
On the robustness of conjugate-gradient methods and
quasi-Newton methods

Mikael FALLGREN, werty@kth.se

Master Thesis, 5B1022
Department of Mathematics
Royal Institute of Technology

7/9 - 2006





Abstract

On a quadratic problem the conjugate-gradient method and the quasi-
Newton method are equivalent, if exact line search is applied. The aim of this
master thesis is to investigate whether there are noticeable differences between
the methods when solving a nonquadratic problem, when performing inexact
line search or when both alternatives are applied. In this research three convex
objective functions with variable size are studied. The line search methods ap-
plied are exact line search, backtracking line search and Wolfe line search. The
results indicate that the best method seem to depend on which problem that
is to be solved. Within the conjugate-gradient method it tend to be preferable
to use the Polak-Ribière method or alternatively the Hestenes-Stiefel method.
The quasi-Newton methods to be preferred are the BFGS method and the DFP
method, which perform similarly. If the problem has a convex objective func-
tion, then the BFGS method probably is to favor. This is due to the known
theoretical result of global convergence for a specific inexact line search method.
If a problem is going to be solved repeatedly within some application, it might
be of interest to perform a similar comparison of the methods.

Key words. Unconstrained optimization, conjugate-gradient method, quasi-
Newton method, line search method.





Contents

1. Introduction 1

2. The conjugate-gradient method 2
2.1 Formulation and criteria . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Update methods of βk−1 . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Alternative reformulations . . . . . . . . . . . . . . . . . . . . . . . . 5

3. Quasi-Newton methods 7
3.1 Formulation and criteria . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Update methods of Uk . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Self-scaling quasi-Newton methods . . . . . . . . . . . . . . . . . . . 12
3.5 Adapt for large problems . . . . . . . . . . . . . . . . . . . . . . . . 13

4. Line search methods 13
4.1 Exact line search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Backtracking line search . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Armijo’s rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Wolfe conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5. Computing environment 17

6. Numerical results 17
6.1 Testproblem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Testproblem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3 Testproblem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7. Discussion 27

8. Conclusion 28





1. Introduction

The conjugate-gradient method (CG) and the quasi-Newton methods (QN) are
equivalent for a quadratic objective function when exact line search is used. This
was proved by Nazareth [20], using Dixon [7]. The aim of this research is to in-
vestigate differences between CG and QN, when a perturbation is added to the
equivalent situation stated above. One variation is that the objective function is
close to quadratic, while exact line search is used. The other variation is that the
objective function is quadratic, while inexact line search is used. It is also possible
to include both variations at the same time, such that the objective function is not
quadratic and the line search is not exact.

The CG and QN are methods that only use the first derivative of the function.
They are therefore often used in applications when only the first derivative is known,
or when higher derivatives are very expensive to calculate. In some applications the
optimal solution might not be of particular interest, instead the interest might be
the behavior of a particular method. The methods can be used in a great variety of
fields, some examples from different areas are presented below. In electromagnetics,
problems for distributed parameter estimation can be solved, as in [13], where a
constructed update matrix for QN is taking advantage of the special structure of the
problem. Optical tomography is another area where these techniques are used [16].
These two methods can also be used in programs of neural network, see, e.g., [6]
and [27]. Finally, the methods can be used in radiation therapy optimization [4],
from which this study has evolved.

The formulation of the unconstrained optimization problem to be investigated
is

minimize
x∈IRn

f(x), (1.1)

where f is a smooth, convex function with its gradient ∇f(x) available. This study
originates from the problem where f(x) is a quadratic function

f(x) =
1
2
xT Hx + cT x, (1.2)

where the Hessian H is a symmetric and positive definite n × n matrix and c is a
vector of length n. With a positive definite Hessian matrix H, the objective function
f(x) is convex.

To solve the stated unconstrained optimization problem (1.1) with the objective
function (1.2) is equivalent to solving a linear system Ax = b, where H = A,
c = −b. There are several strategies on how to solve a linear system of equations with
symmetric and positive definite matrix. Some well known strategies are Cholesky
factorization, Householder rotation and Lanczos method. These methods are briefly
described in Appendix A. The Lanczos method is mathematically equivalent to the
conjugate-gradient method applied on an unconstrained optimization problem (1.1)
with the objective function (1.2). This relation is presented in some more detail in
section 2.4.



2 On the robustness of conjugate-gradient methods and quasi-Newton methods

Within this research, the unconstrained optimization problem (1.1) will be solved
by a strategy which track the optimal x-value by starting with an initial x-value x0

and thereafter update the x by performing iterations of the form

xk+1 = xk + αkpk, (1.3)

where pk is a search direction and αk is a stepsize. The introduced index k represent
the number of iterations proceeded by the method. To be able to take the step
towards a new point xk+1, the search direction pk and the stepsize αk have to
be found. Methods to find a search direction pk and a stepsize αk are presented
in sections 2, 3 and 4. The methods are implemented so that pk is a descent
direction, i.e. pT

k∇f(xk) < 0 is fulfilled [21]. Note that the update of xk+1 in
(1.3) makes the expression xk+1 = αkpk + αk−1pk−1 + ... + α0p0 + x0 valid. The
point xk+1 therefore lies in the subspace spanned by {x0, p0, p1, ..., pk}. If applying
the conjugate-gradient method and exact line search in exact arithmetic on the
convex quadratic function (1.2), then the point xk+1 ∈ {x0}∪{pi}ki=0 minimizes the
quadratic function over this subspace [19, p.385].

There have been numerous studies on CG methods, QN methods and on varia-
tions between the methods. Within the CG methods, the studies in general seem to
suggest that it is preferable to use the Polak-Ribière method, see, e.g., [18, p.254]
and [22, p.122]. Within the QN methods, it is in general believed that the most
effective update method within the Broyden family is the BFGS method [11, p.119].
If comparing CG with QN the general opinion seems to be that the QN is to be pre-
ferred compared to CG, since conjugate-gradient methods are less efficient and less
robust compared to quasi-Newton methods. However, with no matrix operations
and relative little storage CG is a good method for large problems [8, pp.84-85].

The outline of this report is as follows. In section 2 a background on the
conjugate-gradient method is given. This section is divided into four subsections
containing formulation and criteria, update methods of βk−1, algorithm and alter-
native reformulations. Section 3 gives background information on quasi-Newton
methods. This section is categorized into five subsections containing formulation
and criteria, update methods of Uk, algorithm, self-scaling quasi-Newton methods
and adapt for large problems. In section 4 some line search methods are presented,
which are used to obtain the stepsize. In four subsections exact line search, back-
tracking line search, Armijo’s rule and Wolfe conditions are presented. Section 5
contains a brief description of the computing environment. In section 6 the results
of this study are presented, divided into three subsections containing Testproblem
1, Testproblem 2 and Testproblem 3. Section 7 contains a discussion and finally a
conclusion is presented in section 8.

2. The conjugate-gradient method

The conjugate-gradient method (CG) is to be described in this section. In a pa-
per by Hestenes and Stiefel [14], the conjugate-gradient method was originally pre-
sented [19, p.407]. The conjugate-gradient method is a low storage algorithm that
generates search directions to track the optimum of an unconstrained optimization



2. The conjugate-gradient method 3

problem (1.1) [19, p.383]. It is designed to have a faster convergence then steepest
descent while avoiding evaluation and storage of matrices [18, p.238].

For a quadratic function (1.2) where the Hessian matrix H has m distinct eigen-
values, the conjugate-gradient method will find the solution in at most m itera-
tions [22, p.114]. With m distinct clusters of eigenvalues, the conjugate-gradient
method will approximately solve the problem in m iterations [22, p.116].

2.1. Formulation and criteria

The formulation of CG and some important criteria are to be presented in this
subsection. Let the gradient evaluated at a point xk be denoted by

gk = g(xk) = ∇f(xk).

If the gradient gk is equal to zero, the global optimum is found for the point xk. An
unconstrained optimization problem with the objective function (1.2) evaluated at
a point xk, has the gradient given by gk = Hxk + c. The negative gradient −gk can
be represented as a residual, which the CG method decrease during the iterations.
A global optimum is found when the residual is equal to zero. Note that CG’s
gradients are mutually orthogonal, gT

k gi = 0, ∀ i = 0, ..., k − 1 [22, p.108].
The first search direction p0 is performed along the steepest descent direction

−g0. Thereafter the search direction pk is a linear combination of the steepest
descent −gk and the previous search direction pk−1 scaled with a factor βk−1,

pk = −gk + βk−1pk−1.

