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ABSTRACT

The Lennard-Jones problem is defined as finding the coordinates of a sys-

tem in three-dimensional Euclidian space that represents a potential energy

minimum. Lennard-Jones potential energy plays a key role in determining

the stability of crowed and highly branched molecules such as proteins. The

main difficulty in solving this problem arises from the fact that the objective

function is a non-convex and highly nonlinear function of many variables

with a large number of local minima. Due to its importance, this problem

has attracted many researchers from diverse fields.

In this thesis, we propose a deterministic global optimization approach,

which is a combination of direct search methods with local heuristics, in

the aim of finding the global optimal energy configuration of Lennard-Jones

micro-clusters. With our methods, global optima are located for micro-

clusters of 2 to 30 atoms. The results in this thesis are compared to the
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best known results from the literature and to the ones based on LGO branch

and bound and random sampling methods, as well as to the ones based

on gradient-based methods. The proposed approaches were implemented in

MATLAB. We provide a full implementation of the Nelder-Mead simplex

method and the DFO algorithm.
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Chapter 1

Introduction

One of the simplest to describe, yet most difficult to solve, problems in

computational chemistry is the determination of molecular conformation. A

molecular conformation problem can be described as finding the global mini-

mum of a suitable potential energy function, which depends on relative atom

positions. Progress toward solution techniques will facilitate drug design,

synthesis and utilization of pharmaceutical and material products.

The success of computational methods to solve such kind of problems

hinges on two factors: (1) a suitable potential energy function to predict the

native states of the system as the global minimizer of the potential energy

function and (2) the available minimization algorithms that can be used to
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CHAPTER 1. INTRODUCTION 2

locate efficiently the global minimizer of the potential energy function.

Molecules consist of electrons and nuclei. Most applications of quantum

chemistry separate the motion of the nuclei from the motion of electrons.

This treatment is called Born-Oppenheimer approximation. This approxi-

mation results in a model of nuclei moving on a potential energy surface,

with electrons adjusting instantly to changes in nuclear positions. Nuclear

motion is constrained by the interaction of nuclei and electrons. At any

fixed positions of the nuclei, the potential energy is the sum of repulsion

among the positively charged nuclei and attractions arising from the elec-

trons. Electronic energy can be computed by solving the quantum mechani-

cal Schrödinger equation [HP63]. The most important structures are stable,

equilibrium molecular geometries and transition states. The equilibrium ge-

ometry of a molecule (bond lengths and angles) describes the coordinates of

a deep minimum on a potential energy surface.

The methods of quantum chemistry are quite suited to predict the ge-

ometric, electronic and energy features of known and unknown molecules.

However, “it remains too expensive in terms of computer time and nearly

intractable, even at the simplest, semi-empirical level, for many organic

molecules or biological macromolecular structures” [DW96] . Therefore, in-
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creased interest has focused on models that are able to give quickly an energy

favorable conformation for large systems. Molecular mechanics or empirical

force field methods are techniques that play an important role in the research

of molecular conformation.

1.1 Molecular Mechanics

Basically, molecular mechanics treats molecules as being composed of masses

and springs, where masses represents the atoms and springs represents bonds.

In Figure 1.1, we show the visualization of different deformations (principally

the torsion, the bond stretching and the angle bending) operating on bonds

of a simple molecule.

The deformation due to interaction between two non-bonded atoms repre-

sents the action of Van der Waals attraction, steric repulsion and electrostatic

attraction-repulsion on these two atoms.

The goal of molecular modelling is to predict the energy associated to a

given conformation of a molecule. The energy of a target molecule depends

on the relative positions of its atoms. This energy can be approximately
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 Torsion

Bond
stretching 

Angle
bending 

Non−bonded interaction 

Figure 1.1: Different deformation of a molecule: torsion, bond stretching,

angle bending and non-bonded interaction.

estimated by the sum of several contributions [FZ99]:

VMM = Vb + Vθ + Vτ + Vnb + (specific terms), (1.1)

where VMM is often referred to as the steric energy or potential energy. It

corresponds to the energy difference between the real molecule and a hypo-

thetical molecule in which all structural values, such as bond lengths and

bond angles are exactly ideal (equilibrium values). In equation (1.1),

Vb represents the bond energy, describing the compression or the extension

of a bond from its equilibrium length;

Vθ represents the angle bending energy, and is the function of bond curve in
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respect to its equilibrium value;

Vτ is the torsion energy;

Vnb is the interaction energy between two non-bonded atoms; and

specific terms could be out of plane bending, electrostatic interactions and

possible hydrogen bonding.

Bond stretching The bond stretching contribution is represented by

Hooke’s law. It measures the energy due to the variation of bond length

after extension or compression from their equilibrium values:

Vb =
1

2

n∑
i=1

kr,i(ri − r0
i )

2, (1.2)

where

kr,i is the bond force constant;

ri is the bond length;

r0
i is the bond length at equilibrium position; and

n is the total number of bonds in the molecule.

The parameters kr,i and r0 are invariant, depending only on the type of

each pair of connected atoms. Equation (1.2) is a rough approximation of

bond energy. Alternatively, a Morse potential can be used to describe more
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precisely the bond stretching energy due to the variation of a bond length:

Vb =
n∑

i=1

D(1− exp(−a(ri − r0
i )))

2,

where D and a are parameters characterizing the bond. The use of such a

potential seems to be useful for elongated hydrogen bonds, which otherwise

tend to dissociate [All85].

Angle bending The angle bending potential determines the energy

quantity resulted by the angle variation between two adjacent bonds based

on an equilibrium bond angle. In the case of harmonic approximation, this

is equally derived from Hook’s law:

Vθ =
1

2

∑
ij

kθ,ij(θij − θ0
ij)

2, (1.3)

where

kθ,ij is the force constant;

θij is the bond angle between 3 atoms; and

θ0
ij is the bond angle at equilibrium position between 3 atoms.

Torsion The torsion energy represents the energy modification of the

rotation of the molecule around a bond. The most common expression which

permits to describe the evaluation of the molecule energy as the function of
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torsion angle is the Fourier series:

Vτ =
1

2

∑
i

Ai,n[1 + cos(nτi − Φ)], (1.4)

where

Ai,n is the force constant which controls the curve amplitude;

Φ is the phase;

n is the periodicity of Ai,n; and

τi is the torsion angle.

Torsion energy is in fact a correction of different energy terms rather than

a physical process. It represents the energy quantity that should be added

to or subtracted from the summation of Vb + Vθ + Vnb in order to obtain the

geometry in good agreement with an experiment or with the geometry that

is deduced from quantum chemical calculations.

Energy of non-bonding interactions Interaction between two non-

bonding atoms is the principal cause of steric hindrance, which play an im-

portant role in the molecular geometry. The energy of non-bonding interac-

tions is the sum of energies of all non-bonding atoms acting between them.

It includes the energy of Van der Waals interaction, electrostatic energy and

induction energy three terms.

The term Van der Waals interaction is generally described by the LJ
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potential:

Vvdw =
∑
i<j

(
Aij

r12
ij

− Bij

r6
ij

)
, (1.5)

where

rij is distance between two non-bonding atoms i and j; and

Aij and Bij are Van der Waals constants.

The summation is taken over all non-bonded pairs of atoms (i, j).

These expressions involve two terms:

1. An attractive part, corresponding to induced dipole-induced dipole in-

teraction, proportional to r6
ij, where rij is the distance between the two

atoms i and j.

2. A repulsive part, corresponding to London dispersion [HP63] terms and

rapidly growing as the distance is getting shorter.

For a given geometrical arrangement of the atoms in a molecule system,

the steric energy, due to distortions of bond lengths and angles with respect

to the reference values and Van der Waals interaction, can be calculated ac-

cording to the potential energy function. To determine the actual equilibrium

geometry, this steric energy with respect to all internal degrees of freedom
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must be minimized.

The term of electrostatic energy increases with the polarity of chemical

bonds. It can be expressed using Coulomb potential [HP63]. The induc-

tion energy is the consequence of the distortion of electronic distribution,

which depends on the electric field created by other molecules, and generates

induced electric moments.

Bond lengths and bond angles are usually available from existing struc-

tural information, i.e., from X-ray crystallography. Bond stretching parame-

ters can be directly derived from vibrational force constants. The coefficients

of the torsion barriers can be estimated from barrier heights obtained through

microwave spectroscopy, thermodynamic studies, or far infrared and Raman

spectroscopy. More difficult is the evaluation of the Van der Waals interac-

tion, a crucial point since these interactions are important in determining

the stability of crowded or highly branched molecules such as peptides.

1.2 The LJ Cluster Problem

As described in Section 1.1, the Van der Waals potential characterizes the

contribution of the non-bonded pairwise interactions between atoms. It is
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generally described by the LJ potential function, as it was introduced by

Equation (1.5). The LJ potential is a key part of many empirical energy

models, including all commonly used energy functions for proteins. A system

containing more than one atom, whose Van der Waals interaction can be

described by LJ potential is called a LJ cluster.

In our work, we employ the scaled LJ pair potential:

V =
∑
i<j

(
1

r12
ij

− 2

r6
ij

)
(1.6)

The LJ potential function for a single pair of neutral atoms is a simple

unimodal function. This is illustrated by Figure 1.2.

Repulsion regime 

Optimum energy 

Attraction regime 

i j 

i j 

i j 

r
ij
12 r

ij
6 

1 2 

Figure 1.2: LJ potential of a single pair of atoms.

It is easy to find the overall minimum of this function that is assumed at

1 with energy −1. In a complex system, many atoms interact and we need
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to sum up the LJ potential functions for each pair of atoms in a cluster. The

result is a complex energy landscape with many local minima.

Given a cluster, e.g., a three-atom cluster, each atom interacts with two

other atoms. The LJ potential can be written as :

V =

(
1

r12
12

− 2

r6
12

)
+

(
1

r12
13

− 2

r6
13

)
+

(
1

r12
23

− 2

r6
23

)

=
∑

1≤i<j≤3

(
1

r12
ij

− 2

r6
ij

)

For illustration, we fix one atom’s position and let the others move around

the fixed one. The plot of the Potential Energy Surface (PES) is illustrated

in Figure 1.2 (the peaks were cut at level 1). A cluster of more than 20 atoms

has many of local minima along its LJ PES.

0
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0
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Figure 1.3: A two dimensional section of the LJ PES of a cluster of 8 atoms.

Note that, we use in the summation i < j, because we need to account
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the interaction between two atoms only once. If one uses i 6= j, the total

energy must be divided by 2. In other words, the LJ potential function is

partially separable1. The partially separability of the LJ potential implies

that, if a single atom or molecule in a cluster is moved, the potential energy

can be re-evaluated cheaply at a cost that is only 2
N

-th of the cost of a total

function evaluation, where N is the total number of atoms or molecules in

the cluster. This is due to the fact that the potential function composed as

the sum of pairwise interactions between atoms or molecules.

Given a cluster of N atoms, the LJ cluster problem is to find the relative

position of atoms in the three-dimensional Euclidean space that represent a

potential energy minimum.

1.3 Formulation

Let yi = (yi
1, y

i
2, y

i
3)

T represent the coordinates of atom i in the three-dimensional

Euclidean space. Let Y = ((y1)T , . . . , (yN)T )T , where N is the number of

atoms in the cluster.

1A function that is the sum of functions, each of which only involves a disjoint subset
of the variables, is called partially separable.
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The LJ potential of a pair of atoms (i, j) is

v(rij) =
1

r12
ij

− 2

r6
ij

,

where rij = ‖yi − yj‖.

The LJ cluster problem described in the previous section can be formu-

lated in the coordinate space as follows:

min
Y ∈R3N

V (Y ) =
∑
i<j

v
(‖yi − yj‖)

=
N−1∑
i=1

N∑
j=i+1

(
1

||yi − yj||12
− 2

||yi − yj||6
)

,

where yi and yj represent the coordinates of the i-th and the j-th atom,

respectively.

