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Chapter 1

Introduction

In many scientific applications it is necessary to solve a system of linear algebraic equations, Ax = b.

Depending on the application, these systems may be real or complex. They typically arise when

a continuous problem, such as a system of differential equations, is discretized so that it may be

solved approximately using a numerical technique on a digital computer. Linear systems arise

in this way in applied mathematics, physics, chemistry, atmospheric science, computer science,

and especially engineering. Direct methods, such as matrix factorization, are commonly used to

solve these systems. However, in many important cases, such as the solution of partial differential

equations, the linear systems are large and sparse. Since direct methods are too expensive for such

systems, iterative methods are used.

Many scientific problems lead to linear systems with special properties. In the solution of partial

differential equations, for example, it is common for the resulting linear system to be Hermitian

positive definite (hpd). (The symmetry in the underlying differential operator gives rise to a

symmetric system matrix when symmetry-preserving discretization techniques are used.) One of

the most popular and effective iterative methods for solving hpd linear systems is the conjugate

gradient (CG) method of Hestenes and Stiefel [19]. We will examine this method, and variants of

it, in the pages that follow.

In many other scientific problems, large and sparse nonhermitian and/or indefinite linear sys-

tems arise. The traditional CG method of Hestenes and Stiefel cannot be used for these systems

because convergence is guaranteed only for hpd linear systems. However, variants of the CG

method, such as conjugate residuals and CG on the normal equations, can be used for Hermitian

indefinite and nonhermitian linear systems, respectively. Unfortunately, there are disadvantages to
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some of these methods. For example, CG on the normal equations has the property of squaring the

condition number of the original matrix, resulting in slower convergence of the method. (However,

CG on the preconditioned normal equations often works quite well.) There are several methods

that avoid some of these difficulties, including adaptive Chebyshev [2, 24, 25] and GMRES [33].

1.1 What is CgCode?

In this report we describe a package called CgCode. It is a collection of conjugate gradient algo-

rithms, written in FORTRAN 77, for solving linear systems. We consider only 3-term CG methods

(Chapter 3). CG-like methods, such as Orthomin(k) and GMRES(k), are neither considered here

nor implemented in CgCode. See [15] for a discussion of some of these methods.

CgCode was originally developed at Los Alamos National Laboratory by Steven Ashby and

Thomas Manteuffel. Their original implementation has been expanded to include several new

methods, and the user interface has been modified to conform to a proposed standard for iterative

linear solvers [7]. The resulting package, which is easy to use and well-documented, combines

several well-known CG methods with some special features, including:

• dynamic eigenvalue estimation,

• a standard user interface,

• matrix data structure independence,

• a menu of stopping criteria, including one based on the true error,

• adaptive Chebyshev polynomial preconditioning for hpd A.

The package contains eleven user-callable subroutines, including the driver subroutine, which allows

the user to easily call any of the implemented methods. The user simply provides CgCode with a

few parameters, some work space, and two subroutines: one to compute a matrix-vector product

and another to effect preconditioning. A single call to CgCode returns the solution and various

messages. See Chapter 2 for a complete description of these required parameters and subroutines.

While many users will solve only real linear systems, complex systems arise in many applications,

and so CgCode is available in complex arithmetic, as well as single and double precision real

arithmetic.
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1.2 Outline of the Report

Chapter 2 is a self-contained user’s guide to CgCode. It contains all the information needed to

use CgCode, including a complete description of all required parameters and subroutines. If the

user is primarily concerned with solving a linear system, Chapter 2 should be read carefully, with

special attention paid to the examples presented. If the user is interested in the methods in CgCode,

Chapters 3, 4, and 5 provide an introduction to CG methods, preconditioning, and stopping criteria,

respectively. Chapter 6 discusses future releases of CgCode and gives information about obtaining

a copy of CgCode. A sample program is given in the Appendix.
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Chapter 2

How to use CgCode

This chapter describes CgCode in detail. We first describe our user interface philosophy and then

examine its two key components: the matrix-vector multiplication routine MATVEC, and the

preconditioning routine PCONDL. Finally, we describe each of the parameters required by the

CgCode package interface routine, CGDRV1. After reading this chapter, and perhaps consulting

the sample program in the Appendix, one should have all the information needed to use the package

to solve a linear system Ax = b.

To use CgCode, one simply calls the driver routine, CGDRV, supplying it with certain param-

eters, subroutines, and work space, all passed through the CGDRV parameter list. On return,

CgCode provides the solution of the linear system, perhaps with a few messages. If an error was

encountered, CgCode will return prematurely with an error flag set to an appropriate value, telling

what went wrong. The user is expected to provide the following:

• a matrix-vector multiplication routine, which we call MATVEC,

• a preconditioning routine, which we call PCONDL,

• integer and real work space,

• the right-hand side b and an initial guess x0,

• a few control parameters, such as the error tolerance.

Each of these parameters will be described in full below. First, we will discuss the philosophy

behind our approach.

1CGDRV is the generic name for the interface routine; the actual subroutine names are SCGDRV, DCGDRV, and

CCGDRV for the single, double and complex arithmetic implementations, respectively.
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CgCode conforms to the user interface proposed in [7], which has several advantages. To begin

with, having some type of standardized user interface enables the user to more easily try different

packages, without having to code a different interface for each package. This user interface also

• is easy to use and flexible,

• is problem-independent,

• is independent of the matrix storage format,

• provides a consistent way to use different preconditioners,

• allows the user to select from a menu of stopping criteria.

Although it may seem inconvenient to require the user to supply the matrix-vector multiplication

routine MATVEC and the preconditioning routine PCONDL, we believe the benefits outweigh the

disadvantages. All iterative methods require matrix-vector products. If a user has tried another

package, he may have already written a subroutine to perform this operation. Moreover, he may

have invested a great deal of time into optimizing this routine for a particular machine and problem.

Thus, one advantage of our approach is that an existing matrix-vector multiplication subroutine

can be reused by treating MATVEC as an interface to it (see below). A second advantage is

this: since the matrix-vector multiplication routine is the only routine that needs to know how

the matrix A is stored, the user is free to employ any data structure he desires. CgCode calls

MATVEC, passing in the vector x, and MATVEC (usually through the user’s existing routine)

returns the product y = Ax. In other words, CgCode in no way depends on the data structure

chosen for A. Moreover, one can easily experiment with different storage formats by modifying the

matrix-vector multiplication routine. Future releases of CgCode will offer a menu of data structures

and corresponding MATVEC routines. The user would then have the choice of providing his own

MATVEC or using one of those provided by CgCode. Of course, if he chooses the latter, he must

conform to a particular data structure.

Most iterative methods also need some sort of preconditioning. This can be thought of as

the solution of another linear system, My = x, where x is a vector from the iteration and M

approximates A, but is easier to invert2. Alternately, we can think of the preconditioning step as

the product of M−1 and x, where the preconditioner M−1 approximates the inverse of A. We choose

to view the preconditioning step as just another matrix-vector multiplication, y = M −1x. Once

2This means the solution of My = x can be easily computed. The inverse of M is seldom computed explicitly.
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we adopt this view, it is clear that the routine PCONDL yields the same benefits as MATVEC:

(1) the solver is kept independent of the storage format chosen for the preconditioner; and (2) an

existing preconditioning subroutine can be reused by treating PCONDL as an interface to it. This

is especially advantageous if the user has such a routine that exploits special knowledge of the

problem. Moreover, this approach allows the use of another package’s preconditioning software.

Note that different data structures can be used for M−1 and A.

2.1 Matrix-Vector Multiplication

All iterative methods require the matrix-vector product y = Ax at some point in the iteration. To

use CgCode, one must provide an interface subroutine, MATVEC, that will return this product.

The parameter list of MATVEC must have the form:

MATVEC(JOB,A,IA,W,X,Y,N)

All real work space needed to effect the matrix-vector multiplication must be passed through the

work array A. It will usually contain the nonzeros of the matrix A. Similarly, all integer work space

must be passed through IA, which usually contains additional information about how the matrix A

is stored in the array A. Both A and IA must be initialized in the calling program. The parameter

X is the input vector x, Y is the product vector y = Ax, and N is the order n of A, as well as

the length of X and Y. The parameter JOB indicates the matrix-vector product to performed (see

below). The input vector W is used in conjunction with JOB to compute some of these products.

(Here we consider the products y = Ax and y = A∗x, so W can be considered a dummy parameter.)

If the user already has a routine, USERMV, that computes a matrix-vector product, but does

not have the specified parameter list, then MATVEC can be treated as an interface between CgCode

and USERMV. CgCode will call MATVEC with the prescribed argument list, and MATVEC will

call USERMV, which may have any argument list whatsoever. USERMV then computes the actual

matrix-vector product, passing the result back through MATVEC to CgCode. Of course, MATVEC

may be written to compute y = Ax directly.

The short example given in Figure 2.1 may help make this clearer. In this example, the user

has a pentadiagonal matrix A stored in the array A as 5 vectors. The starting index in A for

each diagonal was previously stored in the array IA in the calling program. The user already has

6



SUBROUTINE MATVEC(JOB,A,IA,W,X,Y,N)

DIMENSION A(*),IA(*),W(*),X(*),Y(*)

C

C MATVEC is an interface to USERMV, which expects the five diagonals

C of the matrix A to be passed in separately. The starting position of

C each diagonal in the array A was stored in IA in the calling program.

C

CALL USERMV(A(IA(5)),A(IA(3)),A(IA(1)),A(IA(2)),A(IA(4)),

2 IA(6),IA(7),X,Y)

RETURN

END

C

C

C

SUBROUTINE USERMV(CL,BL,A,BU,CU,NX,NY,X,Y)

DIMENSION CL(*),BL(*),A(*),BU(*),CU(*),X(*),Y(*)

C

C This subroutine computes the product of the pentadiagonal matrix

C consisting of CL,BL,A,BU,CU and the vector X to produce the result Y,

C where N=NX*NY is the length of each vector and each diagonal.

C

RETURN

END

Figure 2.1: Using MATVEC as an interface to USERMV.

a subroutine USERMV to form the product y = Ax, but it has a different parameter list than

that required for MATVEC. To use USERMV, the user writes MATVEC as an interface routine.

When CgCode needs a matrix-vector product, it calls MATVEC, which in turn calls USERMV.

The matrix-vector product is then performed in USERMV and the result is passed back through

MATVEC to CgCode.

2.2 Preconditioning

CgCode currently supports two types of preconditioning: (1) user-supplied preconditioning via

PCONDL; and (2) adaptive Chebyshev polynomial preconditioning, available if A is Hermitian

positive definite. Additional preconditioners will be offered in future releases of CgCode. We first
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discuss user-supplied preconditioning, implemented as left preconditioning in CgCode. (As we will

see in Chapter 4, left preconditioning is sufficient for CG methods.)

If a preconditioner C is employed, the iterative method needs the product y = Cx at some point

in the iteration. If the preconditioner is obtained from an incomplete factorization (see Chapter

4), this might be implemented via the solution of lower and upper triangular linear systems. The

preconditioning might alternatively be implemented as several iterations of an iterative method

such as SSOR, or something altogether different. To use this type of preconditioning in CgCode,

the user must provide the routine PCONDL to CgCode. It must have the following parameter list,

similar to that of MATVEC:

PCONDL(JOB,Q,IQ,W,X,Y,N)

The arrays Q and IQ usually contain information about the preconditioner C, such as the nonzeros

and how they were stored by the calling program; c.f., the discussion of A and IA of MATVEC.

The other parameters have the same meaning and function as those described for MATVEC. As

with MATVEC, the PCONDL subroutine may be used as an interface to an existing subroutine,

which we call USERPC.