The scalar βk−1 is determined with the requirement that pk−1 and pk must be
conjugate with respect to the Hessian H for problem (1.2) [22, p.107]. There are
several methods on how to compute the scalar β, these are discussed in more detail
in section 2.2. An obtained nonzero gradient gk is linearly independent of the
previous gradient directions and of the previous search directions. The gradient gk

is orthogonal to the subspace generated by {p0, . . . , pk−1} [18, pp.243-244]. Hence,
the gradients gj satisfies the condition

gT
j pi = 0, for i < j,

where i = 0, ..., j − 1 and j = 1, ..., k,. The condition is known as the expanding
subspace theorem [18, p.242]. For a convex quadratic problem (1.2) when exact line
search is applied the conjugate-gradient method generates search direction vectors
{pi} that are mutually conjugate with respect to the Hessian matrix H [19, p.383].
When the vectors {pj} are mutually conjugate with respect to the Hessian matrix
H then

pT
i Hpj = 0 if i 6= j, (2.1)

for i = 0, . . . , k and j = 0, . . . , k, which is known as the conjugacy condition. The
conjugacy condition (2.1) is equivalent with the orthogonality condition (gi+1 −



4 On the robustness of conjugate-gradient methods and quasi-Newton methods

gi)T pj = 0 for i 6= j [11, p.145]. Satisfying (2.1) implies linearly independent
vectors [22, p.102]. It is from the conjugacy criteria the conjugate-gradient method
has got its name [19, p.383].

By successively minimizing along each direction of the conjugate set, the ob-
jective function (1.2) will be minimized in at most n steps if exact arithmetic is
used [11, p.147]. When conjugate-gradient methods are applied to nonquadratic
problems, they usually do not terminate within n steps. Hence, the algorithm
should continue with its search until a termination criteria is met. Alternatively
CG can be interrupted after a certain number of iterations and restarted [18, p.252].

2.2. Update methods of βk−1

Three update methods of βk−1 are to be presented in this subsection. As previously
mentioned, there are different methods on how to choose the scalar βk−1. Below,
the three best known formulas for βk−1 are presented:

• Fletcher-Reeves method (FR)

βk−1 =
gT
k gk

gT
k−1gk−1

, (2.2)

• Hestenes-Stiefel method (HS)

βk−1 =
(gk − gk−1)T gk

(gk − gk−1)T pk−1
, (2.3)

• Polak-Ribière method (PR)

βk−1 =
(gk − gk−1)T gk

gT
k−1gk−1

. (2.4)

These methods are equivalent when applied to a quadratic objective function (1.1),
but not when applied to a general nonlinear function. The FR method was origi-
nally discussed in a paper [9] by Fletcher and Reeves. If the FR formula is used,
the method will converge for appropriate assumptions. For PR and HS, there are
constructed examples where these two formulations have great difficulties. How-
ever, computational experiments suggest that both PR and HS perform better than
FR [19, p.399]. In general the Polak-Ribière method seems to be preferable com-
pared to other methods, according to Luenberger [18, p.254]. According to Nocedal,
no βk−1 update has proved to be significantly more efficient than the Polak-Ribière
update [22, p.122].

2.3. Algorithm

Previously in this section formulas have been presented on how to calculate various
important parameters within the conjugate-gradient method, at a certain iteration
k. To summarize the main parts of the method, one version is presented on the
following page as an algorithm.



2. The conjugate-gradient method 5

Algorithm 2.1. The conjugate-gradient algorithm

k ← 0; xk ← initial point; gk ← ∇f(xk);
while ‖gk‖2 6= 0 then

if k > 0 then
βk−1 ← update method: (2.2), (2.3) or (2.4);
pk ← −gk + βk−1pk−1;

else
pk ← −gk;

end
αk ← line search method: (4.1), (4.3), Algorithm 4.1, 4.2 or 4.3;
xk+1 ← xk + αkpk; gk+1 ← ∇f(xk+1);
k ← k + 1;

end
In this algorithm all variables are written with subscripts. Only the current values
of the variables need to be saved, with two exceptions. The exceptions are the
previous search direction and the previous gradient direction, since they are needed
in the update of β.

2.4. Alternative reformulations

Some alternative reformulations will be presented in this subsection. For some
applications it might be advantageous to reformulate the optimization problem.
Within this subsection the optimization problem (1.1) with the objective function
(1.2) is going to be considered. Let the initial x-value be x0 and let x∗ denote the
unknown optimal solution to the problem, i.e. x∗ = H−1c. The objective function
(1.2) can then be reformulated as

f(x) =
1
2
xT Hx + cT x =

1
2
(x− x∗)T H(x− x∗)− 1

2
x∗T Hx∗. (2.5)

One reformulation alternative is to express the vector x0 − x∗ in an eigenvector
expansion as

x0 − x∗ = ζ1 e1 + ζ2 e2 + ... + ζn en,

where ei is normalized eigenvectors of the Hessian H. Then

H(x0 − x∗) = λ1ζ1 e1 + λ2ζ2 e2 + ... + λnζn en,

where λi are the corresponding eigenvalues of the Hessian H. The constant term
1
2x∗T Hx∗ of the objective function (2.5) can be ignored by defining

f̃(x) = f(x) +
1
2
x∗T Hx∗ =

1
2
(x− x∗)T H(x− x∗), (2.6)

and then study the translated objective function f̃(x). Note that the eigenvectors
of H are mutually orthogonal and therefore

f̃(x0) =
1
2
(x0 − x∗)T H(x0 − x∗) =

1
2

n∑
i=1

λiζ
2
i ,



6 On the robustness of conjugate-gradient methods and quasi-Newton methods

where λi are the corresponding eigenvalues and ζiei are the corresponding eigenvec-
tors of the Hessian H [18, pp.242-247].

Another reformulation alternative is performed on the CG method. Consider the
formulation of the translated objective function (2.6). Define ξ0 = x0 − x∗, which
gives the initial gradient g0 = Hξ0. The conjugate-gradient method at iteration
k + 1 can then be written as

minimize
x∈IRn

1
2ξT Hξ

subject to ξ = ξ0 −Gkα,
(2.7)

where Gk = (g0, g1, . . . , gk). The obtained optimal solution is ξk+1 and αk+1. The
gradient is given by gk+1 = Hξk+1, or alternatively

gk+1 = g0 −
k∑

h=0

(Hghαh). (2.8)

The gradient formulation (2.8) show that the gradient gk+1 is contained in the
Krylov subspace Kk+1(H, g0), defined as

Kk+1(H, g0) = span{g0,Hg0, . . . ,H
kg0}, (2.9)

see, e.g., [29, p.152]. Elimination of ξ in (2.7) gives the optimal solution

GT
k HGkα = −GT

k Hξ0 = −GT
k g0. (2.10)

The matrix GT
k HGk is tridiagonal, this is due to the fact that gT

i Hgj = 0 for i ≥ j−2,
where i = 2, . . . , k and j = 2, . . . , i. This claim is valid due to the orthogonality of
the gradients

0 = gT
i gj = gT

i (g0 −
j−1∑
h=0

(Hghαh)), for i > j.

Thus each element outside the tridiagonal of GT
k HGk equal zero. Now form the

LkDLT
k factorization of the tridiagonal matrix, which gives

LkDkL
T
k = GT

k HGk ⇔ Dk = L−1
k GT

k HGkL
−T
k .

Define Pk = −GkL
−T
k , where Pk = (p1, . . . , pk). This gives Dk = P T

k HPk, i.e. the
directions in Pk are conjugate with respect to the Hessian matrix H. The equation
PkL

T
k = −Gk at column k is PkL

T
k ek = −gk, where Lk is a unit lower-bidiagonal

matrix, which gives
pk + lk,k−1pk−1 = −gk. (2.11)

Multiplication with pT
k−1H in (2.11) and simplification gives

lk,k−1 = − gT
k gk

gT
k−1gk−1

.

Consequently the conjugate-gradient method is obtained, where the exact stepsize
αk = αk(k) and the βk−1 = lk,k−1, which is Fletcher-Reeves updating method (2.2).



