
PRECONDITIONED NEWTON
METHODS FOR SIMULATION OF

RESERVOIRS WITH SURFACE
FACILITIES

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF PETROLEUM ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Thomas James Byer

May 2000

ii

 Copyright 2000

by

Thomas James Byer

All Rights Reserved

iii

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

 Dr. Khalid Aziz (Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

 Dr. Michael Edwards

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

 Dr. Roland Horne

Approved for the University Committee on Graduate Studies:

iv

Abstract

The primary focus of this research is to develop methods for increasing the

computational efficiency of fully coupled implicit reservoir and surface facility problems,

which can utilize both sequential and parallel processing environments. This research also

focuses on the object-oriented design of the application code with the goals of reusability

and extendibility.

Explicit coupling is the most common method for simulation of reservoir flow

with surface facilities. The coupling is through well boundary conditions and involves a

sequentially implicit solve of the facilities and reservoir per timestep. This approach

allows for simple coupling at the expense of material balance errors due to changes in the

pressure and saturation distribution over the timestep.

A standard implicit formulation of the entire system will avoid material balance

errors, however the number of Newton iterations generally increases, adding significantly

to the simulation cost. In either the implicit or explicit formulation the quality of the

initial estimate of the facility solution strongly affects the convergence behavior of the

coupled system.

New methods for accelerating convergence of Newton’s method for the fully

coupled system are developed. In the explicit method the most significant material

balance errors coincide with the transition period defined by the beginning of two-phase

flow in the wellbore. Two new techniques are introduced:

1. An adaptive explicit coupling method is introduced that is designed to

combine the efficiency of explicit coupling with the accuracy of the standard implicit

formulation. The central idea involves switching between fully implicit coupled

reservoir and facilities and explicit coupling depending on the occurrence of phase

transitions at the wells. The switching criteria developed is based on detecting phase

transitions at the wells so that the fully implicit facilities formulation can be employed,

thereby minimizing material balance errors. Outside the transition zone an explicit

v

formulation is employed in order to avoid the more expensive full Newton iteration,

however, this approach cannot completely eliminate the material balance error.

The new adaptive explicit coupling method is limited to problems where phase

transition for all the wells occurs approximately at the same time. If the transition period

for each well is distinct from the other wells, then the efficiency of the adaptive method

reduces to that of the standard implicit method.

2. A new preconditioning method is presented that is designed to accelerate

convergence of the standard implicit facilities formulation. The method can be applied

with implicit and adaptive implicit treatment of the reservoir flow field. Additionally,

when the error levels outside the transition periods are acceptable, the preconditioning

method can be used to accelerate the standard implicit iterations required by the adaptive

explicit facilities formulation. Test results show that the preconditioned method

significantly reduces the cost of standard fully implicit coupling. When the

preconditioned adaptive explicit coupling formulation is employed the cost of the

formulation is very similar to that of explicit coupling, while minimizing material balance

errors.

An analysis of the computational cost for each component of the preconditioning

method shows that facilities Jacobian calculations are the most expensive. Two parallel

models are developed for distributing the Jacobian calculations across multiple

processors. The first model demonstrates excellent efficiency for two processors,

however due to the task assignment algorithm, limited efficiencies are observed for more

than two processors. The second model is designed to overcome the limitations of the

first model and results in good efficiencies for up to six processors.

The complexity of the application code developed for this research demonstrates

the viability of object-oriented methods. Several examples are presented that

demonstrate the reusability of the object model data structure and computational methods.

Additionally, the object and computational model design provide significant insights into

the design of objects and methods required for the new preconditioning technique and

parallel formulations.

vi

Acknowledgments

I would like to express my gratitude and sincere appreciation to Dr. Khalid Aziz and

Michael Edwards for their support, encouragement and guidance through the course of

this study. The appreciation is extended to Dr. Roland Horne for participating on the

reading and examination committees.

I am thankful to the Petroleum Engineering Department and the SUPRI-B research group

at Stanford for the financial support provided throughout this research. I am grateful to

Chevron Petroleum Technology Company for granting me leave to pursue the Ph.D.

program at Stanford.

I would like to express my respect and gratitude to my parents, Leo Rzepiela, brother and

sisters. Many thanks to them all for their support, encouragement and understanding

throughout the years.

For their unwavering patience and love, I dedicate this dissertation to four remarkable

women, my wife Lupe, and daughters Elizabeth, Alice, and Emily.

vii

Contents

Abstract .. iv

Acknowledgments ..vi

Contents...vii

List of Tables...x

List of Figures..xii

1 Introduction ...1

2 Literature Review ..5

2.1 Reservoir Simulation - Adaptive Implicit Methods ...5
2.2 Reservoir Simulation - Domain Decomposition Methods7
2.3 Coupled Reservoir and Facility Modeling ...10

2.3.1 Surface Facility Modeling ..10
2.3.2 Reservoir Facility Coupling ...11

2.4 Object-Oriented Simulator Design...15
2.5 Concluding Remarks ..16

3 Reservoir Model ...18

3.1 Mathematical Model...18
3.1.1 Mass Conservation Equations ..18
3.1.2 Fluid Model ..19
3.1.3 Darcy’s Law ...21
3.1.4 Auxiliary Relationships..21

3.2 Numerical Formulation ..22
3.2.1 Mass Conservation Equations ..22
3.2.2 Finite Difference System..27
3.2.3 Nonlinear Terms...28
3.2.4 Boundary Conditions..29
3.2.5 Well Model...30

3.3 Solution of Nonlinear Problem ..33
3.3.1 Fully Implicit Formulation ...33
3.3.2 Adaptive Implicit Formulation...34

3.4 Concluding Remarks ..35

viii

4 Surface Facility Model ...37

4.1 Pipeflow Model ..38
4.1.1 Single Pseudo-Phase Model for Oil-Gas Flow.......................................38
4.1.2 Slip Model ..40
4.1.3 Calculation of Pressure Drop ...41
4.1.4 Slip Model Example...43

4.2 Choke Model ..45
4.3 Separator Model ...48
4.4 Network Model...50

4.4.1 Network Solution Procedure ..51
4.4.2 Choke Implementation ...55
4.4.3 Separator Implementation ..55

4.5 Model Examples...57
4.5.1 Two Production Wells Operating Under Fixed Choke Settings58
4.5.2 Well Constraint and Gas Cycling...64

4.6 Concluding Remarks ..69

5 Coupled Reservoir and Surface Facility Models..70

5.1 Explicit Facility Coupling ..70
5.2 Standard Implicit Facility Coupling ...73
5.3 Adaptive Explicit Facility Coupling...75
5.4 Preconditioning Method...76

5.4.1 Subdomain Boundary Conditions ..77
5.4.2 Preconditioned Adaptive Implicit Flow Modeling.................................80

5.5 Improving Performance..82
5.5.1 Subdomain Size and Preconditioning Frequency...................................85

5.6 Comparison of Coupled Formulations ...94
5.6.1 Problem 1 - Model Description ..94
5.6.2 Problem 1 - Accuracy of Formulations ..99
5.6.3 Problem 1 - Computational Cost of Formulations101
5.6.4 Problem 2 - Model Description ..107
5.6.5 Problem 2 - Accuracy of Formulations ..111
5.6.6 Problem 2 - Computational Cost of Formulations114

5.7 Concluding Remarks ..119

6 Parallel Formulation ..121

6.1 Parallel Program Design...121
6.1.1 Model Design ...122
6.1.2 Reservoir Domain...125
6.1.3 Facilities Domain ...126
6.1.4 Newton Step Preconditioner...128

6.2 Test Results ..129

ix

6.2.1 Problem Description...129
6.2.2 Performance Results...131

6.3 Concluding Remarks ..140

7 Object-Oriented Design..142

7.1 Object Model..142
7.2 Object Model - Construction..147
7.3 Computational Model...151
7.4 Extendibility and Domain Oriented Reuse...157

7.4.1 Construction of Preconditioner Subdomains..158
7.4.2 Construction of Reservoir Domains for Parallel Formulation160
7.4.3 Parallel Computation of Facilities Jacobian Coefficients162

7.5 Concluding Remarks ..165

8 Conclusions and Recommendations...166

8.1 Conclusions ..166
8.2 Recommendations for Further Study..169

Nomenclature ..172

Bibliography..178

A Simplified Network Solution Method ...185

A.1 Network Solution Method..185
A.2 Analysis of Jacobian Terms..187

B Auxiliary Test Model Data ..189

B.1 Reservoir Fuild and Rock Properties..189

C Variable Preconditioning Strategy...191

C.1 Description ...191
C.2 Sample Data ...195
C.3 Concluding Remarks ..198

D Object-Oriented Concepts ...199

D.1 Object-Oriented Terminology and Concepts..199
D.1.1 Class ...199
D.2.1 Object ...199
D.3.1 Relationship..200
D.4.1 Diagram Notation ...201

D.2 Standard Template Library...201
D.3 Concluding Remarks ..204

x

List of Tables

Table 4.1: Slip Model Problem Data..43

Table 4.2: Basic Network Parameters ..58

Table 4.3: Network Starting Solution − Model 1...59

Table 4.4: Injection Network Parameters − Model 2 ...64

Table 4.5: Injection Network Boundary Conditions − Model 2.......................................65

Table 4.6: Network Starting Solution − Model 2...65

Table 5.1: Reservoir Data – Test Problem 1 ..83

Table 5.2: Surface Facilities Data – Test Problem 1..83

Table 5.3: Major Formulation Components and Definitions ...95

Table 5.4: Reservoir Data –Problem 1 ...96

Table 5.5: Surface Facilities Data –Problem 1...96

Table 5.6: Surface Facilities Data –Problem 1...97

Table 5.7: Performance Data – Nonpreconditioned Formulations – Problem 1101

Table 5.8: Preconditioned Standard Implicit Facilities Performance Data – Problem 1 103

Table 5.9: Performance Data – Adaptive Explicit Facilities Formulation – Problem 1.105

Table 5.10: Comparison of Optimal Preconditioner Configurations – Problem 1.........106

Table 5.11: Reservoir Data – Problem 2 ..107

Table 5.12: Surface Facilities Data – Problem 2..108

Table 5.13: Surface Facilities Data – Problem 2..108

xi

Table 5.14: Performance Data – Nonpreconditioned Formulations – Problem 2114

Table 5.15: Performance Data for Preconditioned Formulations – Problem 2116

Table 5.16: Performance Data for Adaptive Explicit Formulation – Problem 2.............118

Table 5.17: Comparison of Optimal Preconditioner Configurations – Problem 2..........118

Table 6.1: Model Data – Parallel Test Problem ...130

Table 6.2: Model Data – Parallel Test Problem ...130

Table 6.3: Layered Reservoir Decomposition..133

Table 6.4: Preconditioner Decomposition..135

Table 7.1: Construction Process for Reservoir Object Model..149

Table 7.2: Computational Model Class Operations -- Numerical Solution153

Table 7.3: Class Operations - Relative Permeability Computations154

Table B.1: Fluid Properties ..189

Table B.2: Rock and Fluid Data Rock and Fluid Data...189

Table B.3: Oil-Water Relative Permeability Data..190

Table B.4: Oil-Gas Relative Permeability Data ...190

Table C.1: Sample Preconditioning Performance Data..196

xii

List of Figures

Figure 2.1: Domain Decomposition Method developed by Schiozer (1991)................... 13

Figure 3.1: Block Centered Grid in One Dimension.. 24

Figure 3.2: Schematic Representation of a Vertical Well .. 31

Figure 4.1: Pressure Drop Variation with Number of Integration Intervals..................... 42

Figure 4.2: Comparison between Flow with Slip and No Slip... 44

Figure 4.3: Component Pressure Drops in Flow with Slip... 44

Figure 4.4: Gas Holdup Modification in Slip Model ... 45

Figure 4.5: Critical and Subcritical Flow through a Choke.. 46

Figure 4.6: Wellhead Choke Performance ... 47

Figure 4.7: Stage Separation... 49

Figure 4.8: Conceptual Network Layout .. 50

Figure 4.9: Variable Choke for Operating at Constant Rate .. 55

Figure 4.10: Two-Stage Separation for Input to Injection Network................................. 57

Figure 4.11: Network Example with Two Production Wells − Model 1 59

Figure 4.12: Newton Convergence Rate without Scaling Factor – Prod. Wells 60

Figure 4.13: Newton Convergence Rate with Scaling Factor h – Prod. Wells............... 61

Figure 4.14: Newton Convergence Behavior for Junction Node 62

Figure 4.15: Newton Convergence Behavior for Sink Node.. 63

Figure 4.16: Newton Convergence Behavior at Chokes − Run 3 63

Figure 4.17: Facility Example with Production and Injection Network − Model 2 65

Figure 4.18: Newton Convergence Behavior for Choke Diameter 67

Figure 4.19: Newton Convergence Behavior, Pressure Drop Across Choke................... 67

Figure 4.20: Newton Convergence Behavior at Injection Network Junction Node......... 68

Figure 4.21: Newton Convergence Behavior at Gas Injection Node 68

xiii

Figure 5.1: Two-well Production System – Explicit Formulation 71

Figure 5.2: Preconditioning Method (Conceptual Diagram).. 78

Figure 5.3: Flowchart of Preconditioned Newton Method... 81

Figure 5.4: Reservoir and Facilities Configuration - Test Model 1 83

Figure 5.5: Effect of Subdomain Boundary Condition Type on Convergence Rate 84

Figure 5.6: Sensitivity of Newton Convergence Rate to Subdomain Size....................... 86

Figure 5.7: Newton Iteration Difference, , ,
n n

NI t PcSI t SId u u= - , (,
n
t PcSIu , Early PcSI) 89

Figure 5.8: Newton Iteration Difference, , ,
n n

NI t PcSI t SId u u= - , (,
n
t PcSIu , Delayed PcSI) 89

Figure 5.9: Newton Iteration Difference – Early Minus Delayed Preconditioning.......... 91

Figure 5.10: Standard Implicit Iterations Fixed vs. Variable Preconditioning................. 93

Figure 5.11: Preconditioned Iterations Fixed vs. Variable Preconditioning 93

Figure 5.12: Reservoir and Facilities Model - Problem 1 .. 95

Figure 5.13: Variable Choke Performance – Problem 1 .. 98

Figure 5.14: Group Oil Rate Production Profiles – Problem 1 .. 98

Figure 5.15: Well Oil Rate due to Explicit Treatment of Facilities Model.................... 100

Figure 5.16: Oil Rate Error Comparison – Explicit and Adaptive Explicit Methods 100

Figure 5.17: Preconditioned Standard Implicit Convergence Behavior – Problem 1 103

Figure 5.18: Preconditioned Adaptive Explicit Facilities Convergence Behavior......... 105

Figure 5.19: Reservoir and Surface Facilities Layout - Test Problem 2 107

Figure 5.20: Production Profile, Group G2 Well 1 .. 109

Figure 5.21: Group Oil Rate Production Profiles - Test Problem 2 110

Figure 5.22: Oil Rate Error – Explicit Treatment of Facilities Model – Group G1....... 111

Figure 5.23: Oil Rate Error – Explicit Treatment of Facilities Model – Group G2....... 112

Figure 5.24: Oil Rate Error – Explicit Treatment of Facilities Model – Group G3....... 112

Figure 5.25: Oil Rate Error Comparison – Explicit and Adaptive Explicit Methods 113

Figure 5.26: Preconditioned Standard Implicit Performance Data – Problem 2 116

Figure 5.27: Preconditioned Adaptive Explicit Implicit Convergence Behavior........... 117

Figure 6.1: Order Dependence in Network Calculations ... 126

Figure 6.2: Surface Facilities Production Gathering System - Parallel Test Problem.... 129

xiv

Figure 6.3: Absolute Parallel Efficiencies − Global Solution Procedure Components.. 133

Figure 6.4: Absolute Parallel Efficiencies for Preconditioner Components 135

Figure 6.5: Processor Utilization – W-W Model – 2 and 4 CPU Cases......................... 137

Figure 6.6: Relative Parallel Efficiencies – Facilities Domain – M/W Model 139

Figure 6.7: Processor Utilization – M-W Model – 2 and 8 CPU Cases......................... 139

Figure 7.1: Basic Domains of the Object Model.. 143

Figure 7.2: Reservoir Object Diagram ... 144

Figure 7.3: Well Object Model... 146

Figure 7.4: Facilities Object Model.. 146

Figure 7.5: Object Model Construction.. 147

Figure 7.6: Generic Data Storage Class - DataVector.. 149

Figure 7.7: Example of Data Pool Manager for DataVector Objects............................. 149

Figure 7.8: Factory Method for Facility Devices ... 150

Figure 7.9: Computational Model Class Hierarchy - Numerical Solution Methods..... 152

Figure 7.10: Class Hierarchy - Relative Permeability Computations............................. 154

Figure 7.11: Example of Computational Objects for Relative Permeability.................. 154

Figure 7.12: Computational Model - Facilities Classes ... 156

Figure 7.13: Example of Computational Objects for Pipe Device................................. 157

Figure 7.14: Extendibility and Domain Reuse - Preconditioner Construction............... 159

Figure 7.15: Parallel Input and Object Model Construction Methods 161

Figure 7.16: Process Management for Parallel Facilities Jacobian Calculations........... 163

Figure A.1: Example Network ... 185

Figure C.1: Preconditioning Frequency Strategy ... 192

Figure D.1: Class Diagram Notations .. 201

1

Chapter 1

Introduction

Reservoir simulation is perhaps the primary tool used for field development planning.