As it was illustrated by Figure 1.2, for a single pair of neutral atoms,

the overall potential energy minimum is reached when the distance between

two atoms is 1. When this distance approaches zero, the potential tends

to infinity. When an atom is far away from the system, its contribution to

the total potential becomes almost zero. Due to these observations, it is

reasonable to expect that at the optimal solution of the LJ cluster problem

all atoms in R3 are close to unit distance to each other.

It has been shown that the complexity of determining the global minimum

energy of the LJ cluster belongs to the class of NP-hard problem [WV85].
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In other words, there is no known algorithm that can solve this problem in

polynomial time [GJ79]. An algorithm that is suitable for solving this kind

of problems would appeal to geometric intuition, and probably the procedure

would require widely spaced measurements, in order to smooth out the vari-

ations of the valleys and hills. This motivated us to investigate direct search

methods in the global optimization of LJ potential energy functions.

Various computational approaches for the LJ cluster problem can be

found in the literature, ranging from mathematical programming models

[GKS97], to genetic algorithms [DTMH96b] and to Monte Carlo sampling

method [WD97]. Good results have been obtained by coupling some of these

methods. An example is the so-called Langevin dynamics method, proposed

by Biswas and Hamann [BH86]. This minimization method is a combination

of simulated annealing and gradient techniques, and has been proved to be

efficient to minimize the total energy of small systems.

The main difficulty in solving the LJ minimization problem arises from

the fact that the objective is a non-convex function of many variables with a

large number of local minima. This non-convexity makes it very difficult to

find global optimal solutions. In this thesis, we propose a deterministic global

optimization approach that is a combination of direct search methods with
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local heuristics, in the aim of finding the global optimum energy configuration

of LJ micro-clusters.

An application of direct search methods to molecular geometry optimiza-

tion has been reported by Meza and Martinez [MM94] earlier. They have

compared the PDS method of Dennis and Torczon [DT91], genetic algorithms

and simulated annealing using LJ potentials. They conclude that PDS could

also be used in conformational searching and show that it performed as well

as genetic algorithms and substantially better than simulated annealing for

large molecules.

An outline of this thesis is as follows. First we will describe some of the

non-linear optimization methods including global optimization approaches,

derivative-based methods and direct search methods in Chapter 2. Then, we

give our algorithms for the LJ cluster problem in Chapter 3. Implementation

issues are discussed in Chapter 4. Some experimental results are reported

in Chapter 5. Chapter 6 contains conclusions and suggestions for further

research.



Chapter 2

Nonlinear Optimization

Methods

Methods used for finding the global minimum of LJ potential are mostly

based on search heuristics, that include mimicking of physical phenomena,

random searches, lattice optimization combines with local optimization ap-

proaches. In this chapter, we review some general optimization techniques

including global optimization approaches, derivative-based methods and di-

rect search methods. The algorithms that are used in our approach are

described in detail.

16



CHAPTER 2. NONLINEAR OPTIMIZATION METHODS 17

2.1 Global Optimization Approaches

Global optimization approaches can be classified as probabilistic or determin-

istic. Methods such as simulated annealing and genetic algorithms are prob-

abilistic methods. Gradient, Quasi-Newton [Fle87] and Branch and Bound

methods [Pin96] are deterministic.

2.1.1 Simulated Annealing

As its name implies, the Simulated Annealing (SA) exploits an analogy be-

tween the way in which a metal cools and freezes into a minimum energy

crystalline structure (the annealing process) and the search for a minimum

in a general system. If a physical system is melted and then cooled slowly,

the entire system can be made to produce the most stable (crystalline) ar-

rangement, and not get trapped in a local minimum [WC90].

The SA algorithm was first proposed by Metropolis et al. [MRR+58] as

means to find the equilibrium configuration of a collection of atoms at a

given temperature. The connection between this algorithm and mathemati-

cal minimization was first noted by Pincus [Pin70], but it was Kirkpatrick

et al. [KGV83] who used it as the basis of an optimization technique for

combinatorial (and other) problems.
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SA’s major advantage over other methods is its ability to avoid being

trapped at a local minima. The algorithm employs a random search, which

not only accepts changes that decrease the objective function f , but also

some changes that increase it. The latter are accepted with a probability

p = exp

(
−δf

T

)

where δf is the increase in f and T is a control parameter, which by analogy

with the original application is known as the system “temperature” irrespec-

tive of the objective function involved.

Let us describe briefly how SA works. Given a function to optimize, and

some initial values for the variables, simulated annealing starts at a high,

artificial, temperature. While cooling the temperature slowly, it repeatedly

chooses a subset of the variables and changes them randomly in a certain

neighborhood of the current point. If the objective function has a lower

function value at the new iterate, the new values are chosen to be the initial

values for the next iteration. If the function value is higher, the new values

are chosen to be the initial values for the next iteration with a certain prob-

ability, depending on the change in the value of the objective function and

the temperature. The higher the temperature and the lower the change, the

more probable the new values are chosen to be the initial variables for the
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next iteration. Throughout this process, the temperature is decreased grad-

ually, until eventually the values do not change anymore. Then, the function

is presumably at its global minimum. Since we can always choose a higher

temperature to start, the temperature is never increased.

S.R. Wilson et al [WCMS88] applied this method to locate the global

minimum energy conformation of flexible molecules. At a given tempera-

ture, a number of conformers in equilibrium are simulated. At each iterate,

a rotatable bond is selected randomly to be rotated a random number of

degrees and the resulting change in energy of the molecule, ∆E, is calcu-

lated according to a selected force field. If ∆E ≤ 0, the rotation is accepted,

and the new conformation is used as the starting point for the next step.

If ∆E > 0, the acceptance is treated probabilistically. The probability is

p(∆E) = exp(−∆E/kT ), where k is a constant. The lowest energy confor-

mation is kept and is updated whenever a lower one is found. The global

energy minimum conformation is obtained by choosing appropriate “ cooling

schedule”.
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2.1.2 Genetic Algorithms

Genetic algorithms are optimization techniques derived from the principles

of evolutionary theory. They contain a population of individuals, each of

them has a known fitness. The population is evolved through successive

generations until a stoping criteria is satisfied. A genetic algorithm represents

points in the search space by a vector of discrete (typically) bit values. A

new child is produced by combining parts of the bit vector from its parent.

This is analogous to the way that chromosomes of DNA (which contains the

inherited genetic material) are passed to children in nature.

One of the main interests in genetic algorithms is their application to

difficult, multi-extreme optimization problems. For instance, Deaven et

al. [DTMH96a] applied this technique to the problem of determining the

lowest energy configurations of a collection of atoms, including LJ clusters.

They start with a population of candidate structures, for example a popula-

tion of p clusters. These clusters are “mated” to form new child clusters by

choosing a random plane passing through the center of mass of each “par-

ent” cluster, then cutting the parent clusters in this plane, and assembling

the “child” from the two halves. Each child produced in this way then apply

a local search procedure. The process is repeated until several generations
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a b 

f(x) 

Figure 2.1: Continuation approach using transformation

go by with no further reduction in energy, indicating that the best known

global minimum structure has been located. Deaven’s algorithm was able

to locate most of the best known global minimum energy structures of the

clusters N = 2, . . . , 100 reported in the literature. In addition, some lower

energy configurations, clusters of N = 38, 65, 69, 76, 88 and 98, have been

found with their method.

2.1.3 Continuation Approach

In the continuation approach for global optimization, the original function is

gradually transformed into a smoother function with fewer local minimizers.

This is illustrated in Figure 2.1.3, for a one-dimensional non-convex objective

function.
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Consider for example the problem

min f(x),

where f(x) : Rn → R is a non-convex1 objective function with many local

minima. We transform this problem into

min hµ(x) = f(x) + µq(x),

where q(x) is strictly convex, and µ ≥ 0. Thus hµ(x) is convex for a suffi-

ciently large µ. Let x(µ) = arg min
x
{hµ(x)} be the minimizer of hµ(x) for a

fixed µ. Then x(µ) approaches x∗ = arg min {f(x)} as µ → 0. Here, the

objective is convexified by adding a strictly convex term µq(x), and then

gradually changed back to the original when µ → 0. This is not simulated

annealing, but µ might be considered as a similar control parameter as the

temperature T in the simulated annealing.

The main approaches of transforming a function into a smoother func-

tion include the diffusion equation method of Piela, Kostrowicki, and Scher-

aga [PKS89], the packet annealing method of Shalloway [Sha92], and the

1A function f : C → R defined on a convex set C is called convex if for all x1, x2 ∈ C
and 0 ≤ τ ≤ 1 s.t.

f(τx1 + (1− τ)x2) ≤ τf(x1) + (1− τ)f(x2).

If strict inequality holds for all x1 6= x2 and 0 < τ < 1, then the function f is called strictly
convex.
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effective energy simulated annealing method of Coleman, Shalloway, and

Wu [CSW94]. Other transformations used in molecular conformation prob-

lems are reviewed by Straub [Str94].

Although Moré and Wu [MW95] claimed that their algorithms based

on the continuation approach for global optimization can be used to solve a

distance geometry problem with nearly 100 percent probability of success, the

continuation process cannot succeed on an arbitrary function. In particular,

the transformation may eliminate tall, narrow valleys (hills) while the global

minimizer (maximizer) may lie in one of these valleys (hills).

In a similar way, Locatelli and Schoen [LS02] considered the continuous

approach for the global optimization of the LJ clusters. They first minimize

a modified convex potential function, which, is related to the LJ potential

h(rij) =
1

r2p
ij

− 2

rp
ij

+ µrij + β(max{0, r2
ij −D2})2,

where p, µ, β and D ≥ 0. The value of p can be 3, 4 or 5. D is an underesti-

mate of the diameter of the cluster; µ and β are parameters of the penalty

terms. These parameters must be set carefully with heuristic. The local min-

imum of this modified potential is then used as a starting point for a local

optimization of the LJ potential function. Some difficult cluster conforma-

tion have been rediscovered with different parameter settings. However, two
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pitfalls limit the practical use of their approaches. The first is the lack of a

general rule to choose a set of parameters that is sufficiently good for a large

range of clusters. The other is that they use a random generation mechanism

in their implementation. Therefore, some 10 000 random trials [LS02] may

be needed to rediscover one cluster conformation.

2.1.4 Branch and Bound Method

Branch and bound (B&B) is an approach to search for an optimal solution

by searching only a part of the search space, while the derived bounds on the

objective function guarantee that no optimal solution exist on the excluded or

pruned parts of the search space. B&B guarantees to find a global minimizer

with a desired accuracy after a predictable number of steps. The basic idea is

that the set of feasible solutions is branched or partitioned into many simpler

(smaller) subsets and an effort is made to search the best feasible solution

or compute a lower bound of the objective function on the subsets. Each

subset will be the set of feasible solutions of a subproblem. The associated

subproblem is fathomed if one of the following cases occurs.

1. The best feasible solution in that subset is found;

2. It is discovered that the subset is empty;
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3. Based on the bounds, it is proved that no optimal solution in that

subset exists.

If the subproblem is not fathomed, that subset may again be partitioned

into smaller subsets and the same process is repeated on them. The B&B

approach computes and uses both lower and upper bounds for the objective

value. A lower bound can be obtained by relaxing the problem. Computing

a good lower bound is an essential component of B&B method. Otherwise,

the B&B approach may degenerate into searching the whole space and be-

come impractical. An upper bound of the optimal value is the current best

solution value found in a subset. If the lower bound in a subproblem is worse

than an upper bound already obtained in another subproblem, then the first

subproblem will never contain a better solution than the current solution.

Therefore, it needs not to be explored further and can be pruned.

