies. It might be expected that the decay of laminar vortices by diffusion
and viscous dissipation would eventually annihilate the eddy street far downstream.

Experiments showed that after an almost complete obliteration of the primary vortex
street a secondary eddy street gradually emerges in the far-wake. In some cases a tertiary
eddy street followed the secondary one. There is wide agreement on the fact that the
secondary eddy street can be found for 100 < Re < 160. For the range 70 < Re < 100
there were results showing the secondary vortex street as well as research which could not
detect it. After Re > 160 the wake becomes irregular and eventually turbulent, making
the interpretation of flow visualization much more difficult.

All laminar flows eventually become unstable above a certain Re and undergo transition
to turbulence. The flow in a wake does not become fully turbulent as soon as it ceases
to follow the laws of laminar flow. There is a finite transition region characterized by the
random initiation and growth of irregularities. The transition in periodic laminar wakes is
further complicated by the viscous diffusion and mutual interaction.

As mentioned in the beginning of this chapter the transition-in-wake TrW may be
divided into two flow regimes:

1. Lower transition regime TrW1: the vortices are formed laminar and regular, but
become irregular and transitional further downstream

2. Upper transition regime TrW2: the eddies are formed laminar and irregular, but
become partly turbulent before they are shed and carried downstream.

The transitional wake in TrW2 is still surrounded by laminar free shear layers. It
has been shown that a two-dimensional vortex filament subjected to three-dimensional
disturbances is distorted progressively by its own induction. The continuous distortion of
laminar eddy filaments leads ultimately to their breakdown.

The distortions of eddy filaments appeared at randomly disposed spanwise positions
and followed each other at the same spanwise position. They were called “fingers” because
they point towards the cylinder. They first appeared for Re > 150 and persisted for 2 or 3
cycles, but as Re increased they appeared more frequently at each position and in clumps
of a larger number.

The three-dimensional and random appearance of fingers may be related to a low-
frequency signal detected by a hot wire. Low frequency irregularities were found for
200 < Re < 400. They became more vigorous downstream and eventually rendered the
wake turbulent.
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The shedding frequency of laminar and turbulent eddies has been measured by many
researchers, starting with Strouhal (1878). The following ranges were suggested:

1. stable range, 40 < Re < 150: regular velocity fluctuations and rising St;

2. unstable range, 150 < Re < 300: irregular bursts in velocity fluctuations and St
unstable;

3. irregular range, Re > 300: irregular and periodic, St constant.

The boundary between TrW1 and TrW2 is marked by a jump in St at Re ≈ 250 which
separates rising St from St = const.

There are two modes of eddy shedding: low-speed mode and high-speed mode. The
distinct feature of the low-speed mode is the sinusoidal trail and gradual roll up of free
shear layers at crests and troughs. For the high-speed mode the vortices are not mutually
connected. The upper eddy is formed in an almost stationary position and the cutoff of
the upper shear layer is executed by the lower eddy on the opposite side. Measurements
have demonstrated there was no smooth transition from low-speed to high-speed mode of
eddy shedding.

The TrW state of flow is associated with transition to turbulence in wake. This means
that all eddies are formed laminar in TrW1 and TrW2 regimes and become turbulent
downstream. Turbulent eddies are produced by mixing with the free stream flow around
them. The eddies induce transverse flow across the wake which is an intrinsic feature of
the high-speed mode of eddy shedding. Experiments showed that at Re = 210 we have
fully laminar flow in both wake and eddies.

As Re increases to 270 the transverse flow between eddies becomes turbulent in
the confluent region. As Re increases again to 400 the transition in confluent regions
becomes more extended. Based on these observations it was suggested that the transition
to turbulence in laminar eddies is initiated by the entrainment of turbulent fluid from
the confluent regions into the otherwise laminar eddies, hypothesis which was confirmed
experimentally.

It has been shown that the initiation of transition in TrW1 is associated with the
appearance of “fingers” and the latter are always irregular and three-dimensional. This
indicates that the formation of “fingers” and three-dimensional flow should be postponed,
in order to suppress transition. This was achieved by several methods, such as by forcing
the cylinder to oscillate at high frequency or by enhancing two-dimensionality by placing
two parallel cylinders in tandem arrangement to the oncoming free stream.

The transition to turbulence in the free shear layers (TrSL) develops through distinct
phases as the Reynolds number rises (Zdravkovich [209]):

• TrSL1 (lower sub-critical regime): transition waves appear along free shear layers and
stabilize the near wake;

• TrSL2 (intermediate sub-critical regime): transition vortices are formed as a chain
along free shear layers and they precede the transition to turbulence;

• TrSL3 (upper sub-critical regime): an immediate transition to turbulence close to the
cylinder is accompanied by a very short near-wake.
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Since our research considered the Reynolds number in the range 2 < Re < 1000, we
will end this chapter with considerations about TrSL1.

In the above regions turbulent eddies are regularly formed, periodically shed and rapidly
dissipated along the wake. The wake energy decays rapidly as the fluid moves away from
the cylinder.

The Karman vortex street evolves gradually by a roll-up of the free shear layers at
crests and troughs of the wavy trail beyond Re = 60. Similar laminar waves are observed
in boundary layers before the transition to turbulence. Transition waves, an analogous
counterpart, are found in the free shear layers emanating from circular cylinders beyond
Re = 500. The apparent similarity of all three kinds of waves suggests a universal
mechanism of transition to turbulence.

We did not consider Reynolds numbers for which the flow is predominantly turbulent.
For more about the characteristics of the turbulence regime for the flow around a cylinder
the reader is referred to Zdravkovich [209]. An overview of turbulent flow research in the
areas of simulation and modeling is provided by Gatski et al. [62].
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CHAPTER 7

OPTIMAL CONTROL OF A FLOW AROUND A

ROTATING CYLINDER

7.1 The governing equations of the model

Let B denote a circular cylinder enclosed by an impermeable boundary Γ, while
the two-dimensional exterior domain D = R2 \ {B ∪ Γ} is the region occupied by an
incompressible viscous fluid (for numerical purposes, the domain will be restricted to a
rectangle in R2).

The fluid is moving with velocity U0 in the x-direction and the cylinder rotates
counterclockwise with angular velocity Ω.

The problem can be mathematically described by the 2-D unsteady Navier-Stokes
equations, where (u, v) is the velocity vector and p is the pressure:

∂u

∂t
+
∂p

∂x
=

1
Re

(
∂2u

∂x2
+
∂2u

∂y2

)
− ∂(u2)

∂x
− ∂(uv)

∂y
in D (7.1)

∂v

∂t
+
∂p

∂y
=

1
Re

(
∂2v

∂x2
+
∂2v

∂y2

)
− ∂(uv)

∂x
− ∂(v2)

∂y
in D (7.2)

∂u

∂x
+
∂v

∂y
= 0 in D (7.3)

subject to initial condition
(u, v)|t=0 = (u0, v0) in D. (7.4)

The equations are non dimensional. Re is the Reynolds number defined as Re = U0d
ν ,

where d is the diameter of the cylinder and ν is the kinematic viscosity ν =
µ

ρ
, with µ the

viscosity and ρ the density.
No-slip boundary condition are enforced at the upper and lower boundaries; an inflow

boundary condition is applied at the left boundary:

u = U0 and v = 0 (7.5)

and an outflow boundary condition at the right boundary:

∂u

∂x
= 0 and

∂v

∂x
= 0. (7.6)

On the surface of the cylinder the velocity is equal to the angular velocity Ω = (Ωx,Ωy)
:

u = Ωx v = Ωy. (7.7)
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7.2 Space and time discretization

The region D is discretized using a staggered grid as presented in Fig. 7.1 (Griebel et al.
[79]). The pressure p is located at the cell centers, the horizontal velocity u at the midpoints
of the vertical cell edges and the vertical velocity v at the midpoints of the horizontal cell
edges. Cell (i, j) occupies the spatial region [(i − 1)∆x, i∆x] × [(j − 1)∆y, j∆y] and the
corresponding index (i, j) is assigned to the pressure at the cell center as well as to the
u-value at the right edge and the v-velocity at the upper edge of the cell.

Consequently, not all extremal grid points come to lie on the domain boundary. The
vertical boundaries, for instance, carry no v-values, just as the horizontal boundaries carry
no u-value. For this reason, an extra boundary strip of grid cells is introduced (see Fig.
7.2), so that the boundary conditions may be applied by averaging the nearest grid points
on either side.

We require that the discretized values of u and v on the boundary cells are equal to the
components of the angular velocity on the circle. This boundary condition is enforced by
averaging the values on either side of the boundary and setting this average to be equal to
the angular velocity value.

The continuity equation (7.3) is discretized at the center of each cell by replacing the
spatial derivatives with centered differences using half of the mesh width. The momentum
equation (7.1) for u, on the other hand, is discretized at the midpoints of the vertical
cell edges, while the momentum equation (7.2) for v is discretized at the midpoints of the
horizontal edges.

The second derivatives of u and v as well as the spatial derivatives of pressure are
discretized using central differences with half the step size.

The discretization of the convective terms ∂(u2)/∂x, . . . , ∂(uv)/∂y, however, poses some
difficulties. The first approach was to employ averages of u and/or v. For example, the
discrete ∂(uv)/∂y has the formula[

∂(uv)
∂y

]
i,j

=
1
∆y

(
(vi,j + vi+1,j)

2
(ui,j + ui,j+1)

2
− (vi,j−1 + vi+1,j−1)

2
(ui,j−1 + ui,j)

2

)
Because the convective terms in the momentum equation become dominant at high

Reynolds numbers or high velocities, it is necessary to use a mixture of the central
differences and the donor-cell discretization. The discrete ∂(uv)/∂y becomes[

∂(uv)
∂y

]
i,j

=
1
∆y

(
(vi,j + vi+1,j)

2
(ui,j + ui,j+1)

2
− (vi,j−1 + vi+1,j−1)

2
(ui,j−1 + ui,j)

2

)

+ γ
1
∆y

(
|vi,j + vi+1,j |

2
|ui,j + ui,j+1|

2
− |vi,j−1 + vi+1,j−1|

2
|ui,j−1 + ui,j|

2

)
where γ is a parameter which should be chosen such that

max
i,j

(∣∣∣∣ui,j∆t
∆x

∣∣∣∣,
∣∣∣∣vi,j∆t∆y

∣∣∣∣
)
≤ γ ≤ 1

The time discretization is explicit in the velocities and implicit in the pressure: i.e., the
velocity field at each time step tn+1 can be computed once the corresponding pressure was
computed. The time step is required to satisfy the stability condition :

δt = τ min
(
Re

2

(
1

∆x2
+

1
∆y2

)−1

,
∆x
umax

,
∆y
vmax

)
.
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where τ ∈ [0, 1] is the Courant-Fredrichs-Levy (CFL) number (set to 0.6 in the code).
The domain is a rectangle of 22.0 units in length and 4.1 units in width. The cylinder

(located inside the rectangle) measures 1.0 units in diameter and is situated at a distance
of 1.5 units from the left boundary and 1.6 units from the upper boundary of the domain.

The cylinder is rotating with an angular velocity which can be either constant in time
or a time-dependent function.

Figure 7.7 shows the uncontrolled flow for this domain.

7.3 Formulation of the optimal control problem

The control problem consists in finding the optimal angular velocity of the cylinder such
that the Karman vortex shedding in the wake of the cylinder is suppressed.

In order to find the optimal value(s) of the angular velocity of the cylinder, we minimize
a cost functional which depends on the state variables as well as on the control variables.
The control variables are the rotation parameters: amplitude A and frequency F .

We define the speed ratio α ≡ aΩ
U

, where a is the radius of the cylinder, Ω is the angular
velocity and U is the free stream velocity.

We considered both the constant rotation case: α(t) = A as well as
the time harmonic rotary oscillation case: α(t) = A sin(2πFt).

The vector of control parameters is Λ = A or Λ = (A,F ) respectively.
With these notations, the optimal control problem becomes:
If Λ is the vector of parameters which determine the angular velocity

of the cylinder, minimize the cost functional J with respect to Λ subject
to the constraints imposed by the 2-D unsteady Navier-Stokes equations
model.

Based on recent research work (e.g., Abergel and Temam [1], Burns and Ou [23], Ou
[154], Ghattas and Bark [63], Berggren [14], Bewley et al. [17]), several possible approaches
to control the behavior of the flow can be employed, such as:

• flow tracking (the velocity field should be ”close” to a desired field);

• enstrophy minimization (the vorticity is minimized);

• dissipation function (minimize the rate at which heat is generated by deformations
of the velocity field).

In this research work we considered only flow tracking and vorticity minimization.
The mathematical expressions of the corresponding cost functionals are provided below.

We considered a cost functional for vorticity minimization of the form:

J (Λ) =
1
2

∫ t2

t1

∫
D
(ζ2)dDdt (7.8)

where the vorticity is ζ(x, y) =
∂u

∂y
− ∂v

∂x
.
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The best results were obtained when the cost functional J was chosen to be of the flow
tracking-type, namely:

J (Λ) =
1
2

∫ t2

t1

∫
D
(|u− ud|2 + |v − vd|2)dDdt (7.9)

where D is the spatial domain and (ud, vd) is the desired velocity field.