Full field models assist in determining long term operating strategies and pattern models

are used to study sweep efficiencies of various enhanced oil recovery processes. Detailed

well models allow for investigation of optimal well orientation and assessment of

individual well performance. The surface facility model is used to determine the

operational requirements for the collection and processing of produced or injected fluids.

In many fields the well performance and reservoir development are strongly influenced by

the surface facility. Coupled reservoir and facility simulation allows for investigation of

the combined system. The current economic environment requires better selection of

which properties to develop and more precise development plans for existing properties.

This increased focus on asset management coupled with the availability of high

performance computing resources has elevated the need for extensible modeling tools and

has expanded the scope of simulation.

At the reservoir level fine scale geological descriptions are generated from

geostatistical programs. To assess uncertainty, several equiprobable realizations of

reservoir properties are generated and used in flow simulators. The fine scale

descriptions produce simulation models that are more intensive computationally to solve.

The fine scale descriptions result in discretized models where the number of cells is on

the order 510 and higher. The standard first order fully implicit formulation of the

reservoir flow equations is unconditionally stable, however this method can have

CHAPTER 1. INTRODUCTION 2

significant computational and memory requirements. Parallel solution methods have

been constructed which seek to obtain scalability and distribute the memory load across

several processing units. Other strategies based on the structure of the flow equations

have been designed to reduce computational effort through reduced implicitness. Most

notable are the implicit pressure explicit saturation (IMPES) and adaptive implicit

formulations.

Field development planning may be influenced more strongly by surface facilities

than by reservoir characteristics. The available separation capacity can limit field

production or injection. Separation units are designed to operate within a specified range

of pressures and temperatures and proper assignment of wells to low or high-pressure

separation units can maximize the total production. The separated water or gas may be

used for injection programs that are constrained by available pump or compression

horsepower. Integrated reservoir and surface facility models can capture these different

scenarios to provide more reliable forecasts. Additionally, the facility model can also

provide a tool for evaluating different gathering system options and for designing future

development of injection or production schedules.

A common calculation approach for coupling the reservoir with surface facilities

is to generate boundary conditions for the wells from an explicit treatment of the facility

model. This approach allows for simple coupling at the expense of material balance

errors due to changes in the pressure and saturation distribution over the timestep.

Additionally, introduction of new wells into the production or injection system may

require several iterations between the facility and reservoir model to resolve the new

pressure and rate distributions adequately over a timestep.

A fully implicit formulation of the entire system will avoid material balance

errors, however the number of Newton iterations per timestep can increase. In either

formulation the quality of the initial estimate for the facility solution strongly affects the

convergence behavior of the coupled system.

Associated with the requirements of comprehensive modeling tools is an

increased complexity of simulation codes. Traditional structured programming languages

such as Fortran do not provide enough constructs and data modeling flexibility to allow

CHAPTER 1. INTRODUCTION 3

for an easily extensible code design. While the introduction of derived types in the

Fortran 90 language has significantly enhanced data modeling capability, application of

other object-orientated principles, such as inheritance, is limited. The strengths of these

languages are in their ability to provide highly optimized code for developing efficient

numerical algorithms.

Parallel computation potentially can reduce the computation time of simulation

codes by a factor that is proportional to the number of processing nodes, however code

development is more complex. The options available to incorporate parallel computing

technology into simulation codes are driven primarily by whether the computing

environment employs distributed or shared memory architecture.

The distributed memory architecture is defined by a set of computing nodes, with

each node having local memory and instruction stream independent of the other nodes.

Data and messages are exchanged via network connections or high performance switches.

Since each node’s local memory cannot directly access another node’s local memory,

parallelism is obtained by employing message passing libraries to distribute data and the

computational tasks. In this context the developer is responsible for managing the

parallel content of the algorithm. Many of the numerical algorithms that employ some

form of domain decomposition have natural mappings to a distributed environment.

 The shared memory architecture provides parallelism through multithreaded

programming. In this context the same global address space is available to all the

computing nodes through a common memory bus. A manager process with access to

global memory space controls program execution and parallelism is achieved by

spawning subprocesses that inherit part or all of the manager’s address space. Since no

explicit message passing functionality is required, application development is generally

easier than in a distributed memory environment. The main benefit of this architecture is

the high rate of data communication between processors. However, for problems with

large memory requirements such as reservoir simulation, a common memory bus restricts

individual node performance and hence total system scalability.

Both of these approaches can benefit from designing an application based on

object-oriented techniques. For example, in a distributed memory environment,

CHAPTER 1. INTRODUCTION 4

standardized objects for parallel vectors and matrices can be constructed to provide high

level matrix vector operations and mask the low level functionality of message passing

libraries. Similarly, in a shared memory environment standardized objects which manage

processes, yet are independent of the specific task assigned to the process, can be

designed to obtain a common mechanism for achieving and extending parallelism.

Chapter 2 provides a literature review of the relevant research in these areas and

concludes with the focus of this dissertation. Chapters 3 and 4 present the physical and

numerical models used in this research. Chapter 5 presents a new coupling and

preconditioning method for solving reservoir and facility models. Chapter 6 extends this

method to a parallel environment and Chapter 7 presents the object-oriented design used

to develop the simulator used in this research. Conclusions and future areas of research

are presented in Chapter 8.

5

Chapter 2

Literature Review

In this chapter the relevant works from the fields of reservoir and facility modeling are

discussed. A more complete description of reservoir simulation topics can be found in

Aziz and Settari (1979) or Peaceman (1977). Similarly for facility modeling, Jeppson

(1977) provides a detailed analysis of network simulation and Govier and Aziz (1972)

provide a detailed analysis of the flow of complex mixtures in pipes.

2.1 Reservoir Simulation - Adaptive Implicit Methods

Reservoir simulation involves the application of numerical methods to solve a system of

conservation laws that describe flow in a porous medium. For a black oil isothermal

formulation the independent variables are represented in terms of pressure and saturation.

Several authors (Aziz and Settari, 1979, Peaceman, 1977, Bell et al., 1986) have studied

the structure of these equations. They have shown that: (1) the pressure equation is

essentially parabolic or elliptic and must be treated implicitly and (2) the saturation

equations are essentially hyperbolic and both explicit and implicit schemes are applicable.

Modeling displacement processes with a fully implicit formulation allows for

large timesteps (unconditional stability) at the cost of inverting a fully implicit Jacobian.

For large timesteps a standard first order fully implicit formulation can lead to significant

smearing of the saturation profile and has a fully implicit Jacobian matrix to invert for

each Newton iteration. IMPES (implicit pressure explicit saturation) schemes avoid the

cost of full Jacobian matrix inversion (and even have a smaller truncation error

CHAPTER 2. LITERATURE REVIEW 6

coefficient compared to implicit schemes), however they are accompanied by a timestep

restriction.

For example, in one dimension it is well known that stability of the single point

upstream weighting scheme is governed by the condition

1
x

v
t

D �
D

(2.1)

where v is the fluid velocity, xD is the distance along the x-direction, and tD is the time

interval. This inequality is equivalent to the well-known Courant-Friedrichs-Lewy

(Richtmyer, 1957) condition for hyperbolic equations. For smaller timesteps with CFL

below unity, an IMPES formulation is more efficient than a fully implicit formulation.

However, the timestep size reduces with increasing velocity and decreasing mesh size, as

can be seen from Eq. 2.1. Domains containing wells and high permeability streaks are

classical examples where high velocities are obtained. Such cases can severely limit the

timestep for an IMPES method, particularly for smaller mesh size.

Adaptive implicit methods have been developed that allow for an implicit

formulation to be retained locally in high velocity regions, thereby removing the local

timestep limitation, while the scheme is explicit (i.e. IMPES) elsewhere, so as to reduce

total computational cost.

The fully implicit formulation involves calculation of the flux at the new time

level 1n + while IMPES calculates pressure implicitly at time level 1n + and calculates

transmissibility explicitly at time level n. The adaptive implicit formulation involves

switching between the time levels of the respective fully implicit and IMPES

formulations according to the local CFL condition. At the cell interface between implicit

and explicit cells the phase transmissibility must be defined to ensure stability and

maintain local conservation (this is further discussed in Section 3.3.2).

Several methods have been proposed to determine the level of implicitness in the

formulation. The earliest approach by Thomas et al. (1983) was based on criteria derived

empirically depending upon maximum changes in the primary variables. If the saturation

or pressure change in an explicit grid cell exceeds a predefined tolerance the saturation

CHAPTER 2. LITERATURE REVIEW 7

variable is treated implicitly. Forsyth and Sammon (1986) presented cases where this

tolerance is not sufficient for stability. Subsequent approaches have been based on the

CFL condition for stability, see Fung et al. (1989), Russell et al. (1989), Grabenstetter et

al. (1991). The approaches differ in the method for computing the characteristic velocity.

Chien and Northrup (1993) present an adaptive implicit method that allows for

static implicit or explicit regions coupled with dynamic local grid refinement. The

adaptive implicit formulation is obtained by allowing refined regions to change in time

and by specifying the region as either implicit or IMPES.

2.2 Reservoir Simulation - Domain Decomposition Methods

The aim of a decomposition technique is to subdivide a problem into a set of smaller

problems that are easier to solve. Decomposition techniques have been employed in a

variety of contexts for solving linear and nonlinear systems of equations (Smith et al.

1996, Killough and Wheeler, 1997). When the governing equations or geometry define

logical boundaries in the global problem, domain decomposition provides formalism for

defining solution domains and treatment of domain boundary conditions. In the context of

nonlinear problems, the domains are solved via Newton’s method, providing updated

boundary conditions to neighboring domains.

Domain decomposition methods have an important role in the solution of

simulation models. The complexity of reservoir models requires efficient methods to

capture important flow behavior and to solve large systems of linear equations. Local grid

refinement (LGR) methods are designed to provide accurate resolution of high flow

gradients such as near well coning problems and capturing steep saturation fronts.

Decomposition techniques applied at the matrix or physical level are commonly used in

LGR formulations and are outlined below.

Wasserman (1987) developed a local grid refinement formulation that used the

refined region to define a matrix decomposition of the Jacobian for the global coarse and

fine grid problem. The coarse cell components are ordered first, followed by the fine cell

components, thus maintaining a banded structure in matrix domains defined by the coarse

CHAPTER 2. LITERATURE REVIEW 8

and fine grid regions. The Schur matrix method (Golub and Ortega, 1993) is employed

to solve the linear system and is constructed by applying a block Gaussian elimination to

the coupled fine and coarse grid system. For example, if Af and Ac represent the fine to

fine and coarse to coarse grid Jacobian coefficients, respectively, the coupled matrix is

defined by

f fc f f

cf c c c

A A X R
A A X R

Ñ á Ñ áÑ á
=Ò â Ò âÒ â

Ó ã Ó ã Ó ã

r r
r r (2.2)

where fcA and cfA represents coupling terms between coarse and fine regions, and the

Schur system is given by

1ˆ
f f fc c cAX R A A R-= -

r r
(2.3)

where $A is called the Schur complement or capacitance matrix and is defined by

1ˆ
f fc c cfA A A A A-= - (2.4)

A similar system is constructed for the coarse grid. The coupling of the coarse and fine

grids is based on extending the fine grid lines into the coarse grid and generating

pseudocells with interpolated pressures and assigned saturations. The fine grid system is

solved first subject to Dirichlet boundary conditions imposed on the pseudo cells. The

coarse grid solution is obtained by back-substituting the fine grid solutions and solving

the Schur system. The fine grid solution is updated using the new coarse grid solution.

Through the application of structured linear equation solvers, domain decomposition at

the matrix level allows for efficient solution of the combined system when compared to

solving the fully coupled model where the banded structure is destroyed.

Methods have been designed to accelerate convergence of the linear solve by

considering the coupling between the coarse and fine grid regions, in addition to the

matrix structure properties. The basis for these approaches is the BEPS method

developed by Bramble et al. (1988). A composite grid is created by superimposing the

refined region onto coarse pseudocells that are aligned with the global coarse grid. The

composite grid defines a coarse grid problem that is used to accelerate convergence of the

CHAPTER 2. LITERATURE REVIEW 9

fine grid problem. Wallis et al. (1993) used an algebraic approach to compute the

Jacobian matrix coefficients for the pseudocells and demonstrated that in highly

heterogeneous models the flow directions should be considered when constructing the

matrix. Chien et al. (1993) present a LGR method that uses a similar coarsening

technique to that of Wallis. As in the approach by Wasserman (1987), Schur complement

methods can be applied to provide high-level matrix decomposition of the composite

system.

Nacul (1991) applied domain decomposition at the reservoir level as an alternate

approach to solving LGR models. Dirichlet and/or Neumann boundary conditions are

specified at the domain interfaces. The solution technique consists of global iteration,

which requires separate solution of each nonlinear problem defined by the coarse and

refined regions, and then updating domain boundary conditions and checking for

convergence. If convergence is not obtained, the domain problems are resolved with the

updated boundary conditions. For the models tested the fixed pressure condition at the

boundaries yielded more favorable results than the fixed rate condition when compared

with respect to CPU time. The application of a preconditioner in the form of an IMPES

solve on the coarse grid improved coarse-to-fine grid boundary conditions and indicated

significant performance improvements in terms of reduced number of global iterations.

The merit of the reservoir level decomposition employed cannot be completely

evaluated due to the linear solution technique used in Newton’s method. A direct solver

was employed which requires O n()3 operations and therefore would severely influence

the CPU timings. In this scenario domain decomposition of any form has the possibility

to reduce the computational requirements. Additionally, no comparisons with the BEPS

method were presented.