In continuous global optimization, the subproblems are created by divid-

ing the feasible area into different parts. The most straightforward way to

do so is by dividing the range of a variable into smaller intervals. Therefore,

the complexity of branching may exponentially increase with dimension. For

example, if [0,1] is the range of n variables, by dividing the [0,1] range of

each variable into two subintervals result in 2n smaller parts.
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J.D.Pintér [Pin95] applied this strategy for global optimization by par-

titioning the feasible set and by deriving bounds based on the concept of

Lipschitz continuity. A function f(x) is said to be Lipschitz continuous if

there exists a constant L, called Lipschitz constant, such that

| f(x2)− f(x1) |≤ L ‖ x2 − x1 ‖

for all pairs of points x1 and x2 in the domain of f(x). An optimization

problem is Lipschitz continuous, if both the objective function and all the

constraint functions are Lipschitz continuous. For one dimensional differen-

tiable functions, this means that there is an upper bound L on the absolute

value of the derivatives, which can be used to derive bounds on function

values.

As an example, let us consider the one-dimensional non-convex objective

function, as given on Figure 2.2, which has to be minimized over the interval

[a, b]. Suppose that at some stage during the search, the objective function is

evaluated at the points p1 through p10. Then, it is known that the objective

function is underestimated by the sawtooth curve as indicated. The problem

can therefore be reduced to 9 smaller sub-minimization problems over the in-

tervals [p1, p2], [p2, p3], . . . , [p9, p10], and in each interval a lower bound on the

function is obtained by the minimum of the sawtooth. Since the computed
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f(x) 

a b 

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 

Figure 2.2: B&B using Lipschitz continuity.

objective function at point p8 is better than the sawtooth-minimum in the

intervals [p1, p2], [p2, p3], [p4, p5], [p5, p6] and [p9, p10], these intervals can be

pruned from the search. Lipschitz optimization algorithms contain rules how

to select the next point to be evaluated and how to partition the subsets, so

that the partitioning is as efficient as possible, and large parts of the set of

feasible solutions can be pruned as early as possible.

2.2 Derivative-Based Methods

In this section, we consider the unconstrained minimization problem

min f(x),
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where x ∈ Rn, and f : Rn → R. A large variety of algorithms have been de-

veloped to solve unconstrained optimization problems. Methods based only

on function value comparison are called direct search methods. Typically,

these methods are used for problems in which f is not (or not given ex-

plicitly as) a smooth function or the derivative information about f is not

available. Derivative-based methods are used for problems in which f is

smooth and the derivatives are easy to calculate.

For an n-dimensional unconstrained minimization problem, in the general

structure of derivative-based algorithms, we distinguish two classes: one is

the approach using line search (step-length-based), the other is the restricted

step or the trust region approach.

2.2.1 Line Search Based Algorithms

First, we describe the general frame of line-search based algorithms. Then,

we discuss its ingredients in more detail.

Let x0 be a starting point. A line search based algorithm can be outlined

as follows:

1. Initialization. k = 0.

2. Test for stopping criteria. If a stopping criterion is satisfied, stop with
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the solution xk.

3. Determine a search direction. Compute a non-zero vector sk represent-

ing the search direction, a descent direction of f from xk.

4. Find a step length. Compute a certain positive step length αk, such

that f(xk + αks
k) < f(xk).

5. Update the iterate. Let xk+1 = xk +αks
k, update k = k +1, and return

to Step 2.

Stopping Criteria

In nonlinear optimization, algorithms mostly can not find an exact optimal

solution in a finite number of steps, but compute a sequence of approximate

solutions that get closer and closer to an optimal solution. Therefore, we use

a convergent sequence that defined below as criteria to stop an algorithm.

Assume that we have a sequence of points xk converging to a solution x∗.

A convergent sequence ek that is used to measure the relative distance to

optimality can be defined with respect to f

ek
f =

|f(xk)− f(x∗)|
1 + |f(xk)| ,
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or to x

ek
x =

‖xk − x∗‖
1 + ‖xk‖ .

Since x∗ is usually not known, in practice, we measure the progress of the

algorithm using the approximate sequences ẽk of ek defined as

ẽk
f =

|f(xk+1)− f(xk)|
1 + |f(xk)| ,

or

ẽk
x =

‖xk+1 − xk‖
1 + ‖xk‖ .

The first sequence measures the reduction of the function value at each iter-

ation. If this reduction is small enough, we stop the algorithm. The second

measures the movement of a point at each iteration. If the iterate does not

move much, we stop the algorithm. Note that, it may happen that two se-

quences behave very differently. If the objective is very flat, the first may

become very small, while the second value is still very large. On the other

hand, if the objective has a very sharp valley, the second value becomes very

small while the first one is still very large. In these cases, we combine two

measurements as follows:

ẽk
xf =

‖xk+1 − xk‖
1 + ‖xk‖ +

|f(xk+1)− f(xk)|
1 + |f(xk)| .
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With the same assumption made on page 29, we define the convergence rate

cr and rate constant C as follows [Ter00]. Let

lim
k→∞

‖ ek+1 ‖
‖ ek ‖cr

= C < ∞,

where e can be any of the convergent sequences ek
x, e

k
f , e

k
xf or any of the

approximate convergent sequences ẽk
x, ẽ

k
f , ẽ

k
xf .

If cr = 1 and C = 0, the convergence is called superlinear.

If cr = 1 and 0 < C < 1, the convergence is called linear.

If cr = 1 and C = 1, the convergence is called sublinear.

If cr = 1 and C > 1, then the sequence diverges.

If cr = 2, the convergence is called quadratic.

Search Direction

Derivative-based methods use first-order and/or second-order partial deriva-

tives of the function to generate the search directions at the successive itera-

tions. Therefore, we need to assume that f is a twice continuously differen-

tiable function. They are usually based on linear or quadratic Taylor series

approximations of the function f .
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1. Steepest Descent Direction

The first-order Taylor expansion around xk of f gives:

f(xk + sk) ≈ l(xk) = f(xk) + (sk)T∇f(xk).

The steepest descent method searches a direction sk such that l(xk) is min-

imized. Assuming that the length of sk is normalized to ‖sk‖ = ‖∇f(xk)‖,

this leads to minimizing the term ∇f(xk)T sk over a sphere, which leads to

the search direction

sk = −∇f(xk),

called a steepest descent direction.

2. Newton Direction

The second-order Taylor expansion of f gives:

f(xk + sk) ≈ q(sk) = f(xk) + (sk)T∇f(xk) +
1

2
(sk)T∇2f(xk)sk.

A search direction sk is selected so that it minimizes q(sk). By setting the

gradient of q(sk) equal to zero, one obtains that the search direction can be

computed by solving the system

∇2f(xk)sk = −∇f(xk) (2.1)
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The direction

sk = −(∇2f(xk))−1∇f(xk)

is called the Newton direction. As we can see, to have a unique solution of

equation (2.1), the Hessian ∇2f(xk) must be non-singular. Furthermore, to

have a descent direction, ∇2f(xk) has to be positive definite.

3. Quasi-Newton Direction

Quasi-Newton methods are based on the same idea of building up curvature

information, as the iterations of the decent method proceeds. In Newton

methods, the user must supply the Hessian while in Quasi-Newton meth-

ods, only gradient information is used. The Hessian is approximated by a

symmetric positive definite matrix Hk, which is corrected or updated from

iteration to iteration. The search direction sk is given as

sk = −Hk∇f(xk).

Line Search

In line search based methods, each iteration computes a search direction sk

and then decides how far to move along this direction. The iteration is given
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by

xk+1 = xk + αks
k,

where the positive scalar αk is called the step length. The ideal choice of αk

would be the global minimizer of the univariate function φ(·) defined by

φ(α) = f(xk + αsk),

where α > 0.

There are a number of methods that find the global minimizer α∗, when

the function is unimodal, which means that there is α∗ ∈ [αmin, αmax] such

that the function is non-increasing on the interval [αmin, α∗] and non-decreasing

on the interval [α∗, αmax]. Among them are golden section search, quadratic

interpolation and cubic interpolation. However, in general, it is too expensive

to identify this value since it requires too many function evaluations, and the

function is usually not unimodal. More practical strategies perform an inex-

act line search to identify a step length that achieves adequate reductions in

f at minimal cost. An often applied practical rule is the Goldstein-Armijo

rule [BSS93].

The Goldstein-Armijo rule defines a range of acceptable step lengths by

specifying a sufficient decrease in the objective function and curvature con-

dition criteria for the minimal and the maximal allowed step length.
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Given a starting point xk, the first order approximation of φ(α) is given

by

f(xk) + α∇f(xk)T sk.

The Goldstein-Armijo rule relates the actual function value φ(α) to this

approximation and considers a step α acceptable if

f(xk) + µ1α∇f(xk)T sk ≤ f(xk + αsk) ≤ f(xk) + µ2α∇f(xk)T sk

for some µ1 and µ2 satisfying 1 > µ1 > µ2 > 0. Typical values of µ1 are 0.9

when the search direction sk is chosen by a Newton method and 0.1 when sk

is obtained from a nonlinear conjugate gradient method. µ2 is chosen to be

quite small, say µ2 = 10−4 [NW99].

Derivative Based Methods

Now we give some detailed description of line search based methods.

1. Steepest-Descend Method

The method of steepest descent is an old and well-known method for un-

constrained minimization of a function f with continuous first-order partial

derivatives. The steps of the steepest descend method can be described as

follows:
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Specify a starting point x0.

For k = 0, 1, · · ·

If a stopping criterion (see page 29) is satisfied, stop.

Let sk = −∇f(xk).

Line search αk = arg min
α

f(xk + αsk).

Compute xk+1 = xk + αks
k.

The rate of convergence of the steepest-descend method is linear. Prac-

tical experience has shown that it is not a very efficient method. The per-

formance of the steepest descent method depends also on the efficiency and

accuracy of the line search. In practice, we use inexact line search, typically,

the Goldstein-Armijo [BSS93]. The total cost per iteration relies on two

terms: O(n) arithmetic operation to compute the gradient and the cost to

do line search. If we use the Goldstein-Armijo, then it requires at most 20

function evaluations per iteration.

2. Newton Method

The basic Newton method can be described as follows:

Specify a starting point x0.
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For k = 0, 1, · · ·

If a stopping criterion (see page 29) is satisfied, stop.

Solve ∇2f(xk)sk = −∇f(xk) for sk.

Compute xk+1 = xk + sk.

The Newton method has a quadratic rate of convergence. However, to

achieve such a rapid rate of convergence, it requires that the initial point is

sufficiently close to a minimizer. Otherwise, if the initial point is not close

to a minimizer, then the classical Newton method without line search may

diverge or not converge to a minimizer. The cost associated with a single

step of the Newton method includes two parts:

1. It requires O(n) and O(n2) arithmetic operations to compute the gra-

dient and the Hessian, respectively; moreover, O(n3) arithmetic oper-

ations are needed to solve the Newton system for the search direction.

2. It requires O(n) and O(n2) space to store the gradient and the Hessian,

respectively.

The Newton method is used in its classical form primarily for convex

functions to ensure a descent search direction. On the other hand, if all
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the pre-required conditions are satisfied, then it is an “ideal” method in

the sense that it has a quadratic convergent rate for solving minimization

problems. Many variants and approximations of the Newton method have

been proposed and used to solve real world problems.

3. Quasi-Newton Method

Quasi-Newton methods may be the most widely used methods for nonlinear

optimization. The general Quasi-Newton method can be described as follows.

Specify a starting point x0, and an initial guess H0 that approximates the

Hessian.

For k = 0, 1, · · ·

If a stopping criterion (see page 29) is satisfied, stop.

Set sk = −Hk∇f(xk)

Line search along sk giving

xk+1 = xk + αks
k.

Compute

δk = xk+1 − xk = αks
k

γk = ∇f(xk+1)−∇f(xk).
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Compute Hk+1 = Hk + update formula(δk, γk).

The step length αk is computed by an inexact line search that satisfies the

Wolf or strong Wolf condition [NW99]. Some updating formulae are given as

follows:

Symmetric Rank One (SR1) update formula:

(γk −Hkδk)(γk −Hkδk)T

(γk −Hkδk)T δk
.