7.4 Existence of the optimal solution

The control problem involving Navier-Stokes equations was studied by Abergel and
Temam [1], Coron [39], Fursikov et al. [59].

Ou [154] proved an existence theorem for the optimal controls in the case of a rotating
cylinder, continuing the research of Sritharan [178].

First, one needs to construct two solenoidal vector fields Ψ(r) and Φ(r) which would
carry the nonhomogenous boundary conditions at the solid surface of the cylinder and, in
the far field, respectively. If r is the position vector and U(r, t) is the velocity vector for
the model equations we introduce a change of variable

U(r, t) = V(r, t) + U∞Ψ(r) + Ω(t)Φ(r) (7.10)

where U∞ is the far field velocity in the x direction and Ω is the angular velocity of the
cylinder.

The following system of equations with homogeneous boundary conditios is then
obtained:

Vt + (V · ∇)V + U∞(V · ∇Φ) + Ω(t)(V · ∇Ψ) + U∞(Φ · ∇V) +

Ω(t)(Ψ · ∇V) = −∇P +
1
Re
∇2V in D× [0, T ]

∇ ·V = 0 in D× [0, T ]

V
∣∣∣∣
Γ

= 0 (7.11)

V→ 0 as |r| → ∞
V(r, 0) = 0

where D is the domain considered and Γ its boundary.
Let H be the solenoidal subspace defined by

H = {V : D→ R2;V ∈ L2(D),∇ ·V = 0 and V · n
∣∣∣∣
Γ

= 0} (7.12)

The system of equations (7.11) is projected onto the solenoidal subspace H by an
orthogonal projector and we obtain:

δtV(t; Ω) +
1
Re

A V(t; Ω) +N(Ψ,Φ,V(t; Ω)) = F (Ψ,Φ,Ω) (7.13)

V(0) = 0

where A is the Stokes operator.
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We denote Uad the set of all admissible pair (V,Ω) ∈ L2(0, T ;H)×H1(0, T ) that satisfy
equation (7.13).

If zd is the desired flow field (in our case a flow without Karman vortices) then the
optimal control problem is to find an optimal pair (V,Ω) ∈ Uad which minimizes the cost
functional

J (V,Ω) =
∫ T

0
||V(t; Ω) + U∞Ψ+Ω(t)Φ− zd||2L2(D) dt+ λ

∫ T

0
|Ωt|2 dt (7.14)

where λ is a regularization parameter.
The following result was proved by Ou [154] following Sritharan [178]):

There exists an optimal solution (V∗,Ω∗) ∈ Uad such that

J (V∗,Ω∗) = inf
(V,Ω)∈Uad

J (V,Ω) (7.15)

7.5 Regularization

Preliminary numerical experiments proved that the minimization is ill-posed (while the
objective functional decreased by a very small percentage, the difference in the values of
the parameter for which we have this decrease in the function may assume arbitrarily large
values).

Our approach for dealing with ill-posedness was to apply a Tikhonov-type regulariza-
tion. We added a new term to the cost functional F :

J REG = J + λΠ (7.16)

where λ > 0 is a regularization parameter and Π a regularization function (see Tikhonov
and Arsenin [187]).

The regularization term may also be viewed as playing the role of a penalty term aiming
to ensure that the control parameter lies within a reasonable interval.

For the case of constant rotation the regularization function Π is:

Π =
1
2

∫
Γ
(u2 + v2)dΓ

where (u, v) are the two components of velocity and Γ is the boundary of the cylinder.
Such a choice was also made by Abergel and Temam [1] and Gunzburger and Manservisi

[90] in their research.
For the time-harmonic case, the regularization function Π was chosen to be:

Π =
∫ Tw

0

1
2

∫
Γ
(u2 + v2)dΓdt

where Tw is the length of the time window for optimization.
An in-depth discussion about regularization is provided in chapter 5.
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7.6 Overview of numerical results

The optimization was performed over a short time interval (time window). The values
of the state variables for each time step in this control window were saved and used in the
adjoint computation (specifically the ”forcing term” for the adjoint equation).

The time window was located at the beginning of the time evolution and had a length
varying between 1.0 and 4.0 time units.

Even when the flow is considered over a time period of 25.0 time units (which exceeds by
far the length of the control time window), the optimized values of the control parameters
suppress the Karman vortex shedding far beyond the extent of the time window.

The choice of the length of the time window is very important. For both cases, namely
constant and time-dependent angular rotation, the length of the control window should
be larger than the vortex shedding period (VSP), the inverse of the Strouhal number

St =
fKD

U0
, where fK is the Karman vortex street frequency and D is the diameter of the

cylinder.
Since the adjoint method requires availability of the values of the state variables for all

the time steps in the control time window, the length of the time window should not to be
much larger than VSP . Otherwise both the memory and the CPU time requirements for
minimization may prove to be too large.

For the case of the constant rotation we obtained satisfactory results with a control time
window smaller than VSP (but not smaller than 1.0 time unit). In the time-dependent case
the choice of a time window smaller than VSP leads to nonconvergence of the minimization
process.

The cost functional which was minimized involved the L2 norm of the difference between
the computed velocity and a ”desired” velocity. Our ”desired” flow was obtained for
Reynolds number Re = 2 and the ratio between the angular velocity and the free stream
velocity had a value of 2.0 (see Figure 7.6).

7.7 Suppression of Karman vortex shedding in the
constant rotation case

Let us consider the speed ratio

α =
aΩ
U
,

where a is the radius of the cylinder, Ω is the angular velocity and U is the free stream
velocity.

The uncontrolled flow is taken at α = 0.5 (an example is provided in Fig. 7.7, for
Re = 100). The minimization satisfies the convergence criteria after 5-11 minimization
iterations for all the cases we considered: the Reynolds number in the range 60 ≤ Re ≤ 1000
.

For each case considered we found a threshold value for α (denoted αRe) such that for
any α > αRe a full suppression of the Karman vortex shedding was obtained (see Figures
7.8,7.9, 7.10).

The CPU time required for a typical optimal flow control calculation was 2-3 hours on
a Silicon Graphics Indigo (SGI) machine.
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The results for 60 ≤ Re ≤ 160 were found to be in very good agreement with the
numerical results obtained by Kang et al. [118] (see Fig. 7.3).

For the case 60 ≤ Re ≤ 140 the regularization parameter was found by using an
empirically derived law, which relates it to the Reynolds number (see Fig. 7.5). We started
by finding the values of the regularization parameter by trial and error for two Reynolds
numbers (we considered Re = 60 and Re = 100) and then we assumed the existence of a
logarithmic relation between the regularization parameter and the Reynolds number. Based
on this assumption we were able to obtain the corresponding regularization parameters for
the other Reynolds numbers (in our case Re = 80, Re = 120 and Re = 140, respectively).

For the case 160 ≤ Re ≤ 1000 the empirical law employed in the previous case for
obtaining the regularization parameter did not yield good results and, as a consequence,
the corresponding regularization parameters were found by trial and error. A possible
explanation of this phenomenon is the following: the Karman vortex regime for 160 ≤
Re ≤ 1000 is inherently different than the regime for 60 ≤ Re ≤ 140 (Zdravkovich [209]).

To check that the minimization results were robust, we performed for each case two
different minimizations: one starting with an initial guess of α = 0.9 (a value less than the
optimal value) and one starting with an initial guess of α = 3.5 (a value greater than the
optimal value of α). For both initial guesses, the results obtained for the optimal value of
α were identical.

As the Reynolds number increases from 60 to 1000 we can see from Figure 7.4 that the
rotation rate tends asymptotically to a limit. This behaviour is in good agreement with
previously obtained experimental and numerical results.

At Re = 1000 we compared our results with the values obtained by Chew et al.
[29]. They found that for α = 2 and α = 3 any vortex shed will be weak and Karman
vortex shedding almost disappears for α = 3, a phenomenon which was also described
experimentally by Badr et al. [9] and numerically by Chou [32]. We found the ”optimal”
α to be α = 2.32 for Re = 1000.

For Re ≥ 200 the flow is not completely free of vortex shedding (as it can be seen from
Fig. 7.9 and 7.10). This situation was also described by Chen et al. [28].

In the case presented here (time independent angular velocity) we found that control
time windows smaller than the Karman vortex shedding period (but not smaller than 1.0
time units) gave satisfactory results. This observation is important since a smaller control
window reduces the computer memory necessary for storing the state variables (which
are required for the adjoint computation). A smaller time window also means a sizable
reduction in the required CPU time.

7.8 The time histories of the drag coefficient in the
constant rotation case

Practical applications (in aerodynamics) of optimal control for flow around a rotating
cylinder involve the optimization of the drag coefficient (CD ).

We compare the variation of the drag coefficient in the controlled case (with rotation)
with the corresponding variation for the no-rotation case (α = 0). In order to compare
them on the same plot we subtracted from CD the corresponding mean value (C̄D). The
mean drag coefficients obtained numerically for the case of no rotation were in agreement
with the values reported by He et al. [98] (see Table 7.1).
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We noticed a very significant reduction in the amplitude of the fluctuation for the drag
coefficient when the flow is controlled.

In a viscous flow the total drag forces are contributed by the pressure and skin friction
due to the viscous effects. For known vorticity values

ω(x, y) =
∂u

∂y
− ∂v

∂x
on the cylinder surface, the drag can be calculated in the polar coordinates r − θ:

CD(t) = CDP
(t) + CDf

(t) =
2
Re

∫ 2π

0

[
(
∂ω(t)
∂r

]
Γ
sin θdθ −

[ 2
Re

∫ 2π

0
ω(t)
]
Γ
sin θdθ (7.17)

where the subscript Γ denotes quantities evaluated on the cylinder surface and the
subscripts P and f represent the contributions from pressure and friction, respectively.

Fig. 7.14 shows plots of the time histories of the drag coefficient for different Reynolds
numbers and for time in the interval 0 ≤ t ≤ 20 time units. On each plot we present 2
graphs: the drag obtained for a flow in the fixed cylinder case (α = 0) and, respectively,
the drag for the flow obtained using the optimal value of the control speed ratio α (after
subtracting the corresponding mean value).

The results presented demonstrate the effectiveness in improving the drag performance
by selecting a proper rotation rate. An example is presented in Fig. 7.14, which shows a
reduction of more than 60% of the amplitude of the drag variation.

7.9 Suppression of Karman vortex shedding for the time
harmonic rotary oscillation

We also considered the time dependent angular velocity. A special case is the time
harmonic rotary oscillation, for which the speed ratio assumes the form α(t) = A sin(2πFt).

The minimization was performed for values of the Reynolds numbers in the range
100 ≤ Re ≤ 1000.

Several time control windows were used (their length of the control varying between
1.0 and 5.0 time units). In order to obtain numerical convergence for the minimization we
had to choose a time window longer than the Karman vortex shedding period, otherwise
the minimization failed to converge.

The regularization parameter was chosen by trial and error. For this case we could not
find a relationship between the regularization parameter and the Reynolds number, as for
the previously described constant rotation rate case.

The flow obtained using the optimal values of the angular velocity after the minimization
is presented in Fig. 7.12 and 7.13. In this case we did not obtain complete suppression of
the vortex shedding.

However, we can see that the flow determined by the optimal rotations parameters (ob-
tained through the minimization process) is markedly less turbulent than the uncontrolled
flow, described in Fig. 7.11.
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7.10 The time histories of the drag coefficient for the time
harmonic rotary oscillation

Reduction of the drag coefficient using time harmonic rotary oscillation was reported
by Tokumaru and Dimotakis [188], Baek and Sung [10] and He et al. [98]. The research of
He et al. [98] shows a 30% to 60% drag reduction if one uses a rotating cylinder, compared
to the fixed cylinder configuration.

Our results are presented in Fig. 7.15 which show plots of the time histories of the drag
coefficient for time in the interval 0 ≤ t ≤ 20 time units.

They are not as impressive as the results obtained for the constant rotation case, which
may be related to the fact that we could not obtain the full suppression of Karman vortex
shedding.

If one compares our results with He et al. [98], one may distinguish small differences in
the numerical values obtained for the optimal control parameters (in both research articles,
the forcing angular velocity is ω(t) = ω1 sin(2πSet) and the optimal control parameters are
the amplitude ω1 and the forcing frequency Se). Our ”optimal” amplitude ω1 differs by at
most 10% from the value reported in their research. We did not obtain the same ”optimal”
forcing frequency (which in their case was very close to the lock-in forcing frequency).

One possible explanation for this situation is the following: there is a difference in the
formulation of the cost functionals used in our research and those described in He et al.
[98] (this difference appears to be due to the setting of the optimal control problem: our
main goal was the suppression of the Karman vortex shedding, while their research was
aimed toward reduction of drag).

7.11 Description of the physical phenomena corresponding
to the computational results

At low Reynolds numbers (Re < 40) the wake behind a non rotating cylinder comprises
a steady recirculation region with two vortices symmetrically attached to the cylinder,
whose size grows with increasing Reynolds number. When the Reynolds number is slightly
larger, Re < 60, the trailing vortex street becomes unstable and develops an unsteady
wavy pattern. For Reynolds numbers 60 < Re < 200, the Karman vortex shedding
occurs in the near wake behind a cylinder due to the flow instability accompanying a large
fluctuating pressure and, thus, a periodically oscillating lift force. The attached vortices
become asymmetric and are shed alternately at a well defined frequency.