Deimbacher et al. (1995) introduced a windowing technique for dynamic grid

selection and placement. The objective is to locally apply gridding schemes in regions

where increased accuracy is required. The base grid is always defined in Cartesian

coordinates and the windowing regions are placed on the base grid as required.

Neumann boundary conditions are used at the window interfaces and are fixed throughout

the timestep. A global timestep size is selected and local timesteps are applied within the

CHAPTER 2. LITERATURE REVIEW 10

regions. A well coning example demonstrated the increased accuracy and efficiency of

the windowing technique compared to traditional gridding techniques with global

timesteps.

 Similar to the LGR methods, domain decomposition techniques can be applied at

the linear solve or reservoir level and are designed to exploit parallelism. The trend

towards incorporating more geologic features into the simulation model through

geostatistical methods has resulted in problems whose memory requirements exceed that

usually available on a single workstation. Currently most research is focused on matrix

level approaches where scalable formulations have been reported, for example, see Wallis

et al. (1991), or Chien et al. (1997). The windowing technique presented by

Deimbacher et al. (1995) may be suited for parallelism where local timesteps in each

window may be performed concurrently. However no results have been presented that

demonstrate the performance of this type of approach.

2.3 Coupled Reservoir and Facility Modeling

The mathematical model for an integrated system requires that the boundary conditions

be specified via the surface facility. Typically this is at the low- or high-pressure

separator, or at a source/sink node. Methods for coupled models have been developed

that combine the individual algorithms with varying degrees of implicitness. This section

begins with a brief review of the traditional method for solving surface facility problems.

The methods for reservoir and surface facility coupling are then presented.

2.3.1 Surface Facility Modeling

The evaluation of facility models has evolved from research performed on the

fundamental problem of water distribution systems, (Shamir et al., 1968). The water

distribution network consists of pipes, pumps, valves and a set of nodes representing the

intersection of pipes. The flows and pressure drops in the network are defined by

nonlinear equations arising from analytical or experimental relationships. The method

used for solving the facility system depends on whether closed loops are allowed in the

CHAPTER 2. LITERATURE REVIEW 11

network structure, which are common features in gas or water gathering and distribution

systems. This research is focused on surface facility configurations that arise in oilfield

production and injection systems and therefore solution methods for closed loop systems

will not be considered. The interested reader is referred to Wood et al. (1972), or

Mucharam et al. (1990) for a discussion of closed loop systems.

Startzman et al. (1987) presented two methods for computing steady state

pressures and rates in a single-phase surface facility problem. The facility problem is first

defined in terms of node and node connecting elements. A node represents a source, sink

or a junction, and a node connecting element represents a flow element, such as a pipe or

valve. The node connecting elements contribute to pressure change between two solution

nodes and are not specified as solution nodes. The first method presented is a sequential

technique that begins at nodes with specified boundary conditions. Unknowns at adjacent

nodes are solved successively using the most recent solution estimate for the neighboring

nodes. A solution estimate is obtained for every node in the network and the process is

repeated until convergence. The second approach applies volumetric balances in residual

form at each node. The residual equations are expanded in terms of the functional

dependencies of the neighboring nodes and Newton’s method is applied to the system of

equations. A test problem with 73 solution nodes showed that the sequential method

solved the problem about 20 times faster than the Newton’s iterative method. Not enough

data were presented to determine the source of the large difference.

2.3.2 Reservoir Facility Coupling

Most of the current methods for coupled reservoir and surface facility problems have

basic components that can be traced to the approach presented by Emanuel et al. (1981).

The formulation is based on an explicit coupling of the facility model and implicit

treatment of the reservoir model. This is known to introduce material balance errors.

The facility model is coupled to the reservoir model through the well equation. The well

boundary condition is based on facility constraints and beginning of timestep reservoir

conditions. Chapter 5 presents a detailed discussion of this formulation.

CHAPTER 2. LITERATURE REVIEW 12

Schiozer (1994) studied solution methods for coupled reservoir and facilities

models in three parts, reservoir, surface facilities, and the coupling between the systems.

Within the reservoir model local grid refinement is used to improve the accuracy of near

wellbore behavior and domain decomposition applied at the reservoir level, is used to

improve the efficiency of LGR. The LGR and domain decomposition implementation

was developed by Nacul (1991) and issues of the efficiency of the domain decomposition

formulation were not investigated.

The facility model employed by Schiozer allowed for multiphase flow in pipe and

choke specification. The equations describing the network problem are reduced to one

equation per well to simplify implementation. The network reduction method is presented

in Appendix A and it is shown that the derivative terms in the linearized reduced

equations are not valid for multiphase flow and may result in convergence problems.

In Schiozer’s work the solution of the coupled system was investigated using four

methods. The first two methods investigated were the traditional explicit and increased

implicit treatment of the facilities model and are fully described in Chapter 5. The

explicit approach resulted in considerable material balance errors when chokes are

present in the system. In the second method the boundary conditions are updated at every

Newton iteration and result in a fully implicit solution. The material balance errors are

eliminated, but at the expense of increased computing time versus the explicit

formulation.

The third method can be viewed in terms of domain decomposition. The reservoir

and facility are separate domains, and domain boundaries are at the completed well

blocks. To achieve a better quality solution in the facility domain, the third approach

placed the boundary conditions further into the reservoir, creating well subdomains. The

method results in a fully implicit solution as shown in Fig 2.1. The final method

examined was a standard fully implicit formulation at the matrix level of the entire

system.

Schiozer used three test problems to compare the performance of the domain

decomposition and standard fully implicit method. The base comparison for each is the

CHAPTER 2. LITERATURE REVIEW 13

SURFACE FACILITIES
CALCULATIONS

BHP / WELL RATES

No

No

RESERVOIR
DOMAINS

NEXT TIMESTEP

WELL SUBDOMAINS

SURFACE /WELL
CONVERGENCE

WELL/RESERVOIR
CONVERGENCE

B.C.

Figure 2.1: Domain Decomposition Method developed by Schiozer (1991)

CHAPTER 2. LITERATURE REVIEW 14

CPU time of explicit method, however a more appropriate baseline is the CPU time of the

standard implicit formulation. The first problem contained only one well in the facility

model. The results show that the standard implicit method requires approximately the

same CPU time as the explicit method, but the domain decomposition method required

80% more time than the explicit method. The second and third problems contained four

wells in the facility model, and third problem also included chokes. For these two

problems the standard implicit method required 30-40% more CPU time than the explicit

method, but 30-50% less time than the domain decomposition method. Thus, it was

demonstrated that the most efficient method is simply a standard implicit formulation. It

was suggested that as the complexity of the facilities model increased, the performance of

the standard implicit method would degrade and the domain decomposition approach

would become more efficient, however this was not demonstrated.

Litvak et al. (1997) presented results of an integrated study of the Prudhoe Bay

surface pipeline network and reservoir. In their approach the integrated model consisted

of several modules. The reservoir module is a compositional simulator. The well tubing

string and surface pipeline network modules are used to evaluate well performance. The

fluid separation module uses a compositional formulation and allows for complex

separation configurations. Several other modules were implemented to determine

assignment of voidage replacement and miscible injection schedules. The paper did not

present a detailed description of the solution algorithm, but the rigorous treatment of the

separation module and heuristic nature of injection schedules, suggests that the modules

are solved independently with boundary condition updates from the connecting modules.

Hepguler et al. (1997) presented results that focus on implementation in a parallel

processing environment. Their model used explicit couplings of commercial reservoir

and network simulators where each simulator used a separate processor. The paper

presented no new results related to numerical procedures and did not address load-

balancing issues that are critical for the evaluation of any parallel implementation.

CHAPTER 2. LITERATURE REVIEW 15

2.4 Object-Oriented Simulator Design

The primary objective of object-oriented modeling is to describe and specify a system that

leads to a high quality software program. A quality software program has major features

of correctness, reliability, and extendibility as described by Meyer (1988).

The application of object-oriented design (OOD) methods in reservoir and surface

facility modeling has been explored only recently by industry and academia. The high

cost of developing an application framework using an OOD paradigm has positioned the

technology as proprietary within industry and the only published designs have been

available through universities.

Nogaret (1996) developed a three-phase black oil simulator, SPARTA, based on a

connection based approach presented by Lim et al. (1995) where the problem domain is

defined in terms of a network of nodes and connections. This approach focuses on

generation of the Jacobian and residual terms through looping over connections based on

the flux definition. The base connection class defined virtual methods whose actual

implementation is defined by derived classes and whose instantiation is through dynamic

runtime binding. The derived classes defined the type of connection statically in terms of

the phases present on each end of the connection and by the type of connection, reservoir

to reservoir, or reservoir to facility. An analogous class hierarchy is defined for the

transmissibility, well model, and pipe flow objects. It was shown that by abstracting the

low-level functionality required for generating and assembling Jacobian terms, new types

of connections can be easily implemented.

Verma (1996) developed a two-phase reservoir simulator, FLEX, for research on

flexible gridding schemes. Connection based concepts were extended to accommodate

multipoint flux schemes. The class hierarchy is based strongly on intercomponent

relationships, “is a”, and intracomponent, “has a”, as defined by Booch (1994). The “is

a” relationship implies inheritance while the “has a” relationship implies encapsulation.

For example, since a sparse matrix is a type of matrix, the sparse matrix class is derived

from the base matrix class, and since a reservoir has reserves, the Reservoir object

encapsulates a Reserves object. The entire simulation problem is decomposed into the

CHAPTER 2. LITERATURE REVIEW 16

most elementary level based on these intracomponent and intercomponent relationships.

By decomposing the complex system into smaller systems, common mechanisms are

reused which allows for new functionality to be easily implemented. This feature was

quite evident due to the variety of gridding schemes investigated by Verma.

Parashar et al. (1997) developed a compositional reservoir simulator based on an

object-oriented framework. The problem-solving environment is divided into three main

functions: 1) application development interface for model and algorithm definition, 2)

visualization, 3) input and output. Each of these systems has access to lower level

components and modules such as linear solvers and interpolation routines. The

components and modules utilize low-level methods through an application specific

semantics. The lowest level is the Hierarchical Distributed Dynamic Array which

provides basic data management infrastructure for sequential and parallel data. These

low-level tasks are encapsulated in programming abstractions for use by the components

and modules. The decomposition and abstraction of the simulation components reduced

the program complexity and enabled development of a flexible and parallel reservoir

simulator.

2.5 Concluding Remarks

The literature review leads to the following observations:

• A variety of techniques can be used to solve coupled reservoir and surface facility

models. However, no method has been shown to be universally applicable.

Thus far the fully implicit formulation appears to be more efficient than the

current domain decomposition formulations.

• The network reduction method is not applicable to multiphase flow in pipe and

can result in convergence problems.

• Only one method has been presented for solving coupled reservoir and surface

facility problems in parallel mode. The method relies on an explicit coupling of

CHAPTER 2. LITERATURE REVIEW 17

the reservoir and facility models, and issues concerning scalability are not

addressed.

• The object-oriented design used by Nogarat (1996) achieved a high level of

abstraction by defining the problem domain in terms of nodes and connections.

However, the static encoding of functionality in connection classes resulted in

several classes that were nearly identical.

• The object-oriented design used by Verma (1996) was influenced strongly by the

class relationships which lead to a logically organized yet overly complicated

design. Numerous levels of nested component objects were used to construct and

define composite objects and resulted in a composite object design with a high

degree of internal object coupling that is difficult to understand without an in-

depth knowledge of the entire class structure.

In this dissertation, methods designed to increase the computational efficiency of

implicitly coupled reservoir and surface facility problems are described. The facility and

reservoir models used in the coupled formulation are presented first. Then new coupling

and preconditioning methods are presented. The new coupling method reduces the

material balance errors associated with the explicit coupling. The preconditioning

method is shown to accelerate convergence of fully implicit iterations and is developed

for sequential and parallel modes. Additionally, this research presents object-oriented

techniques that contain a strong computer science component and which provide an

alternate characterization of the role of object-oriented technology applied to simulation

problems when compared to the approaches described previously.

18

Chapter 3

Reservoir Model

This chapter presents the mathematical model, numerical formulation and solution

methods used in the reservoir simulator developed for this research. The mathematical

model describes the nonlinear partial differential equations governing multiphase flow in

porous media. The numerical formulation describes the spatial and temporal operators

employed for discretization. Newton’s method forms an integral component of the

solution strategy when employing fully implicit and adaptive implicit formulations of the

highly nonlinear conservation equations.

3.1 Mathematical Model

Four basic principles are used to derive the mathematical model of flow in porous media:

(1) conservation of mass, (2) conservation of energy, (3) fluid velocity relationships, and

(4) an equation of state that relates pressure to density and temperature. This section

provides a review of these principles and simplifications applied in the model. The

conservation of energy in not discussed since only isothermal problems are considered.

3.1.1 Mass Conservation Equations

Mass conservation equations are required to model the simultaneous flow of distinct

phases that may have variable composition in the porous medium. The conservation

equations for c nc= 1,..., components and stationary control volume V, are derived from

the mass continuity equation defined by

CHAPTER 3. RESERVOIR MODEL 19

1 1 1

p p pn n n

cp p p cp p p cpV S V
p p p

x S dV x v n dS M dV
t

r f r
= = =

� = - ¿ -
� Í Í ÍÚ Ú Úr r %¹ (3.1)

where np is the number of phases, xcp is the mass fraction of component c in phase p, ρ p

is the phase density, pS is the phase saturation, and φ is the porosity. The left-hand side

term represents the time rate of change of mass in the volume. The second term

represents the net mass flow rate out of the control volume with the velocity vector pv
r

normal to the surface area S. Mass transfer due to diffusion and dispersion is omitted.

The last term represents the change in mass within the volume due to injection where

cpM% is defined as the mass injection rate per unit volume. A similar term but with

opposite sign is used to represent change in mass due to production.

Application of the Gauss divergence theorem allows Eq. 3.1 to be expressed as

1 1 1

p p pn n n

cp p p cp p p cpV V V
p p p

x S dV x v dV M dV
t

r f r
= = =

� = - -
� Í Í ÍÚ Ú Úr % (3.2)

The control volume is assumed to be arbitrary and the integrands can be set to zero to

obtain the differential form

()
1 1 1

p p pn n n

cp p p cp p p cp
p p p

x S x v M
t

r f r
= = =

� = - ¹¿ -
� Í Í Ír % (3.3)

Evaluation of the full flow field requires application of Eq. 3.3 for each

component in the system. This results in nc component equations for each control

volume. The following section presents the fluid model and basic assumptions regarding

phase behavior.