Davidon-Fletcher-Powell (DFP) update formula:

−Hkδk(δk)T Hk

(δk)T Hkδk
+

γk(γk)T

(γk)T δk
+ [(δk)T Hkδk]ωk(ωk)T ,

where

ωk =
γk

(γk)T δk
− Hkδk

(δk)T Hkδk
.

Broyden-Fletcher-Goldfarb-Shanno (BFGS) update formula:

−Hkδk(δk)T Hk

(δk)T Hkδk
+

γk(γk)T

(γk)T δk
.

The advantages of the Quasi-Newton methods are:

1. Only first order derivatives are required;
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2. The positive definiteness of Hk implies the descent property;

3. Only O(n2) arithmetic operations are required per iteration. Since we

don’t solve the linear system explicitly, but use the information from the

previous iterate to calculate the search direction, the search direction

can be calculated using only O(n2) arithmetic operations. The update

of the Cholesky factors of Hk can be done also in O(n2) arithmetic

operations.

The rate of convergence of the Quasi-Newton methods is superlinear,

which is fast enough for most practical purposes. We know that the classical

Newton method converges more rapidly, but its cost per iteration is higher

because it requires the solution of a linear system, and it requires calculation

of second derivatives.

2.2.2 Trust Region Methods

Trust-region methods, like Newton’s method, make explicit reference to a

“model” of the objective function. For Newton’s method, this model is a

quadratic model derived from the Taylor series of f about the point xk.

f(xk + s) ≈ qk(s) = f(xk) +∇f(xk)T s +
1

2
sT∇2f(xk)s. (2.2)
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In line search based methods, when a minimizing direction s is found, the

method proceeded with a line search. In trust-region methods, the model

function is minimized without line search, but under the restriction that

‖s‖ ≤ 4k (2.3)

for some positive 4k, which is the trust region radius. This serves to limit

the size of the step taken from xk to xk+1,

xk+1 = xk + sk,

where sk is k-th iteration search direction. The value of 4k is adjusted re-

peatedly based on the agreement or discrepancy between the model function

qk(s
k) value and the objective function f(xk + sk) value. If the agreement is

good, then the model can be trusted and 4k increased. If not, then 4k is

decreased, or 4k remains unchanged if neither agreement nor discrepancy is

strong. The measurement of the agreement or discrepancy is discussed later.

Thus, at each step, we need to find the minimizer of the approximation

qk(s). The strategies that are used to find such minimizers are surveyed in

[NW99]. We describe here a strategy of Moré and Sorensen that finds a

“nearly exact” solution of the approximate qk(s) [NW99].

For the 2-norm, the minimization problem of (2.2) with constraint (2.3)
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is equivalent to the unconstrained minimization of

∇f(xk)T s +
1

2
sT (∇2f(xk) + λI)s,

where λ ≥ 0 is a scalar, called the Lagrange multiplier for the constraint

‖s‖ ≤ 4k and ∇2f(xk) + λI needs to be positive semi-definite, finally

λ(4k − ‖s‖) = 0.

At iteration k of a trust region method, sk is the solution of the equation

(∇2f(xk) + λI)sk = −∇f(xk)

with either λ = 0 and ‖sk‖ < 4k or λ > 0 and ‖sk‖ = 4k. If ∇2f(xk)

is positive definite, then if 4k → ∞, the solution with λ = 0 is simply the

Newton direction. If λ → ∞, then 4k → 0, ‖sk‖ → 0, and the direction

of sk becomes parallel to the steepest descent direction. Moreover, the trust

region direction exists and well defined for sufficiently large λ, even if the

Hessian ∇2f(xk) is not positive definite.

The process is controlled by comparing the predicted reduction in the

approximate |q(sk)− q(0)| and the actual f(xk + sk)−f(xk) reduction in the

objective function. The ratio

ρk =
f(xk + sk)− f(xk)

qk(sk)− q(0)
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is calculated. If ρk is large enough, then the trust region is expanded in the

next iteration; if ρk is very small, then the current iteration is repeated with a

smaller trust region. Otherwise, the trust region radius remains unchanged.

Trust-Region Algorithm

A simple trust-region algorithm can be described as follows.

Specify a starting point x0,

trust-region radius ∆0,

and constants 0 < µ < η < 1, 0 < γ1 < 1 < γ2.

For k = 0, 1, · · ·

If a stopping criterion (see page 29) is satisfied, stop.

Solve for sk

min qk(s) = f(xk) +∇f(xk)T s + 1
2
sT∇2f(xk)s

s.t. ‖s‖ ≤ 4k.

Compute

ρk = f(xk+sk)−f(xk)
qk(sk)−q(0)

= actual reduction
predicted reduction

.

If ρk ≤ µ then xk+1 = xk (unsuccessful step).

Else xk+1 = xk + sk (successful step).
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Update ∆k:

if ρk ≤ µ, then ∆k+1 = γ1∆k;

if µ < ρk ≤ η then ∆k+1 = ∆k;

if ρk ≥ η then ∆k+1 = γ2∆k.

The parameters γ1 and γ2 are the trust region radius ∆k decrease and increase

factor, respectively. While updating ∆k, we usually decrease ∆k by halving

and increase by doubling it. Typical values of η and µ are 0.75 and 0.25,

respectively.

The global convergence of the trust region approach can be achieved by

finding an approximate solution sk that lies within the trust region and giving

a sufficient reduction in the model. The proof of the global convergence of

this algorithm based on nearly exact solutions can be found in Moré and

Sorensen [MS83].

2.3 Direct Search Methods

Direct search methods were first suggested in the 1950s and continued to

be proposed at a steady rate during the 1960s. The methods proposed at

that period were typically motivated by low-dimensional geometric intuition
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rather than mathematical theory.

Two important classes of direct search methods are geometry-based and

model-based methods. They are described in the following subsections.

2.3.1 Geometry Based Methods

In geometry-based methods, the function values are used to create and main-

tain a geometric figure, most commonly a simplex, that represents the infor-

mation known about f at any given iteration. These methods make minimal

assumptions about f and do not create a mathematical model of the objective

function.

Examples of geometry-based algorithms are the coordinate search method

with fixed step sizes [Dav91], the pattern search method based on automata

theory [HJ61], the Parallel Direct Search (PDS) method of Dennis and Tor-

czon [DT91]. Variants of simplex-based direct search methods [SHH62] are

also geometry-based methods. Usually, these methods need only the function

values.

Simplex-based methods are instances of direct search methods. A simplex-

based method constructs an evolving pattern of n + 1 points in Rn that are
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viewed as the vertices of a simplex2. A new simplex is formed at each itera-

tion by reflecting the vertex with the largest value of f , over the center of the

opposite face of the simplex, or by contracting toward the vertex with the

smallest value of f [SHH62]. We discuss the famous Nelder-Mead simplex

method in detail in Subsection 2.3.3.

2.3.2 Model Based Methods

Model-based methods use the function values to build a convenient model,

such as a quadratic function, through interpolation or approximation. The

underlying assumption in defining a model is that f(x) is, in some sense,

“nice”. Recent survey of such methods is given in [CST97b].

In his thesis [Win69], Winfield proposed to build a quadratic model based

on interpolation using available objective function values [Win73]. This

model is assumed to be valid in a neighborhood of the current iterate, which is

described as a trust region. The model is then minimized within the trust re-

gion, hopefully yielding a point with a lower function value. Twenty five years

later, Powell [Pow94a] considered a method for constrained optimization in

2A simplex is the convex hull of n + 1 points in general position in Rn, i.e. the
(equilateral) triangle for n = 2 or tetrahedron for n = 3. The volume of the convex hull
of the points is positive.
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which the objective function and constraints are approximated by linear mul-

tivariate interpolation. Later, he described an algorithm [Pow94b] for uncon-

strained optimization using a multivariate quadratic interpolation model of

the objective function in a trust region framework. The main difficulty in

practice to use this method is that one must retain the interpolation point

set with certain geometric properties at each iteration. This method was

explored further recently by Conn and his co-workers [CST97a] [CST97b].

They proposed an approach to handle the geometry of the interpolation set

using the so-called Newton fundamental polynomials.

2.3.3 Derivative Free Methods

There are two essential ingredients of derivative free methods. The first is

to pick better points. In geometry-based methods, the algorithm should

be designed to exploit the next place to sample. In model-based methods,

the expectation is that the minimum of the surrogate model will predict

suitable points. The second important ingredient is to determine appropriate

search subspaces. Different ways to determine such search subspaces result

in different algorithms.
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Nelder-Mead Simplex Method

The most famous geometry-based direct search method was proposed by

Nelder and Mead [NM65]. This method is based on the idea in [SHH62] of

creating a sequence of simplices, but deliberately modified, so that the sim-

plex can change shape and thereby “adapt itself to the local landscape” [NM65].

According to [Wri00], at each iteration of the Nelder-Mead algorithm,

a current simplex is defined by its n + 1 vertices, each point in Rn, along

with the corresponding values of f . The “best” vertex corresponds to the

lowest function value, with an analogous definition of the worst point. There

are five possible operations on the simplex: reflection, expansion, outside

contraction, inside contraction and shrinking. A Nelder-Mead iteration has

two possible outcomes: (1) a single new point replaces the worst vertex; or

(2) if a shrink is performed, the new simplex contains the best point from the

previous iteration and n new points closer to the best point than the previous

ones. After calculating one or more trial points and evaluating f at these

points, each iteration generates a different simplex for the next iteration,

where, except for a shrink, the function value at the new vertex is strictly

better than the function value at the old worst vertex. A non-shrink Nelder-

Mead iteration requires one (for reflection) or two (for an expansion or either
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form of contraction) function evaluations, a shrink iteration requires n + 2

function evaluations.

A typical iteration of the Nelder-Mead algorithm is outlined by [Wri96]

as follows.

1. Initialization. Let a starting point x be given.

Set parameters 1
2
≤ ρ ≤ 2, 1 < χ, 0 < γ < 1, and 1

4
≤ σ < 1 for

reflection, expansion, contraction and shrink, respectively.

2. Order. Order the n + 1 vertices to satisfy f(x1) ≤ f(x2) ≤ . . . ≤

f(xn+1), using a consistent tie-breaking rule for the equality cases.

3. Reflect. Compute a reflection point xr from

xr = x̄ + ρ(x̄− xn+1),

where x̄ is the centroid of the n best vertices (all except xn+1), i.e.,

x̄ = 1
n

∑n
i=1 xi, and ρ is the reflection factor.

Evaluate fr = f(xr).

If f1 ≤ fr < fn, accept the reflected point xr, remove xn+1 and termi-

nate the iteration. Goto Step 2.

4. Expand. If fr < f1, calculate a expansion point xe from

xe = x̄ + χ(xr − x̄),



CHAPTER 2. NONLINEAR OPTIMIZATION METHODS 50

where χ is the expansion factor. Evaluate fe = f(xe).

If fe < fr, accept xe, remove xn+1 and terminate the iteration;

Otherwise (if fe ≥ fr), accept xr, remove xn+1 and terminate the iter-

ation. Goto Step 2.

5. Contract. If fr ≥ fn, perform a contraction between x̄ and the better

of xn+1 and xr.

a. Outside Contraction. If fn ≤ fr < fn+1 (i.e., xr is strictly better

than xn+1), perform an outside contraction: calculate

xoc = x̄ + γ(xr − x̄),

where γ is the contraction factor, and evaluate foc = f(xoc).

If foc ≤ fr, accept xoc, remove xn+1 and terminate the iteration;

Goto Step 2.

Otherwise, goto step 6 (perform a shrink).

b. Inside Contraction. If fr ≥ fn+1 (i.e., xn+1 is better than xr),

perform an inside contraction: calculate

xic = x̄− γ(x̄− xn+1),

where γ is the contraction factor, and evaluate fic = f(xic).

If fic < fn+1, accept xic, remove xn+1 and terminate the iteration;
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Goto Step 2.

Otherwise, goto Step 6 (perform a shrink).