At higher Reynolds numbers (Re > 200) the flow becomes more turbulent and vortex
shedding also occurs, but assuming more complicated patterns this time. In this last case
the vortex structures are unstable to 3-D perturbations. For this reason, numerical results
available from the 2-D codes agree well with the experimental data for Reynolds numbers
Re ≤ 160 bwhile numerical results obtained for larger Reynolds numbers are not always
consistent as a consequence of the three-dimensionality effect (e.g., Graham [76]).

For higher Reynolds numbers 3-D codes will yield numerical results which will match
experimental data better than their 2-D counterparts. Zhang and Dalton [210] obtained
smaller global quantities such as drag and lift (with better agreement with experimental
values) than the corresponding 2-D simulation. The difference has been attributed to the
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phase difference of flows in different spanwise locations caused by three-dimensionality and
to the 3-D mixing, both absent in the 2-D simulation.

For Reynolds numbers Re ≥ 160 there are various instabilities. The primary instability
can be seen when the wake undergoes a supercritical Hopf bifurcation that leads to 2-D
Karman vortex street. The secondary instability occurs sequentially, which results in the
onset of the 3-D flow. The periodic wakes are characterized by two critical modes which
are respectively associated with large-scale and fine-scale structures in span (Williamson
[205], Ding and Kawahara [48]).

The rotation of a cylinder in a viscous uniform flow is expected to modify the wake flow
pattern and vortex shedding configuration, which may reduce the flow-induced oscillation
or augment the lift force. The basic physical rationale behind the rotation effect is that
as the cylinder rotates, the flow of the upper cylinder is decelerated and easily separated,
while the flow of the lower cylinder is accelerated and the separation can be delayed or
suppressed. Hence the pressure on the accelerated side becomes smaller than that of the
decelerated side, resulting in a mean lift force (this effect is known as ”Magnus effect”:
Barkla and Auchterlonie [11]).

As we increase the control parameter α (the angular velocity normalized by the free
stream velocity), the flow becomes asymmetric and at the same time the pressure on the
lower (accelerated) side of the cylinder decreases, resulting in a negative downward mean
lift. The rotation effect is mainly confined to the flow in the vicinity of the cylinder surface.
For the near-surface flow, as α increases, the negative vorticity on the upper side of the
cylinder dominates the positive vorticity on the lower side, thus weakening the vortex
shedding which eventually disappears.

There is a transition state (called critical state) between the state of periodically
alternate double side shed vortex pattern for smaller α and the state of steady single
side attached vortex pattern for larger α (e.g., Ling and Shih [133], Badr et al. [9], Chen
et al. [28]).

Another characteristic of the flow is the synchronization between cylinder and wake.
This will determine the apparition of a ”lock-on” phenomenon. In the case of time
harmonic rotary oscillations this phenomenom was described experimentally by Tokumaru
and Dimotakis [188] and numerically by Chou [31] and Dennis et al. [46] (who studied the
effects of the forcing frequency and amplitude on a cylinder wake).

The combined system of cylinder and wake will be locked in if the forcing frequency
lies in the neighborhood of the natural Karman frequency. According to He et al. [98],
the natural Karman frequency is the optimal value for the forcing frequency for the drag
reduction.

For this case (time dependent rotational oscillation) two co-rotating vortex pairs are
shed away from the cylinder to form a co-rotating vortex pair which slows down their
convection further downstream. This seems to delay the development of the periodic flow
pattern in the near wake.

We have two phenomena when the forcing frequency is lower than the natural shedding
frequency. An initial clockwise vortex is formed on the lower half of the cylinder when
the cylinder is rotated in the counterclockwise direction while a counterclockwise vortex is
formed on the upper half when the clockwise rotation starts. A non-synchronized vortex
formation mode is developed which cannot lead to suppression of Karman vortex shedding.

One can also distinguis two vortices when the forcing frequency is higher than the
natural shedding frequency. An initial reactive clockwise vortex is formed on the upper
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half of the cylinder when the cylinder is rotated in the counterclockwise direction while
counterclockwise vortex is formed on the lower half when the clockwise rotation starts.
This leads to a synchronized vortex mode, which is one of the reasons why the optimal
values for the forcing frequency obtained in the previous section cannot be lower than the
vortex shedding frequency.

The behavior of the drag coefficient CD is determined by the fact that flow separation is
a major source of pressure drag and the moving-wall effects will postpone this separation.
As shown by Prandtl in 1925 [161] separation is completely eliminated on the side of the
cylinder where the wall and the freestream move in the same direction while on the other
side of the cylinder separation is developed only incompletely.
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Table 7.1. The mean value of the drag coefficient C̄D for various Reynolds numbers

Re 100 200 400 700 1000
Present work 1.42 1.44 1.54 1.59 1.68
He et al. [98] 1.35 1.36 1.42 1.48 1.52

Figure 7.3. Comparison between our results (�) and the results obtained by Kang et
al.(1999): the speed ratio α vs. the Reynolds number Re
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Figure 7.4. The optimal speed ratio α vs. the Reynolds number Re

Figure 7.5. Regularization parameter vs. Reynolds number Re
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Figure 7.6. Streaklines for the ”desired” flow at Re = 2 and speed ratio α = 2.0
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Figure 7.7. Streaklines for uncontrolled flow at Re = 100 and speed ratio α = 0.5
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Figure 7.8. Streaklines for controlled flow at Re = 100 with optimal speed ratio α = 1.84
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Figure 7.9. Streaklines for controlled flow at Re = 400 with optimal speed ratio α = 2.18
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Figure 7.10. Streaklines for controlled flow at Re = 1000 with optimal speed ratio
α = 2.35

69



Figure 7.11. Streaklines for the uncontrolled flow at Re = 100 and speed ratio
α(t) = 2.5 sin (1.0πt)
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Figure 7.12. Streaklines for the controlled flow at Re = 100 with optimal parameters
A = 6.5 and F = 1.13; α(t) = A sin (2πFt)
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Figure 7.13. Streaklines for the controlled flow at Re = 1000 with optimal parameters
A = 6.0 and F = 0.86; α(t) = A sin (2πFt)

72



[a]

[b]

Figure 7.14. The variation of the drag for the constant rotation in the controlled (dotted
line) and uncontrolled case (continuous line) for [a] Re = 100 and [b] Re = 1000
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[a]

[b]

Figure 7.15. The variation of the drag for the time-dependent speed ratio α(t) in the
controlled (dotted line) and uncontrolled case (continuous line) for [a] Re = 100 and [b]
Re = 1000

74



CHAPTER 8

DESCRIPTION OF THE PHYSICAL

PHENOMENA FOR THE SHOCK-TUBE

PROBLEM

The shock-tube example corresponds to the 1-D Riemann problem for the Euler
equations. Its mathematical formulation will be discussed in more detail in chapter 10.
This problem was chosen since it contains many “troublesome” aspects present in typical
flow solutions, including shock waves, rarefaction waves and contact discontinuities.

The shock tube is also extensively used in studying unsteady short-duration phenomena
in varied fields of aerodynamics, physics and chemistry. The transient wave phenomena
when a shock wave propagates at a high speed, as well as wave structure and wave
interactions, can be studied in shock tubes. Because of high stagnation enthalpies
(and temperatures) that are attained, the shock tube provides means to study the
thermodynamic properties of gases at high temperatures, dissociation, ionization and
chemical kinetics.

The shock-tube consists of a long duct of constant cross-section divided into two
chambers by a diaphragm, as shown in Fig. 8.1. The left chamber, called the driver
section, contains gas at high pressure whereas the right chamber, called the expansion
section, contains gas at a low pressure. The low-pressure gas may be the same as or
different from the high-pressure gas.

At time t = 0 the diaphragm is ruptured and a series of compression waves rapidly
coalesces into a normal shock wave. The pressure distribution at t = 0 is a “step” function.
The variables are denoted by V (velocity), ρ (density), P (pressure) and T (temperature).
The wave propagates at supersonic speed in the expansion chamber and sets up the gas
behind it in motion in the direction of the shock at velocity V2 (the subscripts correspond
to the regions of the flow shown in Fig. 8.3). The laws of normal shock dictate that
P2 > P1, T2 > T1 and ρ2 > ρ1. At the same time a rarefaction wave emanates at the
diaphragm section and propagates in the opposite direction into the driver section (4).
The leading rarefaction wave (head wave) propagates into the gas of the driver section at
a local speed of sound of c4.

Similarly, the tail wave propagates at a local speed of sound of c3. The gas behind the
last rarefaction wave (tail wave) is set in motion to the right at a velocity V3 equal to V2.
The shock wave and the rarefaction wave interact in such a manner to establish a common
pressure P2(= P3) and a common velocity V2(= V3) for the gas downstream of these waves.
The velocity V2 can be either subsonic or supersonic.

The gases in regions (2) and (3) differ, however, in temperature and entropy. This
creates a surface of discontinuity which moves to the right at the same velocity of the gases
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in these two regions. The distributions of properties of the gas along the shock tube at a
later time T = 0.24 are shown in Fig. 8.5. As shown in the figure, the velocity and pressure
change in a continuous fashion between regions (3) and (4), owing to the passage of the
expansion wave. These properties, however, change discontinuously between regions 1 and
2 as a result of the passage of the shock wave. The trajectories of fluid particles on both
sides of the diaphragm are represented in Fig. 8.4 by abc and respectively a

′
b
′
c
′
.

The properties in the regions (2) and (3) need to be determined in terms of the initial
properties in chambers (1) and (4). The analytical solution is presented in chapter 10 using
a basic parameter of the shock tube: the diaphragm pressure ratio P4/P1. The properties
in region (2), which is at a higher temperature than region (3), remain uniform until the
passage of the reflected waves from either side of the tube or until the passage of the contact
surface. The Mach number in this region increases as the ratio P4/P1 increases. Unlike the
flow across the shock wave, flow across the rarefaction wave is isentropic and these waves
propagate into region (4) at the local speed of sound.

The region of the fluid which is traversed by the shock has the index (2) while the
region traversed by the expansion wave is denoted by (3), as seen in Fig. 8.3. The interface
between regions (2) and (3) is called the contact surface. It marks the boundary between
the gases which were initially on either side of the diaphragm. Neglecting diffusion, they
do not mix, but are permanently separated by the contact surface (which is like the front
of a piston, driving into the low-pressure chamber).

On either side of the contact surface the temperatures and the densities may be different
but it is necessary that the pressure and the velocity to be the same. These conditions
are sufficient to determine the shock strength P2/P1 and the expansion strength in terms
of the diaphragm pressure ratio P4/P1. Once the shock strength is known, all other flow
quantities are easily determined from the normal shock relations.

Although the values of the velocity and pressure across the shock and expansion must be
identical, this is not necessarily true for the density and temperature, and in fact they are
different. The temperature behind the expansion wave is given by the isentropic relation
while the temperature behind the shock is given by the Rankine-Hugoniot relation.

Experimentally it is not possible to start the flow the ideal way, since the bursting or
shattering of the diaphragm is a complicated, three dimensional phenomenon. Nevertheless
a plane shock is developed within few diameters, by the steepening effect associated with
compression waves. The duration of flow is limited by the lengths of the expansion and
compression chambers, since the shock wave and expansion wave reflect from the end of
the chambers and eventually interact with each other.

Many applications of the shock tube have been discovered. For instance, the uniform
flow behind the shock may be used as a short-duration wind tunnel. In this role the shock
tube is similar to an intermittent (blow-down tunnel), with the difference that the duration
of flow is much shorter.

The abrupt changes of flow condition at the shock front have been utilized for studying
transient aerodynamic effects and for studies of dynamic and thermal response.

In the field of molecular physics the shock tube model provides a simple tool for
producing fast changes in the state of a fluid in order to observe relaxation effects, reaction
rates, etc. In addition, dissociation and ionization were studied using the high enthalpies
that were obtained in a shock tube.

As mentioned in the introduction, the shock-tube problem was chosen since it contains
many characteristics of physical problems with discontinuities. We presented the dynamics
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of shocks only for the 1-D case. Aan extensive literature exists for the physical phenomena
related to shock dynamics in 2-D or 3-D.

For many practical applications where the shocks are found (e.g., aerodynamics Ander-
son [5]) it is very important to study not only the shocks alone but also their interaction
with other organized structures of the flow: vortex or temperature (Erlebacher and Hussaini
[53]), axisymmetric entropy or temperature spot (Hussaini and Erlebacher [107]), vortices
(Erlebacher et al. [54], [55]).

Based on these interactions one may consider a different optimal control problem than
the one considered for our research: for example, one may control the nonlinear effects of
the interactions such that only the most desired characteristics of the flow are kept at the
end of the process of optimal control.
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Figure 8.1. The shock-tube problem at time t=0
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Figure 8.2. The solution shock-tube problem at time t = T

78



Expansion wave Shock

Contact surface

(4) (3) (2) (1)

Figure 8.3. Evolution of the flow for the shock-tube problem
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Figure 8.4. The trajectory of the fluid particles for the shock-tube problem
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[a] [b]

[c]

Figure 8.5. Exact solution of the shock-tube problem at time t = 0.24: [a] pressure, [b]
density and [c] velocity
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CHAPTER 9

SENSITIVITIES FOR A FLOW WITH

DISCONTINUITIES

9.1 Model formulation

We chose to perform linearization of 1-D Euler equations and sensitivity computation for
this discontinuous flow, since the one-dimensional shock-tube problem from gas dynamics
contains many potential ”troublesome” characteristics of a flow with discontinuities,
including shock waves, rarefaction waves and contact discontinuities.