3.1.2 Fluid Model

The characterization of reservoir fluids has a direct impact on the mathematical

formulation of the reservoir model. Compositional fluid characterization requires

component and energy balance equations coupled with fugacity relationships to determine

phase equilibrium conditions. In this work a two component hydrocarbon system with

CHAPTER 3. RESERVOIR MODEL 20

an aqueous phase is studied and is commonly known as the black-oil model. The phase

equilibrium relationships are simplified by assuming no mass transfer between the

aqueous and hydrocarbon phases. The relationships between the compositional and

black-oil fluid properties are developed in Aziz et al. (1995). The mass fraction and

phase density at equilibrium conditions are given as

*
cpc

cp
p p

R
x

B

r
r

= (3.4)

*

1

1 cn

p c cp
cp

R
B

r r
=

= Í (3.5)

where *
cr is the density of component c at standard conditions, Bp is the formation

volume factor, and Rcp is the solubility of component c in phase p. Substituting these

relationships into Eq. 3.3 leads to

*
1 1 1

1p p pn n n
cp cp

p p cp
p p pp p c

R R
S v M

t B B
f

r
= = =

Î Þ Î Þ� = - ¹¿ -Ï ß Ï ß� Ð à Ð à
Í Í Ír % (3.6)

Note that Eq. 3.6 is a mass balance at standard conditions and is applied to the oil,

gas, and water components. The black-oil formulation implemented for this research

does not allow water solubility and the oil component in the oil phase is not allowed to

vaporize into the gas phase, therefore solubility restrictions reduce to

0ow gw ogR R R= = = (3.7)

In this formulation the gas conservation equation contains a solution-gas

component contained in the oil phase and a free gas component contained in the gas

phase. The rate of mass transfer between the phases is defined by the gas solubility in oil,

Rgo .

CHAPTER 3. RESERVOIR MODEL 21

3.1.3 Darcy’s Law

The conservation equation requires evaluation of the fluid velocity for each phase.

Darcy’s law provides an empirical relationship between the potential gradient and fluid

velocity. For multiphase flow the generalized Darcy’s law is used to account for the

relative permeability each phase and is expressed by

()rp
p p p

p

kk
v p g Dr

m
= - ¹ + ¹r

(3.8)

where k is assumed to be diagonal permeability tensor, full permeability tensors are not

considered in this work, krp is the relative permeability of phase p computed from the

normalized form (Aziz and Settari, 1979) of the Stone II model (Stone, 1973), m p is the

phase viscosity, and D is the vertical depth. Combining Eqs. 3.3 and 3.8 yields

() ()
1 1 1

p p pn n n
rp

cp p p cp p p p cp
p p pp

kk
x S x p g D M

t
r f r r

m
= = =

Î Þ� = ¹ ¿ ¹ + ¹ -Ï ß� Ð à
Í Í Í % (3.9)

3.1.4 Auxiliary Relationships

This section presents the constraints required to complete the flow description. The

constraint equations specify equilibrium conditions for phase compositions, volumes, and

pressures within the control volume. For composition this is expressed by

1

1
cn

cp
c

x
=

=Í (3.10)

The volume constraint in the black-oil formulation is expressed in terms of saturation by

1

1
pn

p
p

S
=

=Í (3.11)

The pressure relationships in a three-phase system are

cow o wP p p= - (3.12)

CHAPTER 3. RESERVOIR MODEL 22

and

cgo g oP p p= - (3.13)

where cowP and cgoP are the oil-water and gas-oil capillary pressures which are assumed

to be functions of water and gas saturations, respectively.

In this work the initial equilibrium conditions within the reservoir are assumed

defined in the model input. A complete description of initialization procedures used for

reservoir simulation is presented in Palagi (1992).

3.2 Numerical Formulation

This section presents the numerical formulation of the nonlinear system of partial

differential equations presented previously. The system cannot be solved exactly and

approximate techniques must be applied. In this research the locally conservative finite

volume method was applied on Cartesian grids. The type of temporal approximation for

saturation derivatives leads to implicit, explicit finite difference equations (IMPES) or an

adaptive implicit formulation (Forsyth and Sammon, 1986). The discretized equations

are linearized using a truncated Taylor series expansion and the resulting system of

equations is solved using Newton’s method.

3.2.1 Mass Conservation Equations

The discrete approximation of the mass conservation equations is presented in this

section. The conservation equations contain second order partial derivatives of pressure

and first order partial derivatives in time that are approximated by finite differences. The

pressure, fluid and rock properties in the grid block are defined at the cell center while

flux terms are assigned properties at block boundaries and therefore require

approximations based on the properties of the surrounding blocks. The treatment of

boundary conditions is described in Section 3.2.4.

CHAPTER 3. RESERVOIR MODEL 23

Flow Terms

The flow component in Eq. 3.9 represents the mass flux rate per unit volume.

Considering flow only in the x-direction for a cell located at grid indices ijk and assuming

no sources or sinks, Eq. 3.9 reduces to

()
1 1

p pn n
p

ijk cp p p x p ijk
p p ijk

p D
V x S g x

t x x x
r f z r

= =

Î Þ�Î Þ� � �¿ = + DÏ ßÏ ß� � � �Ð àÐ à
Í Í (3.14)

xk x rp
x cp p

p

A k
xz r

m
= (3.15)

where ijkV is the cell bulk volume and xA y z= D D . To simplify further notation the

phase potential is defined as

p p pp gDrF = + (3.16)

with spatial derivative defined as

p p
p

p D
g

x x x
r

�F � �¢ +
� � �

(3.17)

For an arbitrary phase p, the right-hand side of Eq. 3.14 can be expressed as

p
ijk x ijk

ijk ijk

f
x x

x x x
z

�FÎ Þ� �Î Þ D = DÏ ß Ï ßÐ à� � �Ð à
(3.18)

where f represents the Darcy velocity and

p
xf

x
z

�F
=

�
(3.19)

The divergence of the Darcy velocity is approximated with the discrete divergence

operator, which for the one-dimensional Cartesian system shown in Fig. 3.1, is defined by

the central difference operator

CHAPTER 3. RESERVOIR MODEL 24

 1 2, , 1 2, ,i j k i j k

ijk ijk

f ff

x x
+ -

-DÎ Þ =Ï ßÐ àD D
(3.20)

where f is evaluated at the cell boundaries:

 1 2, , , 1 2, ,

1 2, ,

p
i j k x i j k

i j k

f
x

z
� �

�

DFÎ Þ
= Ï ßDÐ à

(3.21)

The pressure gradient components are approximated by the central difference

operator to obtain

, , 1, ,

1 2, , 1 2, ,

i j k i j k

i j k i j kx x
-

- -

F -FDFÎ Þ =Ï ßÐ àD D
(3.22)

where F is evaluated at the cell centers. A similar expression is defined for the

1 2, ,i j k+ cell face.

xi j k-1, , xi j k, , xi j k+1, ,

Dx
i j k-

1
2, ,

Dx
i j k+

1
2, ,

Dxi j k, ,

x
i j k-

1
2, ,

x
i j k+

1
2, ,

i j k-1, ,1 6 i j k, ,1 6 i j k+1, ,1 6

Figure 3.1: Block Centered Grid in One Dimension

Assuming uniform cell dimensions, application of these operators yields a second

order accurate finite difference approximation for both the divergence of the Darcy

velocity and pressure gradient components. The truncation error of the central difference

approximation resulting from Eqs. 3.19-3.22 reduces from ()2O xD to ()O xD for

CHAPTER 3. RESERVOIR MODEL 25

nonuniform grid spacing. Forsyth and Sammon (1988) demonstrated that for nonuniform

grid spacing the cell centered approximation is convergent.

Utilizing Eqs. 3.18 through 3.22 allows the right-hand side of Eq. 3.18 to be

approximated by

() () () () ()1, , , , , , 1, ,1 2, , 1 2, ,x x x p x i j k i j k x i j k i j ki j k i j kijk p p
x x x

+ -+ -
D D F ¢ F -F - F -F (3.23)

where

x
x x

zx =
D

(3.24)

so that the discrete form of Eq. 3.14 can be defined by

() ()x

1 1

kp pn n
cp p rpx

x x p x x x p
ijk

p pp ijk

x kA

x

r
x

m
= =

Ñ á
Ñ áD D F = D D FÒ â Ó ãDÒ âÓ ã

Í Í (3.25)

Phase transmissibility cpT , can be defined as the product of a geometric factor gT ,

and phase component cpT% where

(), 1 2, , 1 2, ,cp i j k g cp i j k
T T T

+
+

= % (3.26)

()
1
2, , ,

1 2, , , ,1, , 1/ 2, ,

, 1, , , , ,

ijk

g i j k
i j k i j ki j k i j k

x i j k x i j k

y z
T

x xx x

k k

+

++ +

+

D D
= --

+
(3.27)

, 1 2, ,

1 2, ,

cp p rp
cp i j k

p i j k

x k
T

r
m�

�

Î Þ
= Ï ßÐ à

% (3.28)

The geometric factor is a result of imposing flux continuity across the cell face.

Pedrosa (1983) presented a detailed derivation for the geometric factors for both

Cartesian and cylindrical systems. Generalization to full tensor permeabilities is presented

in Edwards and Rogers (1994). The treatment of the transmissibility phase component is

further discussed in Section 3.2.3.

CHAPTER 3. RESERVOIR MODEL 26

The flow component for the one-dimensional Cartesian system shown in Figure

3.1 can be expressed by substituting Eq. 3.26 into 3.25 to obtain

() ()x

1 1

kp pn n
cp p rpx

x x p x cp x p ijk
p pp ijk

x kA
T

x

r
m

= =

Ñ á
D D F = D D FÒ âDÒ âÓ ã
Í Í (3.29)

Generalizing the notation shown in Eqs. 3.23 and 3.24 to three dimensions yields

() () () ()p x x x p y y y p z z z pijk ijk ijk ijk
x x x xD DF ¢ D D F + D D F + D D F (3.30)

so that the flow component can be compactly represented as

()
1

pn

cp p ijk
p

T
=

D DFÍ (3.31)

Source/Sink Terms

The placement of wells in the reservoir model introduces source/sink terms in the

conservation equations. Since the wellbore is typically much smaller than the well block,

the produced/injected mass is assumed to be averaged over the entire control volume and

allows the source/sink term in Eq. 3.9 to be expressed as

,
1 1

p pn n

cp ijk cp ijk
p p

M V M
= =

=Í Í% (3.32)

where ,cp ijkM is the mass rate of component c in phase p for block ijk.

The presence of a source or sink term due to well placement introduces a

singularity into the system. Due to the nonlinear nature of the partial differential

equations analytical point source/sink equations cannot be applied. The resolution of the

singularity involves a combination of analytical and numerical methods commonly

known as the well model. The well model used in this research is presented in Section

3.2.5.

CHAPTER 3. RESERVOIR MODEL 27

Accumulation Term

The accumulation term in Eq. 3.3 represents the change in mass of a component due to

compressibility and saturation changes in the control volume over time. The time

derivative is approximated using a first order finite difference operator defined by

()11 1 n n
tt t

+D Y = Y -Y
D D

(3.33)

where Y represents any time dependant property and n is the time level. The

accumulation term is then approximated by

() () ()1

1 1

p pn n
n nijk ijk

t cp p p cp p p cp p pijk ijk ijk
p p

V V
x S x S x S

t t
r f r f r f

+

= =

D = -
D DÍ Í (3.34)

3.2.2 Finite Difference System

The conservation equations for each grid block can be obtained by substituting Eqs. 3.31,

3.32 , and 3.34 into Eq. 3.3 to yield

() () ()1

,
1 1 1

p p pn n n
n nijk

cp p p cp p p cp p cp ijkijkijkp p p

V
x S x S T M

t
r f r f

+

= = =

Ñ á- = D DF -Ò âÓ ãD Í Í Í (3.35)

Through application of the volume constraint and capillary pressure relationships

described in Section 3.1.3 the oil, water, and gas component equations may be

summarized as

() ()1t oo o w g oo o o oo

V
x S S T p g D M

t
r rÑ á Ñ áD - - = D D + D -Ó ãÓ ãD

(3.36)

[] ()t ww w w ww o cow w ww

V
x S T p P g D M

t
r rÑ áD = D D - D + D -Ó ãD

(3.37)

()
() ()

1t gg g g go o w g

gg cgo o g go o o gg go

V
x S x S S

t

T P p g D T p g D M M

r f r f

r r

Ñ áD + - - =Ó ãD
Ñ á Ñ áD D + D + D + D D + D - -Ó ãÓ ã

(3.38)

CHAPTER 3. RESERVOIR MODEL 28

to yield three equations with three unknowns, po , sw, and sg . Since the transmissibility

terms are functions of these primary variables the system of equations is nonlinear. A

discussion of the linearization techniques and implicit/explicit time level of the

formulation of the unknowns is presented in Section 3.3.

In this research it was assumed that oil and water saturations are present in every

reservoir block and therefore po and sw can always be specified as primary variables for

the oil and water equations, respectively. However if the reservoir block pressure is

above the bubble point pressure, no free gas is present and the block is considered

undersaturated. Under these conditions the primary variable for the gas equation is

defined to be the bubble point pressure, pbp . Once the reservoir pressure drops to the

bubble-point pressure, the primary variable is switched to sg . A reservoir block may

undergo a series of undersaturated and saturated states due to water or gas injection

schedules and requires variable bubble-point treatment of the fluid properties.

In this research the variable bubble point formulation developed by Stright et al.,

(1977) was employed. Their paper includes a detailed description of primary variable

selection logic for reservoir blocks that cross the bubble-point and is shown to capture the

variation in saturation pressure due to changes in solubility.

3.2.3 Nonlinear Terms

As shown in Section 3.2 the phase transmissibilities, phase densities and other terms that

are contained in the interblock flow terms are themselves functions of the primary

variables. The nonlinear terms can be classified by their dependence on pressure or

saturation. In the black-oil formulation the terms which depend on the pressure of one

phase only include composition, density, viscosity, and porosity. The terms that depend

on phase saturation include relative permeability and capillary pressure. Evaluation of

the pressure and saturation dependencies for each of these terms shows that the

nonlinearity in the flow term is primarily due to relative permeability.

The weighting of the pressure dependant components of the interblock flow terms

employs upstream or midpoint weighting schemes at the block boundaries. In this work

CHAPTER 3. RESERVOIR MODEL 29

upstream weighing is employed and for the one-dimensional example shown in Fig. 3.1,

may be expressed as (omitting the relative permeability)

1
2

1

,

0

0

cp p
x p

p i

cp i

cp p
x p

p i

x
if

T
x

if

r
m

r
m

+

+

ÔÎ Þ
D F >×Ï ßÐ à×

= Õ
Î Þ× D F �Ï ß×Ð àÖ

% (3.39)

which can be shown to be a spatially first order accurate approximation via a Taylor

series expansion.

The weighting of the saturation dependent terms in the interblock flow terms is

very critical. Aziz and Settari (1979) demonstrated that while midpoint weighting of the

relative permeability is a second order approximation, a physically incorrect solution may

be obtained. In this work single point upstream is employed and may be expressed as

1
2

, 1

,
,

0

0
rp i x p

rp i
rp i x p

k if
k

k if
+

+

D F >Ô
= Õ D F �Ö

(3.40)

which is also a spatially first order accurate approximation.

3.2.4 Boundary Conditions

The boundary conditions for the model incorporate external and internal conditions. The

external boundary conditions define limits of the reservoir and may include modifications

for aquifer support. The internal boundary conditions result from shale barriers, sources

or sinks from well placement, sealing faults, or domain decomposition methods. Both

external and internal specifications are typically implemented by defining flow rate across

a boundary or pressure at a boundary, which corresponds to Neumann or Dirichlet type

conditions, respectively. Neumann boundary conditions corresponding to no flow

reservoir boundaries expressed by

0pv n¿ =r r
(3.41)

CHAPTER 3. RESERVOIR MODEL 30

for each phase p. Specifying the unknowns at some location in the model forms Dirichlet

boundary are conditions. Constant pressure boundaries are expressed by

()(, ,)p rbp x y z p t= (3.42)

where ()rbp t may be constant with time or represent an aquifer model.