6. Perform a shrink step. Define n new vertices by

xi = x1 + σ(xi − x1), i = 2, . . . , n + 1,

where σ is the shrink factor, and evaluate f at these points.

If stopping criteria satisfied, then terminate the algorithm.

Otherwise, terminate the iteration; Goto Step 2.

Despite major efforts, only very weak convergence results [LRWW98] have

been established, and only in one and two dimensions, for the original Nelder-

Mead method. The convergence theory for a Nelder-Mead variant method,

called multi-directional search algorithm, is given by V.J. Torczon [Tor89].

The Nelder-Mead simplex method is widely used due to its simplicity and

using only function value decrease requirement. It is also applicable for non-

smooth problems, and where the function is not given explicitly.

Derivative Free Optimization (DFO) Algorithm

DFO [CST97b] is a model-based trust region method that exploit, but does

not require smoothness in the objective function and attempts to preserve
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the convergence properties of their gradient-based counterparts. The idea

is to use a smooth quadratic model to approximate the objective function,

when the function evaluations are expensive. One then optimizes a much

cheaper surrogate model, instead of the function itself, and makes consid-

erable progress in obtaining improved solutions at a moderate cost. The

model is assumed to approximate the objective function well in a so-called

trust region, typically a ball centered at the current iterate, xk, of the form

Bk = {x ∈ Rn | ‖x− xk‖ ≤ ∆k}.

The radius of this ball, ∆k, is called the trust region radius and indicates

how far the model is thought to represent well the objective function. A

new trial point is then computed, which minimizes the model within the

trust region, and the true objective function is evaluated at this point. If

the achieved objective function reduction is sufficient, compared with the

reduction predicted by the model, the trial point is accepted as the new

iterate and the trust region is centered at the new point and possibly enlarged.

On the other hand, if the achieved reduction is poor compared with the

predicted one, the current iterate is typically unchanged and the trust region

is reduced. This process is repeated until convergence occurs.

The main steps of a typical trust region method can be described as
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follows:

1. Given a current iterate build a good local approximation model.

2. Choose a neighborhood around the current iterate where the model is

“trusted” to be accurate. Minimize the model in this neighborhood.

3. Determine if the step is successful by evaluating the true function at the

new point and comparing the true reduction in value of the objective

with the reduction predicted by the model.

4. If the step is successful, accept the new point as the next iterate. In-

crease the size of the trust region, if the success is really significant.

Otherwise, reject the new point and reduce the size of the trust region.

5. Repeat until convergence.

It has been shown [Pow94b] [CST97b] that quadratic interpolation can

be applied successfully in combination with a trust region method.

Quadratic Interpolation Consider the problem of interpolating a given

function f(x), x ∈ Rn by a quadratic polynomial Q(x) at a chosen set of in-

terpolation points, X = {xj | xj ∈ Rn, j = 1, · · · , p}. Suppose that {φi(·)}q
i=1

is a basis in the space of quadratic polynomials. Then, any quadratic polyno-

mial Q(x) =
∑q

i=1 ξiφi(x) can be represented in terms of these basis functions
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with some coefficient vector ξ = (ξ1, . . . , ξq)
T . To determine a full set of the

quadratic model coefficients ξ, we needs

q = 1 + n +
1

2
n(n + 1) =

1

2
(n + 1)(n + 2)

parameters.

The interpolation coefficients can be obtained by solving the system of

linear equations:

q∑
i=1

ξiφi(x
j) = f(xj) j = 1, . . . , p. (2.4)

The coefficient matrix of this system is

Φ(X) =




φ1(x
1) · · · φq(x

1)

...
...

φ1(x
p) · · · φq(x

p)




. (2.5)

In order to have a unique solution of this system, we need the coefficient

matrix Φ(X) to be square, i.e., p = q and Φ(X) to be nonsingular. Numerical

solvability of the equation system depends on the conditioning of the matrix

Φ(X). If we have a full basis of polynomials, then we have p = q = 1
2
(n +

1)(n + 2).

Geometric Condition A set of points X is called poised, with respect

to a given subspace of polynomials, if at the points in X the function f(x)
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can be interpolated uniquely by polynomials from this subspace, i.e., a set

of points X is poised if Φ(X) is nonsingular.

A set of points X is called well-poised, if it remains poised under small

perturbations. For example, if n = 2, six points almost on a line may make

a poised set. However, since some small perturbation of the points might

make them aligned, it is not a well-poised set. Indeed, the coefficient matrix

Φ(X) can be very ill-conditioned, and the interpolation polynomial is likely

to provide a very bad approximation of the function.

As we mentioned, for a given set of points X, a set of function values

and given set of basis functions, an interpolation polynomial (from a given

space of polynomials) exists and is unique if and only if Φ(X) is square and

nonsingular. In other words, the set X is poised if the determinant

δ(X) = det




φ1(x
1) · · · φp(x

1)

...
...

φ1(x
p) · · · φp(x

p)




(2.6)

is nonzero. If the condition number of Φ(X) is small, then system (2.4)

remains stable under small perturbations, thus the set X is well poised.

Newton Fundamental Polynomial The most difficult step in the DFO

algorithm is updating the interpolation set. This is so, because depending on
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which point of the set is removed, the conditioning of the coefficient matrix

may deteriorate (the matrix can become singular or ill conditioned), making

the next iteration impossible or more difficult. A useful tool to choose a

good interpolation set or to create a new point that improves the poisedness

of the coefficient matrix is provided by the Newton Fundamental Polynomials

(NFP) basis.

For a given set of interpolation points X, the basis of NFP is such that

Φ(X) has the structure shown in Figure 2.3. The values in the white space

can be arbitrary real numbers.

The set of interpolation points is partitioned into three subsets (blocks)

X0, X1 and X2 which correspond to the constant term, linear terms and

quadratic polynomials, respectively. Hence, X0 has a single element, X1 has

n elements and X2 has n(n + 1)/2 elements. The basis of NFP Ni(·) is also

partitioned into three blocks N0
i (·), N1

i (·) and N2
i (·) with the appropriate

number of elements in each block. The unique element of N0
i (·) is a polyno-

mial of degree zero, each of the n elements of N1
i (·) is a polynomial of degree

one and each of the n(n + 1)/2 elements of N0
i (·) is a polynomial of degree

two.

The basis elements and the interpolation points are in one-to-one cor-
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Figure 2.3: Structure of the coefficient vectors of the NFP basis
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respondence, so that points from block X l correspond to polynomials from

block N l
i (·). A Newton polynomial Ni(·) and a point X i correspond if and

only if the value of that polynomial at that point is 1 and its value at any

other point in the same block or in any prior blocks is 0. In other words, if

X i corresponds to Ni, then Ni(x
i) = 1, and Ni(x

j) = 0 for all index j within

the first l blocks (see 2.3).

More details on this and multivariate interpolation in general can be found

in [SX95]. For instance, if we consider quadratic interpolation on a regular

grid in the 2D-plane, we require six interpolation points using three blocks

X [0] = {(0, 0)}, X [1] = {(1, 0), (0, 1)}, X [2] = {(2, 0), (1, 1), (0, 2)},

corresponding to the basis functions 1, x1, x2, x
2
1, x1x2 and x2

2 respectively.

Applying the procedure of constructing the basis of NFP as described in

[SX95] we obtain

N
[0]
1 = 1, N

[1]
1 = x1, N

[1]
2 = x2,

N
[2]
1 = 1

2
(x2

1 − x1), N
[2]
2 = x1x2, N

[2]
3 = 1

2
(x2

2 − x2).

The outline of a derivative free trust region algorithm can be found in

[CST97b] and [Sch00]. Our implementation following [Sch00] with slight

modification is described below.

step 0: Initialization
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Let xs be a starting point, and the value f(xs) be given. Choose an

initial trust region radius 40 > 0. Choose at least n additional points3

not further than 40 away from xs to create an initial well-poised inter-

polation set X and initial basis of NFP. Determine x0 ∈ X which has

the best objective function value; i.e., f(x0) = min
xi∈X

f(xi).

Set k = 0, parameters η, η0 and η1 to measure progress: 0 < η = η0 <

η1 < 1, ε for stopping, γ0, γ1 and γ2 for the trust region expansion and

contraction.

step 1: Build the model

Using the interpolation set X and the basis of NFP, build the interpo-

lation model Qk(x).

step 2: Minimize the model within the trust region

Set Bk = {x : ‖x− xk‖ ≤ 4k}. Compute the point x̂k such that

Qk(x̂
k) = min

x∈Bk

Qk(x).

Compute f(x̂k) and the ratio

ρk ≡ f(xk)− f(x̂k)

Q(xk)−Q(x̂k)
.

3In [Sch00], it is “one additional point”. They build up the model from a few points
while we start with a full linear model in our implementation.
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step 3: Update the interpolation set

• If ρk ≥ η0, include x̂k in X, dropping one of the existing interpo-

lation points.

• If ρk < η0, include x̂k in X, if it improves the quality of the model.

• If ρk < η0 and there are less than n + 1 points in the intersection

of X and Bk, generate a new interpolation point in Bk, while

preserving /improving well-poisedness.

• Update the basis of the NFP.

step 4: Update the trust region radius

• If ρk ≥ η1, increase the trust region radius

4k+1 ∈ [4k, γ24k].

• If ρk < η0 and the cardinality of X ∩ Bk was greater4 than n + 1

when x̂k was computed, reduce the trust region

4k+1 ∈ [γ04k, γ14k].

• Otherwise, set 4k+1 = 4k.

4In [Sch00], it is “less”.
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step 5: Update the current iterate

Determine x̄k with the best objective function value

f(x̄k) = min
xi∈X,xi 6=xk

f(xi).

If improvement is sufficient (w.r.t. predicted improvement)

ρ̄k ≡ f(xk)− f(x̄k)

Q(xk)−Q(x̂k)
≥ η.

Set xk+1 = x̄k. Increase k by one and go to step 1.

This outline provides only a framework. Practical algorithms involve a

number of additional features such that stopping criteria, choosing a point

to drop, the criteria of improvement in the model. We will discuss those

techniques and the implementation issues in Chapter 4.

It has been proved that DFO is globally convergent to a local minimum,

provided that the approximation model is at least fully linear to ensure a

reasonable approximate result of the objective function [CST97a]. It has

been reported that in practice DFO finds the global minimum (or a “good”

local minimum) in many cases [CST97a].



Chapter 3

Algorithms for Solving the LJ

Cluster Problem

The idea of our approach is that, using direct search methods such as Nelder-

Mead Simplex and DFO methods for global search in the search space, to

follow by local search from the resulting best point or from the best point

at each iteration, if the best point is improved. We use the Quasi-Newton

method with BFGS update as the local search procedure.

62



CHAPTER 3. ALGORITHMS 63

3.1 The Nelder-Mead Based Approach

We combine the Nelder-Mead method with local search in three ways.

3.1.1 Approach I: General Combination Approach

Our first approach to the problem of globally minimizing the LJ potential

function is combining the Nelder-Mead method and the local search method.

The approach can be described as follows.

1. Generate randomly N points in 3D, each point representing an atom.

2. Minimize the LJ potential function using the Nelder-Mead method.

3. Perform local search started from the result obtained from the Nelder-

Mead method.

We applied this procedure to problems with number of atoms N =

2, 3, . . . , 10. The results (in Table 5.1, Chapter 5) show that this random

sampling procedure can only detect the global optimum for N ≤ 5. There-

fore, it seems necessary to modify this procedure in order to be able to solve

larger problems.
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3.1.2 Approach II: Build up Combination Approach

A simple idea is to exploit the special structure of the LJ potential function

and modify the search mechanism accordingly. Looking at the form of the

LJ function, we notice that good solutions should possess some or all of the

following characteristics:

1. Atoms should not be too close to each other.

2. Atoms should not be too far away from each other.

3. The distance between all pairs of atoms should be close to 1.0, since at

1.0, the LJ pair potential attains its minimum.