The one-dimensional equations of gas dynamics can be written in conservation law form
as:

Ut + F(U)x = 0 (9.1)

where

U =


 ρ
m
e


 , F(U) =




m
m2

ρ + P(
m
ρ

)
(e+ P )


 (9.2)

and where ρ is the density, u is the velocity, m = ρu is momentum, P is the pressure
and e is the internal energy per unit volume. The variables are related by e = ρε+ 1

2ρu
2,

where ε = P
(γ−1)ρ is the internal energy per internal mass with γ the ratio of specific heats

(which is taken to be 1.4).
We study the Riemann problem which was described in chapter 8. We review here

its most important characteristics. There is a shock tube with 2 gases separated by a
membrane. Initially both gases are at rest and are at different pressures and densities
defined by P4 > P1 and ρ4 > ρ1 where the subscript refers to the region in which the
variables are defined (initially the region (4) is at the left of the membrane and region (1)
is at the right of the membrane; afterwards the region (4) is the first region from the left
boundary and the region (1) is the first region from the right boundary (see Fig. 9.2).

The exact solution can be found explicitly as a function of x and t (Liepmann and
Roshko [132]) and its plot (numerical solution versus analytical solution) is shown in Fig.
9.2. The analytical expression of the exact solution is presented in chapter 10. The solution
has several distinct regions: a region of low pressure and density; an area between shock
and contact discontinuity; an area between contact discontinuity and rarefaction wave; a
rarefaction wave and a region of high pressure and density.
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9.2 Tangent linear system approach for the sensitivity
computation

We consider a symbolic form for a time-dependent system of equations

∂X
∂t

= N(X) (9.3)

Then the perturbed solution (X(t) + δX(t)) satisfies the equation

∂(X(t) + δX(t))
∂t

= N(X(t) + δX(t)) =

N(X(t)) +
∂N

∂X
(X(t))δX(t) +O(δX(t))

where
∂N

∂X
is the Jacobian of the nonlinear function N with respect to the variables X.

Upon retaining only the first order terms in δX the previous equation becomes

∂δX(t)
∂t

=
∂N

∂X
(X(t))δX(t) (9.4)

To determine the sensitivity with respect to a parameter α we differentiate equation
(9.3) and assuming that we can interchange the order of differentiation we obtain

∂

∂t

(
∂X
∂α

)
=
∂N(X)
∂X

∂X
∂α

(9.5)

which implies that the sensitivity
∂X
∂α

with respect to the parameter α satisfies also the

tangent linear equation (9.4).
This provides the rationale for the numerical computation of the sensitivity using the

tangent linear model.

9.3 Linearization of the Euler equations

The following derivation follows Godlewski and Raviart [71].
Given a solution of (9.1), called basic solution, we study the behavior in time of solutions

of the linear hyperbolic system obtained by linearizing (9.1) at the basic solution. Since
the basic solution is discontinuous, the linearized system has discontinuous coefficients and
it is not well posed in any class of functions. The solution of the linearized system consists
of the sum of a function and a measure caused by the discontinuity of the basic solution.

Let U = U(x, t) be the basic solution and the first order perturbation V. We construct
Uε which satisfies:

Uε = U(x, t) + εV(x, t)
Uε(x, 0) = U(x, 0) + εV(x, 0) = U0(x) + εV0(x)

with ε > 0 a small parameter.
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The first order perturbation V = V(x, t) is solution of the linearized problem
∂V
∂t

+
∂

∂x
(J(U)V) = 0 (9.6)

V(x, 0) = V0(x)

where J(U) denote the Jacobian of F(U).
The basic solution U presents a discontinuity along the line L = {(x, t), x = Φ(t), t ≥ 0}

where the function Φ(t) is determined by the location of the shock.
In chapter 10 we derive the shock location as given by:

Φ(t) =
(
γP1

ρ1

) 1
2
(
γ − 1
2γ

+
γ + 1
2γ

P2

P1

) 1
2

+ x0

where the subscripts refer to the corresponding region in which the variables P1, P2 and ρ1

are defined and x0 is the initial position of the diaphragm (at t = 0)).
U presents at most weak discontinuities outside the line L. Although for t small enough

the linearized problem retains the same characteristics as the nonlinearized model, the
perturbed solution Uε presents a discontinuity along a different line

Lε = {(x, t), x = Φε(t) = Φ(t) + εΨ(t), t ≥ 0}
and at most weak discontinuities outside Lε.

We introduce the equation of the front of the discontinuities as one of the unknowns
and we use a change of variables to reduce the problem to a fixed domain

x̂ = x− Φε(t) (9.7)

Ûε(x̂, t) = Uε(x̂+Φε(t), t) (9.8)

The function U is now discontinuous along the fixed line x̂ = 0 and is the solution of
the Cauchy problem

∂Ûε

∂t
+

∂

∂x̂
(F (Ûε)− ∂Φε

∂t
Û) = 0 (9.9)

Uε(x̂, 0) = U0(x̂+Φε(0)) + εV0(x̂+Φε(0))

Moreover Ûε satisfies the Rankine-Hugoniot jump relations across x̂ = 0

[F (Ûε)] =
∂Φε

∂t
[Ûε] (9.10)

Recalling that

Û(x̂, t) = U(x̂+Φ(t), t)

Ûε = Û+ εÛ+ · · ·
Φε = Φ+ εΨ

we obtain that the pair (V̂,Ψ) satisfies the linearized equations and the Rankine-Hugoniot
relation:

∂V̂
∂t

+
∂

∂x̂

((
J(Û)− ∂Φ

∂t

)
V̂ − ∂Ψ

∂t
Û
)
= 0 (9.11)

V̂(x̂, 0) = V0(x̂) + Ψ(0)
dU0

dx
(x̂)[(

J(Û)− ∂Φ
∂t

)
V̂
]
=
∂Ψ
∂t

[Û]
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Let us define V̄(x̂, t) = V̂(x̂, t)−Ψ(t)
∂Û
∂x̂

(x̂, t).
The following relation

∂V̄
∂t

+
∂

∂x̂

((
J(Û)− ∂Φ

∂t

)
V̄
)
= 0

is valid, since

∂V̄
∂t

+
∂

∂x̂

((
J(Û)− ∂Φ

∂t

)
V̄
)

=
∂V̂
∂t
− ∂Ψ

∂t

∂Û
∂x̂

−Ψ
∂2Û
∂t∂x̂

+
∂

∂x̂

((
J(Û)− ∂Φ

∂t

)
V̂
)
− ∂

∂x̂

((
J(Û)− ∂Φ

∂t

)
Ψ
∂Û
∂x̂

)

= − ∂

∂x̂

(
Ψ
[
∂Û
∂t

+
(
J(Û)− ∂Φ

∂t

)
∂Û
∂x̂

])
= 0

In conclusion, he pair (V̄,Ψ) satisfies the following equations and jump condition:

∂V̄
∂t

+
∂

∂x̂

((
J(Û)− ∂Φ

∂t

)
V̄
)
= 0 (9.12)

V̄(x̂, 0) = V0(x̂)[(
J(Û)− ∂Φ

∂t

)
V̄
]
=
∂Ψ
∂t

[Û] + Ψ
∂Û
∂t

The equations (9.12) have a unique solution (Godlewski [71]).
Finally, we can define the solution V of the system (9.6) as the sum of a function and

a measure whose support is L

V(x, t) = V̄(x− Φ(t), t)−Ψ[U]δL (9.13)

where δL is the Dirac measure with support L.

9.4 L2 estimates for the solution of the linearized Euler
equations

L2 estimates for the solution of the linearized system are obtained following the approach
of Metivier [143]. Let Ω = R × [0,∞] and ω = {x = 0} the boundary of Ω. We define
L2

η = eηtL2 and H1
η = eηtH1.
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In these spaces we consider the norms

||u||2L2
η
=
∫

Ω
e−2ηt|u(x)|2dx = ||e−ηtu||2L2

||u||2H1
η
= ||e−ηtu||2H1 (9.14)

The solution
(
V̄,Ψ

)
∈ H1

η(Ω)×H1
η(ω) of (9.12) satisfies the estimate

η||V̄||2L2
η(Ω) + ||V̄|x=0||2L2

η(ω) + ||∇Ψ||2L2
η(ω) ≤

C

η
||e−ηtF||20 (9.15)

where C is a constant, η ≥ η0 with η0 given and ||u||L2
η
= ||e−ηtu||0, with ||u||0 being the

usual norm in L2.

9.5 Numerical model using Adaptive Mesh Refinement

To solve the Riemann problem we chose a code written by S. Li [130] which employs
a method of adaptive mesh refinement in conjunction with a Riemann solver of Roe-type
(Leveque [129]). The numerical solution is in very good agreement with the analytical
solution and this eliminates a major source of errors in the numerical computation of the
sensitivities.

We describe the method of adaptive mesh refinement by taking the grid in Fig. 9.1 as
an example.

The grid has three refinement levels (L0, L1, L2) (the order is from the coarsest level to
the finest level) at time tm. Let us suppose that the corresponding time step sizes, for the
corresponding refinement levels, are as follows:

∆t0 = tm+1 − tm, ∆t1 =
1
2
∆t0, ∆t2 =

1
4
∆t0

The AMR method consists of the following steps:

• Step 1. We start from the coarsest level which advances one time step ∆t0.

• Step 2. L1 advances its corresponding time step ∆t1 and the boundary conditions
are obtained from L0.

• Step 3. L2 advances two time steps ∆t2. We update the solution on L1 with the
solution on L2 which is more accurate.

• Step 4. L1 advances one more corresponding time step ∆t1

• Step 5. L2 advances two more time steps ∆t2. Now we update the solutions on L0

and L1 respectively with the more accurate solution on L2.

• Step 6. We readapt the mesh (based on an ”a posteriori” error estimate) and generate
a new hierarchical grid.
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The hierarchical grid data structure G = |n|G1|G2| · · · |Gn| contains the number n of
levels of the grid and pointers to the grid on each of the lower levels. The data structure
for the grid on the i−th level Gi = |mi|pi|Gi,1|p2|Gi,2| · · · |pmi |Gi,mi | contains the number
of patches mi, information about the j−th patch on the i−th level (denoted Gi,j) and a
pointer pj to the parent patch for Gi,j to facilitate operations between the coarse and fine
grids.

The patch has the following attributes: level of the current patch P , integration time
and time step size for P , number of ghost boundary points, number of grid points, grid
index andphysical grid location for each point, spatial step length, solution values, pointers
to parent patches (only one in 1-D), refinement ratio between the parent patch and P and
pointers to siblings (in 2-D and 3-D).

The solution is obtained using an AMR recursive integration algorithm:
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INTEGRATE(level); begin

• Let maxlevel the maximum level allowable and flevel the finest level existing

• Remesh Stage(level):

– flevel = max(flevel + 1,maxlevel)

– while (flevel − 1 needs no refining) decrease flevel by 1

– for slevel = flevel − 1 downto level do Refine(slevel)

∗ Select(slevel)
∗ Expand(slevel)
∗ Cluster(slevel)

– for slevel = level upto flevel − 1 do Regrid(slevel + 1)

– while (flevel < maxlevel AND flevel needs refining) do

∗ Refine(flevel)
∗ Regrid(flevel + 1); Increase flevel by 1

• Advance Solution(level)

– Boundary Collection(level)

– Advance(level)

• Recursive Stage(level)

– If level �= flevel then for r = 0 to ∆t(level)/∆t(level + 1) do

∗ INTEGRATE(level + 1)

• Project Solution(level, level + 1)

end
The Remesh stage is split into two main processes: first readapt the available grid and

then refine to generate the new finer grid. The refinement is divided into Selection (to
flag the inaccurate points which needs refining), Expansion (to add buffer zones around
the flagged region) and Clustering (to group the flagged points into clusters).

There may be features which appear in the finer levels which would not be captured
if we start this first process of readaptation from the coarsest grid. For this reason we
initialize the mesh refinement on the finest level available. The Regridding step (in which
we define the solution values for the readapted grid) starts from the coarsest level available
and we continue to Refine and Regrid if the finest level available does not reach the
maximum level allowable.

In the Select step we flag the grid points that need to be refined. The monitor function
to be used has the formula:

Mon(i) = max
j

W (j)
Umax(j) · TOL(|∆x

2uj
xx(i)|) (9.16)

where W (j) ∈ (0, 1) indicates the relative importance of a PDE component, Umax(j)
denotes the approximate maximum absolute value for each component uj of the solution
at grid point xi and TOL is a spatial error tolerance.
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A level refinement is initialized if there is a point where Mon(i) > 1.0 and then all
the grid points with Mon(i) > 0.5 are flagged (if the current level grid has a grandparent,
those points are also flagged).

The Expand step is performed not to let escape the most interesting features of the
solution escape the refinement region. We add buffer zones to the flagged points every k
time steps.