CgCode also supports adaptive Chebyshev polynomial preconditioning for Hermitian positive

definite systems. The theory of polynomial preconditioning is summarized in Chapter 4; here we

will describe how to use it in CgCode. If the user wishes to use polynomial preconditioning, he

must provide:

• NDEG: the degree of the Chebyshev preconditioning polynomial,

• AA: an initial estimate of the minimum eigenvalue of A,

• BB: an initial estimate of the maximum eigenvalue of A.

Numerical experiments [3, 4, 5] indicate that the optimum degree for the polynomial varies between

2 and 16, with the optimum degree increasing as the condition number of A, κ(A), increases. In

addition, for the adaptive procedures to work correctly, NDEG must be even. If the matrix has been

scaled by its diagonal (Chapter 4), then setting AA=1.0 and BB=1.0 is recommended. Another

acceptable initial value for AA and BB is 〈Ab, b〉/〈b, b〉. Note that an inner preconditioning can be

employed by way of the PCONDL routine.
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2.3 Calling CgCode

We now consider CGDRV, which is the user’s primary interface to CgCode. The call to CGDRV

has the following form:

CALL CGDRV(MATVEC,PCONDL,PCONDR,A,IA,X,B,N,Q,IQ,P,IP,
. IPARAM,RPARAM,IWORK,RWORK,IERROR)

CGDRV is an interface to CgCode, which consists of 10 conjugate gradient algorithms. Each

algorithm is targeted at linear systems with different characteristics, using various combinations

of preconditioning strategies and conjugate gradient methods. The parameter IPARAM(33)=ICG

selects the CG algorithm to be used. This and the other parameters required by CgCode will now

be described in detail.

MATVEC External Subroutine MATVEC(JOB,A,IA,W,X,Y,N).
The user must provide a subroutine having the specified parameter list. MATVEC
will usually serve as an interface to the user’s own matrix-vector multiply subroutine.
The subroutine must return the desired product, as specified by JOB:

JOB=0 y = Ax
JOB=1 y = A∗x
JOB=2 y = w − Ax
JOB=3 y = w − A∗x.

Here A∗ denotes the Hermitian transpose of A. Note that only JOB=0,1 are re-
quired for CgCode. All the routines in CgCode require JOB=0; the routines CGNR,
CGNE, PCGNR, and PCGNE also require JOB=1. (JOB=2,3 are not currently re-
quired by any of the routines in CgCode, but may be required by other iterative
packages conforming to the proposed iterative standard.) The parameters W,X,Y
are all vectors of length N. (If JOB=0,1 W may be a dummy argument.) A and
IA are real and integer work arrays, usually containing the nonzeros of A and ad-
ditional information about how A is stored in A. These arrays are provided solely
for the user’s convenience; they are simply passed as addresses to MATVEC. Note:
MATVEC must be declared in an EXTERNAL statement in the calling program.

PCONDL External Subroutine PCONDL(JOB,Q,IQ,W,X,Y,N).
If preconditioning is desired, the user must provide a subroutine having the spec-
ified parameter list. PCONDL will usually serve as an interface to the user’s own
preconditioning routine. The integer parameter JOB specifies the product to be
computed:
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JOB=0 y = Cx
JOB=1 y = C∗x
JOB=2 y = w − Cx
JOB=3 y = w − C∗x.

Note that only JOB=0,1 are required for CgCode. The routines PCG, PCGNR,
PCGNE, PPCG, and PCGCA in CgCode require JOB=0; the routines PCGNR
and PCGNE also require JOB=1. (JOB=2,3 are not currently required by any of
the routines in CgCode, but may be required by other iterative packages conforming
to the proposed iterative standard.) The parameters W,X,Y are all vectors of length
N. (If JOB=0,1 W may be a dummy argument.) Q and IQ are real and integer work
arrays, analogous to A and IA of MATVEC. Note: PCONDL must be declared in
an EXTERNAL statement in the calling program. If no preconditioning is being
done, PCONDL is a dummy argument.

PCONDR Dummy argument.
This parameter is mandated by the proposed standard [7].

A Real array address.
The base address of the user’s real work array, which usually contains the nonzeros
of the matrix A. Since A is only accessed by calls to subroutine MATVEC, it may
be a dummy address.

IA Integer array address.
The base address of the user’s integer work array. This usually contains additional
information about A needed by MATVEC. Since IA is only accessed by calls to
MATVEC, it may be a dummy address.

X Real(N).
The initial guess vector, x0. On return, X contains the approximate solution to
Ax = b.

B Real(N).
The right-hand side vector of the linear system Ax = b. B is changed by the solver.

N Integer.
The order of the matrix A in the linear system Ax = b.

Q Real array address.
The base address of the user’s left preconditioning array, Q. Since Q is accessed
only by calls to PCONDL, it may be a dummy address. If no left preconditioning
is done, this is a dummy argument.
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IQ Integer array address.
The base address of an integer work array associated with Q. This provides the user
with a way of passing integer information about Q to PCONDL. Since IQ is accessed
only by calls to PCONDL, it may be a dummy address. If no left preconditioning
is done, this is a dummy argument.

P Dummy argument.
This variable is mandated by the proposed standard [7].

IP Dummy argument.
This variable is mandated by the proposed standard [7].

IPARAM Integer(34).
An array of integer input parameters. IPARAM(1) through IPARAM(10) are man-
dated by the proposed standard; IPARAM(11) through IPARAM(30) are reserved
for expansion of the proposed standard; IPARAM(31) through IPARAM(34) are
additional parameters, specific to CgCode.

IPARAM(1) = NIPAR
Length of the IPARAM array. It should be set to 34.

IPARAM(2) = NRPAR
Length of the RPARAM array. It should be set to 34.

IPARAM(3) = NIWK
Length of the IWORK array. See the description of IWORK below.

IPARAM(4) = NRWK
Length of the RWORK array. See the description of RWORK below.

IPARAM(5) = IOUNIT
If IOUNIT > 0 then iteration information (as specified by IOLEVL) is written to
unit=IOUNIT, which must be opened in the calling program. If IOUNIT ≤ 0, no
output is generated.

IPARAM(6) = IOLEVL
Specifies the amount and type of information to be output if IOUNIT > 0:

If IOLEVL=0 Output error messages only.
If IOLEVL=1 Output input parameters and level 0 information.
If IOLEVL=2 Output STPTST (see below) and level 1 information.
If IOLEVL=3 Output level 2 information and more details.

For more information on the amount and type of information produced by CgCode
for each of these values, see the documentation and [7].
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IPARAM(7) = IPCOND
Preconditioning flag, specified as:

If IPCOND=0 No preconditioning.
If IPCOND=1 Left preconditioning.
If IPCOND=2 Right preconditioning.
If IPCOND=3 Both left and right preconditioning.

Note: right preconditioning is an option provided by the proposed standard [7], but
not implemented in CgCode.

IPARAM(8) = ISTOP
Stopping criterion flag:

If ISTOP=0 then use: ‖ei‖/‖x‖ ≤ ε (DEFAULT)
If ISTOP=1 then use: ‖ri‖ ≤ ε
If ISTOP=2 then use: ‖ri‖/‖b‖ ≤ ε
If ISTOP=3 then use: ‖Cri‖ ≤ ε
If ISTOP=4 then use: ‖Cri‖/‖Cb‖ ≤ ε

where ei = x − xi, ri = b − Axi, ε=ERRTOL, and C is the preconditioning matrix.
(Here ‖ · ‖ denotes the Euclidean norm.) If ISTOP=0 is selected by the user, then
ERRTOL is the amount by which the initial error is to be reduced. By estimating
the condition number of the iteration matrix, the code attempts to guarantee that
the final relative error is less than or equal to ERRTOL. See Chapter 5 for details.

IPARAM(9) = ITMAX
The maximum number of iterative steps to be taken. If the solver is unable to satisfy
the stopping criterion within ITMAX iterations, it returns to the calling program
with IERROR=−1000.

IPARAM(10) = ITERS
On return, the number of iterations actually taken. If IERROR=0, then xITERS

satisfies the specified stopping criterion. If IERROR=−1000, CgCode was unable
to converge within ITMAX iterations, and xITERS is CgCode’s best approximation
to the solution of Ax = b.

IPARAM(31) = ICYCLE
The frequency with which a condition number estimate is computed; this is used in
the stopping criterion.

IPARAM(32) = NCE
The maximum number of condition number estimates to be computed. If NCE =
0 no estimates are computed. See ICYCLE and ISTOP above. Note: KMAX =
ICYCLE*NCE is the order of the largest orthogonal section of CA used to compute
a condition number estimate. This estimate is only used in the stopping criterion.
As such, KMAX should be much less than N. Otherwise the code will have excessive
storage and work requirements.
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IPARAM(33) = ICG
A flag specifying the method to be used. In the table below, A is the system
matrix, C is a preconditioning matrix, and C(A) is a preconditioning polynomial.
If (ICG < 1) or (ICG > 10), then ICG is set to 1.

ICG Method Restrictions Comments

1 CGHS A hpd CGHS on A

2 CR A hpd CR on A

3 CRIND A Hermitian CR on A

4 PCG A,C hpd PCG on A

5 CGNR none CGHS on A∗A

6 CGNE none CGHS on AA∗

7 PCGNR none CGNR on AC

8 PCGNE none CGNE on CA

9 PPCG A,C hpd Polynomial PCG on A

10 PCGCA A,C hpd CGHS on C(A)A

IPARAM(34) = NDEG
When using PPCG and PCGCA, NDEG specifies the degree of the preconditioning
polynomial to be used.

RPARAM Real(34).
An array of real input parameters. RPARAM(1) and RPARAM(2) are mandated by
the proposed standard; RPARAM(3) through RPARAM(30) are reserved for expan-
sion of the proposed standard; RPARAM(31) through RPARAM(34) are additional
parameters, specific to CgCode.

RPARAM(1) = ERRTOL
User provided error tolerance; see ISTOP above.

RPARAM(2) = STPTST
On return, STPTST is the quantity used in the stopping criterion; see ISTOP above.

RPARAM(31) = CONDES
An initial estimate of the condition number of the iteration matrix. An acceptable
initial value is 1.0. On return, CONDES is the final estimate used in the stopping
criterion; see ISTOP above.

RPARAM(32) = AA
Required only when using PPCG or PCGCA. AA is an initial estimate of the small-
est eigenvalue of A. On return, AA is the final estimate of the smallest eigenvalue
of A.
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RPARAM(33) = BB
Required only when using PPCG or PCGCA. BB is an initial estimate of the largest
eigenvalue of A. On return, BB is the final estimate of the largest eigenvalue of A.

RPARAM(34) = SCRLRS
On return, SCRLRS is the final relative residual.

RWORK Real(N1+N2).
Work array, where N1 and N2 are integers satisfying:

routine to be used N1 is at least N2 is at least

CGHS 2*N 4*ICYCLE*NCE+2

CR 3*N 4*ICYCLE*NCE+2

CRIND 5*N 4*ICYCLE*NCE+2

PCG 2*N 4*ICYCLE*NCE+2

CGNR 2*N 4*ICYCLE*NCE+2

CGNE 2*N 4*ICYCLE*NCE+2

PCGNR 3*N 4*ICYCLE*NCE+2

PCGNE 3*N 4*ICYCLE*NCE+2

PPCG 6*N 2*ICYCLE*NCE+2

PCGCA 6*N 2*ICYCLE*NCE+2

The N2 space is for computing condition number estimates; the N1 space is for
temporary vectors. To save storage and work, ICYCLE*NCE should be much less
than N. If NCE = 0, N2 may be set to zero.