3. Quasi-Newton methods 7

As mentioned in the introduction, the Lanczos method is a strategy for solving
a linear system Ax = b that is mathematically equivalent to the conjugate-gradient
method. The equivalence is motivated below. Define an upper bidiagonal matrix

Ωk =


1 −β1 0 . . .

0
. . . . . . 0

... 0
. . . −βk−1

...
... 0 1

 .

This gives the relation Gk = −PkΩk. The tridiagonal matrix GT
k HGk = ΩT

k ΛkΩk,
where Λk = diag(pT

1 Hp1, . . . , p
T
k Hpk). Define

Qk = −Gk∆−1,

where ∆ = diag(
√

gT
0 g0, . . . ,

√
gT
k−1gk−1). The column vectors of the matrix Qk

then form an orthonormal basis for the Krylov subspace (2.9). The columns of Qk

are the Lanczos vectors, whose projection of the Hessian H is ∆−1ΩT
k ΛkΩk∆−1 [12,

pp.370-371]. The strategy of the Lanczos method is to produce a set of orthonormal
vectors {qj} and then letting xk minimize the problem over the span{q1, . . . , qk}.
For some yk it follows that xk = Qkyk [12, p.342], where

(QT
k HQk)yk = −QT

k c.

Note the similarities between this equation and (2.10) with g0 = H(x0 − x∗) =
Hx0 + HH−1c = c, for x0 = 0. It is from this the Lanczos method is derived, see
Appendix A3 for the Lanczos method.

3. Quasi-Newton methods

Quasi-Newton methods are iterative methods for solving an unconstrained minimiza-
tion problem (1.1). The methods are based on building up curvature information
during the iterations, while the descent method is running. It approximates the
curvature of the objective function without forming the Hessian matrix itself [11,
p.116]. This make the iterations of QN computationally more expensive, compared
to the CG. However, stored information in the approximated Hessian might decrease
the total number of iterations compared to the conjugate-gradient method.

3.1. Formulation and criteria

The formulation of QN is to be presented, as well as some important criteria. The
search direction pk is obtained by solving following linear system

Bkpk = −∇f(xk),

where Bk is a symmetric and positive definite matrix. Note that if Bk = ∇2f(xk)
then it would be Newton’s method, while Bk = I gives the steepest descent method.



8 On the robustness of conjugate-gradient methods and quasi-Newton methods

During the iterations the matrix Bk is building up so it approximates the Hessian
∇2f(xk), while the objective function is minimized [19, pp.339-340].

Another way to present the QN method is by approximating the inverse Hessian
matrix formula instead, by letting Bk = H−1

k [11, p.122]. The aim is to avoid solving
a linear equation system each iteration. Note that for linear system of equations,
the inversion approach is much less stable [15, p.262]. The inverse formulation of
the Hessian approximation matrix is therefore not used in this research.

The initial Hessian approximation B0 is often set equal to the identity matrix,
B0 = I, if no further information is available [11, p.117]. Within this research, the
choice of initial Hessian approximation is B0 = I. The initial Hessian approximation
can also be set to a multiple of the identity matrix B0 = ηI, where η is a constant.
However, there is no known good general strategy on how to choose η. Another
method is to start with B0 = I and after computing the first step, but before using
the update Uk formula, the initial matrix is changed according to B0 ←

yT
k yk

yT
k

sk
I [22,

p.200].
The Hessian approximation matrix Bk is updated according to

Bk+1 = Bk + Uk.

There are several strategies for updating the Uk matrix. Some of these are presented
in section 3.2. A condition to define the matrix Bk is

Bk(xk − xk−1) = ∇f(xk)−∇f(xk−1), (3.1)

which is known as the secant condition. This condition is based on a generalization of
f ′′(xk) ≈ f ′(xk)−f ′(xk−1)

xk−xk−1
, where the formula first is made multidimensional and then

the Hessian term ∇2f(xk) is replaced by an approximation term Bk. Two vector
definitions follow below, these are introduced for simplicity and are used repeatedly
further on, {

sk = xk+1 − xk = αkpk,
yk = ∇f(xk+1)−∇f(xk).

(3.2)

Note that yk = Hsk for the quadratic problem (1.2). Combining the secant condition
(3.1) with the two vector definitions (3.2) gives a simplified expression of the secant
condition

Bk+1sk = yk, (3.3)

see, e.g., [19, p.349]. This condition is required to hold for the new updated matrix
Bk+1 [11, p.118]. Note that it is only possible to fulfill the secant equation if

sT
k yk > 0, (3.4)

which is known as the curvature condition. Infact, the secant condition always has
a solution if the curvature condition is satisfied [22, pp.195-196].



3. Quasi-Newton methods 9

3.2. Update methods of Uk

The update matrix Uk can be calculated by different methods. Infact, one is a whole
class of formulas which will be used within this research. The method is given by Uk = − (Bksk)(Bksk)T

sT
k

Bksk
+ ykyT

k

yT
k

sk
+ φk(sT

k Bksk)vkv
T
k ,

vk = yk

yT
k

sk
− Bksk

sT
k

Bksk
,

(3.5)

where φk is a scalar. This class is known as the Broyden class, see, e.g., [19, p.355]
and [22, p.207], or as the one-parameter family of updates [11, p.119]. It is also
referred to as the Broyden family in [18, p.270] and [8, p.56]. Further on in this
report, this class of formulas will be referred to as the Broyden family. The restricted
Broyden family is when 0 ≤ φk ≤ 1 [22, p.208], which also is known as the convex
class [11, p.126].

Let x0 be a starting point and B0 an initial symmetric and positive definite
Hessian approximation matrix. Take an update of the Broyden family which for all
k satisfies that φk is larger than the critical value for which the Bk+1 update turns
indefinte. Apply it on a strongly convex quadratic function, with exact line search
in exact arithmetic. Then following statements are valid:

• At most n iterations are used to converge to the solution.

• For all previous search directions, the secant condition is satisfied: Bksj =
yj , j = k − 1, ..., 1.

• With starting matrix B0 = I, the iterates are identical to those generated by
the conjugate-gradient method. Note that the search directions are conjugate,
sT
i Hsj = 0 for i 6= j, where H is the Hessian of the quadratic function (1.2).

• Bn+1 = H, if n iterations are performed [22, p.210].

Note that if an exact line search is used in every iteration, on a twice-continuously
differentiable function, all the methods of the Broyden family generate identical
points, as long as each sequence of {αi}ki=0 and {Bi}ki=0 is well defined [11, p.120].

Below, three different update methods Uk within the Broyden family are pre-
sented. It is the symmetric rank one update method, the BFGS method and the
DFP method.

The symmetric rank one update method (SR1) belongs to the Broyden family,

this by setting φk = sT
k yk

sT
k

yk−sT
k

Bksk
. However, it does not belong to the restricted

class, since φk may be outside the interval [0, 1] [22, p.209]. The SR1 update matrix
Uk takes the following form:

• Symmetric rank one method (SR1)

Uk =
(yk −Bksk)(yk −Bksk)T

(yk −Bksk)T sk
, (3.6)



10 On the robustness of conjugate-gradient methods and quasi-Newton methods

see, e.g., [19, p.351] and [22, p.202]. It was originally discovered by Davidon [5],
according to [21]. One fact of SR1 is that even if Bk is positive definite, the update
Bk+1 may not have this property. However, trust-region methods solve that. A
real disadvantage is that there might be steps, when no update satisfy the secant
condition (3.3). As long as the denominator is different from zero the method
proceeds with a unique rank-one update. If yk = Bksk the only update that satisfies
the secant condition is Uk = 0, such that the same B matrix can be used another
iteration. The failure occurs when yk 6= Bksk and (yk − Bksk)T sk = 0 at the same
iteration. All desired characteristics can not be fulfilled and a rank two correction
has to be used. Note that this failure can occur with an objective function that is
convex and quadratic [22, pp.202-203]. One example on when the SR1 method fail
is for a convex quadratic function dependent of only two variables, see Appendix B1
for derivation, 

f(x) = 1
2xT

(
2 0
0 1/2

)
x,

Initial x-value: x0 =

( √
2

8

)
.