3.2.5 Well Model

Usually production or injection of fluids in reservoir simulation is represented in terms of

sources or sinks. The requirements of the well model are to relate specified boundary

conditions to flow through the surrounding reservoir blocks. When the well contains

multiple completions the coupling of the well to the reservoir becomes more complicated.

The rates and phase behavior of each completion must be incorporated into the well

model. The following sections present the well model used in this work.

Basic Well Model

The volume of a reservoir well block is typically much larger than the volume of a

wellbore and the block pressure is not a good approximation for the well flowing

pressure. The requirements of the well model are to relate block unknowns to the well

pressure. Considering the well shown in Fig. 3.2 the well equation for Darcy flow can be

expressed by

() ()
1

pn

c l p cp p wbl l
l p

q WI T p pb
=

= -Í Í % (3.43)

where b p is a binary variable representing phase selection, lWI and ,wb lp are the

respective well index and wellbore pressure for completed layer l. The methods for

computing the well index and wellbore pressure are further discussed in this section.

Peaceman (1978, 1993) presented several well index models based on the premise

that the well block pressure is related to the wellbore at some equivalent radius ro . The

first model was based steady state conditions for wells located in square blocks with no

CHAPTER 3. RESERVOIR MODEL 31

permeability anisotropy. In the model with anisotropic permeability the productivity

index is defined by

()()ln o

w

l
l r

r
l

k z
WI

s

D=
+

(3.44)

()1 2

x y l
k k k= (3.45)

() () () ()

() ()

1 21 2 1 22 2

0, 1 4 1 40.28
y x x y

l

y x x y

l

k k x k k y
r

k k k k

Ñ áÑ áD + DÒ âÒ âÓ ã= Ò â
+Ò â

Ó ã

(3.46)

where rw is the wellbore radius, ro is the equivalent wellbore radius, and s is the skin

factor.

Reference Depth

Wellbore

1D

2D

wbnD

refD

,1wbp

,2wbp

(), ,
l

x y zD D D
(), ,o w g l
p s s

, wbwb np

,wb refp

Figure 3.2: Schematic Representation of a Vertical Well

The wellbore pressure at the center of a completion is a function of the fluid

column density and is typically expressed with respect to a reference pressure

CHAPTER 3. RESERVOIR MODEL 32

corresponding to the well bottom hole or pump location. Assuming that the reference

depth is above the first completion, the wellbore density at a completion k is defined as

()

()
1 1

1 1

p

p

nk

p p l
l p

k nk

p l
l p

q

q

r
r = =

= =

=
ÍÍ

ÍÍ
(3.47)

where pq is the phase flow rate. The wellbore gravity kg is then given by

()()1 1 10.5 , 1k k k k k kg D D kg g r r
- - -

= + - - ¡ (3.48)

where

()1 1 1 refg D Dg r= - (3.49)

so that wellbore pressure can be expressed as

, ,wb k wb ref kp p g= + (3.50)

Implicit in this formulation is the assumption that tubing pressure losses due to friction

and acceleration are negligible. Chapter 6 presents a method for coupling well and

tubing models.

Well Constraints

Depending on the objectives of the study, well, group, or field level constraints may be

imposed on the system. At the well level constraints are imposed via Neumann

conditions for specifying flow rate or Dirichlet conditions for specifying wellbore

pressure. Traditionally, group or field level constraints are implemented by resolving the

constraints through application of individual well controls. Chapter 6 presents an

alternative approach that allows well or group controls to be resolved via choke control.

Implementation of a well constraint requires specifying Eq. 3.43 as a source/sink

term in the appropriate mass balance equation for each completed well block. Depending

on the type of constraint an additional relationship may be required. When a mass flow

CHAPTER 3. RESERVOIR MODEL 33

rate, ,sp cq , is specified, the wellbore pressure is unknown in the well model and an

additional equation is required to maintain a well-posed problem. The residual form of

this equation is expressed by

(), , ,
1

pn

well c l p cp l p wb sp cl
l p

r WI T p p qb
=

= - -Í Í % (3.51)

In the case of specified bottom hole pressure the flow rate is defined completely

by existing variables and no additional relations are required. Also note that specification

of this type of constraint implies some prior knowledge of the minimum flowing pressure

and pressure losses in the tubing.

3.3 Solution of Nonlinear Problem

The system of discretized partial differential equations describing the flow field is highly

nonlinear. This section describes the linearization and solution processes used in this

research.

3.3.1 Fully Implicit Formulation

The fully implicit formulation is the most robust linearization method and the system

(Eqs. 3.36-3.38) is solved commonly by Newton’s method. This method involves an

iterative sequence described in this section. The accumulation terms are expanded using

conservative principles (Thomas, 1982) and the derivatives are evaluated at the current

iteration level. The fully implicit treatment of these terms leads to a method that is

unconditionally stable, allowing larger timesteps at the expense of larger truncation

errors.

For cell l the conservation equation (Eq. 3.35) can be expressed in residual form

as

() () ()1 11
,

1 1 1

p p pn n n
n

c l cp p cp cp p p cp p p
p p p

V
R T M x S x S

t

u u
u r f r f

+ +
+

= = =

Ñ áÑ á= D DF - - -Ó ã Ò âÓ ãDÍ Í Í (3.52)

CHAPTER 3. RESERVOIR MODEL 34

where n is the old time level and u is the current iteration level. Newton’s method

requires approximating the residual at iteration ()1u + by their value at the current

iteration plus a linear combination of the primary variables resulting from the partial

differentiation of ,c lR with respect to all the unknowns:

,1
, , ,

1 ,

,,
, ,

1 1, ,

pv

l

pv pv

n
c l

c l c l pv m
m pv pv m

n n
cp lc l

pv l pv l
pv pvpv l pv l

R
R R X

X

MR
X X

X X

u

u u

u u

d

d d

+

¶W =

= =

Î Þ�
£ + +Ï ß�Ð à

Î Þ Î Þ��
+Ï ß Ï ß� �Ð à Ð à

Í Í

Í Í
(3.53)

where 1
pv pv pvX X Xu ud += - and lW is the set of all grid blocks connected to block l, and

npv is the number of primary variables. In the black-oil formulation npv = 3 and

, , /pv o w g bpX p S S pÑ á= Ó ã , where either gS or bpp is selected depending on presence of a

gas phase. To estimate the unknowns at the current iteration level, 1
,c lRu+ is set to zero and

Eq. 3.53 becomes

,, ,
, , , ,

1 1 1, , ,

pv pv pv

l

n n n
cp lc l c l

c l pv m pv l pv l
m pv pv pvpv m pv l pv l

MR R
R X X X

X X X

u u u

u d d d
¶W = = =

Î Þ Î Þ Î Þ�� �
- = + +Ï ß Ï ß Ï ß� � �Ð à Ð à Ð à

Í Í Í Í (3.54)

The linear system of equations can be compactly expressed as

r r rA X Ru u ud = -
r r

(3.55)

where rAυ is the Jacobian matrix. The system is solved for the changes in the primary

variables and the iteration process is continued until ,c l RRu e< , where Re is a specified

tolerance.

3.3.2 Adaptive Implicit Formulation

Adaptive implicit methods employ a fully implicit formulation in high velocity regions,

thereby removing the local timestep limitation, while an explicit IMPES formulation is

employed elsewhere, so as to reduce total computational cost and increase accuracy away

from high flow regions.

CHAPTER 3. RESERVOIR MODEL 35

The fully implicit formulation involves calculation of the transmissibility at the

new time level n +1 while IMPES involves calculation of the transmissibility at the old

time level n. The adaptive implicit formulation involves switching between the time

levels of the respective fully implicit and IMPES formulations according to the local CFL

condition. For example, at the cell interface between implicit and explicit cells, where

the left and right hand side cells have CFL numbers greater than unity and less than unity,

respectively, the phase transmissibility is defined by

1
2

1
2

1
2

1
, ,

,
, 1 ,

0

0

n
p i p i

p i n
p i p i

T if v
T

T if v

+

+

+

+ +

Ô >×= Õ
�×Ö

(3.56)

which ensures stability and maintains local conservation.

Several methods have been proposed to determine the level of implicitness in the

formulation. In this work the CFL criteria developed by Russell (1989) was selected

since it is based on quantities that are easily computed and does not require the

calculation of the characteristic phase velocities. The CFL condition for stability of an

explicit cell l may be expressed as

1
yx z

i i i

vv v
t

x y z

Î Þ
D ¿ + + �Ï ßD D DÐ à

(3.57)

where in each direction the total velocity v , is defined by

1

pn

j
j

v v
=

= Í (3.58)

3.4 Concluding Remarks

The mathematical model and numerical formulation for the reservoir simulator developed

for this research has been presented. Mass conservation equations for a two component

hydrocarbon system with an aqueous phase result in a nonlinear system of partial

differential equations. The locally conservative finite volume method is applied on

CHAPTER 3. RESERVOIR MODEL 36

Cartesian grids. The treatment of the transmissibility allows for both implicit and

adaptive implicit formulations. The numerical model was implemented in a simulator

called FDS (Field Development System). Chapter 7 presents key design elements of the

simulator.

37

Chapter 4

Surface Facility Model

An important component of field development simulation is the surface facility model

that is used to identify the operational requirements and constraints based on factors such

as individual well performance, gathering system configuration, and phase separation

units. The surface facility model used in this research is presented in this chapter. The

model is formulated in four components: 1) pipeflow, 2) choke, 3) separator, and 4)

network. The pipeflow model predicts flow behavior and pressure profile in the wellbore

and gathering or injection system. The choke model is used to maintain the well flow rate

within safety limits of the equipment and to prevent gas and water coning. The

separation model determines the oil and gas phases present at specified operating pressure

and temperature. The network model is used to specify the overall facility connectivity

that defines the flow path for produced or injected fluids.

The following sections present the formulation used in each of these components

and where appropriate, examples of device performance or behavior is included. The

chapter concludes with results from two test models that demonstrate the performance of

the formulation and network solution strategy. The method for reservoir and surface

facility coupling is presented in the following chapter and the effects the surface facility

performance demonstrated in this chapter are further examined in the context of a

coupled model.

CHAPTER 4. SURFACE FACILITY MODEL 38

4.1 Pipeflow Model

The formulation of the pipeflow model was based on the conservation of mass and

momentum principles coupled with a phase behavior description. The results of

experimental data have demonstrated that several flow regimes can exist in two-phase

flow (Govier and Aziz, 1972) and that separate formulations for each regime are required.

In this research a single pseudo-phase method with slip was employed to model steady

state flow in pipe for an oil-gas system. The steady state formulation is justified since the

objective of the coupled model is to capture field wide behavior in contrast to the

transient models, which focus on pipeflow at much smaller time scale. For a detailed

treatment of two-phase pipeflow models see Ouyang (1998).

The derivation of single-phase gas flow relationships is not included in this

dissertation since the primary objective of the gas network is to provide pressure

maintenance for extending the reservoir model production horizon. For a detailed

treatment of single-phase gas flow see Ouyang and Aziz (1996).

4.1.1 Single Pseudo-Phase Model for Oil-Gas Flow

The single pseudo-phase approach assumes that the separate flowing phases can be

modeled as a mixture without a distinct interface between phases. Average mixture

properties are defined so that equations for single-phase flow can be utilized.

For a pipe with constant cross-sectional area A , the mixture density is defined by

m o o g gE Er r r= + (4.1)

where oE and gE are the oil and gas phase in-situ fractions, respectively, and or and gr

are the phase densities. The phase fraction is defined as

, ,p
p

A
E p o g

A
= = (4.2)

where pA is the area occupied by each phase and o gA A A= + .

An expression for the mixture velocity is obtained through the flux balance

CHAPTER 4. SURFACE FACILITY MODEL 39

m m o o o g g gU E U E Ur r r= + (4.3)

which yields the following mass conservative form of velocity

go
m so sg

m m

U U U
rr

r r
= + (4.4)

where so o oU E U= and sg g gU E U= , define, the respective liquid and gas superficial

velocities.

The mass and momentum balance equations for the single pseudo-phase are

expressed as

() 0m mU A
x

r� =
�

(4.5)

() ()2 sin 0m m wm m

Ap
U A S Ag

x x
r t r q

�� + + + =
� �

(4.6)

where wmt is the wall friction shear stress and S is the wellbore perimeter. For constant

pipe area A, combining Eqs. 4.5 and 4.6 yields

sinm wm
m m m

dp U S
U g

dx x A

tr r q�= - - -
�

(4.7)

The right hand side terms are commonly known as the pressure drops due to acceleration,

friction and elevation change, respectively. Brill and Beggs (1991) noted that the

pressure drop due to acceleration is only significant if a compressible phase exists at

relatively low pressures or the flowing area is changed. Since the coupled reservoir and

facility models studied in this research are high-pressure systems and choke models are

used to model flow through restrictions, the acceleration term is omitted.

The wall friction shear stress is computed from

21

2wm m m mf Ut r= (4.8)

CHAPTER 4. SURFACE FACILITY MODEL 40

where fm is the friction factor as computed by Jain (1976) and is a function of pipe

roughness and Reynolds number

m m
e

m

U d
R

r
m

= (4.9)

The mixture viscosity is defined to be

m o o g gE Em m m= + (4.10)

where om and gm are functions of pressure P . The final form of Eq. 4.7 is given by

22
sinm m m

m

dp f U
g

dx d

r r q= - - (4.11)

where d is the pipe diameter.

4.1.2 Slip Model

In uphill two-phase flow the gas phase has a tendency to travel at velocity higher

than the liquid velocity and the velocity difference is commonly referred to as the slip

velocity. The variations in phase velocities can have a direct impact on the pressure drop

along the pipe. Even though the pseudo-phase approach treats the two phases as a

mixture, slip between the phases can be incorporated via the liquid holdup calculation. In

this research the method presented by Ouyang (1998) was used for computing liquid

holdup. The relationship between the gas phase velocity and mixture velocity is based on

slip parameters dC and bU defined by Wallis (1969) with

g d m bU C U U= + (4.12)

dC is a distribution coefficient related to velocity profile in the pipe and is determined

empirically by

CHAPTER 4. SURFACE FACILITY MODEL 41

()

0.5

0.25

2

1.2 0.2

1.53 sin

g
d

o

o g

b
o

C

g
U

r
r

r r s
q

r

Î Þ
= - Ï ßÐ à

Ñ á-
Ò â=
Ò âÓ ã

(4.13)

where bU is the bubble rise velocity, and s is the interfacial tension. The combined

effect of these parameters is to allow for higher actual gas velocities as the difference in

gas and liquid density increases. Given the modified gas velocity, new gas and liquid in-

situ fractions can be calculated from

1

sg
g

d m b

o g

U
E

C U U

E E

=
+

= -
(4.14)

The performance of this method is evaluated with an example in Section 4.1.4.

4.1.3 Calculation of Pressure Drop

To compute the pressure drop over a pipe interval from 1l to 2l with specified inlet

conditions , , ,so sg o gU U E E , and 1p , requires integration of Eq. 4.11

2 2

1 1

22
sin

p l
m m m

mp l

U f
dp g dl

d

r r q= - +Ú Ú (4.15)

Since the friction factor and density are functions of pressure an iterative process is

required to compute 2p . Given a solution estimate 2pu at iteration u , the average

properties are computed with the following relations

()
1 2

1

2m l l
u ur r r= + (4.16)

()
1 2

1

2m l l
u um m m= + (4.17)

CHAPTER 4. SURFACE FACILITY MODEL 42

and Um is obtained from Eq. 4.4. The iteration equation to compute the downstream

pressure is

()2

1
2 1

2
sin

m

m m m

U
p p f g l

d

u

u u u ur r q+

Î Þ
Ï ß= - + D
Ï ßÐ à

(4.18)

where convergence is obtained when
2 2

1
l lp pu u e+ - < , for a specified tolerance e .