IWORK Integer(ICYCLE*NCE).
Integer work array for computing condition number estimates. If NCE = 0, this
may be a dummy address.

IERROR Integer.
Returned error flag (negative errors are fatal):

If IERROR=0 Normal return: iteration converged.
If IERROR=−1000 Method failed to converge in ITMAX steps.
If IERROR=±2000 Error in user input.

This brings to a conclusion our discussion of the use of CgCode. We have presented the user

interface philosophy employed in CgCode, and have explained how to use the CgCode package

through use of the interface subroutine CGDRV. We have also described each of the required

input parameters, as well as the two required subroutines, MATVEC and PCONDL. A sample

program illustrating the use of CgCode to solve the linear system arising from the discretization of
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a partial differential equation is given in the Appendix. For other examples illustrating the use of

the MATVEC and PCONDL interface subroutines, see [7].

If the reader is interested in the basic theory of conjugate gradient methods and preconditioning,

he should continue reading. Conjugate gradient methods are discussed in Chapter 3, a few precon-

ditioning techniques are described in Chapter 4, and stopping criteria are discussed in Chapter 5.

Instructions for obtaining a copy of CgCode are given in Chapter 6.
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Chapter 3

Conjugate Gradient Methods

In this chapter we describe conjugate gradient methods. We begin with gradient methods and then

discuss CG methods in the context of minimization and orthogonality. Following the taxonomy

introduced in [6], we give necessary and sufficient conditions for the convergence of CG methods,

and then present two algorithms for implementing CG methods. Finally, we review the methods

implemented in CgCode. Much of what follows is summarized from [6], with permission of the

authors.

The classical conjugate gradient method for Hermitian positive definite (hpd) matrices was

proposed by Hestenes and Stiefel in [19]. Much work has since been done; for example, see [6, 12,

18]. There are several ways to introduce CG methods, such as the minimization of a quadratic

functional [9], or as a variation of the Lanczos procedure [35]. Here, for the generality we will need

later, we choose to begin with the Cayley-Hamilton theorem [36]. This theorem states that an n×n

matrix A satisfies its characteristic equation:

Pn(A) = 0

where Pn is the characteristic polynomial of degree n. It can be shown that if A has only m ≤ n

distinct eigenvalues, then there exists a polynomial Qm of degree m such that

Qm(A) =
m
∑

i=0

ciA
i = 0.

If m is the smallest degree for which this is true, then Qm is called the minimum polynomial of A.

The degree m of the minimum polynomial of A is denoted by d(A). If we assume A is nonsingular,
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then we know c0 6= 0. After some algebra, we find that

A−1 =
1

c0

m−1
∑

i=0

ci+1A
i = Q̂m−1(A).

In other words, if A has m distinct eigenvalues, then A−1 can be written as a polynomial of degree

m − 1 in A.

Let x0 be our initial approximation to x, and define the initial residual to be r0 = b − Ax0.

Multiplying by A−1 yields

x = A−1b = x0 + A−1r0 = x0 + Q̂m−1(A)r0.

If we define the Krylov subspace of degree i + 1 of the matrix A with respect to the vector r0 by

Vi+1(r0, A) = sp{r0, Ar0, A
2r0, . . . , A

ir0},

where sp{. . .} denotes the span of the enclosed vectors, then we see that the solution x to the linear

system Ax = b lies in the translated Krylov space, x ∈ x0 + Vm(r0, A).

A gradient (or polynomial) method is an iteration that produces a sequence of approximations

to x = A−1b by

xi+1 = xi + di,

where di ∈ Vi+1(r0, A). By choosing the di in different ways, we define different gradient methods.

Although the solution x = A−1b lies in the m-dimensional space x0 + Vm(r0, A), gradient methods

may not find this solution, since there is no guarantee that the di span the space. It is therefore

desirable to have methods for which {di}m
i=0 forms a basis for the space Vm(r0, A).

Let ei+1 = x − xi+1 denote the error at step i + 1 of a gradient method. We denote the

Euclidean inner product as 〈·, ·〉, and for an hpd inner product matrix B we define the B-inner

product as 〈B·, ·〉. The hpd matrix B also induces a norm, ‖v‖B = 〈Bv, v〉 1

2 . A conjugate gradient

method is a gradient method that chooses di ∈ Vi+1(r0, A) to minimize ‖ei+1‖B . We will denote

this method by CG(B,A). It can be shown [31] that choosing di in this way is equivalent to

enforcing B-orthogonality between ei+1 and Vi+1(r0, A), written as ei+1 ⊥B Vi+1. That is, we

require 〈Bei+1, v〉 = 0 for all v ∈ Vi+1(r0, A).

Assume we have enforced this condition at step i, i.e., ei ⊥B Vi. At step i + 1, we wish to

impose ei+1 = x − (xi + di) = ei − di ⊥B Vi+1. Since Vi ⊂ Vi+1, we see that forcing ei+1 ⊥B Vi+1

17



implies di ⊥B Vi. The vector di is the new vector in Vi+1 orthogonal to Vi. Hence, a CG method

not only chooses the di as a basis for Vm(r0, A), but as an orthogonal basis for the space. Since

x ∈ x0 +Vm(r0, A) and Vm is m-dimensional, this implies that the CG method must terminate (i.e.,

find the true solution to Ax = b) in at most m steps (assuming exact arithmetic). More precisely,

CG(B,A) converges in at most d(r0, A) steps, where d(r0, A) ≤ d(A) is the degree of the polynomial

Q̃(A) of smallest degree such that Q̃(A)r0 = 0. Q̃(A) is called the minimum polynomial of A with

respect to r0.

How does one choose the vector di in Vi+1 to be orthogonal to Vi? We can construct a B-

orthogonal basis {pk}i
k=0

for Vi+1(r0, A) using the Gram-Schmidt process:

pk+1 = Apk −
k
∑

j=0

σkjpj , σkj =
〈BApk, pj〉
〈Bpj, pj〉

, k = 0, 1, . . . , i − 1,

where p0 = r0. We call the pk direction vectors. Since the set {pk}i
k=0

is constructed so that

pi ∈ Vi+1 and pi ⊥ Vi, we have di = αipi for some scalar αi. Therefore,

xi+1 = xi + αipi.

To determine αi, recall that minimization of ‖ei+1‖B requires that 〈Bei+1, pi〉 = 0. Since ei+1 =

ei − αipi, we have

〈Bei, pi〉 − αi〈Bpi, pi〉 = 0,

and thus

αi =
〈Bei, pi〉
〈Bpi, pi〉

.

Since this expression involves the unknown quantity ei, we must choose B so as to obtain a com-

putable method. We now have a method CG(B,A) of the form:

xi+1 = xi + αipi,

pi+1 = Api −
i
∑

j=0

σkjpj.

While this method is guaranteed to converge in d(r0, A) steps, it may converge rather slowly,

depending on certain properties of A. In Chapter 4, we will explore ways of improving the conver-

gence rate with preconditioning. The idea is this: rather than solve Ax = b, we instead solve the
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equivalent preconditioned system

QAPx̃ = Qb, P x̃ = x,

where Q and P are nonsingular matrices. To solve this system, we apply the method CG(B̃,Ã) for

Ã = QAP and some hpd B̃. The CG method above is now in terms of the quantities Ã, ei = P ẽi,

xi = P x̃i, ri = Q−1r̃i, and pi = P p̃i. If we define B = P−∗B̃P−1 and C = PQ, we can rewrite the

method in terms of the unscaled quantities:

xi+1 = xi + αipi, αi =
〈Bei, pi〉
〈Bpi, pi〉

,

pi+1 = CApi −
i
∑

j=0

σkjpj, σkj =
〈BCApk, pj〉
〈Bpj, pj〉

.

This method minimizes ‖ei+1‖B over x0+Vi+1(Cr0, CA), and we call it CG(B,C,A). It is equivalent

to CG(B,CA), which implies that only left preconditioning need be considered, as right precondi-

tioning can be absorbed into a composite left preconditioner and into the inner product [6]. We have

followed this approach in CgCode, and consider only left preconditioning in the implementations.

3.1 Economical CG Methods

If all previous direction vectors {pk}i−1

k=0
were needed to build pi, CG(B,C,A) would be prohibitively

expensive. However, under certain conditions economical methods are possible, in which only a few

past direction vectors are needed. Specifically, we are interested in methods that require only a

3-term recursion for the direction vectors {pk}:

xi+1 = xi + αipi, αi =
〈Bei, pi〉
〈Bpi, pi〉

,

pi+1 = CApi − γipi − σipi−1, γi =
〈BCApi, pi〉
〈Bpi, pi〉

, σi =
〈BCApi, pi−1〉
〈Bpi−1, pi−1〉

.

To understand the conditions under which these 3-term methods will converge, we need a few

definitions. Let A+ be the B-adjoint of A, which is the unique matrix satisfying

〈BAx, y〉 = 〈Bx,A+y〉

for every x and y. This implies that A+ = (BAB−1)∗ = B−1A∗B, where A∗ = ĀT is the adjoint of

A in the standard inner product. A is called self-adjoint if A∗ = A, and A is called B-self-adjoint
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if A+ = A. From this it is easy to see that A is B-self-adjoint if and only if BA is Hermitian. A is

called normal if AA∗ = A∗A, and A is called B-normal if AA+ = A+A. From [16] we know that

AA+ = A+A if and only if A+ is a polynomial in A. If the polynomial of minimal degree has degree

s, then we say A is B-normal(s). Therefore, if A+ = c0I + c1A, we say that A is B-normal(1). It

is easily shown [16] that this implies A is the translation and rotation of a B-self-adjoint matrix G:

A = eiθ

(

ir

2
I + G

)

, r ≥ 0, 0 ≤ θ ≤ 2π, i =
√
−1.

Moreover, A is B-normal(1) for some B if and only if A is diagonalizable and the spectrum of A

lies on a line segment in the complex plane [6]. We can now state the following theorem, which

gives necessary and sufficient conditions for the convergence of a 3-term conjugate gradient method,

CG(B,C,A).

Theorem 3.1.1 [16] If B is hpd, then the 3-term conjugate gradient method CG(B,C,A) converges

to x = A−1b in at most d(Cr0, CA) steps for every x0 if and only if d(CA) ≤ 3 or CA is B-

normal(1).

Given the linear system Ax = b, one must choose B and C so that CA is B-normal(1), in

order to use a 3-term CG method. Therefore, preconditioning can be viewed as a way of either

improving the condition number of A, or as a way to guarantee the convergence of a 3-term CG

method. Solving the normal equations, A∗Ax = A∗b, is an example of choosing the preconditioner

to guarantee convergence of the method.

We remark that any Hermitian or skew-Hermitian matrix is I-normal(1). For such matrices,

the conjugate residual (CR) method, CG(A2,I,A), may be used. Two algorithms implementing

this method are included in CgCode.

3.2 The algorithms Odir and Omin

We now present two algorithms for implementing the method CG(B,C,A). The first of these is

called Odir(B,C,A):

p0 = Cr0

αi =
〈Bei, pi〉
〈Bpi, pi〉

xi+1 = xi + αipi
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ri+1 = ri − αiApi

γi =
〈BCApi, pi〉
〈Bpi, pi〉

σi =
〈BCApi, pi−1〉
〈Bpi−1, pi−1〉

pi+1 = CApi − γipi − σipi−1.

If CA is B-normal(1) for some hpd inner product matrix B, or if d(CA) ≤ 3, then the above iteration

is guaranteed to converge. Moreover, ‖ei+1‖B is minimized over x0 +Vi+1(Cr0, CA). Note that we

have introduced the new quantity ri, which is often used in stopping criteria (Chapter 5).