(3.7)

The SR1 method fails during the first update on the problem (3.7) in exact arith-
metic. However, due to numerical instability an implemented SR1 method is able
to solve the problem (3.7) without failing. In Appendix B2 a problem dependent
of three variables is presented, which cause the SR1 method to fail both in exact
arithmetic and as implemented method. A strategy to avoid break down is desir-
able. One would be to use the update (3.6) when the denominator is large enough
and otherwise skip the update by letting Bk+1 = Bk. A strategy would be to apply
the update (3.6) only if |sT

k (yk −Bksk)| ≥ δ||sk|| ||yk −Bksk||, where δ ∈ (0, 1) is a
small number. If this criteria does not hold, let Bk+1 = Bk. Implementations of the
SR1 often use a skipping rule of this type [22, pp.203-204]. However, this skipping
strategy might prevent the method from converging rapidly. One example is the
problem given in Appendix B2, which perform as the steepest descent method since
the Hessian approximation continue to equal the identity matrix during the itera-
tions. Another strategy is to perform a rank two update whenever both yk 6= Bksk

and (yk−Bksk)T sk = 0 at the same iteration. Below two different rank two updates
within the Broyden family are presented.

BFGS and DFP are two other update methods belonging to the Broyden family.
First the BFGS method is presented, and then the DFP method is outlined. Finally
relations between the two methods and the Broyden family are presented.

The BFGS method is named after its developers Broyden, Fletcher, Goldfarb
and Shanno [19, p.355]. By setting φk = 0 in (3.5), the BFGS formula is obtained.
It is believed that the most effective update of the Broydan family is the BFGS
method [11, p.119]. The BFGS update matrix Uk takes the following form:

• Broyden, Fletcher, Goldfarb and Shanno method (BFGS)

Uk = −(Bksk)(Bksk)T

sT
k Bksk

+
yky

T
k

yT
k sk

, (3.8)



3. Quasi-Newton methods 11

see, e.g., [19, p.355]. For the BFGS update method with Wolfe line search (4.6)
Powell [28] proves global convergence for a convex objective function [8, p.68]. Byrd,
Nocedal and Yuan [3] extend Powell’s result for all φk ∈ [0, 1).

A third update method of the Broyden family is the DFP method, which is
named after its developers Davidon, Fletcher and Powell. The DFP update formula
is obtained by setting φk = 1. The update matrix Uk of the DFP method takes the
following form:

• Davidon, Fletcher and Powell method (DFP)

Uk = −(Bksk)(Bksk)T

sT
k Bksk

+
yky

T
k

yT
k sk

+ (sT
k Bksk)vkv

T
k , (3.9)

where vk is given in (3.5) [19, p.355].
Infact the BFGS and DFP methods both have symmetric rank two updates [18,

p.269]. From the Broyden family update (3.5) BFGS is obtained by setting φk = 0
and DFP by setting φk = 1. The update matrix of the Broyden family can be
rewritten as a linear combination of these two methods,

Bk+1 = (1− φk)BBFGS
k+1 + φkB

DFP
k+1 .

The two methods, BFGS and DFP, preserve positive definiteness of the Hessian
approximations when the curvature condition (3.4) is fulfilled. This relation implies
that the restricted Broyden family, i.e. 0 ≤ φ ≤ 1, has the same property [22, p.208].
It can be observed that

Uk = UBFGS
k + φk(sT

k Bksk)vkv
T
k ,

where vk is given in (3.5). A rewritten formula of the Broyden family, where the
parameter φk is an arbitrary real value. It should be noted that for a general problem
the curvature condition (3.4) might not hold, and therefore the BFGS method can
not always be used to perform the update. A strategy is to use the SR1 update when
BFGS can not be applied [21]. However, there is no guarantee that this update is
possible either.

3.3. Algorithm

Formulas have been presented above on how to calculate various important param-
eters within the quasi-Newton method, at a certain iteration k. To summarize the
main parts of the method, one version is presented on the following page as an
algorithm.



12 On the robustness of conjugate-gradient methods and quasi-Newton methods

Algorithm 3.1. The quasi-Newton algorithm

k ← 0; xk ← initial point;
Bk ← initial Hessian approximation;
while ‖∇f(xk)‖2 6= 0 then

pk ← the solution of Bkpk = −∇f(xk);
αk ← line search method: (4.1), (4.3), Algorithm 4.1, 4.2 or 4.3;
xk+1 ← xk + αkpk;
sk ← xk+1 − xk;
yk ← ∇f(xk+1)−∇f(xk);
Uk ← update method: (3.6), (3.8) or (3.9);
Bk+1 ← Bk + Uk;
k ← k + 1;

end

In this algorithm all variables are written with subscripts. It is only the current val-
ues of the variables that is needed to be saved, with two exceptions. The exceptions
are the previous x-value and the previous gradient, since needed in the update of s
and y.

3.4. Self-scaling quasi-Newton methods

The general strategy of self-scaling quasi-Newton method (SS) is to scale the Hessian
approximation matrix Bk before it is updated at each iteration. This is to avoid large
difference in the eigenvalues of the approximated Hessian of the objective function.
Self-scaling variable metric algorithms was introduced by Oren, see [24], [25] and [26].
The Hessian approximation matrix Bk can be updated according to a self-scaling
BFGS update of the form

Bk+1 = ρk[Bk −
Bksks

T
k BT

k

sT
k Bksk

] +
yky

T
k

yT
k sk

, (3.10a)

ρk =
yT

k sk

sT
k Bksk

, (3.10b)

where ρk is the self-scaling factor. For a general convex objective function, Nocedal
and Yuan proves global convergence of a SS-BFGS (3.10) with Wolfe line search
(4.6) [23]. They also present results indicating that the unscaled BFGS method in
general is superior to the SS-BFGS (3.10), with its ρk of Oren and Luenberger [26].
A suggestion of Al-Baali, see [1] and [2], is to modify the self-scaling factor to

ρk = min{ yT
k sk

sT
k Bksk

, 1}. (3.11)

This modification of ρk gives a global convergent SS-BFGS method which is com-
petitive with the unscaled BFGS method. If applying this self-scaling quasi-Newton



4. Line search methods 13

method on the Broyden family, it takes the form
Bk+1 = ρk(Bk − (Bksk)(Bksk)T

sT
k

Bksk
+ φk(sT

k Bksk)vkv
T
k ) + ykyT

k

yT
k

sk
,

vk = yk

yT
k

sk
− Bksk

sT
k

Bksk
,

ρk = min{ yT
k sk

sT
k

Bksk
, 1}.

This method reduces to the unscaled Broyden family if ρk = 1, or equivalently
replacing the scaled matrix ρkBk to the unscaled matrix Bk. To implement the
self-scaling quasi-Newton in an algorithm, only a smaller modification has to be
made in the Algorithm 3.1. After updating the yk add the update Bk ← ρkBk

before updating the Uk. This modification turn the algorithm into a self-scaling
quasi-Newton algorithm, where ρk is given by (3.10b) or (3.11).

3.5. Adapt for large problems

One strategy for solving large problems is to let the last few iterations define a
variable metric approximation of the Hessian, known as the limited-memory BFGS
method. It store a certain number of pairs {si, yi} instead of storing the large
Hessian approximation Bk. To obtain the search direction pk a sequence of inner
products are performed involving ∇f(xk) and {si, yi}. The oldest set within {si, yi}
are replaced with the new calculated iterate. An improvement to the procedure
would be to design a strategy for selecting the most useful correction pairs and
not simply the most recent ones [21]. There also exist limited-memory reduced-
Hessian methods, in which the dimension of the Hessian is reduced to save storage.
Let Bk+1 = (pm . . . pk gk+1). The oldest point m − 1 is discarded before starting
iteration k + 1 [10].

4. Line search methods

In this section of line search methods, different choices of stepsize αk are presented
and discussed. To perform a line search is to find a αk that reduce the objective
function f , but not spend too much time tracking it. Ideal is to find the stepsize αk

which perform a line search that minimizes the objective function, known as exact
line search [22, p.36].