According to these simple observations, it is possible to substitute the

initial random generation of points and a single pass Nelder-Mead algorithm

by a generation mechanism, which tends to favor point configurations pos-

sessing the above characteristics. As a first attempt in this direction, we

substituted the random generation procedure with the following procedure.

1. Start with two points with distance one.

2. Add one randomly generated point.

• Minimize the LJ potential function using the Nelder-Mead method.
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• Perform local search started from the result obtained from the

Nelder-Mead simplex method;

• Keep track of the best point obtained so far.

3. If the number of the points is less than the number of points required,

go to step 2.

Otherwise, report the solution and stop.

With this improved procedure, we successfully located the best known

solution for micro-cluster of N = 2,3,4,5,7,8,9,11,14,15,17,20 and 25. The

results are given in Table 5.2 to 5.4 in Chapter 5. It is worth noting that

the cluster of N = 6 has been detected by putting 6 points on the vertices

of a regular octahedron and starting minimization with this configuration.

However, in general, to find the regular polyhedron is as difficult as the

original problem itself. We tried to modify step 2 of the procedure by adding

one point from inside and outside of the convex hull (simplex). Unfortunately,

this heuristic gave no effect on the results.
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3.1.3 Approach III: Build up Incorporation Approach

In this approach, instead of starting a local search with the resulting best

point obtained from the Nelder-Mead method, we incorporate a local search

in the iterates of the Nelder-Mead simplex method. At each iteration of the

Nelder-Mead simplex method, whenever a better point is determined, we

start a local search from this point. The result is compared with the one of

the previous iteration. We keep only the best one. This procedure can be

described as follows:

1. Start with two points with distance one.

2. Add one randomly generated point.

• Minimize the LJ potential function using the Nelder-Mead method;

• Start local search at the best point of each iteration;

• Keep track of the best point obtained so far.

3. If the number of points is less than the number of points required, go

to step 2.

Otherwise, report the solution and stop.
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Using the build up incorporation approach, we located the best known

solution for micro-clusters for all N ≤ 30. The results are given in Tables

5.2 to 5.4 in Chapter 5.

3.2 The DFO Based Approach

The results of the previous Nelder-Mead simplex method based approaches

show that the geometry based direct search methods can be used to locate

the global optimum of the LJ potential very well for micro-clusters of N ≤

30. Comparing the results of the three approaches, the third one gives the

best results. The DFO method is a model based direct search method that

differs from Nelder-Mead simplex method. Naturally, our DFO based method

can be best described as “build up incorporation approach based on DFO”

approach. It is given as follows.

Approach IV: Build up Incorporation Approach Based

on DFO

1. Start with two points with distance one.
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2. Add one randomly generated point.

• Minimize the LJ potential function using the DFO method.

• Whenever the trust region center moves to a new point, start the

local search from that new center.

• Keep track of the best solution obtained so far.

3. If the number of points is less than the number of points required, go

to step 2.

Otherwise, report the solution and stop.

3.3 Local Search Procedures

Both implemented direct search methods are furnished with a local search

descent algorithm. The Quasi-Newton method with BFGS update, which we

have used in our algorithms, is given in Subsection 2.2.1.



Chapter 4

Implementation

In this chapter, we first focus on the implementation of the direct search

algorithms: Nelder-Mead and DFO. Later, we give the build up scheme for

a given atomic cluster, the local search procedures and the method of visu-

alizing the structure of a cluster at its global minima.

All the procedures were implemented in MATLAB. We provide the func-

tion evaluation, gradient and Hessian computing procedures of the LJ cluster

problem. The computational test was performed on an Intel Pentium III

677MHz RAM 128MB PC and IBM RS6000 RAM 1GB workstation. The

time is not measured with this implementation in MATLAB. The Virtual Re-

ality Modelling Language (VRML 1.2) was used as the 3D geometry analysis

69
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tool.

4.1 Implementation of the Nelder-Mead Sim-

plex Method

The implementation of the Nelder-Mead simplex method is quite straight-

forward. Figure 4.1 gives the structure of the method1. Figure 4.2 is the

flowchart specifying how to generate a new point at each iteration.

4.1.1 Starting Points

Given a point xin of dimension n, we discuss two ways how to build a simplex

of n + 1 points:

1. Shifting the unit simplex of dimension n from the origin to xin.

u = eye(n);

v(:,1) = xin;

for j=1:n

y = u(:,j)+x;

v(:,j+1) = y;

1The rectangle with round corner in the flowcharts represents a sub-procedure.
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Figure 4.1: Structure of the Nelder-Mead Simplex method.
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Figure 4.2: Structure of the “Get new point” subroutine.
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x(:) = y;

f = feval(funfcn,x,varargin{:});

fv(1,j+1) = f;

end

2. Using a modified point set suggested by L.Pfeffer at Stanford [MAT]

usual_delta = 0.05; zero_term_delta = 0.0075;

for j = 1:n

y = xin;

if y(j) ~= 0

y(j) = (1 + usual_delta)*y(j);

else

y(j) = zero_term_delta;

end

v(:,j+1) = y;

x(:) = y; f = feval(funfcn,x,varargin{:});

fv(1,j+1) = f;

end

where v is a matrix of n-by-(n+1) which stores the coordinates of n+1
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points, and vector fv stores the corresponding n + 1 function values.

The first method shifts the unit simplex of dimension of n from the ori-

gin to the initial point. This way guarantees that the simplex has a “good

geometry”. The second method creates a simplex with specified edge length

and orientation that depends on the given starting point of the coordinate

directions. If it is in the same direction as an optimal solution, this initial

simplex may push the process fast towards the optimum. The risk is that

the constructed simplex may be very flat. In other words, the shape of the

initial simplex is constructed with sharp angles. If the coordinate direction

of the given starting point is orthogonal to the direction towards an opti-

mal solution, then it will take more iterations to find an optimal solution

or, in the worst case, fail to find an optimal solution at all. The parameters

usual_delta and zero_term_delta are used to adjust the simplex orienta-

tion and can be modified as needed.

4.1.2 Termination

The algorithm terminates based on two criteria: either the function values at

the vertices are too close, or the simplex has become very small. In practice,

we stop the procedure if the following condition is satisfied:
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max(max(abs(v(:,2:n+1)-v(:,1)))) <= tolx

& max(abs(f(1)-f(2:n+1))) <= tolf

where tolx and tolf are tolerance for the vertices and the function values,

respectively. v(:, 1:n+1) contains the coordinates of the n + 1 points.

4.1.3 Iteration

At each iteration of the Nelder-Mead algorithm, the current simplex is defined

by its n+1 vertices, each a point in Rn, along with the corresponding values

of f . The “best” vertex corresponds to the lowest function value, with an

analogous definition of the worst point.

In the implementation, we first evaluate the objective function at n + 1

points of the initial simplex and sort them. Then, we define the centroid

point xbar of the n best points

xbar = sum(v(:,1:n),2)/n;

and the four points correspond to four possible operations on the simplex,

reflection(xr), expansion(xe), outside

contraction(xoc), inside contraction(xic).

At each iteration, we try to obtain one new point that satisfies the func-

tion value improving requirement, from one of the four operations as it is
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described in the algorithm and illustrated by the flowchart of the “Get new

point” sub-procedure in Figure 4.2. If such a point is found, then we use

it to replace the worst vertex in the current simplex. Otherwise, a shrink

operation is performed.

The shrink operation produces a new simplex which contains the best

point from the previous iteration and n new points.

We repeat this process until the termination condition is satisfied.

4.2 Implementation of the DFO Algorithm

The implementation of the DFO algorithm is much more complicated. In

our DFO implementation, we distinguish two working spaces. One is the

real problem space, in which we evaluate the objective function value and

then evaluate the points generated in the model space. Another is the model

space, in which we perform the search by minimizing the quadratic model

over a trust region, centered at a “good” point. The “goodness” of a point

is measured by its corresponding function value, and the geometry property

of the interpolating point set that it is included.
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4.2.1 The Implementation

The logical structure of our DFO implementation is illustrated in Figure 4.3.

Based on this logical structure, a main procedure called DFO and thirteen

sub-procedures are created. They are described as follows.

Main procedure DFO

The procedure DFO is declared with the following form:

function [x,fval,exitflag,output]=dfo(funfcn,x,options,varargin)

DFO calls a user provided subroutine funfcn that evaluates the objective

function, a given initial point x and a set of options as input. The options

can be set up as follows.

options =

optimset(‘display’,‘final’,‘maxiter’,2000,‘maxfunevals’,10000);

If this part is not set up by the user, DFO provides a default setting as above.

The varargin is a MATLAB input argument list. It allows any number of

arguments to the function funfcn.

DFO returns the solution x, function value fval, a flag exitflag, in-

dicating the status, when the program terminates, and a structure output
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with the number of iterations, the number of function evaluations and the

name of the algorithm.

At the beginning of the algorithm, DFO reads a set of parameter values.

This part can be modified by the user to meet his or her needs. The default

parameter values and their meaning are as follows.

epsTrust = 1e-3; % Minimum value of the trust region radius.

epsDet = 1e-12; % Determinant tolerance.

delta0 = 1; % Initial trust region radius.

eta0 = 0.45; % Parameter.

eta = eta0; % Parameter.

eta1 = 0.75; % Parameter.

gama1 = 0.5; % Trust region radius decreasing factor.

gama2 = 2; % Trust region radius increasing factor.

epsDist = 0.5; % Minimum distance allowed between 2 points.

epsFun = 1e-8; % Function reduction tolerance.

The main loop is safeguarded by the number of the function evaluations

and the number of the iterates. The stopping criteria is checked inside the

main loop. Three flags are used to control the data flows. They are described

as follows.
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flagdelta: The flag flagdelta indicates the change of the trust region

radius delta.

flagdelta = 0, % delta is not changed;

flagdelta = 1, % increase delta;

flagdelta = 2, % decrease delta.

flaghat: The flag flaghat indicates the acceptance of the point xhat. The

point xhat is accepted if either it gives a good reduction of the function

value or it improves the model.

flaghat = 0, % xhat is rejected;

flaghat = 1, % xhat is accepted by the means of the function

% reduction.

flaghat = 2, % xhat is accepted by the means of the model

improvement.

flagcheck: The flag flagcheck indicates if the new point xcheck, is added

into the interpolation point set to satisfy the minimum linearity model

requirement.

flagcheck = 0, % there is no point added;
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flagcheck = 1, % there is a point xcheck added.

In the next subsections, we’ll give the implementation details of the sub-

routines used in DFO.

Starting points

The initial point set is computed by procedure setY(). We take the vertices

and the mid-points of the edges of a regular simplex in Rn as an initial point

set. The edges of the regular simplex have length κ∆0, where κ is a scaling

factor, ∆0 is the initial trust region radius. The default value for κ was set

to
√

2
2

. A corresponding basis of NFP is built up by calling the procedure

setNP().

Termination

The algorithm is terminated when the following three criteria are satisfied.

1. The radius of the trust region is small enough, s.t.

∆ ≤ epsTrust.

2. The final interpolation point set has the “good geometry” property.
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3. The center of the current trust region is the point with the best function

value.

The default minimum value of the trust region radius is set up to 10−3. The

“good geometry” property is interpreted as follows.

1. At least n + 1 points are in the trust region.

2. The distance of each point to the current center point is less than two

times of the current trust region radius and the interpolation set is well

poised.

If stopping criteria 1 and 3 are satisfied, but some of the points are not

in the ball of two times of the current trust region radius, we replace the

furthest point by a new point generated in the trust region. So the new point

guarantees the model improvement in the sense that it maximizes δ(X) that

is defined by (2.6). If criteria 1 and 2 are satisfied, we move the center to the

best point. If criteria 2 and 3 are satisfied, the trust region radius is reduced.