Let us now define the preconditioned residual si = Cri. When BCA is definite [6], the precon-

ditioned residuals {sj}i
j=0 span Vi+1. When this occurs, a more efficient algorithm for the method

CG(B,C,A) can be formulated. It is called Omin(B,C,A):

p̂0 = Cr0

α̂i =
〈Bei, pi〉
〈Bpi, pi〉

xi+1 = xi + α̂ip̂i

ri+1 = ri − α̂iAp̂i

si+1 = Cri+1

βi = −〈BCAei+1, p̂i〉
〈Bp̂i, p̂i〉

p̂i+1 = si+1 + βip̂i.

It can be shown that p̂i = cipi, where pi is the direction vector from the Odir algorithm, and ci is

a scalar. Also note that Omin(A,I,A) is the classical conjugate gradient algorithm of Hestenes and

Stiefel [19].

If α̂i = 0 for some i, which is possible if BCA is indefinite [6], Omin may fail to converge.

Therefore, the less expensive Omin(B,C,A) is also less robust than Odir(B,C,A). The following

theorem, analogous to the earlier theorem for Odir(B,C,A), establishes necessary and sufficient

conditions for α̂i 6= 0 for all i, and hence gives necessary and sufficient conditions for convergence

of Omin(B,C,A).

Theorem 3.2.1 [6] If B is hpd, then Omin(B,C,A) converges to x = A−1b for every x0 if and

only if BCA is definite and either CA is B-normal(1) or d(CA) ≤ 3.
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Although Omin(B,C,A) may converge for a given x0 if BCA is indefinite, it is nevertheless necessary

to monitor α̂i to ensure α̂i 6= 0. If α̂i = 0 for some i, then temporarily switching to Odir(B,C,A)

will lift the iteration into the new space Vi+1, and the less expensive Omin(B,C,A) can be resumed.

Such a hybrid Odir/Omin algorithm for B = A2 can be found in [10].

The algorithms Omin(B,C,A) and Odir(B,C,A) are called Orthomin and Orthodir, respectively,

by Young et al. [20, 22]. We have again followed [6] and used the names Omin and Odir for brevity.

For a thorough discussion of the properties of these algorithms, as well as a third, see [6].

3.3 CG Methods Implemented in CgCode

CgCode provides algorithms for solving Hermitian and nonhermitian linear systems. Table 3.1,

based on the CG(B,C,A) notation, summarizes the methods in CgCode, the algorithm chosen

to implement each method, and any restrictions on the matrix A. To choose the appropriate

algorithm for one’s linear system, first determine the properties of the system matrix: Hermitian

or nonhermitian, definite or indefinite. Once this has been done, the appropriate algorithm(s) in

the table can be selected from the restrictions column. For details on the appropriate parameter

settings to use CgCode, see Chapter 2.

ICG Method CG(B,C,A) Notation Algorithm Restrictions Comments

1 CGHS CG(A,I,A) Omin A hpd CGHS on A

2 CR CG(A2,I,A) Omin A hpd CR on A

3 CRIND CG(A2,I,A) Odir/Omin A Hermitian CR on A

4 PCG CG(A,C,A) Omin A,C hpd PCG on A

5 CGNR CG(A∗A,A∗,A) Omin None CGHS on A∗A

6 CGNE CG(I,A∗,A) Omin None CGHS on AA∗

7 PCGNR CG(A∗A,CC∗A∗,A) Omin None CGNR on AC

8 PCGNE CG(I,A∗CC∗,A) Omin None CGNE on CA

9 PPCG CG(A,C(A),A) Omin A,C hpd Polynomial PCG on A

10 PCGCA CG(C(A)A,C(A),A) Omin A,C hpd CGHS on C(A)A

Table 3.1: The methods implemented in CgCode

In Table 3.1, CGHS refers to the classical conjugate gradient algorithm of Hestenes and Stiefel.

CR and CRIND are the Omin and Odir/Omin implementations of the conjugate residual method

for hpd and Hermitian systems, respectively. PCG is the preconditioned conjugate gradient method
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for hpd systems. CGNR and CGNE implement the conjugate gradient method on two different

forms of the normal equations: (1) A∗Ax = A∗b, and (2) AA∗y = b, x = Ay. PCGNR and

PCGNE are preconditioned versions of the previous two algorithms. PPCG is the standard pre-

conditioned conjugate gradient algorithm using adaptive Chebyshev polynomial preconditioning.

Finally, PCGCA is the classical CGHS algorithm applied to the polynomial preconditioned system

C(A)Ax = C(A)b. For details about some of these algorithms, see [6, 15].

In this chapter we have summarized the taxonomy presented in [6]. We have introduced CG

methods, presented two algorithms for implementing these methods, and given conditions guaran-

teeing convergence of the algorithms. We have also listed the methods and algorithms in CgCode.

For a rigorous discussion of CG methods, see [6, 16]. An introduction to preconditioning CG

methods follows in Chapter 4, and a discussion of stopping criteria for these methods appears in

Chapter 5.
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Chapter 4

Preconditioning

In this chapter, we review a few standard preconditioning techniques. But first, let us consider

why preconditioning is needed in the conjugate gradient method. If the matrix A is Hermitian

positive definite (hpd), and the classical conjugate gradient method is being used, then the following

inequality from [23] gives a bound on the error at step k:

‖ek‖A ≤ min
λi

[1 + λiPk−1(λi)]
2‖e0‖A (4.1)

where Pk−1 is any polynomial of degree k − 1, and where the maximum above is taken over all

eigenvalues λi of A. If the Chebyshev polynomial of degree k − 1 is selected for Pk−1, then the

following inequality [17] can be derived from (4.1), where κ(A) is the condition number of A:

‖ek‖A ≤ 2

(

√

κ(A) − 1
√

κ(A) + 1

)k

‖e0‖A. (4.2)

We can also use (4.1) to obtain an upper bound on the number of iterations k required to reduce

the relative error below a tolerance ε [15]:

k =
1

2
ln

2

ε

√

κ(A). (4.3)

Therefore, if κ(A) is large, the error reduction at each step may be poor, and the number of

iterations required to reach the desired error tolerance may be large.

To decrease the number of iterations required for convergence, one uses preconditioning. Instead

of solving the system Ax = b, we instead solve the equivalent system

QAP (P−1x) = Qb.
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If κ(QAP ) � κ(A), then the conjugate gradient method should converge faster for QAP (P −1x) =

Qb than for Ax = b.

In the preconditioned system, the matrix Q is call a left preconditioner and the matrix P is

called a right preconditioner. In the previous chapter, we remarked that only left preconditioning

need be considered in CG methods because right preconditioning can be absorbed by a composite

left preconditioner and the inner product. Therefore, given A such that κ(A) � 1, we seek C such

that κ(CA) ≈ 1, or at least κ(CA) � κ(A). Since κ(I) = 1, this implies that if C approximates

A−1, then C should be a good preconditioner for A.

It should be noted, however, that the condition number of the matrix is really just an indicator of

the rate of convergence. The distribution of the eigenvalues of A is far more important than κ(A). It

is well-known that the conjugate gradient method performs best if the eigenvalues of A are clustered.

Thus, we want to choose C such that the preconditioned matrix CA has clustered eigenvalues. It is

often (but not necessarily) the case that this choice of C reduces κ(A). For a thorough analysis of

the relationship between the clustering of eigenvalues and the rate of convergence of a CG method,

see [8, 9, 34].

It is important to note that the matrix CA is never formed; rather, C is applied to a vector at

an appropriate point in the algorithm. This is necessary because while A may be sparse, CA may

be dense. Therefore, for the preconditioner to be practical, the cost of constructing C and applying

it to a vector must be less than the cost of the number of iterations saved by preconditioning. For

a detailed discussion of some of these issues, see [12, 14, 23, 27].

Now that we know what properties C must have to be an effective and practical preconditioner,

we examine several well-known and widely-used preconditioners.

4.1 Diagonal and Block Diagonal Preconditioning

One simple, easy to implement, and often effective preconditioning is diagonal scaling. With this

technique, the preconditioner C is taken to be a diagonal matrix. One obvious choice for C is the

inverse of the diagonal of the matrix A. If the matrix A has property A [37], then this choice of C

is the optimal diagonal scaling [28]. This scaling can be done prior to entering the CG iteration,

which will reduce the number of multiplications by 1 for each row of the matrix during matrix-vector

multiplication.
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Diagonal preconditioning, also known as Jacobi preconditioning, is a special case of block diag-

onal preconditioning. When elliptic partial differential equations are discretized, it is common for

the resulting linear system to have block tridiagonal form:

A =



















A1 B1

C2 A2 B2

C3 A3 B3

· · ·
· · ·

· · ·



















. (4.4)

If this is the case, a block diagonal preconditioner C would be of the form

C =



















A−1
1

A−1
2

A−1
3

·
·

·



















. (4.5)

Of course, one would not form the A−1

i explicitly, but might instead work with their LU factoriza-

tions. If A is hpd, then Ci = B∗

i−1, in which case various block preconditioners can be implemented.

An excellent study of block preconditioning for conjugate gradient methods is presented in [11].

4.2 Incomplete Factorizations

Another popular and effective preconditioning technique is based on the use of an incomplete

factorization of the hpd matrix A. Recall that the standard Cholesky factorization of A,

A = LL∗,

may produce a dense lower triangular factor L as a result of fill-in during the factorization process,

even if A is sparse. If we attempt to suppress this fill-in, then we are led to an incomplete Cholesky

factorization:

A ≈ LL∗,

where L is sparse. One technique for producing an incomplete Cholesky factorization is called the

no-fill factorization, or IC(0). In this method, the sparsity structure of L is forced to follow that of

A. (The factorizations known as IC(k), k > 0, are techniques for allowing more fill-in than IC(0)

in order to construct better approximations to the true Cholesky factor.)
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Once the approximate factorization has been obtained, the preconditioning matrix will be given

by C = (LL∗)−1 where L is the nonsingular incomplete Cholesky factor. Applying the precondi-

tioner to a vector in a conjugate gradient algorithm requires forward and backward substitution

rather than explicit inversion of L. Specifically, the preconditioner-vector product w = Cv is im-

plemented as two triangular solves: Lz = v and L∗w = z. Of course, the factorization is computed

once at the beginning of the iteration. Block Cholesky factorizations can be used as preconditioners

as well [11]. For more information on incomplete factorizations see [26, 27, 30].

Unfortunately, there are difficulties with this technique. In particular, incomplete factorizations

are difficult to vectorize. Both the forward and backward solves are highly recursive, and become a

bottleneck for parallelization and vectorization of preconditioned CG algorithms. Much work has

been done in the area of producing factorizations that have more satisfactory vectorization proper-

ties [27]. Incomplete factorizations are also data structure-dependent: if the data structure changes,

then the factorization routine must be recoded to reflect the new format. A third difficulty arises

when the matrix A is real. In this case, the incomplete Cholesky factorization of the symmetric

positive definite matrix A may break down if the square root of a negative number is required.

If A is a symmetric M -matrix the factorization is guaranteed to exist [26, 27]. Otherwise, other

techniques are available to produce an incomplete factorization by avoiding the negative square

root [30]. Also, by monitoring the factorization process, modifications of some elements may be

made to insure that L will be nonsingular.

4.3 Polynomial Preconditioning

This section examines polynomial preconditioning for hpd linear systems, an idea that has been

around for a while [31]. Here the preconditioner C is a polynomial in A, written C(A). One chooses

C(A) using the same criteria as for other preconditioners: it should approximate the inverse of the

system matrix A, and be easy to apply to a vector. The polynomial C(λ) is referred to as the

preconditioning polynomial, and C(A) is the associated polynomial preconditioner [3, 5]. Since A is

hpd, so are C(A) and C(A)A; this property can be used to devise new conjugate gradient methods.