4.1. Exact line search

To perform exact line search on a problem is to take the best possible step αk for a
given search direction pk. For a general problem it is not known how to analytically
perform exact line search. However, a well known problem that exact line search
can be applied on is the quadratic problem (1.2). To perform exact line search on
this problem is to let the stepsize

αk = −∇f(xk)T pk

pT
k Hpk

, (4.1)



14 On the robustness of conjugate-gradient methods and quasi-Newton methods

for a given point xk and search direction pk [11, p.145].
Another problem that it is possible to perform exact line search on is

f(x) = γ(xT x)2 +
1
2
xT Hx + cT x. (4.2)

This problem is similar to the quadratic problem (1.2), with the only difference that
a constant γ times a fourth degree term in x is added. This term could for example
module disturbance on a quadratic problem. To be able to perform an exact line
search the αk that minimizes the stepsize of f(xk + αkpk) has to be obtained. The
calculations are presented in Appendix C. It turns out that the αk is obtained by
solving



a1α
3
k + a2α

2
k + a3αk + a4 = 0, where

a1 = 4γ(pT
k pk)2,

a2 = 12γ(pT
k pk)(xT

k pk),
a3 = 4γ((xT

k xk)(pT
k pk) + 2(xT

k pk)2) + pT
k Hpk,

a4 = 4γ(xT
k xk)(xT

k pk) + (xT
k Hpk + cT pk).

(4.3)

Let αk be the real αk-value obtained by solving the equation (4.3). Hence the
function (4.2) is convex, there will only exist one real solution. Note that within
this research equation (4.3) was solved by the function roots in Matlab.

4.2. Backtracking line search

Backtracking line search is a strategy which starts from an initial stepsize guess and
successively decrease the size of αk until a function reduction is obtained [21]. The
strategy is presented in the algorithm below.

Algorithm 4.1. Backtracking line search algorithm

αk ← 1; iter ← 0; itermax← maximal number of iterations;
while iter < itermax then

iter ← iter + 1;
x̃← xk + αkpk;
if f(x̃) < f(xk) then

Stop;
else

αk ← αk/2;
end

end

Note that 20 was the maximal number of iterations within this research. A modified
backtracking line search for the objective function (4.2) is to let the initial stepsize
αk gets (4.1).



4. Line search methods 15

4.3. Armijo’s rule

To terminate a line search the criteria of Armijo’s rule can be applied. The strategy
is to first guarantee that the selected stepsize αk is not too large, and then that it
is not be to small. Define the function

φ(αk) = f(xk + αkpk). (4.4)

A stepsize αk is considered to be not too large if

φ(αk) ≤ φ(0) + σ1φ
′(0)αk, (4.5)

and is considered to be not to small if

φ(αkη) > φ(0) + σ1φ
′(0)αkη.

The constants has to fulfill following criteria 0 < σ1 < 1 and η > 1. To begin the
search an arbitrary αk can be used, while σ1 and η are chosen within the allowed
range, e.g. let αk ← 1, σ1 ← 0.2 and η ← 2. The Armijo line search can be
performed according to the Algorithm 4.2 below [18, p.212].

Algorithm 4.2. Armijo’s line search algorithm

αk ← 1; σ1 ← 0.2; η ← 2;
if φ(αk) ≤ φ(0) + σ1φ

′(0)αk then
while φ(αk) ≤ φ(0) + σ1φ

′(0)αk then
αk ← ηαk;

end
αk ← αk/η;

else
while φ(αk) > φ(0) + σ1φ

′(0)αk then
αk ← αk/η;

end
end

4.4. Wolfe conditions

Another line search method is to find a stepsize αk which fulfill the Wolfe conditions.
The stepsize αk is accepted if it satisfies the two Wolfe conditions

φ(αk) ≤ φ(0) + σ1αkφ
′(0), (4.6a)

φ′(αk) ≥ σ2φ
′(0), (4.6b)

where the function φ(αk) is defined according to (4.4). The two constants σ1 and σ2

ought to fulfill 0 < σ1 < σ2 < 1. These two relations (4.6) are known as the Wolfe
conditions [21]. Let us include the criterium 0 < σ1 < 1

2 to the Wolfe conditions
(4.6). Note that the first Wolfe condition (4.6a) is the Armijo condition (4.5),
while the second Wolfe condition (4.6b) is a curvature condition. The curvature



16 On the robustness of conjugate-gradient methods and quasi-Newton methods

condition can be modified to force the stepsize αk into a broad neighborhood of
a local minimizer or stationary point of φ(αk) [22, p.39]. These modifications are
known as the strong Wolfe conditions

φ(αk) ≤ φ(0) + σ1αkφ
′(0), (4.7a)

−|φ′(αk)| ≥ σ2φ
′(0), (4.7b)

where 0 < σ1 < σ2 < 1
2 . Note that a stepsize αk satisfying the strong Wolfe

conditions (4.7) also satisfies the usual Wolfe conditions (4.6). A line search method
which for a convex function will find a αk that fulfills the Wolfe conditions is to be
presented. Define {

g(αk) = φ(αk)− φ(0)− σ2αkφ
′(0),

g′(αk) = φ′(αk)− σ2φ
′(0).

For a convex function at a point xk, along a descent direction pk, the function
value φ′(0) < 0, and therefore g′(0) < 0. Though it is not possible that g′(αk) < 0
∀αk ≥ 0, since the function is convex. Hence, it is not possible that φ′(αk) < σ2φ

′(0)
∀αk ≥ 0. This implies, since the function is continuous, that there will be a stepsize
α̃k where

g′(α̃k) = 0, i.e. φ′(α̃k) = σ2φ
′(0).

This stepsize α̃k fulfills (4.6b). This formulation also fulfills (4.6a) because

φ(α̃k)− φ(0)− σ1α̃kφ
′(0) < φ(α̃k)− φ(0)− σ2α̃kφ

′(0) = g(α̃k) < g(0) = 0.

This formulation fulfills the Wolfe conditions (4.6). Note that the parameter σ2 has
an essential role in how close φ′(α̃k) is to zero. If finding a point b where g′(b) > 0,
it would be possible to perform an interval reduction between [a,b] to locate α̃k,
since a = 0 fulfills g′(a) < 0. An algorithm that as a first step finds a b which fulfills
g′(b) > 0 and as second step perform interval reduction on [a,b] is presented below.

Algorithm 4.3. Wolfe line search algorithm, Step 1 and Step 2

a← 0; σ1 ← 10−3; σ2 ← 10−2 ε← 10−9;
Step 1: Find a valid b.
αk ← −g′(0)/g′′(0); ∆1 ← 0; ∆2 ← 0;
while ∆1 = 0 then

if g′(αk) < −ε then
a← αk;
αk ← 2αk;

else if g′(αk) > ε then
b← αk; ∆1 ← 1;

else
∆1 ← 1; ∆2 ← 1;

end
end



5. Computing environment 17

Step 2: Find α̃k by interval reduction.
while ∆2 = 0 then

if g′(αk) < −ε then
a← αk;
αk ← a + 1

2(b− a);
else if g′(αk) > ε then

b← αk;
αk ← a + 1

2(b− a);
else

∆2 ← 1;
end

end
α̃k ← αk

There also exist line search algorithms which track a stepsize αk fulfilling the strong
Wolfe conditions (4.7), e.g. in Nocedal [22, pp.58-60].

5. Computing environment

The computing environment is a computer using the software Matlab 7.0.1.15 (R14)
Service Pack 1 September 13, 2004. The investigations of the methods are exclusively
performed in Matlab, by applying algorithms on testproblems.

6. Numerical results

The results of the research are to be presented in this section. The problems to
be solved are unconstrained optimization formulations of the form (1.1). Below, a
general algorithm used within this study is presented.

Algorithm 6.1. General algorithm

k ← 0; xk ← initial point;
sc← stop criteria value; itermax← 999;
while ‖∇f(xk)‖2 ≥ sc and k < itermax then

pk ← CG section 2 or QN section 3;
αk ← line search method section 4;
xk+1 ← xk + αkpk;
k ← k + 1;

end

The stop criteria is when ||∇f(xk)||2 =
√
∇f(xk)T∇f(xk) < sc. The sc is a specified

convergence tolerance. In this research the stopping criteria had following values:
sc = [1, 10−1, 10−3, 10−5, 10−7, 10−9]. Note that the initial Hessian approximation
matrix in quasi-Newton equals the identity matrix, B0 = I. The testproblems and
line search methods considered within this research are listed on the following page.



18 On the robustness of conjugate-gradient methods and quasi-Newton methods

Testproblems:

1. The convex quadratic objective function from (1.2),

f(x) =
1
2
xT Hx + cT x.