In some cases a more accurate solution can be obtained through better property

averaging by an increased number of iteration intervals along the pipe. Figure 4.1 shows

how the number of integration intervals for two cases can affect the computed pressure

drop. The first case simulates flow of oil at pressures above the bubble point throughout

the entire pipe interval. Above the bubble point, gas solubility remains constant and oil

formation volume factor increases slightly as pressure decreases. Eq. 3.5 shows that the

liquid density is directly proportional to the oil formation volume factor and therefore

density averaging over one integration interval is sufficient. The 50-interval result is

0

1000

2000

3000

4000

5000

6000

7000

8000

1000 2000 3000 4000 5000
Pressure (psia)

V
er

tic
al

 D
is

ta
nc

e
(f

t)

1

10

50

1

10

50

2
p

1
p

1

2

bp

bp

p p

p p

<

<










Figure 4.1: Pressure Drop Variation with Number of Integration Intervals

CHAPTER 4. SURFACE FACILITY MODEL 43

nearly identical to the 1- and 10-interval results. However in the second case the flow of

oil occurs with pressures below the bubble point along the entire length of the pipe. In

this regime oil density is a strong function of pressure and simple two-point averaging is

not sufficient and resulted in a pressure error at 2p of 14.35% with respect to the 50-

interval result. In contrast, the 10-interval result resulted in an error of only 0.62% with

respect to the 50-interval result.

4.1.4 Slip Model Example

Under certain conditions vertical two-phase flow exhibits the behavior of increasing flow

rate with decreasing pressure drop. The slip model described in Section 4.1.2 is

responsible for capturing this behavior. Figure 4.2 shows the simulated results based on

vertical flow for both slip and no-slip cases, with uniform gas-oil ratio for all flow rates.

Information regarding fluid properties and pipe parameters is summarized in Table 4.1.

Table 4.1: Slip Model Problem Data

Pipe Parameters Fluid Properties

diameter 3.5” oil density 46.24 lbm/ft

roughness 0.0001’ gas density 0.0647 lbm/ft

vertical length 8400’ gas-oil ratio 500 scf/stb

The no-slip case has the behavior of increasing pressure drop with increasing rate

for all ranges of rate since oE and gE are constant. However the case with slip shows

that at low flow rates (fixed downstream pressure) the upstream pressure decreases with

increasing flow rate. Since the liquid is denser, at lower flow rates the liquid has

tendency to hold up in the pipe causing a large pressure drop due to the hydrostatic head.

As the flow rate increases smaller pressure drops are required to sustain increased flow

rates due to reduced holdup. As shown in Eq. 4.11 the pressure drop is composed of

hydrostatic head and friction components. Figure 4.3 shows that for low flow rates the

density component dominates the pressure drop (due to slip) and then stabilizes as the

flow rate increases. At this stage the friction component increases and accounts for the

CHAPTER 4. SURFACE FACILITY MODEL 44

2000

2200

2400

2600

2800

3000

3200

0 1000 2000 3000 4000 5000
Flow Rate (stb/day)

P
re

ss
ur

e
(p

si
a)

slip

no-slip

Downstream Pressure, 1000 psia

Figure 4.2: Comparison between Flow with Slip and No Slip

0

500

1000

1500

2000

2500

3000

3500

0 1000 2000 3000 4000 5000
Flow Rate (stb/day)

P
re

ss
ur

e
(p

si
a)

Downstream Pressure, 1000 psia

hh

f

p

p

D

D

Upstream Pressure

Figure 4.3: Component Pressure Drops in Flow with Slip

CHAPTER 4. SURFACE FACILITY MODEL 45

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 1000 2000 3000 4000 5000
Flow Rate (stb/day)

G
as

 In
-s

itu
 F

ra
ct

io
n

slip

no slip

Figure 4.4: Gas Holdup Modification in Slip Model

increased pressure drop with increased rate. The mechanism in the slip model that drives

the density behavior is seen in the gas holdup behavior shown in Figure 4.4. Since the

gas liquid ratio was held constant, the no-slip case shows constant gas holdup. The slip

case shows minor gas holdup at low rates, and translates into higher computed mixture

density, thus accounting for the high pressure drop at low rates. As the flow rate increases

the gas holdup increases, creating lower mixture density resulting in low pressure drops

with increased rate.

4.2 Choke Model

A choke is used to regulate the total flow rate of a well or group of wells. The size of the

choke determines the flow rate, which is classified as critical or subcritical flow. Critical

flow implies that the fluid velocity through the choke is greater than the sonic velocity

and that downstream pressure changes are not propagated upstream of the choke. Under

CHAPTER 4. SURFACE FACILITY MODEL 46

subcritical flow the rate through the choke depends on the pressure differential across the

choke. A good choke model incorporates both of these regimes and provides a smooth

transition between the two types of flow. Based on the review of choke models presented

by Schiozer (1994), the Sachdeva et al. (1986) choke model was implemented in this

work. Both of these references provide a detailed mathematical formulation for the choke

model and therefore this work presents only results that demonstrate the behavior of the

model.

An example of how the liquid rate varies with upstream and downstream pressure

is shown in Fig. 4.5 (351.24o lb ftr = , 0.72gg = , and 7000 /GLR scf stb=). The

choke size is 16/64 inches, which also indicates that the choke is 75% closed. Since the

choke is nearly closed, a large pressure drop is required to sustain even low flow rates.

Note that there is a continuous transition between the critical and subcritical regions with

the critical flow regions identified by the constant rate plateau.

0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000
Downstream Pressure (psia)

Li
qu

id
 R

at
e

(s
tb

/d
ay

)

1400
2400
4400

Choke Size = 16

Upstream Pressure

Figure 4.5: Critical and Subcritical Flow through a Choke

CHAPTER 4. SURFACE FACILITY MODEL 47

Wellhead Choke Performance

To properly evaluate choke performance, the well flowing characteristics must be

evaluated over a range of reservoir pressures for a specified downstream pressure. The

downstream pressure is determined by separation requirements and ideally the choke

should operate under critical flow conditions so that pressure fluctuations in the surface

facility equipment do not affect well performance, however, this is generally not the case.

Fig. 4.6 (362.4o lb ftr = , 0.72gg = , absolute pipe roughness = 0.0001’, vertical pipe

distance 8400’, pipe diameter = 3.5”) shows the well flowing performance in terms of

wellhead pressure over a range of well-block pressures. For a fixed well block pressure,

the effect of slip causes the pressure drop in the tubing to decrease at low rates which

corresponds to an increase in wellhead pressure. In the case of friction-dominanted flow,

to sustain higher flow rates, the pressure drop must increase and therefore the wellhead

pressure must decrease.

1700

1800

1900

2000

2100

2200

2300

0 1000 2000 3000 4000 5000 6000 7000
Flow Rate (stb/day)

C
ho

ke
 In

le
t P

re
ss

ur
e

(p
si

a)

40% open

60% open

80% open

20% open

4400

4300

4200

well performance

choke performance wbp

Figure 4.6: Wellhead Choke Performance

CHAPTER 4. SURFACE FACILITY MODEL 48

The well performance curves are overlaid with choke performance curves that

correspond to a fixed downstream (wellhead) pressure of 1940 psi . The intersections of

the well and choke curves represent consistent operating conditions at the tubing outlet

and upstream side of the choke. As the choke is opened, the pressure drop across the

choke decreases and the tubing head pressure approaches the fixed downstream pressure.

As the choke is closed, the flow rate is reduced, and depending on the well block

pressure, the well may cease to flow due to the high backpressure on the well. For

example, if the well block pressure is 4400 psi and the choke is reduced from 40% to

20% open, the well and choke performance curves do not intersect and the well cannot

operate. Beggs (1991) noted that the region of decreasing wellhead pressure with

decreasing rate is unstable and can cause intermittent or no-flow conditions.

The main use of well and choke performance curves is to determine the choke

setting which yields a target flow rate under changing reservoir conditions and specified

downstream conditions. Traditionally, the intersection points that define the operating

conditions are determined externally from the reservoir simulation model and are used to

define reservoir boundary conditions in the form of well constraints. In this research a

tightly coupled approach was developed in which the reservoir, well and choke models

are formulated in a global problem, leading to a treatment of the model boundary

conditions which are consistent with actual field operating conditions. The dependencies

between the models are captured in the mathematical formulation thus avoiding the need

for tubing and choke performance curves. The treatment of choke devices in the network

model is presented in Section 4.4.2.

4.3 Separator Model

The collection of produced fluids requires phase separation prior to routing the flow

stream to storage facilities or to sales pipelines. The size of the separator depends on the

flow rate of liquids going into the vessel. The desired operating pressure and temperature

can depend on the flow stream composition, well flowing pressures, or pressure of the gas

sales line. An example of a multistage two-phase separation configuration is shown in

CHAPTER 4. SURFACE FACILITY MODEL 49

Fig. 4.7. In this schematic the operating pressure of the first stage separator defines the

backpressure on the well flow stream. The total well stream flow rate is controlled by

choke settings on individual wells. The operating pressure is maintained by pressure

control valves on the gas line. As a consequence, the higher the operating pressure the

smaller the compressor requirements for a gas sales line or injection system.

High Pressure
Well Stream

Oil Line

Low
Pres.

Intermediate Pressure

Gas Line

Figure 4.7: Stage Separation

In this research the fluids were characterized using a two hydrocarbon component

formulation with limited phase behavior, therefore the oil-gas separation is based on a

simple flash calculation using input fluid properties that define equilibrium conditions.

Given a separator pressure and oil rate at standard conditions, the free gas phase is

computed directly from the gas solubility. The treatment of a two-stage separator in a

network model is presented in Section 4.4.3. It will become evident that the solution

procedure for the global surface facility problem could also accommodate a more

rigorous separation definition that allows for feedback between the stages and

incorporates an equation of state for the equilibrium computations.

CHAPTER 4. SURFACE FACILITY MODEL 50

4.4 Network Model

The flow stream network currently used in this research follows the method first

published by Startzman (1987). The network is defined by a collection of devices such as

pipe, chokes, or separators. In addition, source and sink nodes are used to specify

network boundary conditions and connection nodes are used to join devices. A

conceptual network model is employed to facilitate discussion (Fig. 4.8). Three wells are

connected to a common junction node that leads into the separation unit. The separator

pressure and well flowing rate or pressure defines the sink and source boundary

conditions, respectively. Connection nodes join the well tubing with the surface pipeline

and also define a junction point for combining the produced fluids. In this example it is

assumed that computed well rates or pressures are consistent with the reservoir

deliverability. The next chapter provides a detailed treatment of reservoir, well and

facility coupling.

P Gas Line

Oil Line

2000sepp psi=

?oq =

1

,1

3000

?o

p psi

q

=
=

3

,3

3100

?o

p psi

q

=
=

2

,2

3300

?o

p psi

q

=
=

?jp =

,1 ,2 ,3 0g g gq q q= = =

Figure 4.8: Conceptual Network Layout

The flexibility in defining network connectivity with a different set of devices

allows for modeling a variety of operational scenarios. For the model shown in Fig. 4.8

CHAPTER 4. SURFACE FACILITY MODEL 51

the objective is for a specified well tubing and pipeline configuration, determine well rate

allocation when the gathering system is operating under a constant separator pressure. If

individual well rate restrictions apply, or a target group oil rate is specified, wellhead

choke devices are required and the objective would become to determine the choke

settings which honor these rate conditions. An example of this type of configuration is

presented in the next chapter.

4.4.1 Network Solution Procedure

The solution procedure is discussed with respect to a network consisting of only pipe

equipment. The treatment of choke and separator devices is presented in the following

section. Two test models are presented in Section 4.5 to demonstrate network features

and convergence behavior.

Mass Conservation

The network problem is formulated in terms of continuity relationships at source, sink

and junction nodes. Based on steady state flow and the single pseudo-phase treatment of

pipe flow, a total mass conservation equation at each node is expressed as

() 0, 1,..,
i

o so g sg ij f
j

U A U A i nr r
¶W

+ = =Í (4.19)

where iW is the set of all nodes connected to node i and nf is the total number of facility

nodes. The velocity is defined to be positive if the flow direction is from node j to i,

otherwise the velocity is negative. Similar to component mass conservation equations

developed for the reservoir problem, Eq. 4.19 can be expressed as a system of component

equations in terms of mass fractions to obtain

()

()

0, 0

0

i

i

o oo so ij og
j

o go so g gg sg ij
j

x U A x

x U A x U A

r

r r

¶W

¶W

= =

+ =

Í

Í
(4.20)

CHAPTER 4. SURFACE FACILITY MODEL 52

Total mass is conserved in each individual pipe segment via Eq. 4.5. In the

production gathering system only the oil component equation is formulated for Newton’s

method. The following residual form of Eq. 4.20 is used to formulate the conservation

equations for the production network system:

(), ,

i

o i o oo so ij oo i
j

r x U A Mr
¶W

= -Í (4.21)

where ooM is the oil mass flow rate for a source term at node i. The gas phase due to

boundary conditions or evolution of solution gas is accounted for at a junction node by

ensuring that the sum of all free gas flowing into the junction node is exactly the amount

of gas flowing out of the junction node. Subsequent Jacobian or residual calculations for

this pipe segment cannot be performed until computations are completed for all pipe

segments with flow into the junction node, and thus an order dependency exists for

constructing the Jacobian and residual terms.

 The injection network only allows for single-phase single component gas

injection so that 0oo gox x= = and 1ggx = . Therefore the following residual form of Eq.

4.20 is used to formulate the conservation equations for the injection network problem:

(), ,

i

g i g sg ij gg i
j

r U A Mr
¶W

= -Í (4.22)

where ggM is the gas mass flow rate for a source term at node i.

Newton’s Method

The system of equations is solved by Newton’s method. Assuming a production

gathering system, a Taylor series expansion of Eq. 4.21 yields

, , ,1
, , ,

,i

o i o i o i
o i o i j i oo i

j j i oo i

r r r
r r p p M

p p M
u u+

¶W

� � �
= + D + D + D

� � �Í (4.23)

so that the linear system can be expressed compactly as

CHAPTER 4. SURFACE FACILITY MODEL 53

1

f f

f f f

A X R

X X X

u u

u u

d

d +

= -

= -

r r

r r r (4.24)

where fAυ and fRυ are the respective Jacobian matrix and residual vector.

Formation of the Jacobian matrix is via numerical computation of the derivative

terms for either Eq. 4.21 and/or 4.22. The numerical method is presented for a junction

node in a production gathering system. Assuming no sources or sinks Eq. 4.23 can be

expressed as

, ,
,

i

o ij o ijv
o i j i

j j i

q q
r p p

p p¶W

� �
- = D + D

� �Í (4.25)

where o o oo soq x U Ar= . Considering only the first term on the right hand side, the

summation represents the derivative of the flow rate between node i and j with respect to

a pressure at node j. For each of the i-j connections the following procedure is applied:

• a small perturbation ()oqd of the current rate is applied to the i-j connection

• the perturbed rate, current pressure estimate, and total free gas phase at j are used

to compute a new downstream pressure via Eq. 4.18, yielding

new current
j j jp p pd = - (4.26)

• the derivative is then given by

,o ij o

j j

q q

p p

d
d

�
@

�
(4.27)

The current rate and associated downstream pressure are available from either a specified

initial estimate or the most recent network solution.