During the Cluster step adjacent flagged points are grouped together and patches
which are within two buffer zones are joined together.

Regridding the (l+1) level includes computing the physical location for each fine grid
and obtaining the solution for the new grid. Conservative interpolation is combined with
the Minmod limiter. A new refinement is partially or completely contained in an existing
patch. This refinement will preserve accuracy in the domains with discontinuities due to
overlapping regions between the old and the new grid.

During the Advance stage the solver advances the solution for all the patches in a
level l one time step. The boundary values are obtained from the level l − 1 (Boundary
Collection). The external boundaries are given. The internal boundaries (needed by
the patches) are computed using linear interpolation between the values for the internal
boundaries from the parent coarse grid at the forward time tn+1 and the boundary values
at tn on the finer grid.

If necessary the Recursive Stage is performed to advance the solution on the next
level l + 1 one time step.

After integrating the finest grid T time steps the finest grid reaches the same time level
as the coarser grid and the coarser grid starts integration again. The solution is updated
using Projection: the more accurate values of the solution on the finer level replace the
values of the solution on the coarser level when they coincide.

9.6 Numerical considerations

One cannot differentiate the flow across the shock or the contact discontinuity since
the flow is not even continuous there. As one differentiates across the phenomena Dirac
delta functions will appear at these locations. The flow is also not differentiable (although
continuous) at the edges of the rarefaction wave. Differentiation across the edges of that
wave result in jump discontinuities in the sensitivities.

However the flow solution can be differentiated within each of the five regions. The
numerical derivatives at the edges make sense if constructed limits (left or right) of the
derivatives inside the five regions.

The tangent linear model is obtained at the level code, being the discrete equivalent of
the linearization around the basic state. We computed the sensitivity of the flow variables
(pressure, density and velocity) with respect to an initial parameter (the high pressure
initial condition at the left of the membrane).

The numerical sensitivities show spikes at locations where the analytic derivatives do
not exist. They approximate relatively well the phenomenom of Dirac measure at the
edges (where the analytical solution is not differentiable). This is to be expected since the
purpose of this research is to obtain numerical sensitivities which are as close as possible
to the analytical sensitivities.
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Our results (see Fig. 9.3-9.5) approximate very well the exact sensitivities in the five
regions. We compared them with previously obtained numerical results (Gunzburger [86]
computed the numerical sensitivity using finite differences, the sensitivity equation and
automatic differentiation). Our results show improvement both inside the five regions
and at the edges of these regions where the flow is not differentiable. We think that this
improvement is mainly due to the implementation of the tangent linear model derived from
a forward model with adaptive mesh refinement.

First we discuss our results at the locations where the flow is continuous (i.e., inside
the five regions). Both our numerical sensitivities and the numerical values presented by
Gunzburger in [86] practically coincide to the analytical sensitivities on these regions.

At the edges of the five regions the situation is different. We have non differentiable
points there, which result in spikes in the graph of the analytical sensitivities. The
numerical sensitivities attempt to approximate these spikes. The main difference between
our results and the results in [86] can be seen around the location of the shock wave. The
amplitude of the numerical spike in our case is 1.15 for the derivative of the velocity, 0.5
for the derivative of the pressure and 0.35 for the derivative of the density (compared to
3.5, 0.85 and respectively 0.55 in [86]).

We chose the adaptive mesh refinement coupled with a Riemann solver as the forward
model to eliminate as much as possible the errors propagating from solving numerically
the discontinuities. The consequence of this choice is a much better approximation of the
sensitivities at the location of discontinuities.

Our experience with tangent linear models in higher dimensions (although the applica-
tion did not involve non smooth functions: Homescu et al. [101]) suggests the possibility
of application of the numerical methodology presented here for spatial higher dimensions.
Future directions of research include the application of this methodology for problems in
2-D, where we expect a decrease in the numerical accuracy of sensitivity computation.
A possible remedy in order (Dadone et al. [44]) to alleviate this problem is to apply a
smoother to the sensitivities after they were computed using the tangent linear model.
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Figure 9.1. The process of adaptive mesh refinement
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[a] [b]

[c]

Figure 9.2. Exact solution of the shock-tube problem: numerical and exact values for [a]
pressure, [b] density and [c] velocity.
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Figure 9.3. Sensitivity with respect to the high initial pressure: numerical and exact
values for pressure
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Figure 9.4. Sensitivity with respect to the high initial pressure: numerical and exact
values for velocity
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Figure 9.5. Sensitivity with respect to the high initial pressure: numerical and exact
values for density
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CHAPTER 10

OPTIMAL CONTROL OF FLOW WITH

DISCONTINUITIES

10.1 Governing equations

Let us remind you the conservation law form of the one-dimensional unsteady equations
of gas dynamics (Euler equations):

Ut + F(U)x = 0 (10.1)

where

U =


 ρ
m
e


 , F(U) =




m
m2

ρ + P(
m
ρ

)
(e+ P )


 (10.2)

ρ is the density, u is the velocity, m = ρu is momentum, P is the pressure and e is

the internal energy per unit volume. The variables are related by e = ρε+
1
2
ρu2, where

ε =
P

(γ − 1)ρ
is the internal energy per internal mass with γ the ratio of specific heats

(which is taken to be 1.4).
We consider the Riemann problem of the Euler equations which, as mentioned in

earlier chapters, corresponds to the ”shock-tube problem”. We review here its principal
characteristics: a tube, filled with gas, is initially divided by a membrane into two sections.
The gas has a higher density and pressure in one half of the tube than in the other half,
with zero velocity everywhere. The initial conditions for density, velocity and pressure are
similar to the values for the Sod shock-tube problem [177]:

ρleft = 1.0 > ρright = 0.125, uleft = uright = 0.0, pleft = 1.0 > pright = 0.1

where the subscripts left and right correspond to the initial position with respect to the
membrane. At time t = 0 the membrane is suddenly removed and the gas is allowed to
flow. We expect a net motion in the direction of lower pressure. Assuming uniform flow
across the tube, there is variation in only one direction and the 1-D Euler equations apply.
One should calculate the flow variables: pressure, density and velocity as a function of time
and space.

The solution of this Riemann problem for Euler equations consists of 5 distinct regions
(see Fig. 10.13). The description of these regions follows with the corresponding region
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index in the parentheses: low pressure and density region (region 1), area between shock and
contact discontinuity (region 2), area between contact discontinuity and rarefaction wave
(region 3), rarefaction wave region (region R), high pressure and density region (region 4).

The exact solution can be found explicitly as a function of x and t (Liepmann and
Roshko [132]). It is given by the following equations (the indices 1, 2, 3, 4 and R are related
to the above mentioned 5 regions):


 P

ρ
u


 =





 P4

ρ4

u4


 =


 Phigh

ρhigh

uhigh


 , x < −a4t+ c


 PR

ρR

uR


 =


 PR

ρR

uR


 , −a4t+ c ≤ x ≤

(
γ4 + 1
2 u3 − a4

)
t+ c


 P3

ρ3

u3


 =


 P2

ρ2

u2


 , (

γ4 + 1
2 u3 − a4

)
t+ c ≤ x ≤ u2t+ c


 P2

ρ2

u2


 =


 φ
ρ2

u2


 , u2t+ c < x < a1

(
γ1 − 1
2γ1

+ γ1 + 1
2γ1

P2
P1

) 1
2

t+ c


 P1

ρ1

u1


 =


 Plow

ρlow

ulow


 , a1

(
γ1 − 1
2γ1

+ γ1 + 1
2γ1

P2
P1

) 1
2

t+ c ≤ x

where a2
i =

γiPi
ρi , γi = γ for i = 1, . . . , 4

and where φ is given implicitly by

P4

P1
=

φ

P1

(
1− (γ4 − 1)(a1/a4)(φ/P1 − 1)

√
2γ1

√
2γ1 + (γ1 + 1)(φ/P1 − 1

) −2γ4
γ4 − 1

(10.3)

The remaining variables : ρ2, u2 and ρ3 are given by

ρ2 = ρ1
P2

P1

(1 + γ1−1
γ1+1

P1
P2

1 + γ1−1
γ1+1

P2
P1

)
(10.4)

u2 = a1

(
P2

P1
− 1
)√

2γ1

(γ1 + 1)P2
P1

+ (γ1 − 1)
(10.5)

ρ3 = ρ4

(
P3

P4

) 1
γ4

(10.6)

and, in the rarefaction wave, the quantities PR, ρR and uR are given by
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PR = P4

(
1− γ4 − 1

2
uR

a4

) 2γ4
γ4−1

(10.7)

ρR = ρ4

(
1− γ4 − 1

2
uR

a4

) 2
γ4−1

(10.8)

uR =
(
u3 − u4
γ4+1

2 u3

)(
x− c

t

)
+
a4u3 − (a4 − γ+4+1

2 u3)u4

γ4+1
2 u3

(10.9)

The subscripts for the variables u2, pR, . . . match the corresponding region of the
solution in which they are located (for example, pR is the value of the pressure in the
rarefaction region).

We also present the formula for the physical entropy. The entropy is necessary while
selecting the solution of the shock-tube problem in the weak sense. The correct weak
solution should satisfy the entropy condition, which states that the entropy of fluid particles
does not decrease. We are employing the following formula for the entropy S (Wesseling
[204]):

S = cV ln
(
p

ργ

)
(10.10)

where cV is the specific heat at constant volume, p is the pressure, ρ is the density and γ
the ratio of specific heats.

10.2 Description of the numerical models: AVM and HRM

The main difficulties encountered when solving numerically the shock-tube problem of
gas dynamics (and, in general, for any problem which has a non smooth solution) appear
in the regions of discontinuities. The numerical solution may be smoothed in those regions
(e.g., due to introduction of a dissipation term) or the discontinuities ca be captured in
a sharper way (using high-resolution methods). For this reason we chose one numerical
model from each of the above mentioned categories: namely a model with artificial viscosity
(AVM) and a high-resolution model (HRM) with a Riemann solver.

As a footnote we mention that for very accurate numerical solutions adaptive mesh
refinement AMR may be used in conjunction with Riemann solvers (e.g., Leveque [128]
for Euler equations). Our experience with a model AMR in the framework of sensitivity
analysis for discontinuous flows was presented in chapter 9 (also in Homescu and Navon
[100]).

Our research aims to perform optimal control of flow with discontinuities using either
smooth or non smooth optimization techniques for minimizing the cost functional. The
minimization requires availability of either the gradient or of subgradients for the cost
functional (with respect to the control variables) obtained using the adjoint model derived
from the forward model (either AVM or HRM models).

10.2.1 The numerical model with artificial viscosity AVM

TheAVM model (by T.J. Cowan [41]) uses finite elements which are piecewise constant
in time and piecewise linear in space. The elements are discontinuous in time but

97



continuous in space. By using discontinuous discretization in time we were able to march
sequentially through time and solve for only a fraction of the total solution at one time.
To improve the stability of the method a least-squares operator is added to the basic
Galerkin formulation. In order to obtain non-oscillatory approximations to discontinu-
ities, discontinuity-capturing operators have been developed within the framework of this
modified discontinuous Galerkin/least squares method (Shakib et al. [174]).

An artificial viscosity term (included to stabilize the numerical solution) has the effect
of spreading flow discontinuities over several computational cells. The method employs a
high-order scheme for the smooth regions of the flow combined with a low-order solution
which is employed near the discontinuities.

The combination, described in Lohner et al. [163], is based on the generalization of
flux-corrected transport (FCT) algorithm developed by Zalesak [208]. FCT combines
a high-order scheme with a low-order scheme. The high-order scheme is employed in
regions where the variables under consideration vary smoothly (so that a Taylor expansion
makes sense), whereas in those regions where the variables vary abruptly the schemes are
combined, in a conservative manner, in an attempt to ensure a monotonic solution.

Let us assume that the temporal discretization of the Euler equations yields

Un+1 = Un +∆U (10.11)

where ∆U is the increment of unknowns obtained for a given scheme at time t = tn. Our
aim is to obtain a ∆U of as high an order as possible without introducing overshoots. To
this end we rewrite the equation (10.11) as

Un+1 = Un +∆U low + (∆Uhigh −∆U low) = U low + (∆Uhigh −∆U low) (10.12)

where ∆Uhigh and ∆U low denote the increments obtained by some high- and low- order
scheme and U low is the monotone, ripple-free solution at time t = tn+1 of the low-order
scheme.

The idea behind FCT is to limit the second term on the right-hand side of equation
(10.12) in such a way that no new over/undershoots are created. A further constraint, given
by the conservation law itself, must be also taken into account: strict conservation on the
discrete level should be maintained. The simplest way to guarantee this for node-centered
schemes is by constructing schemes for which the sum of the contributions of each individual
element (cell) to its surrounding nodes vanishes (“ all that comes in goes out”).

FCT consists of the following steps:

1. Compute the low-order contribution (LEC) from some low-order scheme guarantee
to give monotonic results for the problem at hand;

2. Compute the high-order contribution (HEC) given by some high-order scheme;

3. Define the antidiffusive element contributions (AEC):

AEC = HEC − LEC

4. Compute the updated low-order solution:

U low = Un +
∑
elem

LEC = Un +∆U low
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5. Limit (“correct”) the AEC so that Un+1 (as computed in step 6 below) is free of
extrema:

AECcorr = λ ∗ AEC 0 ≤ λ ≤ 1

6. Apply the limited AEC:

Un+1 = U low +
∑
elem

AECcorr

The high-order scheme chosen was the consistent-mass Taylor-Galerkin while the low-
order scheme employed was the lumped-mass Taylor-Galerkin scheme plus diffusion.