(See the previous chapter, [3], and [6] for a discussion of the properties required of A and C(A) to

guarantee convergence of a 3-term CG method.)
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There are several advantages to polynomial preconditioners. First, they can be implemented

automatically: the user simply initializes a few parameters and provides the matrix-vector multipli-

cation routine. Second, and most important, polynomial preconditioning is well-suited for parallel

and/or vector architectures. Since the two intrinsic operations in polynomial preconditioning are

matrix-vector multiplication and vector addition, these operations must be efficient on a given ar-

chitecture for polynomial preconditioning to be effective [14]. The key to performance is a fast

matrix-vector multiplication routine.

If C is to approximate A−1, then C(λ) should approximate λ−1 in some way. A simple choice

is based on the Neumann series [1, 14]

A−1 = (M − N)−1 = (I + M−1N + (M−1N)2 + (M−1N)3 + · · ·)M−1.

This series converges if ρ(M−1N) < 1. If we truncate the series, we obtain our polynomial precon-

ditioner. However, this is not the most effective polynomial preconditioner. Moreover, the optimal

degree seems to be 2 [1, 14].

To obtain a better preconditioner, one might consider the polynomial C(λ) satisfying

min
C∈πm−1

‖1 − C(λ)λ‖, (4.6)

where πm−1 is the set of all polynomial of degree less than or equal to m − 1. In general, the norm

will depend on some set S containing the spectrum σ(A) of A. Note that since A is hpd, we know

σ(A) ⊂ S = [c, d], 0 < c ≤ d. Ideally, c and d are the minimum and maximum eigenvalues of A.

If we solve the minimization problem (4.6) using the weighted least squares norm ‖f‖ω, we

obtain the least squares preconditioned polynomial. This norm is induced by the inner product

〈f, g〉ω, given by

〈f, g〉 =

∫ d

c
f(λ)g(λ)ω(λ)dλ,

for some positive weight function ω(λ) defined on S. It can be shown that the least squares poly-

nomial can be computed using a 3-term recursion [5], yielding an efficient and stable procedure for

generating these polynomials. Least squares preconditioning polynomials can exploit the eigenvalue

distribution of A (if it is known) by appropriately choosing the weight function ω. For a thorough

discussion of least squares polynomial preconditioning, see [5, 21, 32].
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If the minimization problem (4.6) is solved in the uniform norm

‖f‖∞ = max
λ∈S

|f(λ)|,

then the solution is obtained from a shifted and scaled Chebyshev polynomial [5]:

C(λ)λ = 1 −
Tm(d+c−2λ

d−c
)

Tm(d+c
d−c

)
, (4.7)

where Tm is the Chebyshev polynomial of degree m. It can also be computed via a 3-term recur-

sion. The Chebyshev polynomials have several other interesting properties, including the minimax

property, which is a result of their equioscillation behavior [13]: of all m-th degree polynomials

with leading coefficient 1, the polynomial 21−mTm has the smallest maximum norm in the interval

[−1, 1]. It can be shown that (4.7) is optimal in the sense that it minimizes a bound on the condition

number of the preconditioned matrix [5, 21]:

κ(C(A)A) ≤
1 + T−1

m (d+c
d−c

)

1 − T−1
m (d+c

d−c
)
.

See [5] for a comparison of least squares and Chebyshev preconditioning polynomials.

Adaptive Chebyshev polynomial preconditioning is provided in CgCode. Two conjugate gra-

dient algorithms with polynomial preconditioning are provided in CgCode: PPCG and PCGCA.

The method PPCG is the standard preconditioned conjugate gradient method with C(A) as the

preconditioner; PCGCA is the classical CGHS algorithm applied to the system C(A)Ax = C(A)b.

To use these methods, the user must provide the MATVEC routine and initialize a few parame-

ters, such as initial eigenvalue estimates and the degree of the preconditioning polynomial. For a

detailed description of how to use PPCG and PCGCA in CgCode, including suggestions for initial

parameter settings, see Chapter 2.

We note that adaptive Chebyshev polynomial preconditioning has been implemented on par-

allel and vector machines. For a discussion of their performance on the Cray X-MP/48 and the

Alliant FX/8, see [3, 5, 29]. Experiments indicate that the optimal degree for the preconditioning

polynomial varies between 2 and 16, with the optimal degree increasing as the condition number

of the system matrix increases. The performance of polynomial preconditioning is architecture-

dependent: a small speedup over no preconditioning was evident on the Cray X-MP/48, while

substantial speedups were observed on both the Alliant FX/8 and the Cray 2.
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Chapter 5

Stopping Criteria

In any iterative method one must decide when to halt the iteration. For most methods, it is natural

to stop when the error in some norm is below a specified tolerance

‖ei‖M ≤ ε,

where M is hpd and ε > 0. It may be more desirable to stop when the relative error in this norm

is sufficiently small:
‖ei‖M

‖x‖M

≤ ε.

In either case, the choice of M will determine whether the stopping criterion is computable, and if so,

whether it is efficient to implement. Ideally, M should be chosen so that quantities already present

in the iteration are used to evaluate the stopping criterion, rather than requiring the computation

of additional inner products and/or norms.

For example, if M = A∗A, then the norm used is called the residual norm, and the stopping

criteria above become

‖ei‖M = ‖ri‖ ≤ ε, (5.1)

and
‖ei‖M

‖x‖M

=
‖ri‖
‖b‖ ≤ ε, (5.2)

where ‖ · ‖ denotes the Euclidean norm, ‖ · ‖2. Note that ri and ‖ri‖ are available in the classical

conjugate gradient method CGHS. If M = (CA)∗(CA), the preconditioned residual norm results,

and two stopping criteria are

‖ei‖M = ‖si‖ ≤ ε, (5.3)

30



and
‖ei‖M

‖x‖M
=

‖si‖
‖Cb‖ ≤ ε, (5.4)

where si = Cri is the preconditioned residual. Note that for PCG, si is available, but not its norm.

Different methods may use any of the above criteria to provide the most efficient stopping

test. However, it has been proposed [7] that iterative linear solvers provide a menu of stopping

criteria, consisting of the four tests above, plus an efficient default stopping criterion, as well as any

additional stopping criteria. This would make it easier to compare various methods. The proposed

standard mandates a flag ISTOP which indicates the stopping criterion to be used:

ISTOP = 0 efficient default stopping criterion
ISTOP = 1 stopping criterion (5.1)
ISTOP = 2 stopping criterion (5.2)
ISTOP = 3 stopping criterion (5.3)
ISTOP = 4 stopping criterion (5.4).

See [7] for more detailed information about the proposed standard and the stopping criteria menu.

Note that CgCode conforms to the proposed standard, and provides the full menu of stopping

criteria above for each of the ten methods in the package. In addition, CgCode uses condition

number estimates of the system matrix to provide, for each of the ten conjugate gradient methods,

a stopping criterion based on the true error ei. This is discussed in the following section.

5.1 Stopping Criteria Based on the True Error

In many situations, it may be desirable to stop when the relative error has been bounded. That is,

one may wish to halt when
‖ei‖M

‖x‖M

=
‖x − xi‖M

‖x‖M

≤ ε, (5.5)

for some hpd M . Although the left-hand side of (5.5) cannot be evaluated, it can be bounded.

To see how, let us first derive a useful inequality. If we take norms of both sides of the equation

CAx = Cb, we obtain

‖x‖M ≥ ‖Cb‖M

‖CA‖M
. (5.6)

Another useful inequality involves the error ei:

ei = x − xi = (CA)−1Cb − xi = (CA)−1(Cb − CAxi) = (CA)−1si,
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which yields

‖ei‖M ≤ ‖(CA)−1‖M‖si‖M . (5.7)

Combining the inequalities (5.5), (5.6), and (5.7) above, we have:

‖ei‖M

‖x‖M
≤ ‖(CA)−1‖M‖si‖M

‖x‖M
≤ ‖CA‖M‖(CA)−1‖M‖si‖M

‖Cb‖M
,

or
‖ei‖M

‖x‖M
≤ κM (CA)

‖si‖M

‖Cb‖M
. (5.8)

Therefore, if we have an estimate of κM (CA), then we can approximate the stopping criterion given

in (5.5) by

κM (CA)
‖si‖M

‖Cb‖M
≤ ε. (5.9)

This attempts to halt when the relative error is below a certain tolerance. While κM (CA) is usually

not known a priori, it can be shown [6] that κB(CA) can be estimated dynamically (see below).

5.2 Default Stopping Criteria in CgCode

Let us now turn to the stopping criteria provided by CgCode, which are the following:

if ISTOP=0 then use: Inequality (5.9) ≤ ε (DEFAULT)
if ISTOP=1 then use: ‖ri‖ ≤ ε
if ISTOP=2 then use: ‖ri‖/‖b‖ ≤ ε
if ISTOP=3 then use: ‖Cri‖ ≤ ε
if ISTOP=4 then use: ‖Cri‖/‖Cb‖ ≤ ε.

Each algorithm in CgCode attempts to use as a default stopping criterion

‖ei‖
‖x‖ ≤ ε,

by finding an estimate of κ(CA) = κI(CA) and using inequality (5.9). If CA is definite, then

κB(CA) can be dynamically estimated from eigenvalue estimates available from the CG iteration

itself, where B is the inner product matrix for the method. If CA is also Hermitian, then κ(CA) =

κB(CA), which is the quantity needed in (5.9). If CA is nonhermitian, then κB(CA) and κ(CA)

need not be the same. However, in many cases CA is similar to a Hermitian matrix, and hence has

real eigenvalues. As a result, inequalities involving κB(CA) may be used to approximate (5.9). If

CA is indefinite, it is impossible to estimate κB(CA) from the iteration parameters. In this case,

the user must provide an estimate of κ(CA) if he wishes to use (5.9). See [6] for details.
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Method Default stopping criterion

CGHS κ(A)
‖ri‖
‖b‖ ≤ ε

CR κ(A)
‖ri‖
‖b‖ ≤ ε

CRIND κ(A)
‖ri‖
‖b‖ ≤ ε

PCG κ(CA)
‖Cri‖
‖Cb‖ ≤ ε

CGNR κ(A∗A)
‖A∗ri‖
‖A∗b‖ ≤ ε

CGNE κ(A)
‖ri‖
‖b‖ ≤ ε

PCGNR κ(C∗CA∗A)
‖CC∗A∗ri‖
‖CC∗A∗b‖ ≤ ε

PCGNE κ(CA)
‖Cri‖
‖Cb‖ ≤ ε

PPCG κ(C(A)A)
〈C(A)ri,ri〉

1

2

〈C(A)b,b〉 1

2

≤ ε

PCGCA κ(C(A)A)
‖C(A)ri‖
‖C(A)b‖ ≤ ε

Table 5.1: Default Stopping Criteria in CgCode

Table 5.1 lists the default stopping criteria, and the inequalities related to (5.9), for each of the

algorithms in CgCode. Each inequality is derived in an attempt to approximate (5.5). Note that in

PCG and PPCG, ‖Cri‖ and ‖Cb‖ are not available; instead 〈Cri, ri〉
1

2 and 〈Cb, b〉 1

2 are available.

Therefore, inequalities involving the available quantities were derived in order to implement an

efficient stopping test. See [6] for a discussion of the inequalities and techniques used to implement

a stopping criterion based on the true error.