2. The convex perturbed quadratic objective function from (4.2),

f(x) = γ(xT x)2 +
1
2
xT Hx + cT x.

3. The convex random Q perturbed quadratic objective function

f(x) = (xT Qx)2 +
1
2
xT Hx + cT x,

where Q is a symmetric positive definite random matrix. This random matrix
is created according to an algorithm presented in Appendix D.

All testproblems can be modified by vary H, c and the initial x-value x0. The
different variations investigated within this report are

a) H = diag(m, m− 1, . . . , 1), c = (1, . . . , 1)T , x0 = (0, . . . , 0)T ,

b) H = diag(10m, 5m, m, m− 1, . . . , 1), c = (1, . . . , 1)T , x0 = (0, . . . , 0)T ,

for m = 10, 100 and 1000.
Line search methods:

• Exact line search. Testproblem 1 has (4.1) and Testproblem 2 has (4.3).

• Backtracking line search. Algorithm 4.1 for all testproblems.

• Wolfe line search. Algorithm 4.3 for all testproblems.

In the graphs to be presented the x-axis is numbered from 1 to 6. Each number
represents a method, where 1-3 represents CG methods and 4-6 represents QN
methods. The methods are: 1) FR; 2) HS; 3) PR; 4) BFGS; 5) DFP; 6) SR1. The
y-axis represents the number of iterations performed on a given problem. Each stop
criteria sc is represented by its own color in the graphs, switch of color indicate that
a harder criteria is aimed to be fulfilled.



6. Numerical results 19

6.1. Testproblem 1

The study has originated from Testproblem 1 where f(x) is a quadratic function.
The first formulation to be investigated is a), which is denoted by Testproblem 1a.
We perform exact line search, backtracking line search and Wolfe line search on
Testproblem 1a for m = 10, 100 and 1000.

Figure 1: Testproblem 1a: Exact line search

Figure 2: Testproblem 1a: Backtracking line search

Figure 3: Testproblem 1a: Wolfe line search



20 On the robustness of conjugate-gradient methods and quasi-Newton methods

The second formulation to be investigated is b), which is denoted by Testproblem
1b. We perform exact line search, backtracking line search and Wolfe line search on
Testproblem 1b for m = 10, 100 and 1000.

Figure 4: Testproblem 1b: Exact line search

Figure 5: Testproblem 1b: Backtracking line search

The SR1 update method failed to find the optimum of Testproblem 1b, for
m = 1000, while using backtracking line search.

Figure 6: Testproblem 1b: Wolfe line search



6. Numerical results 21

6.2. Testproblem 2

Testproblem 2 is of particular interest since an exact line search has been derived for
this problem, see Apendix B. The testproblem is investigated with different values
of the constant γ = [0, λmax/2, λmax], where the largest eigenvalue of the Hessian
H is denoted as λmax. The first formulation to be investigated is Testproblem 2a.
We perform exact line search, backtracking line search and Wolfe line search on
Testproblem 2a for m = 10, 100 and 1000. The results for γ = 0 is not presented.
This is due to the fact that these results are very similar to the results of Testproblem
1a.

Figure 7: Testproblem 2a: Exact line search, with γ = λmax/2

Figure 8: Testproblem 2a: Backtracking line search, with γ = λmax/2

Figure 9: Testproblem 2a: Wolfe line search, with γ = λmax/2



22 On the robustness of conjugate-gradient methods and quasi-Newton methods

Figure 10: Testproblem 2a: Exact line search, with γ = λmax

Figure 11: Testproblem 2a: Backtracking line search, with γ = λmax

Figure 12: Testproblem 2a: Wolfe line search, with γ = λmax



6. Numerical results 23

The second formulation to be investigated is b), which is denoted by Testproblem
2b. We perform exact line search, backtracking line search and Wolfe line search on
Testproblem 2b for m = 10, 100 and 1000. These tests are performed for each of
the three γ-values. However, the results for γ = 0 is not presented. This is due to
the fact that these results are very similar to the results of Testproblem 1b.

Figure 13: Testproblem 2b: Exact line search, with γ = λmax/2

Figure 14: Testproblem 2b: Backtracking line search, with γ = λmax/2

Figure 15: Testproblem 2b: Wolfe line search, with γ = λmax/2

The SR1 update method failed to find the optimum of Testproblem 2b with
γ = λmax/2, for m = 100, while using Wolfe line search.



24 On the robustness of conjugate-gradient methods and quasi-Newton methods

Figure 16: Testproblem 2b: Exact line search, with γ = λmax

Figure 17: Testproblem 2b: Backtracking line search, with γ = λmax

Figure 18: Testproblem 2b: Wolfe line search, with γ = λmax

The SR1 update method failed to find the optimum of Testproblem 2b with
γ = λmax, for m = 100 and for m = 1000, while using Wolfe line search.



6. Numerical results 25

6.3. Testproblem 3

Testproblem 3 is also a modification of the quadratic Testproblem 1. The differ-
ence is a added squared quadratic term (xT Qx)2, where the matrix Q is a convex
random matrix. The first formulation to be investigated is Testproblem 3a. We
perform backtracking line search, Wolfe line search and tightened Wolfe line search
for Testproblem 3a when m = 10, 100 and 1000. Tightened Wolfe line search is
Algorithm (4.3) with the modification that σ1 ← 10−5 and that σ2 ← 10−4.

Figure 19: Testproblem 3a: Backtracking line search

Figure 20: Testproblem 3a: Wolfe line search

Figure 21: Testproblem 3a: tightened Wolfe line search



26 On the robustness of conjugate-gradient methods and quasi-Newton methods

The second formulation to be investigated is Testproblem 3b. We perform back-
tracking line search, Wolfe line search and tightened Wolfe line search for Testprob-
lem 3b when m = 10, 100 and 1000.

Figure 22: Testproblem 3b: Backtracking line search

Figure 23: Testproblem 3b: Wolfe line search

Figure 24: Testproblem 3b: tightened Wolfe line search



7. Discussion 27

7. Discussion

On Testproblem 1 the QN method is preferable. The three methods of the quasi-
Newton methods perform better than the conjugate-gradient methods for the dif-
ferent line search methods used on this problem. The exception is when the SR1
method fail on Testproblem 1b with backtracking line search and m = 1000. With
exact line search applied on Testproblem 1 the methods are mathematically equiv-
alent, which can be noted for formulation a). Though, for formulation b) numerical
rounding errors cause the conjugate-gradient methods to perform worse. When the
problem is quadratic and exact line search is applied this implicate that the gen-
erated vectors of the CG are orthogonal in theory. In Testproblem 1b, this exact
orthogonality is only observed at the beginning of the process. At some stage the
generated vectors starts losing their global orthogonality due to rounding errors. The
CG and QN diverge from each other and eventually different number of iterations
can be observed, even though equivalent in theory.

For Testproblem 2 it is the reversed situation. For this problem the CG methods
seem to be preferable, especially the Polak-Ribière method. CG is preferable when
applying Testproblem 2 to exact line search or Wolfe line search, especially for larger
m. If applying backtracking line search, some of the QN methods or the PR method
is to prefer. Note that the SR1 method failed on Testproblem 2b with m = 100
both for γ = λmax/2 and γ = λmax, when Wolfe line search was applied. With these
two SR1 failings as exceptions, the difference between the exact line search and the
Wolfe line search is small.

On Testproblem 3 the CG tend to be slightly more preferable on a) while QN
tend to be slightly more preferable on b).

The results suggest that if using the conjugate-gradient method, then the update
method should be the Polak-Ribière method or Hestenes-Stiefel method. These two
methods often perform very similarly when the applied line search method is Wolfe
or exact. If applying the backtracking line search the performance differ in a greater
extent, with a slight advantage for the Polak-Ribière method. The Fletcher-Reeves
method often need some extra iterations compared to the other conjugate-gradient
methods. The results on the behavior of the conjugate-gradient methods seem to
agree with previous known results.

Note that the quasi-Newton methods might have some difficulty with Testprob-
lem 2 and Testproblem 3 because these problems have a fourth degree term. This
term might disturb the forming of the Hessian approximation while solving the
problem. The results indicate that the two most preferable quasi-Newton methods
are the BFGS method and the DFP method. The BFGS method and the DFP
method perform very similarly. A well known theoretical aspect favor the BFGS
method. For a convex objective function the BFGS has global convergence with
inexact searches subject to some conditions. This knowledge is of great interest
while solving a problem. The BFGS method and the DFP method seem to be more
stable than the SR1 method. The symmetric rank one method sometimes perform
very well, but on the other hand it sometimes breakdown and is unable to locate
the optimum. The breakdowns occur when the SR1 update matrix turns indefinite.