Formation of the initial residual vector, 0
fR

r
, is based on a combination of

specified estimates for the source nodes and computed estimates for the remaining nodes.

For example, in the network shown in Fig. 4.8, assuming oil rate estimates 0
,o iq are

CHAPTER 4. SURFACE FACILITY MODEL 54

provided ()0u = , the following procedure is used to determine other node estimates and

residuals:

• for each well i with rate estimate 0
,o iq , boundary conditions ip and ,g iq , a

corresponding junction node pressure ,j ip is computed

• the starting solution for the junction node pressure jp , is computed from the

average of computed pressures, ,j ip

• the junction node pressure jp and specified separator pressure sepp are used to

compute the rate estimate 0
,3oq

where pressure and rate computations rely on Eq. 4.18 for either computing the

downstream pressure directly, or computing the rate indirectly using a Newton-Raphson

scheme. Subsequent residual vectors are computed in an analogous manner with the

exception that all current estimates are from the Newton iteration update.

The relationship between pressure drop and velocity is apparent from Eq. 4.18 and

is expressed as

mU Pa D (4.28)

so the derivative terms in Eq. 4.29 will have the form

1

2
m

i

U

p p
a�

� D
(4.29)

The nonlinear relationship between velocity and pressure can lead to slow convergence

rates. To control problems associated with poor derivative information, rules that define

the maximum change in the primary variable over the iteration, are imposed by the

condition

(){ }1 min , 1i i i ix x x xu u u u h+ = + D � (4.30)

CHAPTER 4. SURFACE FACILITY MODEL 55

where 100h ¿ is the maximum percent change in the previous solution value, ixu . The

effect of different step scaling factors on convergence rate is demonstrated in the Section

4.5.

4.4.2 Choke Implementation

Individual well or group flow rate restrictions may require adjustment of the choke

settings to ensure that these rates are not violated. The choke model described in Section

4.2 is incorporated with the network model to allow for either fixed or variable choke

settings. For a fixed choke size, the presence of a choke in the network model is treated

in a similar fashion to that of the pipe device, it is bounded by two solution nodes and the

mathematical model describing flow through the device is used to compute numerical

derivatives. When the objective is to determine the choke setting corresponding to a

fixed flow rate, the setting is modified within the Newton iteration and can be viewed as

restarting the network solution procedure with an improved starting solution. After every

?
oq specified rate

d

=
=

1pu

2pu

Figure 4.9: Variable Choke for Operating at Constant Rate

Newton iteration, the new estimate for the choke setting is computed based on the

specified rate, and current pressures 1
vp and 2

vp (see Fig. 4.9) using the choke equation.

If the estimate exceeds the diameter corresponding to 100% open, the choke is set to fully

open. The next chapter presents an example that demonstrates choke operation under

changing reservoir conditions and a fixed downstream pressure boundary condition.

4.4.3 Separator Implementation

The specification of separation devices in the network model is similar to defining

boundary conditions for the downstream and upstream portions of the production

CHAPTER 4. SURFACE FACILITY MODEL 56

gathering and injection system, respectively. The treatment of this device in the Newton

solution procedure is described in the context of a two-stage separator that provides input

for the injection network (Fig. 4.10). For simplicity, it is assumed that there is no

pressure drop through oil or gas lines connecting the separators. Also, it is assumed that

the pressure regulator valve is set properly to maintain the separator pressure and

therefore pipeflow and valve models are not applied to the gas sales line. The internal

representation of the system shown in Fig. 4.10 is outlined as follows:

• The first stage separator defines a Dirichlet boundary condition for the production

gathering network, 1 2000sepp psia= . The unknown at this node is the oil rate.

From the current oil rate solution, oqu , the free gas 1gqu is computed using gas

solubility tables.

• The oil rate oqu , is used in the flash calculation at the second stage separator

conditions, 1 1500sepp psia= , to obtain 2gqu .

• If the available gas is used for reinjection, a Neumann boundary condition is

specified for the source node of the injection network, with the gas rate based on

the previous Newton iteration solution.

• If the objective of the injection network is for pressure maintenance, the source

node requires a Dirichlet boundary condition and the unknown is the gas rate. In

this case, there is no coupling in the formulation between the separation units and

source node for the injection network. The available free gas from the separation

units is used to determine the deficit or surplus gas amount, externally.

CHAPTER 4. SURFACE FACILITY MODEL 57

1gqu

Gas Cycling
Pressure

Maintenance

1 1
1 2

?

g g g

inj

q q q

p

u u u

u

- -= +

=

?

4000
g

inj

q

p psia

u =

=

P Gas Line

1 2000sepp psi=

P

Oil Line

2 1500sepp psi=?oqu =

2gqu

ä
×
å
×æ

Gas Available for
Injection Network

Figure 4.10: Two-Stage Separation for Input to Injection Network

4.5 Model Examples

In this section, results from two surface facility models will be presented and discussed.

Both test models demonstrate typical convergence behavior that can be expected for

Newton’s method. The first model represents a production gathering system and the

second model includes a well constraint and a gas injection network. The model

parameters are listed in Table 4.2 and are the same for all models unless otherwise

specified.

Since the intent of this research is to study coupled reservoir and facility models,

the surface facility program was not designed to run without reservoir coupling.

However, the behavior of the facility model can be studied in isolation by replacing a

Dirichlet boundary condition at a wellbore source or sink node with a fixed well block

pressure. Specification of this type of boundary condition is used for explicit treatment of

the facility model in coupled systems and is described in detail in the following chapter.

CHAPTER 4. SURFACE FACILITY MODEL 58

Table 4.2: Basic Network Parameters

Pipe Parameters Diameter Roughness Horizontal Length Vertical Depth

well tubing 3.5” 0.0001’ 0 8400’

wellhead to junction 3.5” 0.0001’ 6363’ 0

junction to separator 5.5” 0.0001’ 4000’ 0

Choke Parameters Diameter Discharge Coefficient

PROD1,
1

C 0.8” 0.85

PROD2,
2

C 0.5” 0.85

4.5.1 Two Production Wells Operating Under Fixed Choke Settings

In this example two wells are flowing at constant well block pressure (1 2,r rp p)

with fixed choke settings at the wellhead (Fig. 4.11). The well flow streams are

combined and feed into a separator operating at constant conditions. The pipeline layout

is designed so that in the absence of chokes, each well will have identical flowing rates

and flow line pressure drops. The addition of chokes with different settings resulted in

different flow rates for each well. As shown in Fig. 4.6, for a constant downstream

pressure a reduction in the choke size has the affect of increasing the backpressure on the

well and reducing the flow rate. The rate allocation shown in Fig. 4.12 is consistent with

this behavior. The chokes for wells PROD1 and PROD2 are set at 80% and 50% open,

thus well PROD1 correspondingly has the higher flow rate.

Four test runs were performed using the two starting solutions ()1,2k = shown in

Table 4.3. The starting solution for run 1 is considerably better than for run 2. The

second run estimates are an extreme case to highlight problems associated with poor

solution estimates. The estimates used for the third and fourth runs are identical to those

of the second run. Additionally, the third and fourth runs use the modified Newton

strategy presented Section 4.4.1 to control the maximum primary variable change over an

iteration. For each of the runs, convergence behavior at the solution nodes is shown in

Figs. 4.12 through 4.15. The second subscript in the figure variables indicates which

starting solution was used to generate the results.

CHAPTER 4. SURFACE FACILITY MODEL 59

P Gas Line

Oil Line

1500sepp psi=

?oq =

1

1

4800

?
r

o

p psi

q

=
=

2

2

4800

?
r

o

p psi

q

=
=

?jp =

1 2

1 2

0

0
g g

w w

q q

q q

= =
= =

1C 2C

Well PROD1 Well PROD2

Figure 4.11: Network Example with Two Production Wells − Model 1

Table 4.3: Network Starting Solution − Model 1

Starting Solution, 1, 2 0k u= = 1k = % Error 2k = % Error

PROD1
1,

(/)
o k

q stb dayu 8000 12.75 4300 53.10

PROD2
2,

(/)
o k

q stb dayu 7000 5.87 3000 54.63

Junction
,

()
j k

p psiau 1642 4.39 2435 54.80

Separator
,

(/)
sep k

q stb dayu 25,572 62.03 75,689 379.59

Runs 1 and 2

The first run shows a good Newton convergence rate for all the solution nodes and

the global problem converged within five iterations. However, run 2 shows a much

slower convergence rate. Recall that initial source node estimates are used to compute

starting solutions for nodes downstream of well nodes, which in this model involves the

junction and sink nodes. For run 2 the computed junction node pressure allowed for

flow into the separator (Fig. 4.14). However, after the first Newton iteration, the junction

node pressure update created a backflow situation at the separator. Examination of the

CHAPTER 4. SURFACE FACILITY MODEL 60

junction and separator pressures in Table 4.3 shows that a very high pressure drop exists

over the flow line into the separator. This translates into a junction node residual based

on a large exit flow rate (exceeds solution by ~400%) and smaller inflow rates from the

well estimates. In an effort to meet the high flow rate into the separator, the first Newton

step will lower the junction pressure to obtain higher rates from the wells. In this case,

the pressure correction generated an infeasible solution. At this stage the algorithm will

automatically set the flow line into the separator to a no-flow condition so that the

junction node residual only has positive contributions from the wells. Since there is no

flow exiting the node, the Newton procedure is forced to increase the pressure at the

junction node. This continues until the junction node pressure is higher than the separator

pressure, which in this run required nine iterations. Once this state has been achieved the

Newton iteration converges rapidly. In total, run 2 required 12 iterations for global

convergence, considerably more than run 1, which required only 5 iterations.

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7 8 9 10 11 12
Newton Iteration

O
il

R
at

e
(s

tb
/d

ay
)

()

()

0 0
1,1 2,1

0 0
1,2 2,2

Run 1, ,

Run 2, ,

o o

o o

q q

q q









PROD1

PROD2

PROD1

PROD2

Figure 4.12: Newton Convergence Rate without Scaling Factor – Prod. Wells

CHAPTER 4. SURFACE FACILITY MODEL 61

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Newton Iteration

O
il

R
at

e
(s

tb
/d

ay
)

()

()

0 0
1,2 2,2

0 0
1,2 2,2

Run 3, , , =5%

Run 4, , , =15%

o o

o o

q q

q q

η

η









PROD1

PROD2

PROD1

PROD2

Figure 4.13: Newton Convergence Rate with Scaling Factor h – Prod. Wells

Runs 3 and 4

The slower convergence rate associated with run 2 is due to the computed solution

estimate for the junction node, which created a large pressure gradient over a horizontal

line and ultimately required a large pressure correction. To avoid this situation, the third

and fourth runs use the scaling criteria defined in Eq. 4.30, which restricts the maximum

change in the junction node pressure over an iteration. In these runs, the maximum

allowable change in the updated pressure is specified as 5% and 15% of the previous

solution, respectively. In both cases, the effect of the scaling is quite evident in Fig. 4.14,

which shows the pressure solution changing at a constant rate. A similar profile is shown

in the rate solution for the separator (Fig. 4.15).

While both levels of scaling have successfully prevented the backflow situation,

the more restrictive scaling used in run 3 has introduced other problems. In this run, the

well rates oscillate between a flow and no-flow state during the initial iterations. The

cause can be understood by considering the pressure behavior of the junction node and

CHAPTER 4. SURFACE FACILITY MODEL 62

chokes (Figs. 4.14 and 4.16). The scaling of the junction pressure has slowed the

convergence of the pressure solution at the junction, and at the choke outlet. This results

in several iterations, which generate a high back pressure on the wells, and thus accounts

for the no-flow behavior seen in Fig. 4.13.

Recall that in run 2 where due to the back flow, the Newton procedure was forced

to first obtain a better solution upstream for well rates, which then allowed for

convergence in the downstream nodes. In contrast due to scaling, run 3 resulted in the

Newton procedure first improving the solution downstream at the junction and separator

nodes, before addressing the rate allocation. This is illustrated in Fig 4.16, which shows

no improvement in the upstream side of the choke until the downstream side has moved

closer to the solution. The convergence rate for run 3 was comparable to run 2 and

required 15 iterations for global convergence.

The fourth run used a less restrictive scaling in response to the performance

observed in run 3 and resulted in an accelerated correction rate of the starting solution

estimates, especially at the junction node. Throughout the iterations, no convergence

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8 9 10 11 12
Newton Iteration

P
re

ss
ur

e
(p

si
a)

()
()
()
()

0 0
o1,1 o2,1

0 0
o1,2 o2,2

0 0
o1,2 o2,2

0 0
o1,2 o2,2

Run 1, ,

Run 2, ,

Run 3, , , =5%

Run 4, , , =15%

Separator

q q

q q

q q

q q

η

η

Figure 4.14: Newton Convergence Behavior for Junction Node

CHAPTER 4. SURFACE FACILITY MODEL 63

0

10000

20000

30000

40000

50000

60000

70000

80000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Newton Iteration

O
il

R
at

e
(s

tb
/d

ay
)

()
()
()
()

0 0
o1,1 o2,1

0 0
o1,2 o2,2

0 0
o1,2 o2,2

0 0
o1,2 o2,2

Run 1, ,

Run 2, ,

Run 3, , , =5%

Run 4, , , =15%

q q

q q

q q

q q

η

η

Figure 4.15: Newton Convergence Behavior for Sink Node

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Newton Iteration

P
re

ss
ur

e
(p

si
a)

1

2

1

2

p

p

p

p








PROD1

PROD2

1p

2p

Figure 4.16: Newton Convergence Behavior at Chokes − Run 3

CHAPTER 4. SURFACE FACILITY MODEL 64

problems were encountered due to no-flow situations in either the well, or downstream

into the separator. In this run, the convergence rate compared very favorable with the run

1, and required only six iterations for global convergence.

4.5.2 Well Constraint and Gas Cycling

The second test example was used to demonstrate the ability of the formulation to

incorporate a well rate constraint into the model via the procedure described in Section

4.4.2. Additionally, two injection wells are included to simulate a gas cycling operation

that also has gas available from an external source as shown in Fig. 4.17. The new

network parameters and boundary conditions are shown in Tables 4.4 and 4.5,

respectively. Except for the variable choke assigned to PROD1, the production network

parameters are the same as in the previous example.

Two runs were performed to test the sensitivity of the starting solution with

respect to choke diameters. Starting solutions for the model are listed in Table 4.6.

Similar to the previous model, two additional runs were performed to investigate the

impact of scaling the pressure solution. Due to the similarity in results, only the runs with

a scaling value of 15%h = are presented. References to run 1 and run 2 indicate results

based on different starting solutions, but application of the same scaling value. Where

appropriate, comments on the other runs are included (no scaling or 5%h =).