In this chapter, we have discussed stopping criteria in iterative methods, techniques for approxi-

mating a stopping criteria based on the true error, and the default stopping criteria in CgCode. See

Chapter 3 for a description of the CG methods listed in Table (5.1). For information on obtaining

a copy of the CgCode software, turn to the next chapter.
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Chapter 6

Future Directions

It is our hope that you will find CgCode both useful and easy to use. We believe that the variety

of methods implemented in CgCode, and the simplicity and flexibility of the user interface, have

combined to create a powerful tool for the solution of large and sparse linear systems arising

in scientific applications. In Chapter 2 of this report, we have described how to use CgCode.

Chapters 3, 4, and 5 provided introductions to conjugate gradient methods, preconditioning, and

stopping criteria. After reading this material, you should have a basic understanding of the methods

employed in CgCode, and perhaps a better understanding of how to solve your linear system.

6.1 Future Releases of CgCode

Future releases of CgCode are now in the planning stages, and these will incorporate the following:

• the addition of several new methods including PCR,

• a menu of data structures for the system matrix and their corresponding matvecs,

• a menu of preconditioners,

• extensive error checking,

• extension of adaptive polynomial preconditioning to Hermitian indefinite problems.

6.2 How to Get a Copy of CgCode

If you would like a copy of the CgCode software package, or if you have comments, suggestions, or

questions about CgCode, please send electronic mail to:

cgwiz@martini.cs.uiuc.edu
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Appendix

In this appendix, we illustrate the use of CgCode to solve a discretized partial differential equation.

PROGRAM ILSDRV
C****************************************************************************
C
C PURPOSE:
C
C THIS PROGRAM USES CGCODE TO SOLVE THE LINEAR SYSTEM AX=B, WHERE THE
C SYSTEM ARISES FROM THE DISCRETIZATION OF A PARTIAL DIFFERENTIAL EQUATION.
C CGCODE IS A PACKAGE OF FORTRAN 77 SUBROUTINES FOR THE SOLUTION OF LINEAR
C SYSTEMS USING CONJUGATE GRADIENT METHODS.
C
C THE INPUT PARAMETERS ARE READ FROM THE USER-PROVIDED FILE "IN".
C THE OUTPUT FROM THIS DRIVER PROGRAM APPEARS IN THE FILE "OUT".
C THE OUTPUT FROM THE SOLVER APPEARS IN THE FILE "OUTN".
C
C NOTE1:
C
C THIS PROGRAM CALLS A SUBROUTINE TO SOLVE THE LINEAR SYSTEM ARISING FROM
C THE DISCRETIZATION OF THE FOLLOWING ELLIPTIC BOUNDARY VALUE PROBLEM:
C (POISSON’S EQUATION WITH DIRICHLET BOUNDARY CONDITIONS ON A RECTANGLE)
C
C LU = F, U IN OMEGA
C U = G, U ON BOUNDARY OF OMEGA
C
C WHERE
C OMEGA = [AX,BX]X[AY,BY]
C AND
C L = THE LAPLACEAN OPERATOR
C
C NOTE2:
C
C WE DISCRETIZE THE ABOVE PROBLEM ON AN [NX BY NY] GRID, WHICH LEADS
C TO A SPARSE SYSTEM OF LINEAR EQUATIONS OF THE FORM:
C
C A*X = B
C
C HERE, A IS OF ORDER N = NX*NY.
C
C PDE PROBLEM SPECIFIC INPUT FOR PDE DRIVER VIA USER SUPPLIED SUBPROGRAM
C (1) THE RIGHT HAND SIDE OF THE PROBLEM (CU0F(X,Y))
C (2) THE BOUDARY CONDITION OF THE PDE (CU0G(X,Y))
C (3) ANALYTIC SOLN OF THE PDE FOR TESTS (CU0U(X,Y))
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C
C INPUT FROM USER VIA UNIT IREAD:
C (1) LEVEL OF IO FROM SOLVER (IOLEVL)
C (2) PRECONDITIONING KEY (IPCOND)
C (3) STOPPING CRITERION KEY (ISTOP)
C (4) MAXIMUM NUMBER OF ITERATIONS ALLOWED (ITMAX)
C (5) TOLERANCE FOR THE SOLUTION (ERRTOL)
C (6) METHOD DEPENDENT INPUT PARAMETERS (ETC...)
C INCLUDING: ICYCLE,NCE,ICG,NDEG,COND,AA,BB
C (SEE CGCODE REPORT AND DOCUMENTATION FOR DETAILED EXPLANATION)
C (7) WHETHER TO PRINT NUMERICAL RESULTS (KY)
C (8) NUMBER OF INTERIOR POINTS X DIRECTION (NX)
C (9) NUMBER OF INTERIOR POINTS Y DIRECTION (NY)
C (10) LEFT ENDPOINT FOR X IN SPACE (AX)
C (11) LEFT ENDPOINT FOR Y IN SPACE (AY)
C (12) RIGHT ENDPOINT FOR X IN SPACE (BX)
C (13) RIGHT ENDPOINT FOR Y IN SPACE (BY)
C
C OUTPUT FROM DRIVER:
C (1) THE STATISTICS CONCERNING THE RUN VIA OUTPUT TO UNIT IRITE
C (2) THE METHOD DEPENDENT OUTPUT MESSAGES TO UNIT IOUNIT
C (3) THE APPROXIMATED SOLUTION AT EACH GRID POINT VIA OUTPUT TO UNIT IOUNIT
C
C PARAMETERS:
C IREAD = UNIT TO READ ALL INPUT FROM
C IRITE = UNIT TO WRITE STATISTICS TO
C IOUNIT = UNIT TO WRITE NUMBERS TO
C NGRID = MAX DIMENSIONS IN EACH DIRECTION OF THE GRID
C NXX = MAX LENGTH OF ALL VECTORS
C NONZK = MAX NUMBER OF NONZEROS IN THE SYSTEM MATRIX
C ETC... = METHOD DEPENDENT PARAMETERS
C INCLUDING: NIPAR,NRPAR,MAXICY,MAXNCE,NIWK,N1,N2,NRWK
C (SEE CGCODE REPORT AND DOCUMENTATION FOR DETAILED EXPLANATION)
C
C VARIABLES:
C A,IA = DISCRETIZED OPERATOR MATRIX A
C B = RHS VECTOR
C X = SOLUTION VECTOR
C TRUE,RHS = TEMPORARY VECTORS USED BY DRIVER FOR STATISTICS
C IPARAM,RPARAM = INTEGER AND REAL PARAMETERS FOR THE SOLVER
C IWORK,RWORK = INTEGER AND REAL WORK ARRAYS FOR THE SOLVER
C BEFORE,AFTER,
C OVERHD, = TIMING TEMPORARY VARIABLES
C TITLE = TITLE OF METHOD FOR OUTPUT
C KY = 0=NO OUTPUT,1=PRINT NUMERICAL SOLUTION
C NX,NY = THE NUMBER OF POINTS IN X AND Y DIRECTIONS IN GRID
C N = THE DIMENSION OF THE SYSTEM MATRIX, = NX*NY
C AX,AY,BX,BY = ENDPOINTS IN SPACE FOR X AND Y DIRECTIONS.
C IRITE = I/O UNIT FOR STATISTICS
C IOUNIT = I/O UNIT FOR NUMERICAL SOLUTION AT GRID POINTS
C ETC... = METHOD DEPENDENT VARIABLES
C INCLUDING: IOLEVL,IPCOND,ISTOP,ITMAX,ERRTOL,ICYCLE,NCE,ICG,NDEG,COND,AA,BB
C (SEE CGCODE REPORT AND DOCUMENTATION FOR DETAILED EXPLANATION)
C
C REQUIRED EXTERNAL ROUTINES:
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C MATMUL = MATRIX-VECTOR PRODUCT ROUTINE
C DIAGPC = PRECONDITIONING ROUTINE
C (SEE CGCODE REPORT AND DOCUMENTATION FOR DETAILED EXPLANATION)
C
C AUTHOR --> MICHAEL JAY HOLST
C DATE --> 18 MARCH 1990
C****************************************************************************
C
C *** PARAMETERS ***

PARAMETER (IREAD=7,IRITE=8,IOUNIT=9)
PARAMETER (NGRID=63,NXX=NGRID*NGRID,NONZK=5*NXX)
PARAMETER (NIPAR=40,NRPAR=40)
PARAMETER (MAXICY=5,MAXNCE=5)
PARAMETER (NIWK=MAXICY*MAXNCE)
PARAMETER (N1=5*NXX,N2=4*MAXICY*MAXNCE+2,NRWK=N1+N2)

C
C *** STORAGE AND EXTERNALS ***

DIMENSION A(NONZK+10),IA(10),Q(NXX),IQ(10)
DIMENSION X(NXX),TRUE(NXX),B(NXX),RHS(NXX)
DIMENSION IPARAM(NIPAR),RPARAM(NRPAR)
DIMENSION RWORK(NRWK),IWORK(NIWK)
REAL BEFORE,AFTER,OVERHD
CHARACTER*50 TITLE
EXTERNAL MATMUL,DIAGPC

C
C *** OPEN I/O FILES ***

OPEN(UNIT=IREAD, FILE=’in’, STATUS=’UNKNOWN’)
OPEN(UNIT=IRITE, FILE=’out’, STATUS=’UNKNOWN’)
OPEN(UNIT=IOUNIT,FILE=’outn’,STATUS=’UNKNOWN’)
REWIND(IREAD)
REWIND(IRITE)
REWIND(IOUNIT)

C
C *** SETUP SOME CGCODE PARAMETERS ***

IPARAM(1) = NIPAR
IPARAM(2) = NRPAR
IPARAM(3) = NIWK
IPARAM(4) = NRWK
IPARAM(5) = IOUNIT

C
C *** READ CONTROL PARAMETERS FROM USER AND CHECK STORAGE REQUIREMENT ***

CALL SETUP (IPARAM,RPARAM,NX,NY,AX,AY,BX,BY,KY,IREAD,IRITE)
IF ((NX .GT. NGRID) .OR. (NY .GT. NGRID)) GOTO 91

C
C *** DISCRETIZE THE PDE TO BUILD THE LINEAR SYSTEM ***

CALL BUILD (N,AX,AY,BX,BY,NX,NY,A,IA,B,TRUE,IRITE)
C
C *** BUILD THE PRECONDITIONER ***

CALL BLDPC (A,IA,Q,IQ,N)
C
C *** SAVE RHS FOR LATER SINCE IT IS CHANGED BY CGCODE ***

CALL SCOPY(N,B,1,RHS,1)
C
C *** INITIAL GUESS ***

CALL GETX0(X,N)
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C
C *** START THE TIMER ***

CALL TSTART(BEFORE,OVERHD)
C
C *** CALL THE ITERATIVE SOLVER ***

CALL SCGDRV (MATMUL,DIAGPC,PCONDR,A,IA,X,B,N,Q,IQ,P,IP,
2 IPARAM,RPARAM,IWORK,RWORK,IERROR)

C
C *** STOP THE TIMER ***

CALL TSTOP(AFTER)
C
C *** CHECK FOR ERROR CONDITION ***

IF (IERROR .NE. 0) GOTO 92
C
C *** CALCULATE EXECUTION TIME (AND TRY TO APPROXIMATE MFLOP RATE) ***

CPUTME = (AFTER - BEFORE) - OVERHD
C
C *** CALCULATE THE TRUE ERROR IN APPROXIMATION ***

CALL SAXPY(N,-1.0E0,X,1,TRUE,1)
ERROR = SNRM2(N,TRUE,1)

C
C *** CALCULATE THE RESIDUAL ERROR IN APPROXIMATION ***

CALL MATMUL(0,A,IA,BDUMM,X,TRUE,N)
CALL SAXPY(N,-1.0E0,RHS,1,TRUE,1)
RESID = SNRM2(N,TRUE,1)