28 On the robustness of conjugate-gradient methods and quasi-Newton methods

It is then possible to shifting up the eigenvalues of the update matrix, by adding a
scalar times the identity matrix, to make the update matrix positive definite again.
If this procedure is performed each time the update matrix turns indefinite the
SR1 method is able to solve the problems presented as breakdowns within this re-
search. Another known strategy is to apply trust-region methods, which prevent
the SR1 update matrix to become indefinite. The results on the behavior of the
quasi-Newton methods seem to agree with previous known results, though this re-
search is unable to favor the BFGS method compared to the DFP method by the
results of the performed research. If the problem to be solved has large difference in
the eigenvalues of the Hessian approximation, a self-scaling quasi-Newton method
might decrease the number of iterations significantly compared to a quasi-Newton
method. A well known theoretical result favor the SS-BFGS method. For a general
convex objective function with inexact line search subject to some conditions the
SS-BFGS method has global convergence. For large problems it is of high interest
to decrease the number of stored elements of the Hessian approximation. A further
study on the limited memory quasi-Newton methods is then recommended.

The results also suggest that unless an exact line search is available, the Wolfe
line search seem to be preferable compared to the backtracking line search. The
choice of line search method might affect the total number of iterations in a very
great extent.

It is not recommended to draw too strong conclusions from the numerical re-
sults of this research. This is due to the fact that the performed investigation is a
rather small study. Another important fact is that the computational time has been
neglected, which might be a crucial factor for some applications.

8. Conclusion

It can be concluded that none of the methods should be totally excluded. The
best method seems to depend on which problem that is to be solved. Within the
conjugate-gradient methods, the Polak-Ribière method or alternatively the Hestenes-
Stiefel method tend to be preferable according to the results. The situation between
the quasi-Newton methods is more unclear. The BFGS method and the DFP method
perform similarly, while the SR1 method sometimes perform very well and some-
times breakdown, though the breakdowns can be prevented by e.g. trust-region
methods. For a convex objective function the BFGS method with an inexact search
subject to some conditions guarantees global convergence according to theory, which
favor the BFGS method.

Which method is then to favor in an application? If a problem with convex
objective function is to be solved, it is probably advisable to use the mentioned
BFGS method with the line search method that guarantees global convergence. If
a problem is going to be solved repeatedly within some application, it might be of
interest to perform a similar comparison of the methods. If the solution time is
crucial the fastest method obviously should be used. If the accuracy of the result
is of great importance, the problem can be solved by more than one method, e.g.
solve with both the PR method and the BFGS method.



Appendix 29

Appendix A: Solving a linear system of equations

Alternatives on how to solve a linear system of equations Ax = b, where A is a
symmetric and positive definite matrix of size n× n is to be presented.

A1: Cholesky factorization

A symmetric positive definite matrix A has a unique lower triangular matrix C with
positive diagonal elements such that A = CCT , known as the Cholesky factorization
of A. To solve a linear system of equations Ax = b by the Cholesky factorization can
be made in two steps. The first step is to solve Cy = b for y by forward substitution.
The second step is to solve CT x = y for x by backward substitution. An algorithm
to calculate the Cholesky factorization matrix C is presented below [15, pp.204-205].

Algorithm 8.1. Cholesky factorization of A

for i = 1, . . . , n do
for j = 1, . . . , i− 1 do

ci,j ← (ai,j −
∑j−1

k=1 ci,kcj,k)/cj,j ;
end
ci,i ←

√
ai,i −

∑i−1
k=1 c2

i,k;
end

A2: Householder method

A Householder rotation of A transforms the matrix into the form QR, where R is a
m×m upper triangular matrix and QT Q = I [29, pp.13-14]. To solve a linear system
of equations Ax = b by the Householder rotation can be done in two steps. The first
step is to multiply with QT on QRx = b. The second step is to solve Rx = QT b for
x by backward substitution. A strategy on how to find the Householder rotation is
presented below. An alternative to orthogonalizing a sequence of vectors is by using
Householder reflectors Pk of the form

Pk = I − 2wkw
T
k ,

where the vector w is of 2-norm unity. The vector is given by

wk = z
||z||2 ,

zi =


0 if i < k,
β + aii if i = k,
aik if i > k,

β = sign(akk)(
∑n

i=k a2
ik)

1/2.

The m× n matrix A, with m ≤ n, has its first column transformed into a multiple
of e1 by multiply P1A. By applying m − 1 Householder transforms onto A, it is
reduced to upper triangular form

Pm−1Pm−2 . . . P1A =

(
R
O

)
,



30 Appendix

where R is a m ×m upper triangular matrix and O is a (n −m) ×m zero block.
Let Q = P T Em, where Em is the matrix that consists of the first m columns of the
identity matrix I. The sought matrices R and Q fulfill A = QR [29, pp.11-14].

A3: Lanczos method

A method for solving the linear system of equations Ax = b is the Lanczos algorithm
which first appeared in 1950 [17]. One version of the Lanczos algorithm is presented
below [12, p.345].

Algorithm 8.2. The Lanczos algorithm

β0 ← ‖b‖2; q0 ← 0; q1 ← b/β0; α1 ← qT
1 Aq1;

d1 ← α1; c1 ← q1; x1 ← b/α1;
for j = 1, . . . , n− 1 do

rj ← (A− αjI)qj − βj−1qj−1;
βj ← ‖rj‖2;
if βj = 0 then

x← xj ;
Stop;

else
qj+1 ← rj/βj ; αj+1 ← qT

j+1Aqj+1;
µj+1 ← βj/dj ; dj+1 ← αj+1 − µj+1βj ;
ρj+1 ← −µj+1djρj/dj+1; cj+1 ← qj+1 − µj+1cj ;
xj+1 ← xj + ρj+1cj+1;

end
end
x← xn;

Let ρ1 ←
qT
1 b
d1

and x0 ← 0 in the Lanczos method to get the equivalence for the
initial choice of x0 ← 0 in the conjugate-gradient method.

Appendix B: Failure of the symmetric rank one update method

Criteria of failure for the symmetric rank one update method, for a quadratic func-
tion dependent of m+1 variables when exact line search is applied is to be derived.
Formulation of the problem,

f(x) = x(0)2 + a1x(1)2 + . . . + amx(m)2, Initial x-value: x0 =

 β0
...

βm

 ,

where the vector x = (x(0), x(1), . . . , x(m) )T .

∇f(x) = 2


x(0)

a1x(1)
...

amx(m)

 ∇2f(x) = 2


1 0 . . . . . .
0 a1 0 . . .
... 0

. . . 0
...

... 0 am

 � 0⇒ a1 ≥ 0, . . . , am ≥ 0



Appendix 31

p0 = −g0 = −∇f(x0) = −2


β0

a1β1
...

amβm


Exact line search,

α = − pT
0 g0

gT
0 ∇2f(x0)g0

=
β2

0 + a2
1β

2
1 + . . . + a2

mβ2
m

2(β2
0 + a3

1β
2
1 + . . . + a3

mβ2
m)

> 0

x1 =


β0(1− 2α)

β1(1− 2αa1)
...

βm(1− 2αam)

 , g1 = 2


β0(1− 2α)

a1β1(1− 2αa1)
...

amβ1(1− 2αam)



s = −2α


β0

a1β1
...

amβm

 , y = −4α


β0

a2
1β1
...

a2
mβm


The failure occur when yk 6= Bksk and (yk −Bksk)T sk = 0 at the same iteration k.
If Bk = I and yk 6= sk is fulfilled, then the other criteria (yk − Bksk)T sk = 0 gives
a condition when failure occur.

(yk − sk)T sk = 4α2(β2
0 + a2

1β
2
1(2a1 − 1) + . . . + a2

mβ2
m(2am − 1)) = 0,

which is equivalent with

β2
0 + a2

1β
2
1(2a1 − 1) + . . . + a2

mβ2
m(2am − 1) = 0.