The procedure stop() is implemented to check these termination criteria.
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Trust region minimization (maximization)

On each iteration, the DFO algorithm solves at least one trust region mini-

mization problem of the model function Q(x). Two subroutines are used to

solve the constrained inner trust region sub-problems:

min {∇Q(x)T s +
1

2
sT∇2Q(x)s : ‖s‖ ≤ 4}. (4.1)

The first one is the MATLAB subroutine trust(), in which full eigen value

decomposition, based on the secular equation [GL89] [Ste98],

1

∆
− 1

‖s‖ = 0,

is used. The other one is lmlib(), using the method of the Levenberg-

Marquardt algorithm with the technique of More [Fle87] [Gay81]. This sub-

routine is implemented in C with special techniques for higher efficiency [Fin96]

by Lukas Finschi in Institut fuer Operations Research, Technical University,

Zuerich. This lmlib() subroutine is integrated in MATLAB using MATLAB

API mex.

Dropping a point

The procedure droptr() is implemented to choose a point to drop, when-

ever a new point is obtained that has a better function value within the
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minimization step.

In general, we choose a point to drop if this point is too far away from

the current trust region or the objective function value at this point is too

bad.

Let xc be the current trust region center point, xf be the furthest point

from xc and xw be the point with the worst function value in the interpolation

point set. Then we choose a point to drop by applying the following criteria:

if ‖xf − xc‖ > 44 or (‖xf − xc‖ > 4 and f(xf ) > 1
N

N∑
i=1

f(xi))

then drop = xf ;

else drop = xw.

We replace the chosen point to drop by the new point. If the resulting

interpolation point set has a very “bad” geometry property, then we look for

the point closest to the new point xt. This point xt therefore becomes an

obvious candidate point to drop.

Model improvement

The “goodness” of the model is measured by the determinant δ(X) defined

in (2.6). Let layer1 < layer2 < layer3 be the factors of the improvement
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in δ(X). We try to replace xf , the point furthest away from the current trust

region center by a new point. If such a point is in the trust region, we request

that the factor to qualify the improvement in δ(X) is greater than layer2.

On the other hand, if xf is further away from than layer3 times of the trust

region radius ∆, we request the point set remains well poised. Finally, if

‖xf − xc‖ is between layer1 and layer3 times the trust region radius ∆,

we request the factor of the improvement to be greater than layer1. If xf

fails to satisfy the model improvement criteria, we move to the next furthest

point and repeat the test. This procedure can be described as follows:

For i = 1, · · · , number of points in a set,

1. Find the furthest point xf from the current point xc.

2. Replace xf by a candidate point x.

3. Calculate

ratio =
determinant after replacement

determinant before replacement
.

If ‖xf − xc‖ ≤ 4 and ratio ≥ layer2, then accept x, return.

Else, if ‖xf − xc‖ ≤ layer3 4 and ratio > layer1, then accept x,

return.

Else, if ‖xf − xc‖ ≥ layer3 4 and δ(X) > ε, then accept x, return.
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Else find the next furthest point xf ‘ and goto step 2.

In our implementation, the factor layer1, layer2 and layer3 are set to 1,

2 and 4, respectively. They can be modified as needed.

The procedure improvMod() is implemented to check if including a point

improves the quality of a model or not within the minimization step.

Check model

The procedure checkMod() is implemented to check if there are n + 1 points

in the current trust region. If there are less than n+1 points, we replace the

point furthest away from the current trust region center xf by x̌ s.t.

x̌ = arg max{det(Φ(X̄)) : X̄ = X \ {xf} ∪ {x}, ‖x− xc‖ ≤ ∆},

which is a point on the boundary of the current trust region. The procedure

inTrust() is used to compute the number of the points in the current trust

region. The procedures maxDist() and evalDet() are used to compute xf

and to evaluate det(Φ(X)), respectively. They are described in the following

subsection.

Other procedures

The procedure evalDet() evaluates determinant along a given row index.
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The procedure inTrust() gets the distance information of the points in

the interpolation set with respect to the current center point and the

number of points in the current trust-region.

The procedure maxDist() finds the farthest point in the interpolation set

with respect to the current center point and its index in the model.

The procedure quad2quad() transforms the model from the Newton funda-

mental polynomial form into the standard quadratic κ + gT x + xT hx

function form, where κ is a constant, g is the gradient, h is the Hessian.

The procedure quadEval() evaluates the quadratic approximation function

value, gradient and Hessian at a given point x.

The procedure y2quadX() transforms a point of dimension n into a point

of dimension (n + 1)(n + 2)/2.

The procedure message() handles the information to print on the screen

to user.

4.2.2 The Test Problems

To test our implementation, we used standard problems from the optimiza-

tion literature [SOP]. The size of the problems ranges from 2 to 30 dimen-
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sions. We count the number of the actual function evaluations and the num-

ber of the iterations required to return a solution with a specified tolerance

level.

Our tests includes Rosenbrock’s “banana” function, Powell’s quadratic

function, and the non-linear functions s350, s351, s370, s371 and s391. They

are of dimensions 2, 4, 4, 4, 6, 9 and 30, respectively. They are all minimiza-

tion problems. These problems are given as follows.

1. Rosenbrock’s “banana” function

n = 2

f = 100*((x(2)-x(1))^2)^2+(1-x(1))^2

2. Powell’s quadratic function

n = 4

f = (x(1)+10*x(2))^2+5*(x(3)-x(4))^2+(x(2)-2*x(3))^4+

10*(x(1)-x(4))^4;

3. s350

n = 4;
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f: sum {i in 1..11} (y[i] -

x[1]*(u[i]^2+x[2]*u[i])/(u[i]^2+x[3]*u[i]+x[4]))^2;

where

y:= u:=

1 0.1957 4.0000

2 0.1947 2.0000

3 0.1735 1.0000

4 0.1600 0.5000

5 0.0844 0.2500

6 0.0627 0.1670

7 0.0456 0.1250

8 0.0342 0.1000

9 0.0323 0.0833

10 0.0235 0.0714

11 0.0246 0.0625;

4. s351

n = 4;

f: 10^4*sum{i in 1..7}
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(((x[1]^2+x[2]^2*a[i]+x[3]^2*a[i]^2)/(1+x[4]^2*a[i])

-b[i])/b[i])^2;

where

a:= b:=

1 0.0 7.391

2 0.00043 11.18

3 0.00100 16.44

4 0.00161 16.20

5 0.00209 22.20

6 0.00348 24.02

7 0.00525 31.32;

5. s370

n = 6;

f: x[1]^2 + (x[2] - x[1]^2 - 1)^2 +

sum {i in 2..30}(sum{j in 2..6}

(j-1)*x[j]*((i-1)/29)^(j-2) -

(sum {j in 1..6}x[j]*((i-1)/29)^(j-1))^2 - 1)^2;

6. s371
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n = 9;

f: x[1]^2 + (x[2] - x[1]^2 - 1)^2 +

sum {i in 2..30}(sum{j in 2..9}

(j-1)*x[j]*((i-1)/29)^(j-2) -

(sum {j in 1..9}x[j]*((i-1)/29)^(j-1))^2 - 1)^2;

7. s391

n = 30;

v[i in 1..N, j in 1..N] = sqrt (x[i]^2 +i/j);

alpha{i in 1..N} = 420*x[i] + (i-15)^3 +

sum {j in 1..N} v[i,j]*((sin(log(v[i,j])))^5 +

(cos(log(v[i,j])))^5);

f: sum {i in 1..30} alpha[i];

4.2.3 Numerical Results and Discussion

We report some of the results we obtained during implementing and test-

ing our implementation of the DFO algorithm. In all the tests, the pa-

rameters were set to the default values, unless specified else. The results

about the Rosenbrock function are compared with the ones reported by
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Powell [Pow96]. We made also a comparison between the two subroutines

trust() and lmlib() that we used to solve the trust region subproblems in

our DFO.

In the following tables, ε∆ denotes the minimum value of the trust region

radius. #iter denotes the number of the iterations. #fun denotes the number

of the function evaluations. x∗ denotes the solution and f(x∗) denotes the

objective function value at the solution x∗.

We first tested our DFO on Rosenbrock’s function. The comparisons

reported in Table 4.2 are based on the results reported in [Pow96]. The

numbers of the iterations in Table 4.2 are not available. The initial trust re-

gion radius was set to ∆0 = 0.1. The starting point was set to x0 = (−1.2, 1).

The results are given in Table 4.1 for DFO:trust and 4.3 for DFO:lmlib.

It is easy to see that our DFO requires much less function evaluations

than Powell’s for the same trust region tolerance. Note that in Table 4.1,

when ε∆ is set to 1/80 requires 3 more function evaluations than when ε∆ is

set to 1/160. Because our DFO is terminated when all the three conditions

described in subsection 4.2.1 are satisfied, the former reaches the trust region

tolerance level earlier, but it requires more function evaluations to satisfy

other conditions. So these are normal situations.
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ε∆ #iter #fun x∗ f(x∗)

1/10 15 31 (0.7089, 0.5672) 0.1251

1/20 18 37 (0.7385, 0.6075) 0.0978

1/40 33 60 (1.0006, 1.0011) 3.4442e-007

1/80 37 67 (1.0006, 1.0011) 3.4442e-007

1/160 37 64 (1.0000, 0.9983) 8.5312e-010

1/640 41 71 (1.0000, 0.9983) 8.5312e-010

Table 4.1: DFO:trust on Rosenbrock’s function

ε∆ #iter #fun x∗ f(x∗)

1/10 71 (0.849, 0.724) 2.4e-2

1/20 97 (0.967, 0.938) 1.6e-3

1/40 111 (1.001, 1.001) 1.7e-7

1/80 118 (1.001, 1.001) 1.7e-7

1/160 124 (1.000, 1.000) 4.9e-9

Table 4.2: Results on Rosenbrock’s function reported by Powell

As we can see, in Table 4.1, when ε∆ is set to larger or equal to 1/20, DFO

failed on Rosenbrock’s function to converge to the optimal solution. Figure

4.4 illustrates the movement of the trust region center for ε∆ 1/20 and 1/40,
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ε∆ #iter #fun x∗ f(x∗)

1/10 32 51 (0.9937, 1.0029) 4.0356e-005

1/20 32 53 (0.9937, 1.0029) 4.0356e-005

1/40 33 55 (0.9937, 1.0029) 4.0356e-005

1/80 34 56 (1.0009, 1.0032) 8.6922e-007

1/160 37 61 (0.9999, 0.9986) 2.1958e-008

1/640 51 67 (1.0000, 0.9994) 1.7481e-011

Table 4.3: DFO:lmlib on Rosenbrock’s function

respectively. It can be seen that the parameter ε∆, the trust region radius

threshold, may affect the results. If ε∆ is set to a large value, the algorithm

may terminates inappropriately earlier.

The computational results with Powell’s function are given in Tables 4.4

and 4.5. We take a initial point x0 = (1,−2, 0, 3). The initial trust region

radius is set to 1. As we can see, for the same ε∆ level, DFO:trust requests

less function evaluations, but DFO:lmlib gives better solutions.

The comparison between DFO:trust and DFO:lmlib is not quite clear yet

by using problems of 2 and 4 dimensions. On one hand, the results in Ta-

bles 4.1 and 4.3, 4.4 and 4.5 show no significant differences in terms of the

number of the iterations and the number of the function evaluations. On
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Figure 4.4: Trace of the trust region center on Rosenbrock’s function

ε∆ #iter #fun x∗ f(x∗)

1e-2 62 164 (0.0176, -0.0018, 0.0076, 0.0072) 1.3865e-006

1e-3 80 201 (0.0149, -0.0015, 0.0073, 0.0073) 1.0074e-007

1e-4 95 221 (0.0143, -0.0014, 0.0070, 0.0070) 8.5674e-008

1e-5 105 232 (0.0142, -0.0014, 0.0070, 0.0070) 8.4182e-008

Table 4.4: DFO:trust on Powell’s function.

the other hand, while solving the trust region subproblem (4.1) on page 83,

DFO:trust gives numerical warning messages but DFO:lmlib optimizes with-

out difficulty. The same happened when solving the additional test problems

S350, S351, S370 and S371. The results are listed in Table 4.6. The initial

point is set to as following.
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ε∆ #iter #fun x∗ f(x∗)

1e-2 69 194 (0.0267, -0.0027, 0.0111, 0.0112) 9.6901e-007

1e-3 88 233 (0.0116, -0.0012, 0.0056, 0.0056) 3.6131e-008

1e-4 100 250 (0.0108, -0.0011, 0.0055, 0.0055) 2.8830e-008

1e-5 109 258 (0.0108, -0.0011, 0.0055, 0.0055) 2.8588e-008

Table 4.5: DFO:lmlib on Powell’s function.