C
C *** OUTPUT THE PARAMETER INFORMATION AND RESULT ***

TITLE = ’ SOLUTION OF POISSON EQUATION USING CGCODE ’
CALL SOUT(TITLE,KY,N,X,IPARAM,RPARAM,IERROR,CPUTME,
2 ERROR,RESID,AX,AY,BX,BY,NX,NY,IRITE)
GOTO 99

C
C *** PROBLEMS ***
91 CONTINUE

WRITE (IRITE,*) ’ NOT ENOUGH STORAGE DECLARED FOR THIS GRID ’
GOTO 99

92 CONTINUE
WRITE (IRITE,*) ’ CGCODE RETURNED A NONZERO ERROR FLAG: ’, IERROR

C
C *** END IT ***
99 CONTINUE

CLOSE(IREAD)
CLOSE(IRITE)
CLOSE(IOUNIT)
STOP ’ILSDRVOK’
END
SUBROUTINE TSTART(BEFORE,OVERHD)

C****************************************************************************
C THIS ROUTINE STARTS THE TIMER ON THE PARTICULAR MACHINE.
C****************************************************************************

REAL TARRAY(2),T0,BEFORE,OVERHD,GARBGE
C
C *** FOR CONVEX: START TIMER ***

CALL ETIME(TARRAY)
T0 = TARRAY(1)
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CALL ETIME(TARRAY)
OVERHD = TARRAY(1) - T0
CALL ETIME(TARRAY)
BEFORE = TARRAY(1)

C
C *** FOR CRAY XMP: START TIMER ***
C GARBGE = SECOND( )
C T0 = SECOND( )
C OVERHD = SECOND( ) - T0
C BEFORE = SECOND( )
C
C *** RETURN AND END ***

RETURN
END
SUBROUTINE TSTOP(AFTER)

C****************************************************************************
C THIS ROUTINE STOPS THE TIMER ON THE PARTICULAR MACHINE.
C****************************************************************************

REAL TARRAY(2),AFTER
C
C *** FOR CONVEX: STOP TIMER ***

CALL ETIME(TARRAY)
AFTER = TARRAY(1)

C
C *** FOR CRAY XMP: STOP TIMER ***
C AFTER = SECOND( )
C
C *** RETURN AND END ***

RETURN
END
SUBROUTINE SETUP (IPARAM,RPARAM,NX,NY,AX,AY,BX,BY,KY,
2 IREAD,IRITE)

C****************************************************************************
C THIS ROUTINE READS IN SOME INITIAL VALUES ABOUT THE PDE AND FOR THE SOLVER.
C****************************************************************************

DIMENSION IPARAM(*),RPARAM(*)
C
C *** INPUT THE CONTROLING PARAMETERS ***

READ (IREAD,*) IOLEVL
READ (IREAD,*) IPCOND
READ (IREAD,*) ISTOP
READ (IREAD,*) ITMAX
READ (IREAD,*) ERRTOL
IPARAM(6) = IOLEVL
IPARAM(7) = IPCOND
IPARAM(8) = ISTOP
IPARAM(9) = ITMAX
RPARAM(1) = ERRTOL

C
C *** READ METHOD PARAMETERS FROM USER ***

READ (IREAD,*)
READ (IREAD,*) ICYCLE
READ (IREAD,*) NCE
READ (IREAD,*) ICG
READ (IREAD,*)
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READ (IREAD,*) NDEG
READ (IREAD,*) COND
READ (IREAD,*) AA
READ (IREAD,*) BB
IPARAM(31) = ICYCLE
IPARAM(32) = NCE
IPARAM(33) = ICG
IPARAM(34) = NDEG
RPARAM(31) = COND
RPARAM(32) = AA
RPARAM(33) = BB

C
C *** READ IN SOLUTION KEY ***

READ (IREAD,*)
READ (IREAD,*) KY

C
C *** READ IN PDE PARAMETERS ***

READ (IREAD,*)
READ (IREAD,*) NX
READ (IREAD,*) NY
READ (IREAD,*) AX
READ (IREAD,*) AY
READ (IREAD,*) BX
READ (IREAD,*) BY

C
C *** RETURN AND END ***

RETURN
END
SUBROUTINE GETX0(X,N)

C****************************************************************************
C MAKE THE INITIAL GUESS AT THE SOLUTION.
C****************************************************************************

DIMENSION X(*)
DO 10 I = 1, N

X(I) = 0.0E0
10 CONTINUE

RETURN
END
SUBROUTINE SOUT(TITLE,KY,N,X,IPARAM,RPARAM,IERROR,CPUTME,
2 ERROR,RESID,AX,AY,BX,BY,NX,NY,IRITE)

C****************************************************************************
C THIS ROUTINE PRINTS OUT THE CONTROLLING PARAMETERS, ITERATION INFORMATION,
C AND IF SPECIFIED, ALSO PRINTS OUT THE COMPUTED SOLUTION.
C****************************************************************************

DIMENSION X(*),IPARAM(*),RPARAM(*)
CHARACTER*50 TITLE

C
C *** DECODE IPARAM ARRAY ***

IOUNIT = IPARAM(5)
IOLEVL = IPARAM(6)
IPCOND = IPARAM(7)
ISTOP = IPARAM(8)
ITMAX = IPARAM(9)
ITERS = IPARAM(10)
ICYCLE = IPARAM(31)
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NCE = IPARAM(32)
ICG = IPARAM(33)
NDEG = IPARAM(34)

C
C *** DECODE RPARAM ARRAY ***

ERRTOL = RPARAM(1)
STPTST = RPARAM(2)
CONDES = RPARAM(31)
AA = RPARAM(32)
BB = RPARAM(33)
SCRLRS = RPARAM(34)

C
C *** MAKE HEADER LISTING PARAMETERS FOR THE PROBLEM SOLVED ***

ZHX = (BX-AX) / REAL(NX + 1)
ZHY = (BY-AY) / REAL(NY + 1)
WRITE(IRITE,600)
WRITE(IRITE,610)
WRITE(IRITE,600)
WRITE(IRITE,801)
WRITE(IRITE,530)’ INTERIOR PTS IN X (NX)=======> ’,NX
WRITE(IRITE,530)’ INTERIOR PTS IN Y (NY)=======> ’,NY
WRITE(IRITE,520)’ MINIMUM X IN GRID (AX)=======> ’,AX
WRITE(IRITE,520)’ MINIMUM Y IN GRID (AY)=======> ’,AY
WRITE(IRITE,520)’ MAXIMUM X IN GRID (BX)=======> ’,BX
WRITE(IRITE,520)’ MAXIMUM Y IN GRID (BY)=======> ’,BY
WRITE(IRITE,520)’ STEPSIZE IN X (ZHX)======> ’,ZHX
WRITE(IRITE,520)’ STEPSIZE IN Y (ZHY)======> ’,ZHY
WRITE(IRITE,801)
WRITE(IRITE,600)
WRITE(IRITE,801)
WRITE(IRITE,500)’ THE PROBLEM TITLE IS: ’,TITLE
WRITE(IRITE,801)
WRITE(IRITE,530)’ DIMENSION OF LINEAR SYSTEM (N=NX*NY)==> ’,N
WRITE(IRITE,530)’ INFORMATION LEVEL (IOLEVL)===> ’,IOLEVL
WRITE(IRITE,530)’ PRECONDITIONING KEY (IPCOND)===> ’,IPCOND
WRITE(IRITE,530)’ STOPPING CRITERION KEY (ISTOP)====> ’,ISTOP
WRITE(IRITE,530)’ MAXIMUM ALLOWED ITERATION (ITMAX)====> ’,ITMAX
WRITE(IRITE,520)’ ERROR TOLERANCE (ERRTOL)===> ’,ERRTOL
WRITE(IRITE,530)’ CONDITION ESTIMATE RATE (ICYCLE)===> ’,ICYCLE
WRITE(IRITE,530)’ CONDITION ESTIMATES (NCE)======> ’,NCE
WRITE(IRITE,530)’ CG METHOD USED (ICG)======> ’,ICG
WRITE(IRITE,530)’ DEGREE OF PREC POLY (NDEG)=====> ’,NDEG
WRITE(IRITE,520)’ INITIAL MIN EIG ESTIMATE (AA)=======> ’,AA
WRITE(IRITE,520)’ INITIAL MAX EIG ESTIMATE (BB)=======> ’,BB
WRITE(IRITE,801)
WRITE(IRITE,530)’ OUTPUT KEY (KY)=======> ’,KY
WRITE(IRITE,801)
WRITE(IRITE,530)’ COMPLETION CODE (IERROR)===> ’,IERROR
WRITE(IRITE,530)’ ITERATIONS TAKEN (ITERS)====> ’,ITERS
WRITE(IRITE,520)’ FINAL STOPPING TEST (STPTST)===> ’,STPTST
WRITE(IRITE,520)’ FINAL CONDITION ESTIMATE (CONDES)===> ’,CONDES
WRITE(IRITE,520)’ SCALED RELATIVE RESIDUAL (SCRLRS)===> ’,SCRLRS
WRITE(IRITE,520)’ EXECUTION TIME (CPUTME)===> ’,CPUTME
WRITE(IRITE,520)’ RESIDUAL ERROR (B-A*XCG) (RESID)====> ’,RESID
WRITE(IRITE,520)’ PDE ANAL ERROR (XTRUE-XCG) (ERROR)====> ’,ERROR
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WRITE(IRITE,801)
WRITE(IRITE,600)
WRITE(IRITE,801)

C
C *** PRINT OUT THE SOLUTION VALUES ***

IF (KY.EQ.1) THEN
WRITE(IOUNIT,540) TITLE
WRITE(IOUNIT,510) (NX+2)*(NY+2)
WRITE(IOUNIT,801)
X0 = AX
Y0 = AY
XNP1 = BX
YNP1 = BY
DO 10 I = 0, NX+1

XI = AX + REAL(I) * ZHX
WRITE (IOUNIT,550) XI,Y0,CU0G(XI,Y0)

10 CONTINUE
DO 30 J = 1, NY

YJ = AY + REAL(J) * ZHY
WRITE (IOUNIT,550) X0,YJ,CU0G(X0,YJ)
DO 20 I = 1, NX

XI = AX + REAL(I) * ZHX
IDX = (J-1)*NX + I
WRITE (IOUNIT,550) XI,YJ,X(IDX)

20 CONTINUE
WRITE (IOUNIT,550) XNP1,YJ,CU0G(XNP1,YJ)

30 CONTINUE
DO 40 I = 0, NX+1

XI = AX + REAL(I) * ZHX
WRITE (IOUNIT,550) XI,YNP1,CU0G(XI,YNP1)

40 CONTINUE
WRITE (IOUNIT,801)

ENDIF
C
C *** FORMAT STATEMENTS ***
500 FORMAT (1X,A,A)
510 FORMAT (I10)
520 FORMAT (1X,A,1PE15.7)
530 FORMAT (1X,A,I15)
540 FORMAT (1X,A)
550 FORMAT (1X,3(1PE15.7,10X))
600 FORMAT (1X,’=======’,

2’===============================================================’,
3 ’=======’)

610 FORMAT (1X,’=======’,
2’============ PARTIAL DIFFERENTIAL EQUATION SOLVER =============’,
3 ’=======’)

801 FORMAT (1X)
C
C *** RETURN AND END ***

RETURN
END
SUBROUTINE BUILD (N,AX,AY,BX,BY,NX,NY,A,IA,B,TRUE,IRITE)