When this condition and its premises are fulfilled, the SR1 update method is unable
to find a symmetric rank one update for the stated problem in exact arithmetic.

Appendix B1: Failure of the SR1 update method in two dimensions

Criteria of failure for the symmetric rank one update method, for a quadratic func-
tion dependent of two variables when exact line search is applied is to be presented.
Formulation of the problem,

f(x) =
1
2
xT

(
2 0
0 2a1

)
x, Initial x-value: x0 =

(
β0

β1

)
.

The condition is
β2

0 + a2
1β

2
1(2a1 − 1) = 0.

For example chose: a1 = 1
4 .

This choice gives 32β2
0 = β2

1 , where β0 =
√

2 and β1 = 8 is one possible choice.



32 Appendix

Appendix B2: Failure of the SR1 update method in three dimensions

Criteria of failure for the symmetric rank one update method, for a quadratic func-
tion dependent of three variables when exact line search is applied is to be presented.
Formulation of the problem,

f(x) =
1
2
xT

 2 0 0
0 2a1 0
0 0 2a2

x, Initial x-value: x0 =

 β0

β1

β2

 .

The condition is
β2

0 + a2
1β

2
1(2a1 − 1) + a2

2β
2
2(2a2 − 1) = 0.

For example chose: a1 = 3
4 , a2 = 1

4 and β0 = 0.
This choice gives 9β2

1 = β2
2 , where β1 = 1 and β2 = 3 is one possible choice.

Appendix C: Exact line search for perturbed quadratic problem

The exact line search αk for f(x) = γ(xT x)2 + 1
2xT Hx + cT x is to be derived. For

a given point xk and search direction pk the exact line search is found by solving

minimize
αk∈IR1

f(xk + αkpk),

where the convex objective function is

f(xk + αkpk) = γ(pT
k pk)2α4

k + 4γ(pT
k pk)(xT

k pk)α3
k + [2γ((xT

k xk)(pT
k pk) + 2(xT

k pk)2) + 1
2pT

k Hpk]α2
k + ...

... + [4γ(xT
k xk)(xT

k pk) + (xT
k Hpk + cT pk)]αk + [(xT

k xk)2 + 1
2xT

k Hxk + cT xk]

in this problem. Simplifying df(x+αp)
dα = 0 gives

a1α
3
k + a2α

2
k + a3αk + a4 = 0, where

a1 = 4γ(pT
k pk)2,

a2 = 12γ(pT
k pk)(xT

k pk),
a3 = 4γ((xT

k xk)(pT
k pk) + 2(xT

k pk)2) + pT
k Hpk,

a4 = 4γ(xT
k xk)(xT

k pk) + (xT
k Hpk + cT pk).

The real αk solving the equation above performs an exact line search for a given
point xk and search direction pk on the stated objective function f(x) = γ(xT x)2 +
1
2xT Hx + cT x.

Appendix D: Algorithm to generate the convex random Q matrix

The random Q matrix for Testproblem 3 is generated according to Algorithm 8.3.
Within the algorithm to be presented, four Matlabfunctions are being used. These
will be described briefly below. The first function is rand(m), which generate a m×m
matrix with random entries from a uniform distribution on the interval (0,1). The
second function is mod(Q,1), which gives the modulus of Q after the division with
1. The third and fourth functions are used together in the command min(eig(Q)).



Appendix 33

The eig(Q) function gives a vector containing the eigenvalues of the square matrix
Q. The min(eig(Q)) function returns the smallest element of the vector eig(Q).
The algorithm which generate a symmetric positive definite random matrix Q are
presented below.

Algorithm 8.3. Generate Q matrix algorithm

m← size of wanted square matrix;
Q← 10 rand(m);
Q← Q−mod(Q, 1);
Q← Q′ + Q;
if min(eig(Q)) ≤ 0 then

k ← the smallest integer fulfilling > |min(eig(Q))|;
Q← Q + kI;

end



34 References

References

[1] M. Al-Baali. Global and superlinear convergence of a restricted class of self-scaling methods
with inexact line searches, for convex functions. Comput. Optim. Appl., 9(2):191–203, 1998.

[2] M. Al-Baali. Numerical experience with a class of self-scaling quasi-Newton algorithms. J.
Optim. Theory Appl., 96(3):533–553, 1998.

[3] R. H. Byrd, J. Nocedal, and Y. X. Yuan. Global convergence of a class of quasi-Newton
methods on convex problems. SIAM J. Numer. Anal., 24(5):1171–1190, 1987.

[4] F. Carlsson and A. Forsgren. Iterative regularization in intensity-modulated radiation therapy
optimization. Medical Physics, 33(1):225–234, 2006.

[5] W. C. Davidon. Variable metric methods for minimization. Argonne National Lab Report
(Argonne, IL), 1959.

[6] J. W. Denton and M. S. Hung. A comparison of nonlinear optimization methods for supervised
learning in multilayer feedforward neural networks. European Journal of Operational Research,
93:358–368, 1996.

[7] L. C. W. Dixon. Quasi-Newton algorithms generate identical points. Math. Programming,
2:383–387, 1972.

[8] R. Fletcher. Practical Methods of Optimization. Second ed., John Wiley & Sons, Chichester,
1987.

[9] R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. Comput. J.,
7:149–154, 1964.

[10] P. E. Gill and M. W. Leonard. Limited-memory reduced-Hessian methods for large-scale
unconstrained optimization. SIAM J. Optim., 14(2):380–401 (electronic), 2003.

[11] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, London,
2003.

[12] G. H. Golub and C. F. Van Loan. Matrix Computations. North Oxford Academic, Oxford,
1983.

[13] E. Haber. Quasi-Newton methods for large-scale electromagnetic inverse problems. Inverse
Problems, 21(1):305–333, 2005.

[14] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J.
Research Nat. Bur. Standards, 49:409–436 (1953), 1952.

[15] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, 1996.

[16] A. D. Klose and A. H. Hielscher. Quasi-Newton methods in optical tomographic image recon-
struction. Inverse Problems, 19(2):387–409, 2003.

[17] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential
and integral operators. J. Research Nat. Bur. Standards, 45:255–282, 1950.

[18] D. G. Luenberger. Linear and Nonlinear Programming. Second ed., Addison-Wesley, New
York, 1989.

[19] S. G. Nash and A. Sofer. Linear and Nonlinear Programming. McGraw-Hill, New York, 1996.

[20] L. Nazareth. A relationship between the BFGS and conjugate gradient algorithms and its
implications for new algorithms. SIAM J. Numer. Anal., 16(5):794–800, 1979.

[21] J. Nocedal. Theory of algorithms for unconstrained optimization. In Acta numerica, 1992,
Acta Numer., pages 199–242. Cambridge Univ. Press, Cambridge, 1992.

[22] J. Nocedal. Numerical Optimization. Springer, New York, 1999.

[23] J. Nocedal and Y. X. Yuan. Analysis of a self-scaling quasi-Newton method. Math. Program-
ming, 61(1, Ser. A):19–37, 1993.

[24] S. S. Oren. Self-scaling variable metric algorithms for unconstrained minimization. Ph.D. The-
sis, Department of Engineering-Economic Systems, Stanford University, Stanford, California,
1972.



References 35

[25] S. S. Oren. Self-scaling variable metric (SSVM) algorithms. II. Implementation and experi-
ments. Management Sci., 20:863–874, 1973/74. Mathematical programming.

[26] S. S. Oren and D. G. Luenberger. Self-scaling variable metric (SSVM) algorithms. I. Crite-
ria and sufficient conditions for scaling a class of algorithms. Management Sci., 20:845–862,
1973/74. Mathematical programming.

[27] A. P. Plumb, R. C. Rowe, P. York, and M. Brown. Optimisation of the predictive ability
of artificial neural network (ANN) models: A comparison of three ANN programs and four
classes of training algorithm. European Journal of Pharmaceutical Sciences, 25:395–405, 2005.

[28] M. J. D. Powell. Some global convergence properties of a variable metric algorithm for mini-
mization without exact line searches. in SIAM-AMS Proceedings, Volume 9, Eds (R. W. Cottle
and C. E. Lemke), SIAM Publications, Philadelphia, 1976.

[29] Y. Saad. Iterative Methods for Sparse Linear Systems. Second ed., Society for Industrial and
Applied Mathematics, Philadelphia, 2003.