10.2.2 Numerical high-resolution model HRM

The HRM model is part of the package CLAWPACK written by R. Leveque [129],
[128]) which employs Roe’s approximate Riemann solver (Roe [165]) combined with an
entropy fix.

We present the basic ideas of the Roe solver. Let us consider a standard form of a
homogeneous conservation law:

qt(x, t) + f(q(x, t))x = 0 (10.13)

The basic algorithm depends on a Riemann solver that, for each set of data (qL, qR) returns
a set of Mw waves W p and speeds λp satisfying

Mw∑
p=1

Wp = qR − qL ≡ ∆q

It also returns the left-going and right-going flux differences A−∆q and A+∆q that
satisfy the relationship:

A−∆q +A+∆q = f(qR)− f(qL) (10.14)

The Roe solver employed here consists of solving a particular linear system

qt +Aiqx = 0 (10.15)

where Ai is the Roe matrix depending on data (qi−1, qi).
The solution consists of waves of the form Wp

i = λp
i r

p
i where r

p
i is the p−th eigenvector

of Ai, which propagate with speeds λp
i , the corresponding eigenvalue of Ai.

The flux differences are defined as:

A+∆qi =
∑
λp

i >0

λp
iW

p
i

A−∆qi =
∑
λp

i <0

λp
iW

p
i

Linearized Riemann problem solutions consist of discontinuous jumps only. This can
be a good approximation for contacts and shocks, in that the discontinuous character of
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the wave is correct, although the size of the jump may not be correctly approximated by
the linearized solution. Rarefaction waves, on the other hand, carry a continuous change
in flow variables and, as time increases, they tend to spread. In that case the linearized
approximation via discontinuous jumps is inexact. In a practical computational setup,
however, linearized approximations encounter difficulties only if the rarefaction wave is
transonic. In this case unphysical, entropy violating discontinuous waves may appear.

Roe’s solver can be modified to avoid entropy violating solutions. This is usually referred
to as an entropy fix. We employed an entropy fix for the Roe’s method developed by Harten
and Hyman [96], entropy fix which has widespread use. Other ways of correcting the scheme
have been discussed by Roe [166] and Dubois and Mehlman [49], among others.

10.3 Existence of the solution of the optimal control
problem

We solve the following optimal control problem
Minimize the cost functional J (U, z) subject to z ∈ Uad (OPT)

where z is the control, Uad is the space of admissible controls and U = U(z) is the entropy
solution of the system of conservation laws (Euler 1-D equations described in the previous
section):

∂U
∂t

+
∂F (U)
∂x

= 0 (10.16)

U(x, 0) = z(x) (10.17)

with 0 ≤ x ≤ 1 and 0 ≤ t ≤ TW (TW being the length of the assimilation window).
Since the solution of the system (10.16) may develop discontinuities after a finite time,

weak solutions should be considered. An additional entropy condition must be imposed to
select the “physically” relevant weak solution.

We define an entropy function EF , for which an additional conservation law that holds
for smooth solutions becomes an inequality for discontinuous solutions (Leveque [129],
Godlewski and Raviart [51]). It is known that there exists a physical quantity called the
entrop for the Euler equations of gas dynamics (which are employed for this research). The
physical entropy is constant along particle paths in smooth flow and it jumps to higher
values as the gas crosses a shock. The correct weak solution is picked out using a property
of the entropy, namely that it can never jump to a lower value (a numerical version of this
approach was employed for the high resolution model described in the previous section).

For the system of gas dynamics equations, which is a strictly hyperbolic symmetrizable
nonlinear system of conservation laws, entropy functions can be found (e.g., Godlewski and
Raviart [51], Leveque [129] ).

We introduce the definition of the entropy solution, according to Godlewski and Raviart
[51]:

A weak solution U of (10.16)-(10.17) is called an entropy solution if U satisfies, for all
entropy functions EF of (10.16) and for all test functions φ ∈ C1

0 ([0, 1] × [0,∞)), φ ≥ 0,

∫ ∞

t=0

∫ x=1

x=0

(
EF(U)

∂φ

∂t
+ F (U)

∂φ

∂x

)
dxdt +

∫ x=1

x=0
EF(z(x))φ(x, 0)dx ≥ 0 (10.18)
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To derive existence results for optimal controls we follow the approach of Ulbrich [195].
His work, related to scalar laws of conservation with source terms, was extended to our
case (the 1-D system of Euler equations without source terms).

For our problem the control vector z(x) is:

z(x) =


 ρ(x, 0)
m(x, 0)
e(x, 0)


 =




ρ(x, 0)
ρ(x, 0)u(x, 0)

P (x, 0)
(γ − 1)

+
1
2
ρ(x, 0)(u(x, 0))2




with ρ the density, u the velocity, m = ρu, P the pressure, γ the ratio of specific heats and
e the internal energy per unit volume.

Since the control vector z is bounded (being obtained using initial values of the pressure,

velocity and density) we may consider that the controls are in
(
L∞[0, 1]

)3

. If the control

problem (OPT) is particularized to the optimal control problem for 1-D Euler equations
for gas dynamics then the existence of the optimal controls is obtained as a consequence
of four properties described below.

(P1) The function F , which appears in the system of conservation laws (10.16), is locally
Lipschitz.

(P2) The admissible set Uad is bounded in
(
L∞[0, 1])

)3

and closed in
(
L1

loc([0, 1]
)3

.

(P3) Let us we denote by BV [(0, 1)] the space of functions of bounded variations on
the interval (0, 1). Based on the choice of controls the admissible set Uad is bounded

in
(
BV [(0, 1)]

)3

. The embedding
(
BV (Ω)

)3

− >

(
L1(Ω)

)3

is compact for any open

bounded set with Lipschitz-boundary Ω ⊂ (0, 1) (Giusti [70]). Thus we obtain that Uad is

compact in
(
L1

loc[0, 1]
)3

.

In our research the cost functional J for the optimal control problem (OPT) assumes
two possible forms.

The first expression of the cost functional is

J (U, z) =
∫ 1

0
(U(x, TW )−Uobs(x, TW ))2dx (10.19)

with Uobs ∈ L∞([0, 1]) the observations distributed at assimilation time TW .
The second cost functional is defined as

J (U, z) =
∫ t=TW

t=0

∫ x=1

x=0
(U(x, t) −Uobs(x, t))2dxdt (10.20)

with Uobs ∈
(
L∞([0, 1] × (0, TW ))

)3

the observations at assimilation times 0 ≤ t ≤ TW .
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We have the following property for both forms: (10.19) and (10.20)
(P4) The cost functional J is (at least) sequentially lower semicontinuous.

Using the properties (P1)-(P4) one can prove that the optimal control problem (OPT)
has a solution ẑ ∈ Uad in a similar way to the proof of existence of optimal controls obtained
by Ulbrich [195].

First we prove that if J satisfies (P4) then

z ∈ (Uad ⊂
(
L1

loc[0, 1]
)3

) ↪→ J (U, z) (10.21)

is sequentially lower semicontinuous.

Indeed let the sequence (zk) ⊂ Uad converge in
(
L1

loc[0, 1]
)3

to z0. We have that

z0 ∈ Uad using property (P2). We have also that U(zk)→ U(z0) (Godlewski and Raviart
[51]). It follows from property (P4) that

lim
k→∞

J (U(zk), zk) ≥ J (U(z0), z0)

which establishes the lower semicontinuity of the operator defined in (10.21).
Finally let (zj) be a minimizing sequence for the optimal control problem (OPT). Using

compactness of Uad there exists a subsequence which converges to ẑ ∈ Uad. We have proved
that the operator (10.21) is sequentially lower semicontinuous, which implies that ẑ is a
solution for the optimal control problem (OPT).

This concludes the proof of existence of solutions for (OPT).

10.4 Detection of discontinuities in data

In the setting of smooth minimization one may consider that, by eliminating some
discontinuities from the computation of the cost functional and its gradient (or subgradient)
one may obtain a function which is smoother (i.e., more appropriate for smooth optimiza-
tion). Several approaches can be found in literature for the detection of discontinuities.

The discontinuity locking system (DLS) is employed for differential-algebraic equations
(DAE) by Birta and Oren [19], Park and Barton [158], Mao and Petzold [139], to cite but a
few. The idea for this approach (DLS) is to lock the function evaluator for the initial-value
problem solver so that the equations evaluated are fixed while an integration step is being
taken, thus presenting a smooth vector field to the solver.

The approach we present here is a modified application of a discrete regularization
method proposed by Lee and Pavlidis [124].

Let (xi, yi)i=0,...,n be the set of data points with xi < xi+1. We want to find the
n+ 1 quantities zi that minimize a combination of the discrete curvature and the discrete
difference between observation and desired data:

n∑
i=0

αi

(
zi+1 − zi
xi+1 − xi

− zi − zi−1

xi − xi−1

)2

+ β

n∑
i=0

(zi − yi)2 (10.22)

with α0 = αn = 0 and αi = 1 for i = 1, · · · , n− 1.
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Differentiating (10.22) with respect to zk and setting the derivatives to zero yields a
system of n+ 1 equations with n+ 1 equations, namely:

Pk0zk+2 − (Pk1 + Pk0 + Pk−1,0)zk+1 + (Pk1 + Pk2 + 2Pk−1,0 + β)zk
−(Pk2 + Pk3 + Pk−1,0)zk−1 + Pk3zk−2 = βyk

where

Pk0 =
αk+1

(xk+2 − xk+1)(xk+1 − xk)

Pk1 =
αk+1 + αk

(xk+1 − xk)2

Pk2 =
αk−1 + αk

(xk − xk−1)2

Pk3 =
αk−1

(xk − xk−1)(xk−1 − xk−2)

and z−2 = z−1 = zn+1 = zn+2 = 0.
The parameter β is chosen such that it satisfies:

β & 1
mink (xk+1 − xk)2

which implies diagonal dominance for the system of equations (10.23).
To find discontinuities in the function or for its derivative we look at zero crossings of

the error between the observation and the desired data

zi − yi (10.23)

and at zero crossings of the approximate curvature

zi+1 − zi
xi+1 − xi

− zi − zi−1

xi − xi−1
(10.24)

Slope discontinuities are characterized by successive zero crossings of type (10.23) and
function discontinuities are characterized by zero crossings of type (10.23) and (10.24).

For our problem we are interested in eliminating only the points which are associated
with the shocks. This is a trade-off between obtaining a smoother function and preserving
as much as possible the discontinuous character of the problem for a given time interval.
If one would like to single out a region of the solution (among the five regions of the flow
described earlier) with the greatest influence during numerical optimization, one would
select the points where the shock occurs.

For this reason we restricted the algorithm of discontinuity detection to eliminate only
the shock points.

The detection of shock points was performed by considering only points with approx-
imate curvatures above a certain threshold value. This approach was suggested to us by
the fact that the curvature for the analytical solution is very steep in the shock region.

The result of discontinuities detection is shown in Fig. 10.8.
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10.5 Overview of numerical results

Our goal was to control the location of the discontinuities by matching the numerical
flow to observations that contain the desired location of discontinuities.

For many problems (including ours) the problem of finding a “matching” flow at a given
time is equivalent to the problem of finding the corresponding vector of initial conditions
(the initial conditions serving as the control variables in the optimal control setting).

For practical applications it is more important to consider the impact of the change
of shock location on the flow parameters rather than the explicit description of the new
discontinuity location. For this reason we concentrated our research efforts on matching
the flow to a desired flow rather than introducing the explicit shock location as a variable
in the optimal control setup (as performed by Cliff et al. [36] for duct flow with quasi 1-D
Euler equations).

We used the discrete forward model to obtain the tangent linear model and then the
adjoint model, which provides the gradient or a subgradient of the cost functional to the
smooth (non smooth) minimizer.

If the location of the discontinuities were to be introduced as an explicit variable, then
the original model should be modified to accommodate the new requirements, a change
requiring complex adjustments. This is one of the arguments supporting our claim that our
approach is more appropriate for practical optimization problems involving discontinuities.

We considered as forward models the artificial viscosity model AVM and the high-
resolution model HRM. For each of the two numerical models we employed unconstrained
optimization methods (L-BFGS algorithm for smooth optimization and PVAR algorithm
for non smooth optimization) described in chapter 4.

The control variables were chosen to be the initial parameters to the left and to the
right of the membrane: pressure pL, pR and density ρL, ρR.

The desired observations were obtained as exact solutions of the shock-tube problem at
times t = 0.15 or t = 0.24, starting with prescribed initial conditions.

We considered three sets of initial parameters, which are referred to as:

• the first set of parameters (FSP)
FSP = [ρL = 1.1, pL = 1.1, ρR = 0.2, pR = 0.2]

• the second set of parameters (SSP)
SSP = [ρL = 1.2, pL = 1.2, ρR = 0.3, pR = 0.3]

and the third set of parameters (T SP):
T SP = [ρL = 2.5, pL = 2.0, ρR = 0.5, pR = 0.6]

The initial guess for both minimization methods (INIT ) is characteristic for the Sod
shock-tube problem ([177]):

INIT = [ρL = 1.0, pL = 1.0, ρR = 0.1, pR = 0.1]
The initial values for velocities to the left and to the right of the membrane were taken to
be zero.