C****************************************************************************
C THIS ROUTINE BUILDS THE DISCRETE SYSTEM FROM THE USERS PDE SUBROUTINES.
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C****************************************************************************
DIMENSION A(*),IA(*),B(*),TRUE(*)

C
C *** DEFINE N AND SETUP VARIOUS CONSTANTS FOR THE BUILD ***

N = NX * NY
ZHX = (BX-AX) / REAL(NX + 1)
ZHY = (BY-AY) / REAL(NY + 1)
ZHXOY = ZHX / ZHY
ZHYOX = ZHY / ZHX
ZHPT = ZHXOY / ZHYOX
X0 = AX
Y0 = AY
XNP1 = BX
YNP1 = BY
IA(1) = 1
IA(2) = N+1
IA(3) = 2*N+1
IA(4) = 3*N+1
IA(5) = 4*N+1
IA(6) = NX
IA(7) = NY

C
C *** BUILD THE MESH POINTS, THE OPERATOR, THE RHS, AND TRUE ANAL SOLN ***

IROW = 0
DO 10 J = 1, NY

DO 10 I = 1, NX
XI = AX + REAL(I) * ZHX
YJ = AY + REAL(J) * ZHY
IROW = IROW+1
TRUE(IROW) = CU0U(XI,YJ)
B(IROW) = - ZHX*ZHY*CU0F(XI,YJ)

C
C *** SOUTH NEIGHBOR ***

COEF = - ZHXOY
IF (J .NE. 1) THEN

A(IROW+IA(5)-1) = COEF
ELSE

A(IROW+IA(5)-1) = 0.0E0
B(IROW) = B(IROW) - COEF*CU0G(XI,Y0)

ENDIF
C
C *** WEST NEIGHBOR ***

COEF = - ZHYOX
IF (I .NE. 1) THEN

A(IROW+IA(3)-1) = COEF
ELSE

A(IROW+IA(3)-1) = 0.0E0
B(IROW) = B(IROW) - COEF*CU0G(X0,YJ)

ENDIF
C
C *** POINT ITSELF ***

COEF = 4.0E0*ZHPT
A(IROW+IA(1)-1) = COEF

C
C *** EAST NEIGHBOR ***
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COEF = - ZHYOX
IF (I .NE. NX) THEN

A(IROW+IA(2)-1) = COEF
ELSE

A(IROW+IA(2)-1) = 0.0E0
B(IROW) = B(IROW) - COEF*CU0G(XNP1,YJ)

ENDIF
C
C *** NORTH NEIGHBOR ***

COEF = - ZHXOY
IF (J .NE. NY) THEN

A(IROW+IA(4)-1) = COEF
ELSE

A(IROW+IA(4)-1) = 0.0E0
B(IROW) = B(IROW) - COEF*CU0G(XI,YNP1)

ENDIF
10 CONTINUE

C
C *** RETURN AND END ***

RETURN
END
SUBROUTINE MATMUL(JOB,A,IA,W,X,Y,N)

C****************************************************************************
C SPARSE MATRIX MULTIPLICATION.
C INTERFACE ROUTINE TO THE USERMV 5 DIAGONAL MATRIX-VECTOR PRODUCT ROUTINE.
C****************************************************************************

DIMENSION A(*),IA(*),W(*),X(*),Y(*)
C
C *** DO THE MULTIPLICATION ***

CALL USERMV(A(IA(5)),A(IA(3)),A(IA(1)),A(IA(2)),A(IA(4)),
2 IA(6),IA(7),X,Y)

C
C *** GO HOME ***

RETURN
END
SUBROUTINE USERMV(CL,BL,A,BU,CU,NX,NY,X,Y)

C****************************************************************************
C A FIVE DIAGONAL MATRIX-VECTOR PRODUCT ROUTINE.
C THE DIAGONALS ARE AS FOLLOWS:
C THE COEFFICIENTS OF THE ITH EQUATION ARE STORED IN THE ITH COMPONENTS
C OF THE ARRAYS CONTAINING THE DIAGONALS.
C THE DIAGONALS OF THE OPERATOR ARE FROM LEFT TO RIGHT: CL,BL,A,BU,CU
C NX => THE NUMBER OF MESH POINTS IN THE X-DIRECTION.
C WITH THE NATURAL ORDERING, NX IS THE ORDER OF EACH TRIDIAGONAL
C BLOCK IN THE BLOCK-TRIDIAGONAL OPERATOR.
C NY => THE NUMBER OF MESH POINTS IN THE Y-DIRECTION.
C WITH THE NATURAL ORDERING, NY IS THE NUMBER OF TRIDIAGONAL
C BLOCKS IN THE BLOCK-TRIDIAGONAL OPERATOR.
C****************************************************************************

DIMENSION CL(*),BL(*),A(*),BU(*),CU(*),X(*),Y(*)
C
C *** RECOVER MATRIX DIMENSION ***

N = NX*NY
C
C *** HANDLE FIRST BLOCK ***
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I = 1
Y(I) = A(I)*X(I)+BU(I)*X(I+1)+CU(I)*X(I+NX)
DO 10 I=2,NX

Y(I) = BL(I)*X(I-1)+A(I)*X(I)+BU(I)*X(I+1)+CU(I)*X(I+NX)
10 CONTINUE

C
C *** HANDLE MIDDLE BLOCKS ***

DO 20 I=NX+1,N-NX
Y(I) = CL(I)*X(I-NX)+BL(I)*X(I-1)+A(I)*X(I)+BU(I)*X(I+1)

2 +CU(I)*X(I+NX)
20 CONTINUE

C
C *** HANDLE LAST BLOCK ***

DO 30 I=N-(NX-1),N-1
Y(I) = CL(I)*X(I-NX)+BL(I)*X(I-1)+A(I)*X(I)+BU(I)*X(I+1)

30 CONTINUE
I = N
Y(I) = CL(I)*X(I-NX)+BL(I)*X(I-1)+A(I)*X(I)

C
C *** RETURN AND END ***

RETURN
END
SUBROUTINE BLDPC(A,IA,Q,IQ,N)

C****************************************************************************
C BUILD A SIMPLE DIAGONAL SCALING PRECONDITIONER FOR A FIVE-DIAGONAL MATRIX.
C****************************************************************************

DIMENSION A(*),IA(*),Q(*),IQ(*)
DO 10 I = 1, N

Q(I) = 1.0E0 / A(IA(1)+(I-1))
10 CONTINUE

RETURN
END
SUBROUTINE DIAGPC(JOB,Q,IQ,W,X,Y,N)

C****************************************************************************
C A SIMPLE DIAGONAL SCALING PRECONDITIONER FOR A FIVE-DIAGONAL OPERATOR.
C****************************************************************************

DIMENSION Q(*),IQ(*),W(*),X(*),Y(*)
DO 10 I = 1, N

Y(I) = Q(I)*X(I)
10 CONTINUE

RETURN
END
FUNCTION CU0F (X,Y)

C****************************************************************************
C THIS ROUTINE DEFINES THE RIGHT HAND SIDE OF THE PDE.
C****************************************************************************

PARAMETER (PI = 3.1415926535,NNX=3,NNY=1)
CU0F = - PI*PI*REAL(NNX*NNX + NNY*NNY)
2 * (SIN(REAL(NNX)*PI*X) * SIN(REAL(NNY)*PI*Y))
RETURN
END
FUNCTION CU0G (X,Y)

C****************************************************************************
C THIS ROUTINE IS THE BOUDARY CONDITION FOR THE PDE.
C****************************************************************************
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CU0G = 0.0E0
RETURN
END
FUNCTION CU0U (X,Y)

C****************************************************************************
C THIS ROUTINE IS THE ANALYTIC SOLUTION TO THE PDE (FOR TESTING PURPOSES).
C****************************************************************************

PARAMETER (PI = 3.1415926535,NNX=3,NNY=1)
CU0U = SIN(REAL(NNX)*PI*X) * SIN(REAL(NNY)*PI*Y)
RETURN
END

The following is a sample input file to the driver.

0 iolevl information output level
1 ipcond preconditioning flag
0 istop stopping criterion flag
500 itmax iteration maximum
1.0e-5 errtol error tolerance

0 icycle condition number estimate cycle
0 nce number of condition estimates
4 icg cg method desired

0 ndeg degree of preconditioning polynomial
1.0e0 cond initial condition number estimate
1.0e0 aa estimate of smallest eigenvalue
1.0e0 bb estimate of largest eigenvalue

0 ky whether to print solution

63 nx number of interior points in x direction (nx)
63 ny number of interior points in y direction (ny)
0.0e0 ax minimum for x in grid (ax)
0.0e0 ay minimum for x in grid (ay)
1.0e0 bx maximum for x in grid (bx)
1.0e0 by maximum for x in grid (by)

The following is a sample output file from the driver.

=============================================================================
=================== PARTIAL DIFFERENTIAL EQUATION SOLVER ====================
=============================================================================

INTERIOR PTS IN X (NX)=======> 63
INTERIOR PTS IN Y (NY)=======> 63
MINIMUM X IN GRID (AX)=======> 0.0000000E+00
MINIMUM Y IN GRID (AY)=======> 0.0000000E+00
MAXIMUM X IN GRID (BX)=======> 1.0000000E+00
MAXIMUM Y IN GRID (BY)=======> 1.0000000E+00
STEPSIZE IN X (ZHX)======> 1.5625000E-02
STEPSIZE IN Y (ZHY)======> 1.5625000E-02
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=============================================================================

THE PROBLEM TITLE IS: SOLUTION OF POISSON EQUATION USING CGCODE

DIMENSION OF LINEAR SYSTEM (N=NX*NY)==> 3969
INFORMATION LEVEL (IOLEVL)===> 0
PRECONDITIONING KEY (IPCOND)===> 1
STOPPING CRITERION KEY (ISTOP)====> 0
MAXIMUM ALLOWED ITERATION (ITMAX)====> 500
ERROR TOLERANCE (ERRTOL)===> 9.9999990E-06
CONDITION ESTIMATE RATE (ICYCLE)===> 0
CONDITION ESTIMATES (NCE)======> 0
CG METHOD USED (ICG)======> 3
DEGREE OF PREC POLY (NDEG)=====> 0
INITIAL MIN EIG ESTIMATE (AA)=======> 1.0000000E+00
INITIAL MAX EIG ESTIMATE (BB)=======> 1.0000000E+00

OUTPUT KEY (KY)=======> 0

COMPLETION CODE (IERROR)===> 0
ITERATIONS TAKEN (ITERS)====> 2
FINAL STOPPING TEST (STPTST)===> 5.7627392E-06
FINAL CONDITION ESTIMATE (CONDES)===> 1.0000000E+00
SCALED RELATIVE RESIDUAL (SCRLRS)===> 5.7627392E-06
EXECUTION TIME (CPUTME)===> 1.6622700E-01
RESIDUAL ERROR (B-A*XCG) (RESID)====> 8.2791452E-06
PDE ANAL ERROR (XTRUE-XCG) (ERROR)====> 5.2695351E-02

=============================================================================

The following is a sample output file from the solver.

THE METHOD IS PRECONDITIONED CG (PCG)

THE ITERATION PARAMETERS ARE
N = 3969
ITMAX = 500
ICYCLE = 0
NCE = 0
ERRTOL = 0.10000E-04
CNDMIA = 0.10000E+01

RESID = 2-NORM OF MINV*R
RELRSD = RESID / INITIAL RESID
COND(MINV*A) USED IN STOPPING CRITERION

INITIAL RESID = 0.19277E+00

ITERS = 1 RESID = 0.37110E-05 RELRSD = 0.19251E-04
ITERS = 2 RESID = 0.11109E-05 RELRSD = 0.57627E-05
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