S350: x0 = (0.25, 0.39, 0.415, 0.39),

S351: x0 = (2.7, 90, 1500, 10),

S370: x0 = (0, 0, 0, 0, 0, 0),

S371: x0 = (0, 0, 0, 0, 0, 0, 0, 0, 0).

The initial trust region radius is set to 1. The minimum trust region radius

is set to 10−3.

The testing on problem S391 is difficult. We first employed a starting

point from the literature that obtained by the following code.

for i=1:30

temp1 = 0;

for j = 1:30

temp = (sin(log(sqrt(i/j))))^5+ (cos(log(sqrt(i/j))))^5;
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DFO:trust DFO:lmlib

problem. Dim #iter #fun f(x∗) #iter #fun f(x∗)

s350 4 237 588 0.0016 90 238 0.0077

s351 4 757 2005 319.7963 784 1984 319.7254

s370 6 87 320 0.0657 91 289 0.3394

s371 9 129 638 0.2795 104 532 0.2708

Table 4.6: DFO on problems S350, S351, S370 and S371.

temp1 = temp1 + sqrt(i/j)*temp;

end

x(i) = -2.8742711*((i-15)^3+temp1);

end;

After two iterates, we were running into numerical problem due to the matrix

(2.5) becomes singular to working precision. Then we took the origin as the

starting point. The program proceeded successfully towards better function

values, but it couldn’t give an optimal solution. Indeed, this problem is

unbounded, along the line (−1e + 12, 0, · · · , 0) the objective tends to minus

infinity.
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4.2.4 Conclusions

Our preliminary tests of the DFO algorithm implementation have lead us to

the following conclusions:

First, our DFO program proved to be reliable. For different starting

points and parameter settings, always the same results were returned by our

program.

Second, our DFO program proved to be robust for lower dimension prob-

lems. No matter how the trust region radius tolerance changes, there is no

significant jump in terms of the number of the iterations and the number of

the function evaluations. The largest difficulty we encountered while imple-

menting the DFO algorithm is solving the trust region subproblem. Among

the two subroutines, trust() and lmlib(), described on page 83, lmlib()

gives better results.
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4.3 Build up Scheme

In our approaches for the LJ problem described in Chapter 3, we build up

a cluster by adding a randomly generated point, which represents an atom2,

to the optimized smaller cluster configuration.

To understand this build up scheme, we need to know how the LJ function

evaluates. We partition the point set into two sets: one set contains the fixed

points, another contains the unfixed points. We compute the interaction

between the fixed pairs of atoms, the unfixed pairs of atoms and the fixed-

unfixed pairs of atoms. So, when we add a randomly generated point to the

smaller cluster, the randomly generated point represents an unfixed atom,

the points presented in the smaller cluster are treated as fixed point set.

Then we minimize the LJ function of the larger system using one of our

approaches to optimize the new system.

Note that our working space is in the n = 3N dimensional space, the

so-called embedding space. We search for the coordinates of the molecular

configuration in the 3D Euclidean space. Let yi, i = 1, · · · , N, yi ∈ R3 be

2In R3, each point represents the position of an atom. Sometimes we alternately use
the two words, depending on the context.
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points in the 3D Euclidean space. Then a point in the embedding space is

x = V EC(y1, · · · , yN), x ∈ R3N .

4.4 Local Search

The local search procedure we used is a MATLAB routine called fminunc [MAT]

that solves unconstrained problem

min f(x).

The fminunc implements the BFGS Quasi-Newton method and a trust region

method. We set up options.LargeScale to be ‘off’ to switch to the former.

4.5 Visualizing the Structure of a Given Atomic

Cluster

We visualize the structure of a given cluster by VRML v2.0 [VRM]. Given a

set of points in 3D, we generate automatically a .wrl file by calling procedure

genvrml(). Then, using VRML, we visualize the structure in 3D.



Chapter 5

Computational Results

In this chapter, we report the results of our various approaches to the LJ

atomic cluster problem.

Using Approach I described on page 63, the global minimum potential

energy configuration of the small micro-clusters 2 ≤ N ≤ 5 are generated.

The resulting global minimum values are listed in Table 5.1. The global

minimum structure for N = 2, V ∗(2) = −1.000000 corresponds to 2 atoms

on a line. For N = 3, V ∗(3) = −3, three atoms form a unit equilateral triangle

at the global minimum. For N = 4, V ∗(4) = −6, the four atoms are placed

at the vertices of a regular tetrahedron. For N = 5, V ∗(5) = −9.103852,

five atoms are placed at the vertices of a trigonal bi-pyramid, corresponds to

101
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N 2 3 4 5 6

Energy -1.000000 -3.000000 -6.000000 -9.103852 -12.302927

N 7 8 9 10

Energy -15.533062 -19.219111 -23.005312 -25.3367

Table 5.1: Results of Approach I

the global minimum energy structure. We analyze these structures using the

software VRML. For the clusters of 6 ≤ N ≤ 10, with Approach I on page

63, our method trapped at local minimums. Test results for 6 ≤ N ≤ 10 are

listed in Table 5.1.

Tables 5.2 to 5.4 present the results of Approach II described on page 64

and III described on page 66 . The second and third column in Tables 5.2

to 5.4 list the results of Approach II and III, respectively. We compare these

results to the ones obtained using gradient based methods: the steepest de-

scend, the BFGS and the DFP Quasi-Newton methods that are listed in the

forth, fifth and sixth column in Tables 5.2 to 5.4, respectively. Those results

were obtained using the same MATLAB routine as described in Section 4.4.

We set the option “HessUpdate” to be “steepdesc” or “bfgs” or “dfp” for

the steepest descend, the BFGS and the DFP Quasi-Newton methods, re-
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spectively. The maximum number of the function evaluations is set to 2x104.

The tolerance of the function improvement is set to 10−6.

We also compare these results with the ones based on LGO [Pin95] branch

and bound and random sampling methods that are listed in the seventh and

eighth columns of Tables 5.2 to 5.4, respectively. The LGO results were

obtained by running LGO on an Intel Pentium III 677MHz RAM 128MB

PC. LGO B&B results are obtained using the “automatic branch & bound

followed by local search” option. LGO Rd results are obtained using the

“automatic random sampling followed by local search” option and running

the program 10 times. The data in Tables 5.2 to 5.4 are the best solution of

the 10 runs. The global search termination criteria parameter G_MAXFCT, that

indicates the maximum number of the merit function evaluations allowed

in the global scope search, is set to 2x104. The global search termination

criteria parameter MAX_NOSUC, the maximum number of iterations during

which the current best solution has no improvement, is set to 104. The local

search termination criteria parameter FI_TOL, the tolerance of merit function

improvement, is set to 10−6.

Finally, in the last columns of Tables 5.2 to 5.4, we give the best known

solution reported in the literature [HP71] [FdFRT85] [Wil87] [Nor87].
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It is easy to see that all the three gradient based methods can only locate

the best known solution of the clusters of N = 11, 12 and 13. LGO branch

and bound method can catch the cluster of N = 6 and the random sampling

method can catch the cluster of N = 8. Our approach III located the best

known solution of all the 29 cases.

Approach III may be extensible to solve larger cluster. Due to the limit

of the time, we were not allowed to do exhaustive test on the larger clusters.

The results of Approach IV described on page 67, the DFO based ap-

proach, are listed in Table 5.5. We tested for the cluster of N up to 13 on

IBM RS6000 workstation. As we already know from Section 2.3 that in the

DFO algorithm, the matrix (2.5) may become ill conditioned, while updat-

ing the interpolation point set, thus the linear system (2.4) becomes very

difficult to solve. This has happened when the dimension of the problem

becomes larger. Indeed, for N = 7 (dimension of 21), we have received the

warning message that “matrix is singular to working precision” while solving

the linear system (2.4). However, due to the self-recovering property of the

DFO algorithm, the error may be corrected from iterate to iterate.

Comparing the results of Approach IV in Table 5.5 with the best known

solution reported in the literature listed in Tables 5.2 to 5.4, it can be seen
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N 2 3 4 5 6 7

Energy -1.0000 -3.0000 -6.0000 -9.1039 -12.7121 -16.5054

N 8 9 10 11 12 13

Energy -19.8215 -24.1134 -27.5559 -31.9147 -36.2430 -44.3268

Table 5.5: Results of Approach IV

that the global minima of the clusters of N = 2, . . . , 10 and 13 have been

located. For larger N , the size of the problem limits the use of Approach

IV. This limitation may come from the DFO algorithm. Indeed, for a full

quadratic interpolation, DFO needs (n+1)(n+2)
2

points. For instance, if we con-

sider a cluster of 15 atoms, the dimension of the embedding space (see page

100) would be 45. The number of the points with which we deal is 1081, and

that is the size of the linear system (2.4) to be solved at each iteration. This

is a completely dense system. Thus it needs a lot of memory to store and

manipulate it. Further, its numerical properties deteriorate as the algorithm

progresses. Moreover, the geometry of the quadratic model for higher dimen-

sional problems, especially for non smooth functions such as the LJ potential

energy function is very hard to keep poised while updating the interpolation

point set. A non-poised interpolation point set results numerical problems
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therefore terminate the DFO algorithm.



Chapter 6

Conclusions and Perspectives

In this thesis, a deterministic global optimization approach, that is a combi-

nation of direct search methods with local search algorithms, was introduced

to determine the global minima of the potential energy surfaces of LJ atomic

clusters. Our computational results are presented up to 30 atoms. All the

best known optimal results from the literature have been reproduced.

In many applications, searching for optimal solutions is aided by using

“heuristic” information. In the case of the LJ atomic cluster problem, we

adapt growth (build up) rules [FdFRT85], when searching for the optimal

structure of a larger cluster by adding new atoms to an already optimized

smaller structures.

110
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Two direct search methods have been used in our approaches. The first

is a geometry-based direct search method, the Nelder-Mead simplex method,

that uses a simple function decrease principle. At each iteration, the simplex

is modified so that the simplex can change shape and thereby “adapt itself

to the local landscape” [NM65]. With Approach III on page 66, when the

Nelder-Mead simplex method is enhanced with a build-up initialization pro-

cedure and combined with a BFGS local search procedure, the global optima

of the LJ atomic clusters up to 30 atoms have been located.

The second is a model-based direct search method, called DFO, that uses

the function values to build a convenient quadratic model through interpo-

lation. The main difficulty in practice with this method is that in higher

dimensions, the geometry of the underlying model may deteriorate while up-

dating the interpolation point set, especially if the original function is not

“nice”, not smooth. With Approach IV on page 67, we rediscovered the

global optima of the LJ atomic clusters up to 13 atoms.

The proposed approaches were implemented in MATLAB. We provided a

full implementation of the Nelder-Mead simplex method, as well as the DFO

algorithm. Since our approaches are implemented in MATLAB, memory and

speed of computations limit the size of solvable problems.
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From the results presented in Chapter 5, it is possible to infer that the

combination of direct search methods with local search algorithms in LJ

atomic cluster optimization is successful in locating the global optimum,

avoiding being trapped in local optimum. This approach may lead to very

promising algorithms for molecule geometry optimization. It would be inter-

esting to apply it to other potential minimization problems as well.

As a concluding remark we note that this research intended to propose a

general method capable of discovering all optima in the molecule geometry

optimization. Future computational effort should concentrate on improving

the efficiency of the algorithm and exploring the possibility of parallelizing

energy computations that can be used to solve larger problems.
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