The flow obtained using the first set (FSP), the second set (SSP) and the third set of
parameters (T SP) as initial conditions is compared in Fig. 10.1, 10.2 and 10.3 to the flow
obtained using the initial guess (INIT ) as initial conditions. It can be seen, especially
from the plot corresponding to the third set of parameters (T SP), that there is a large
discrepancy between the initial guess and the observations. Despite this discrepancy the
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minimization will be performed succesfully (using the nonsmooth minimizer PVAR) and
its numerical results are shown in Fig. 10.19, 10.20 and 10.18.

The numerical results for both models (AVM and HRM), using each of the optimiza-
tion methods (L-BFGS and PVAR), are presented in Fig. 10.4 - 10.5 (the evolution of
the cost functional vs. the number of minimization iterations) and in Fig. 10.6 - 10.7 (the
numerical flow obtained using the results of optimization compared with the observations).
The values of the optimized control parameters are presented in Table 10.1 (HRM) and
Table 10.2 (AVM).

We considered two different time horizons for the optimal control problem: TW = 0.15
or TW = 0.24 (in non dimensional units). They were chosen for two main reasons.
First, at the end of the time window the flow exhibits all five regions of discontinuities
previously discussed. Second, if one increases the time horizon from TW = 0.24 to a
slightly larger value time = 0.3, one can see from Fig. 10.9 that several characteristics of
the discontinuities have already disappeared. from the spatial domain considered.

We also employed two expressions for the cost functional, with observations located
either at the end of the assimilation window or with distributed observations in time.

When the observations were located at the end of the time window (t = TW ) the
following discrete form of the cost functional was considered:

J (U(·, 0),P(·, 0), ρ(·, 0)) =
Npoints∑

i=1

(
WU(i)× (Unum(i)−Uobs(i))2

+WP(i)× (Pnum(i)−Pobs(i))2 +Wρ × (ρnum(i)− ρobs(i))2
)

where

U(x, 0) =
{

0.0, x < 0.5
0.0, x > 0.5

P(x, 0) =
{

pL, x < 0.5
pR, x > 0.5

ρ(x, 0) =
{

ρL, x < 0.5
ρR, x > 0.5

with (ρL, pL, ρR, pR) the control variables described above.
Npoints is the number of points for space discretization, WU,WP,Wρ are the weights

matrices attached to points (we considered weight = 0.0, weight = 1.0 or weight = 25.0),
Unum,Pnum, ρnum are the fields of velocity, pressure and density at time tfinal while
Uobs,Pobs, ρobs are the observations for velocity, pressure and density.

For distributed observations the discrete form of the cost functional is:

J (U(·, 0),P(·, 0), ρ(·, 0)) =
Nobs∑
j=1

Npoints∑
i=1

(
WU(i)×

(
Unum

(j) (i)−Uobs
(j) (i)

)2

+WP(i)×
(
Pnum

(j) (i)−Pobs
(j) (i)

)2
+Wρ ×

(
ρnum
(j) (i) − ρobs(j) (i)

)2
)

In addition to the notations for the previous cost functional we denote by Nobs the
number of instances during the assimilation window for which we consider the observations,
Unum

(j) ,Pnum
(j) , ρnum

(j) are the fields of velocity, pressure and density at time t(j), (1 ≤ j ≤
Nobs) while Uobs

(j) ,P
obs
(j) , ρ

obs
(j) are the observations for velocity, pressure and density at the

same observation times t(j), respectively.
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10.6 Numerical results for the high-resolution model HRM

For the HRM model the optimized values of the control parameters are in excellent
agreement with the parameters’ desired values for both assimilation windows when the
non smooth optimization package PVAR was employed. Fig. 10.4 shows a decrease of
more than 2 orders of magnitude for the cost functional. The optimized values of the
control parameters [ρL, pL, ρR, pR] obtained as a result of non smooth minimization (the
row PVAR in Table 10.1) display a very good agreement with the desired parameters.
This remark is also supported by Fig. 10.6 which presents the comparison between the
numerical optimized solution and the observations.

For the model HRM we also employed a cost functional with time-distributed ob-
servations for the larger time window TW = 0.24. The optimized values of the control
parameters obtained as a result of the non smooth minimization are shown as entries in the
column PVAR [d.c.] (distributed controls) in Table 10.1. Since we have already obtained
excellent optimized results (almost identical to the desired values of the parameters) for
a cost functional computed using only final time observations, we may conclude that the
additional information provided by time-distributed observations was extraneous.

To verify the robustness of our approach we considered the third set of parameters
(T SP). The results obtained using non smooth optimization PVAR (also shown in Table
10.1) are in very good agreement with the desired values of the parameters. Fig. 10.10
shows that the flow obtained with the optimized control parameters as initial conditions
matches closely the observations. We can also see that the new location of discontinuities
matches the desired location.

The evolution of the numerical optimal solution obtained during different stages of
optimization versus the observations was plotted in Fig. 10.19, 10.20 and 10.18. It can
be seen from these plots that the numerical solution obtained during minimization has the
characteristics of a solution acceptable from the physical point of view. Another argument
in favor of this affirmation is presented next, using the physical entropy.

The evolution of the entropy during various stages of the minimization process (com-
puted at the end of the assimilation window) is displayed in Fig. 10.11 and Fig. 10.12.
It is known that the correct weak solution should satisfy the entropy condition, which
states that the entropy of fluid particles does not decrease. Over the contact discontinuity
the entropy decreases, but since fluid particles do not cross the contact discontinuity, the
entropy of the particles does not decrease. This shows that the numerical solution has
indeed the characteristics of a physical solution.

The L-BFGS minimization converged to the desired parameters only for the shorter
time window (TW = 0.15). For the larger time window (TW = 0.24) the L-BFGS
minimization failed.

10.7 Numerical results for the artificial viscosity model
AVM

We also applied successfully the non smooth minimization algorithm PVAR to the
artificial viscosity model AVM which represents the class of models which smooth the
discontinuities (see Table 10.2).
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As seen in Table 10.2, L-BFGS converged only for the time window TW = 0.15,
although the cost functional becomes “numerically” smoother for AVM model. For the
larger time window TW = 0.24 L-BFGS proved useful in a different setting. By using the
L-BFGS output as an initial guess for the PVAR method we obtained convergence to the
desired parameters in fewer minimization iterations. The values of the control parameters
obtained using this approach are shown in Table 10.2 (row PVAR [input]).

Scaling for the gradient of the cost functional was applied to the cases when L-BFGS
unconstrained optimization failed. The scaling was chosen such that all components of the
gradient have numerical values of order one. The scaled gradient L-BFGS optimization
did not converge to the desired values of control parameters (rows L-BFGS [s.] (scaled) of
Table 10.2).

To alleviate the impact of discontinuities we tested a method whereby we selectively
applied weights to the points of discontinuities. The choice of the points where weights
are applied was based on the trade-off between the desire for a smoother function and the
requirement of preserving as much as possible of the properties for the original problem.
Thus we assigned weights only to points where the shock occurred and we did not consider
contact discontinuities nor rarefaction waves. Fig. 10.8 shows the “shock” points after they
were selected using the discontinuity detection method described earlier in this chapter.

Different weights were considered in the computation the cost functional and its gradient
(weight = 0.0 corresponds to removal of these points from the cost functional and its
gradient computation, weight = 1.0 means that all the mesh points are considered to
have the same influence while for weight = 25.0 the influence of the shock is dominant).
Since the shock location changes in the forward model after each minimization iteration
the method of discontinuity detection was re-applied and corresponding shock points were
found.

The weighted minimization with weight = 25.0 failed for both time windows TW = 0.15
and TW = 0.24.

For weight = 0.0 a successful minimization was obtained (see row L-BFGS [w = 0] of
Table 10.2). The values of the control vector obtained using this approach were similar in
quality to the values obtained with PVAR and no weight considerations.

10.8 Additional numerical considerations

The control variables employed for this research were the initial values for pressure and
density. Since the desired value for the initial velocity is 0.0 (both to the left and to the
right of the membrane) we did not consider the initial value of the velocity among the
control variables. Another reason for selecting the initial values of the velocity to be zero
is related to the physical aspects of the shock-tube problem. If the initial values for the
velocity are considered as control variables, then during the minimization their updates
may have values which are not physical or the corresponding adjoint variables may lead to
solutions developing bifurcation points (Cacuci [26]).

Comparing the three sets of desired parameters one may argue that the distance between
the first or second set of parameters (FSP) or (SSP) and the initial guess (INIT ) is
rather small. But comparing the flow corresponding to (INIT ) with the flow obtained for
either (FSP) or (SSP) (Fig. 10.1 and 10.2) one notices large differences in the location of
discontinuities and the values for the flow variables, which provides a very good argument
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for our choices. The third set of parameters (T SP) was chosen to be at a much larger
distance to the initial guess (INIT ) in order to test the robustness of our approach.

We would like to describe in more detail the “ failure” of the L-BFGS method for
our problem. For some cases (e.g., for HRM model using the first set of observations
and time window TW = 0.24) the minimization per se performed successfully from the
optimization point of view (i.e., decrease of the cost functional and update of the vector of
control variables using a computed new step size). The failure is due to the fact that the
updated vector of control variables did not qualify as a solution from the physical point of
view.

Although the non smooth minimization algorithm PVAR performed successfully
for both numerical models there are large differences in the memory and CPU time
requirements. For comparable accuracy the number of mesh points for HRM model was
200 while it was 500 for AVM, with corresponding differences in the number of time steps
required.

The influence of the numerical model over the optimization results for the first two
sets of observations is presented in Fig. 10.14 and 10.15 for the non smooth optimization
algorithm PVAR, respectively in Fig. 10.17 and 10.16 for the L-BFGS minimization
algorithm.
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Table 10.1. Optimization results for the high-resolution model

FIRST SET OF OBSERVATIONS AND TIME=0.15
Parameter ρL pL ρR pR

Desired 1.1 1.1 0.2 0.2
L-BFGS 1.10143 1.10251 0.19934 0.19865
PVAR 1.10059 1.10187 0.19942 0.19884

FIRST SET OF OBSERVATIONS AND TIME=0.24
Parameter ρL pL ρR pR

Desired 1.1 1.1 0.2 0.2
L-BFGS Failed Failed Failed Failed
PVAR 1.09815 1.08966 0.19993 0.19894

L-BFGS [s.] 1.04032 0.99664 0.13887 0.99628
PVAR [d.c.] 1.10088 1.10915 0.20122 0.19886

SECOND SET OF OBSERVATIONS AND TIME=0.15
Parameter ρL pL ρR pR

Desired 1.2 1.2 0.3 0.3
L-BFGS 1.20161 1.20342 0.29712 0.29973
PVAR 1.20052 1.20278 0.29752 0.29953

SECOND SET OF OBSERVATIONS AND TIME=0.24
Parameter ρL pL ρR pR

Desired 1.2 1.2 0.3 0.3
L-BFGS 1.03479 0.85757 0.35072 0.25325
PVAR 1.19406 1.19203 0.30308 0.29946

L-BFGS [s.] 1.38023 0.84461 0.37357 0.26728
PVAR [d.c.] 1.20689 1.20698 0.30294 0.29962

THIRD SET OF OBSERVATIONS AND TIME=0.24
Parameter ρL pL ρR pR

Desired 2.5 2.0 0.5 0.6
PVAR 2.49591 1.97919 0.49941 0.60096
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Table 10.2. Optimization results for the artificial viscosity model

FIRST SET OF OBSERVATIONS AND TIME=0.15
Parameter ρL pL ρR pR

Desired 1.1 1.1 0.2 0.2
L-BFGS 1.09712 1.09947 0.20432 0.19756

L-BFGS [w=0] 1.10031 1.10459 0.20514 0.19786
PVAR 1.09685 1.09933 0.20439 0.19782

FIRST SET OF OBSERVATIONS AND TIME=0.24
Parameter ρL pL ρR pR

Desired 1.1 1.1 0.2 0.2
L-BFGS 1.02638 1.00347 0.18012 0.19296

L-BFGS [w=0] 1.09742 1.10173 0.20004 0.20154
PVAR 1.09737 1.09966 0.20357 0.19874

PVAR [input] 1.09741 1.09961 0.20344 0.19867
L-BFGS [s.] 1.03685 0.96042 0.13276 0.35517

SECOND SET OF OBSERVATIONS AND TIME=0.15
Parameter ρL pL ρR pR

Desired 1.2 1.2 0.3 0.3
L-BFGS 1.19784 1.19856 0.30582 0.29714

L-BFGS [w=0] 1.19327 1.18962 0.29983 0.30134
PVAR 1.19768 1.19778 0.30583 0.29702

SECOND SET OF OBSERVATIONS AND TIME=0.24
Parameter ρL pL ρR pR

Desired 1.2 1.2 0.3 0.3
L-BFGS 1.19832 1.19846 0.30615 0.29891

L-BFGS [w=0] 1.19872 1.19641 0.30373 0.29778
PVAR 1.19764 1.19825 0.30527 0.29735

THIRD SET OF OBSERVATIONS AND TIME=0.24
Parameter ρL pL ρR pR

Desired 2.5 2.0 0.5 0.6
L-BFGS [s.] 2.488975 1.904185 0.65136 0.83691
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[a] [b]

[c] [d]

[e] (f)

Figure 10.1. Pressure, velocity and density: initial guess (�) and exact observation (red
line) at time=0.24 for the HRM model: first set of observations ([a], [c], [e]) and the
second set of observations ([b], [d], [f ])
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[a] [b]

[c] [d]

[e] (f)

Figure 10.2. Pressure, velocity and density: initial guess (�) and exact observation (red
line) at time=0.24 for the AVM model: first set of observations ([a], [c], [e]) and the
second set of observations ([b], [d], [f ])
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[a] [b]

[c] [d]

[e] (f)

Figure 10.3. Pressure, velocity and density: initial guess (�) and exact observation (red
line) at time=0.24 for the third set of observations: for the HRM model ([a], [c], [e]) and
for the AVM model ([b], [d], [f ])
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[a] [b]

[c] [d]

[e]

Figure 10.4. Evolution of the logarithm of cost functional vs. number of iterations
during non smooth minimization PVAR for the HRM model at time=0.24: first set of
observations without ([a]) or with ([b]) distributed observations; second set of observations
without ([c]) or with ([d]) distributed observations; third set of observations [e]
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[a] [b]

[c] [d]

[e]

Figure 10.5. Evolution of the logarithm of cost functional vs. number of minimization
iterations with the AVM model at time=0.24: non smooth optimization PVAR and first
([a]) or second ([c]) set of observations; L-BFGS optimization with weight=0.0 for the
first ([b]) or second ([d]) set of observations; (L-BFGS) scaled optimization for the final
set of observations [e]
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[a] [b]

[c]) [d]

[e] [f ]

Figure 10.6. Pressure, density and velocity: observations (red line) and numerical solution
(�) of non smooth optimization PVAR for the HRM model at time=0.24: first set of
observations ([a], [c], [e]) and second set of observations ([b], [d] and [f ])
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(a) (b)

(c)

Figure 10.7. Pressure ([a]), density ([b]) and velocity ([c]): first set of observations (red
line) and numerical solution (�) of L-BFGS optimization (with weight=0.0) for the AVM
model at time=0.24.
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(a) (b)

(c)

Figure 10.8. Discontinuity detection for the AVM model: the selected points (red) for
pressure ([a]), density ([b]) and velocity ([c])
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(a) (b)

(c)

Figure 10.9. Pressure ([a]), density ([b]) and velocity ([c]): Numerical (�) and analytical
(red line) solution of high-resolution model for the shock-tube problem at time=0.30
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(a) (b)

(c)

Figure 10.10. Pressure ([a]), density ([b]) and velocity ([c]): observations (red line) and
numerical solution(�) of PVAR for the HRM model at time=0.24 for the final set of
observations
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[a] [b]

[c]) [d]

[e] [f ]

Figure 10.11. Evolution of numerical (�) and analytical (red line) entropy (shown at final
time t = 0.24 for the HRM model and for the first set of observations) during non smooth
minimization PVAR: [a] iteration=0, [b] iteration=5, [c] iteration=10, [d] iteration=15,
[e] iteration=20, [f ] final iteration
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[a] [b]

[c]) [d]

[e] [f ]

Figure 10.12. Evolution of numerical (�) and analytical (red line) entropy (shown at
final time t = 0.24 for the HRM model and for the second set of observations) during
non smooth minimization PVAR: [a] iteration=0, [b] iteration=10, [c] iteration=20, [d]
iteration=35, [e] iteration=45, [f ] final iteration
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[a] [b]

[c]) [d]

[e] [f ]

Figure 10.13. Pressure, density and velocity: numerical (�) and analytical (red line)
solution for the shock-tube problem at time=0.24 for HRM model ([a], [c] and [e]),
respectively for the AVM model ([b], [d] and [f ])
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[a] [b]

[c]) [d]

[e] [f ]

Figure 10.14. Pressure, density and velocity: numerical solution (�) after non smooth
optimization PVAR and first set of observations (red line) for the shock-tube problem at
time=0.24 for HRM model ([a], [c] and [e]), respectively for the AVM model ([b], [d]
and [f ])
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[a] [b]

[c]) [d]

[e] [f ]

Figure 10.15. Pressure, density and velocity: numerical solution (�) after non smooth
optimization PVAR and second set of observations (red line) for the shock-tube problem
at time=0.24 for HRM model ([a], [c] and [e]), respectively for the AVM model ([b], [d]
and [f ])
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[a] [b]

[c]) [d]

[e] [f ]

Figure 10.16. Pressure, density and velocity: numerical solution (�) after L-BFGS
optimization and second set of observations (red line) for the shock-tube problem at
time=0.24 for HRM model ([a], [c] and [e]), respectively for the AVM model ([b], [d]
and [f ])
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[a] [b]

[c]) [d]

[e] [f ]

Figure 10.17. Pressure, density and velocity: numerical solution after L-BFGS optimiza-
tion (�) and first set of observations (red line) for the shock-tube problem at time=0.24
for the AVM model for weight=0.0 ([a], [c] and [e]), respectively for no weight considered
([b], [d] and [f ])
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[a] [b]

[c] [d]

[e] (f)

Figure 10.18. Pressure: numerical solution (�) and exact observation (red line) at
time=0.24 for the third set of observations and for the HRM model during PVAR
minimization: [a] iteration=0; [b] iteration=50; [c] iteration=100; [d] iteration=150; [e]
iteration=200; [f ] iteration=268
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[a] [b]

[c] [d]

[e] (f)

Figure 10.19. Density: numerical solution (�) and exact observation (red line) at
time=0.24 for the third set of observations and for the HRM model during PVAR
minimization: [a] iteration=0; [b] iteration=50; [c] iteration=100; [d] iteration=150; [e]
iteration=200; [f ] iteration=268
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[a] [b]

[c] [d]

[e] (f)

Figure 10.20. Velocity: numerical solution (�) and exact observation (red line) at
time=0.24 for the third set of observations and for the HRM model during PVAR
minimization: [a] iteration=0; [b] iteration=50; [c] iteration=100; [d] iteration=150; [e]
iteration=200; [f ] iteration=268
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CHAPTER 11

CONCLUSIONS

We have applied optimal control methods to solve fluid dynamics problems using the
adjoint approach for the numerical computation of the gradient (or subgradient) of the cost
functional. We investigated differentiable and non differentiable cost functionals which were
minimized using smooth or non smooth optimization algorithms.

An optimal control problem of a viscous flow past a roating circular cylinder was chosen
for the case of a differentiable cost functional. The 1-D Riemann problem for the Euler
equations (shock-tube problem) was considered to exemplify optimal control with a non
smooth cost functional. Sensitivity analysis for discontinuous flow was also studied.

Suppression of Karman vortex shedding was achieved for a flow around a rotating
cylinder using optimal control. The numerical results obtained agree to a large extent with
results obtained by other researchers using other numerical or experimental methods to
solve this problem.

An additional result obtained was the significant reduction of the amplitude of the drag
coefficient for the flow corresponding to the rotation parameters obtained by the optimal
control approach.

The main advantage of the optimal-control approach to flow control is the considerable
freedom in choosing the objective function and the parameters of interest. However this
approach is very complex and quite demanding computationally.

The adjoint method for computing the gradient of the cost functional with respect to
the control parameters provides us with the necessary tool to apply optimal control to the
problem of a flow around a rotating cylinder.

Our results were obtained for Reynolds numbers in the range [60, 1000]. Future research
will apply this method for higher Reynolds numbers, for which there are other regimes,
with different characteristics.

Adaptive grid refinement should be considered for improving the accuracy of the results.
Another issue, dealing with improving the efficiency of this approach, is to consider the
design model version where both forward and adjoint models use parallel programming.

This optimization problem was characterized by its ill-posedness. Our approach for
circumventing it was the inclusion of a regularization term in the objective functional.
An empirical law for finding suitable penalty parameters was found, allowing efficient
minimization to be performed. There are other approaches for dealing with ill-posedness
which can be used as well: the utilization of a second-order Tikhonov regularization function
(e.g., Alekseev and Navon [4]) or the method of SVD (Singular Value Decomposition)
which will decompose the problem into well-posed and ill-posed components (e.g., Liu et
al. [135], Alekseev and Navon [4]).

Sensitivities are derivatives of the variables or cost functionals that describe the model
with respect to parameters that determine the behavior of the model (e.g., initial conditions,
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boundary conditions or model parameters). They provide information about which of these
parameters most influence the model output. We studied sensitivity analysis for a fluid
dynamics problem characterized by several types of discontinuities.

Our research was focused on the numerical computation of flow sensitivities with respect
to an initial flow parameter for the shock-tube problem (1-D Riemann problem described
by Euler equations) for which the exact values of the flow sensitivities are known.

The forward model was chosen such that numerical errors from solving the disconti-
nuities are minimized by a large extent. This was achieved by using an adaptive mesh
refinement coupled with a Riemann solver as the discrete forward model. Since the
numerical sensitivities are obtained using the tangent linear model (which is derived from
the forward model), this implies that we eliminated a majoor source of errors from the
numerical values of sensitivities.

Our experience with tangent linear models in higher dimensions (Homescu et al. [101]
suggests extending the numerical methodology presented here to higher spatial dimensions.
For problems with discontinuities in 2-D or 3-D we expect a decrease in the numerical
accuracy of sensitivity computation, compared to the 1-D case. A possible remedy for
alleviating this problem was presented by Dadone et al. [44]) and it consists in the
application of a smoother to the sensitivities.

Theoretical aspects of linearization for Euler equations were presented. The solution of
the linearized system of equations and the sensitivity with respect to a model parameter
are solutions of the tangent linear system. The tangent linear model provides a numerical
value of the sensitivity which is in better agreement with the analytical solution than any
previously published numerical results, to a high extent due to the use of highly accurate
adaptive mesh refinement code.

The example chosen for an optimal control problem of a flow with discontinuities was
one of flow matching for a 1-D Riemann problem for Euler equations, namely the shock-tube
problem, which includes several types of discontinuities. The control variables considered
were the initial conditions at the left and at the right of the membrane for pressure and
density. Existence results were proved for the solution of the optimal control problem
considered here. The cost functional was taken to be the (weighted) difference between the
numerical and the desired solution of the model. The observations were taken either at the
end of the time window or they were time distributed within the assimilation time horizon.

For the present problem flow matching was equivalent to relocation of discontinuities to
a desired location. Since in all practical control applications discontinuities are captured
using either high-resolution models or models which smooth the solution we employed
here two numerical models representative of both approaches. For each forward model
its corresponding discrete adjoint model was then employed for computing the gradient
(or a subgradient) of the cost functional required for carrying out the minimization of the
cost functional with respect to the control variables (using either non smooth or smooth
algorithms for minimization). The two assimilation windows for minimization were chosen
such that the flow with discontinuities retained all its characteristics at the end of each
time window. If we were to use a slightly larger time window the model time evolution
would change some of the characteristics of discontinuities.

The method of non smooth optimization (PVAR) employed for minimizing the cost
functional was found to be very robust for our test cases. For each of the different sets
of observations employed we obtained optimized values of the control parameters in very
good agreement with the desired results. The smooth minimization algorithm (L-BFGS)
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provided good results for the shorter time window but failed for the longer time window,
even when a scaling the gradient of the cost functional was performed. Better results
for L-BFGS minimization were obtained if weights were assigned to the points were the
shock occurs (the shock points were identified using a method of discontinuities detection).
The evolution of the entropy during various stages of the minimization process shows that
the numerical solution of the optimal control problem obtained does indeed satisfy the
entropy condition. This fact supports our conclusion that the numerical optimal solution
is a physical solution, since it is known that the correct weak solution of the shock tube
problem must satisfy the entropy condition.

A very useful characteristic of the methodology for optimal control for discontinuous
flow presented in this article is the ease with which it can be implemented in applications
where the forward model is already discretized (the discretize-then-differentiate approach).

Extending this approach to optimal control problems with discontinuities in 2-D or 3-D
would render the adjoint method even more appealing computationally, due to the larger
number of control parameters involved. It would also apply to more realistic test cases, in
particular in aerodynamics (e.g., Jameson [114]).

If the observations are “noisy”, one may expect that the cost functional should have
new components which will account for the effect of the noise. Both noisy observations and
model errors are issues to be addressed in future research.

I plan also to look further into the issue of controllability and observability for
the optimal control problem of discontinuous flow. We recall that by controllability
of the system one means the possibility of influencing independently each state of the
system through the inputs; by observability of the system one means the possibility of
reconstructing each state of the system from the outputs.

An important question which should be addressed in subsequent research is related
to the the bounds for the controls. In other words we will try to determine the desired
values of the flow parameters such that either the optimal control problem cannot be solved
theoretically or its numerical solution cannot be found.

We consider our research to be only a small step towards the complete solution of
optimal control of problems with discontinuities. Although published results are rather
few, one may foresee a growing number of research efforts dedicated to the numerical and
theoretical studies of this class of important optimal control problems.
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