Table 4.4: Injection Network Parameters − Model 2

Pipe Parameters Diameter Roughness Horizontal Length Vertical Depth

 gas source to junction 6.0” 0.0001’ 4000’ 0

junction to wellhead 6.0” 0.0001’ 6362’ 0

well tubing 2.5” 0.0001’ 0 8400’

CHAPTER 4. SURFACE FACILITY MODEL 65

1,r op q 2, ?r op q =
 PROD1 PROD2

, ,

?
inj g sep g source

inj

q q q

p

= +
=

 INJ1 INJ2

,g sourceq

1 ?jp =

1C 2C
1 ?d =

,g sepq

4, ?r gp q =3, ?r gp q =

2 ?jp =?oq =

P

1sepp

2sepp

P

Figure 4.17: Facility Example with Production and Injection Network − Model 2

Table 4.5: Injection Network Boundary Conditions − Model 2

Dirichlet (psia) Neumann

Well block
r

p 4800 Gas Source
,

(/)
g source

q MMscf day 40

1st Stage Separator
1sep

p 1500 Gas Injection (/)
inj

q MMscf day 1

, ,g sep g source
q qu - +

2nd Stage Separator
2sep

p 500 PROD1
1

(/)
o

q stb day 8000

Table 4.6: Network Starting Solution − Model 2

Starting Solution, 1, 2 0k u= = 1k = % Error 2k = % Error

PROD1 Choke 1
(.)C in 0.95 55.73 0.45 26.23

PROD2
2,

(/)
o k

q stb dayu 5000 24.82 5000 24.82

Junction 1
1,

()
j k

p psiau 1967 26.00 1351 13.45

Separator
,

(/)
sep k

q stb dayu 52126 255 0 100

Gas Source
,

(/)
inj k

q MMscf dayu 34.46 0.40 33.94 1.89

Junction 2
2,

()
j k

p psiau 6991 21.98 6991 21.98

INJ1
3,

(/)
g k

q MMscf dayu 17.23 0.40 16.97 1.89

INJ2
4,

(/)
g k

q MMscf dayu 17.23 0.40 16.97 1.89

CHAPTER 4. SURFACE FACILITY MODEL 66

The choke diameter estimates were selected to reflect two different starting solution

strategies, beginning with a well flowing 1) at full potential and 2) at a considerably

restricted rate. In this model these estimates correspond to a choke setting of 0
1,1 0.95" d =

(run 1) and 0
1,2 0.45"d = (run 2), respectively. As shown in Fig. 4.18, the algorithm was

able to converge on the solution within 12 Newton iterations for either starting solution.

The cases without scaling and with a 5% scaling showed similar convergence behavior.

Recall, that internally a choke is represented by two pressure solution nodes placed at the

choke inlet and outlet. Examination of the convergence behavior at these nodes shows

the affect of scaling in run 2 (linear change in pressure 2p at choke outlet, Fig. 4.19).

Also note in this figure that compared to run 1, the smaller choke size estimate used in

run 2 resulted in a much larger starting pressure drop across the choke. Similar to the

previous model, the source of the scaling can be found by examining the pressure at the

junction node (Fig. 4.20). The computed solution estimate for this node is below the

downstream separation pressure. For the specified flow rate boundary condition, the

choke 1C set at 55% closed creates a large pressure drop across the choke that

subsequently reflects in a lower starting junction pressure estimate. Therefore, for run 2

the starting solution includes a no-flow situation with respect to flow into the separator.

The unscaled and 5% scaling runs based on the run 2 starting solution also show similar

convergence behavior due to the strong impact of the poor choke setting estimate.

As shown in the network diagram, the separated gas is combined with a constant

external gas supply for reinjection into two wells. This relationship between the

production network solution and injection network boundary condition couples their

convergence rates. However, for most of the Newton iterations the total gas injected was

close to the source amount (Fig. 4.21) and indicate a relatively good pressure solution.

Since identical flow line configurations were used for each injection well, the well gas

rate allocation was identical and the rate profiles follow that of the total injection rate.

CHAPTER 4. SURFACE FACILITY MODEL 67

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12
Newton Iteration

D
ia

m
et

er
, (

in
.)

0

1,1

0

1,2

Run1,

Run 2,

0.95"

0.45"

d

d

=

=

Figure 4.18: Newton Convergence Behavior for Choke Diameter

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8 9 10 11 12
Newton Iteration

P
re

ss
ur

e
(p

si
a)

1p

2p 1

2

1

2

Run 1

Run 2

p

p

p

p

ä
å
æ
ä
å
æ

Figure 4.19: Newton Convergence Behavior, Pressure Drop Across Choke

CHAPTER 4. SURFACE FACILITY MODEL 68

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8 9 10 11 12
Newton Iteration

P
re

ss
ur

e
(p

si
a)

Run 1

Run 2

Separator

Figure 4.20: Newton Convergence Behavior at Injection Network Junction Node

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11 12
Newton Iteration

G
as

 R
at

e
(M

M
sc

f/d
ay

)

Gas from External Source

,

, 1

Run 1

Run 2

Run 1

Run 2

g inj

g INJ

q

q

ä
å
æ
ä
å
æ

Figure 4.21: Newton Convergence Behavior at Gas Injection Node

CHAPTER 4. SURFACE FACILITY MODEL 69

4.6 Concluding Remarks

The device models that are used to construct a surface facility model have been

presented and individual performance characteristics discussed. The test results for the

network models have highlighted the type of convergence behavior that can be expected

from a surface facility model. The quality of the starting solution has a direct impact on

the convergence rate and for poor quality estimates, scaling of the solution may improve

the convergence rate. However, the scaling factor is problem dependent. More

importantly, the robustness required in the solution procedure is evident from equipment

and feasibility problems associated with poor initial solutions, solution scaling, or

Newton step updates.

The convergence behavior was analyzed with respect to problems associated with

flow imbalances or pressure estimates at the junction node. The simplicity of the two

network models may lead to obvious methods to accelerate convergence. For example,

rules could be specified to restrict the maximum inflow and outflow imbalance in an

attempt to locally minimize the correction from the Newton step. However, in a complex

network configuration, where there may be several internal junction nodes, the use of

local rules are of limited use since resolution of a local problem may introduce a problem

in another part of the facility model. More complicated (rule) schemes could be devised

that are more global in scope, but in the limit they are competing with updates based on

the Newton iteration, which contains global dependence information via the Jacobian.

Therefore we have chosen to use the basic Newton method with simple rules for variable

scaling and treatment of no-flow situations, and forgo the implementation of more

complex rules which: 1) would considerably increase the coding effort and 2) do not

guarantee improvement in the rate of convergence. Test models that demonstrate the

impact of the network convergence behavior on a fully coupled surface facility and

reservoir model are presented in the next chapter.

70

Chapter 5

Coupled Reservoir and Surface Facility

Models

Methods for coupling reservoir and surface facility models may be based on either

implicit or explicit formulations. The specific formulation depends on the placement of

boundary conditions and the components within the Newton iteration. This research

examined both explicit and implicit formulations. Adaptive explicit facilities were

developed that combine the best properties of the explicit and implicit formulations. This

chapter presents the implementation details used in the formulations. A new

preconditioning technique for the fully implicit, adaptive implicit, and adaptive explicit

facility methods is presented. The new methods are contrasted with current techniques

for coupled reservoir and facility models and are shown to provide a significant

improvement in computational efficiency.

5.1 Explicit Facility Coupling

The explicit formulation considered in this research is based on decomposing the model

into reservoir and facility domains with domain interfaces placed in the neighborhood of

well blocks. The facility problem is formulated using boundary conditions based on the

previous timestep reservoir conditions. The problem is solved using Newton’s method

subject to Dirichlet or Neumann boundary conditions that are imposed via the well

equation for the reservoir model. The rate or pressure constraints are consistent with the

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 71

facility boundary conditions and the reservoir deliverability at the end of the previous

timestep, but are applied to the reservoir model for the current timestep. The following

example is used to further describe the method.

Consider the coupled system shown in Fig. 5.1 where the production network is

connected to a separator operating at fixed conditions and defines a pressure boundary

condition for the coupled system. The superscripts u and a denote the respective

Newton iteration levels for the reservoir and facility domains. Assuming Neumann

boundary conditions at the domain interface, the completed well blocks are treated as

source nodes in the facility problem and pressures are the unknown.

jpa

1C
oqa

P

sepp

gq

2C

()
1

, ,o w gp s s
u

()1,o wbq p
a ()2

,o wbq p
a

()
4

, ,o w gp s s
u

Figure 5.1: Two-well Production System – Explicit Formulation

The global solution procedure for a timestep is summarized as follows:

1. Given well block pressure and saturations at iteration 0u = and wellbore pressure

estimates ,1wbp% and ,2wbp% at iteration 0a = , compute the well rates ,1oqa and ,2oqa

using the well equation (Eq. 3.43).

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 72

2. Formulate the facility problem and at each well (source) node i, define the

boundary condition and unknown as ,o iqa and ,wb ipa , respectively.

3. Take one Newton iteration for the facility problem (1)a a= + to obtain updated

solution estimates ,1wbpa , ,2wbpa , jpa , and oqa .

4. If convergence is achieved in the Newton iteration and mass conservation is

satisfied in the facility domain, then for the reservoir domain define the boundary

condition at each well i as either ,wb ipa or ,o iqa , and take Newton steps (0,1,...)u =

for the reservoir problem until convergence. Note that convergence at a domain

interface is defined by , ,wb i wb ip p ptola- <% , where ptol is a specified pressure

tolerance.

5. If convergence is not achieved set , ,wb i wb ip pa=% and using Eq. 3.43, compute new

well boundary conditions ,o iqa , for the facility problem. Go to step 2.

Convergence at the domain interfaces represents a balance between the outflow from the

reservoir and inflow to the surface facility. This is commonly shown as the intersection

of the inflow performance and tubing intake curves (Brown and Lea, 1985). An

analogous procedure can be applied to an explicit coupling where Dirichlet boundary

conditions are specified at the domain interface.

The primary motivation for employing an explicit coupling is computational

efficiency when compared to the fully implicit formulation. However, in explicit

coupling the well boundary conditions for the reservoir domain are based on well block

conditions at the beginning of the timestep ()0u = and may lead to large material balance

errors. As the solution is advanced in the reservoir problem the well block conditions can

change, resulting in an imbalance between reservoir outflow and tubing inflow.

Examples that demonstrate the inconsistency between the facility and reservoir solutions

are presented in Section 5.6.

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 73

5.2 Standard Implicit Facility Coupling

Fully implicit coupling allows for placement of the boundary conditions in the

mathematical model, which are consistent with the operational constraints and increase

the implicitness of the formulation at the wellbore.

The fully implicit coupling implemented for this research is based on a matrix

level formulation of the reservoir and facility equations. The linearized reservoir and

facility models described in Sections 3.3.1 and 4.4.1, respectively, are employed to

formulate the global Newton system. The connectivity between the reservoir and surface

facilities is through a conservation relationship similar to Eq. 3.51, and is expressed in

residual form as

() (), , ,
1

,
pn

well c l p cp l p wb t wb ref jl
l p

r WI T p p f p pb
=

= - -Í Í % (5.1)

where the first and second terms on right hand side represent the reservoir to well and

well to tubing component mass flow rates, respectively. The function tf represents the

pipeflow relationships (Section 4.1.1) used to compute the tubing mass flow rate. In the

pipeflow relationship ,wb refp and jp are the respective upstream and downstream tubing

pressures. The downstream tubing pressure typically corresponds to the wellhead or

collection point pressure.

Recall that in the well equations ,wb lp represents the wellbore pressure in a

completed layer l. In the well model used for this research, ,wb lp is expressed in terms of

a pressure at a reference location. The reference pressure ,wb refp represents a primary

variable common to the well equation and pipeflow relationship and therefore only one

equation is employed for reservoir facility coupling. For production wells the mass

balance is applied to the oil component, however as discussed in Chapter 4, the gas

component is accounted for throughout the solution procedure. Gas injection wells are

only considered in the facility injection network, therefore the mass balance is applied to

the gas component.

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 74

The derivatives that define the coupling between the well and facility models must

also be included in the Jacobian. Assuming only one well block, with primary variables

(), ,g wp s s , the linearized form of Eq. 5.1 is given by

1 well well well well well
well well g w wb j

g w wb j

r r r r r
r r p s s p p

p s s p p
u u+

� � � � �= + D + D + D + D + D
� � � � �

(5.2)

so that the Newton system is defined as

r rw r r

wr w wf w w

fw f f f

A A X R

A A A X R

A A X R

Ñ á Ñ áÑ á D
Ò â Ò âÒ â D = -Ò â Ò âÒ â
Ò â Ò âÒ â DÓ ã Ó ã Ó ã

r r
r r
r r

(5.3)

where , , / , 1,...,r o w g bp xyzi
X p s s p i nÑ á= =Ó ã
r

 are the reservoir variables, and

, , 1,...,w wf j wellX p j nÑ á= =Ó ã
r

 and ,/ , 1,...,f k p k fX p q k nÑ á= =Ó ã
r

 are the well and facility

variables, respectively. The submatrices rwA and wfA represent the reservoir to well and

well to facility coupling, respectively. The system can be expressed compactly as

g g gA X Ru uD = -
r r

(5.4)

where gA is the Jacobian matrix, gR
r

 is the residual vector, and , ,g r w fX X X XÑ áD = D D DÓ ã
r r r r

.

The solution of the combined system constitutes a global update of the Newton step and

incorporates the reservoir performance dependence on surface facility conditions through

the well equation.

The standard implicit formulation eliminates any errors associated with explicit

couplings up to a specified tolerance, however computational efficiency may be affected.

The coupled system involves flow equations whose velocity field is described by different

relationships. In the reservoir, application of Darcy’s law yields a linear relationship

between pressure drop and velocity. As discussed in Section 4.1.3, the pressure drop in a

pipe is proportional to velocity squared. The Newton step in the reservoir regions can

accommodate much larger pressure changes than in the pipe or tubing and therefore the

number of Newton iterations required for convergence in each system is different. The

surface facility test models presented in Section 4.5 required 4 to 15 Newton iterations for

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 75

convergence. In contrast, a timestep in the reservoir domain may require only 5 Newton

iterations and fully implicit coupling of the reservoir and facility domains can lead to

substantial increase in computation time since every iteration involves a linear solve on

the global problem domain.

5.3 Adaptive Explicit Facility Coupling

 A new formulation that combines the speed of the explicit method with the accuracy of

the standard implicit method is presented in this section. The explicit formulation

presented in Section 5.1 is attractive due to the computational efficiency obtained by

solving the nonlinear reservoir problem independently of the facility problem. However

the test problems that are presented in Section 5.6 show considerable material balance

errors associated with this formulation. The primary errors are due to significant changes

in near wellbore reservoir conditions and for most problems, this can be correlated to the

phase behavior and leads to another method for solving coupled systems.

The method consists of applying the standard implicit formulation on the first

timestep of the simulation run. Subsequent iterations employ the explicit formulation

until changes in wellbore phase behavior are detected, and then the formulation switches

to implicit. Once the system has stabilized the formulation returns to the explicit method.

The criteria for switching from an explicit to implicit formulation is based upon

the solution gas-oil ratio, ,go iR , for any production well i. For 1
, 0n

go iR - ¡ , a parameter n
iV

defined by

1
, ,

1
,

100 , 1,...,
n n
go i go in

i welln
go i

R R
i n

R
V

-

-

-
= ¿ = (5.5)

is compared with a user supplied percent change in solution gas-oil ratio, maxV and if for

any well i, max
n
iV V> , the formulation is set to implicit.

Similarly, to switch back to the explicit formulation the following condition must

be satisfied

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 76

1
1

max1 100 2 , 0, 1,...,
n n

ni i
welln

i

i n
V V V V
V

-

-

-

- ¿ < ¡ = (5.6)

The threshold max2V is selected for convenience and the factor is included to prevent

premature activation of the explicit formulation.

The performance of the method is related directly to the number of standard

implicit iterations. Since each local well region can develop two-phase flow at different

times, the method may require a significant number of standard implicit iterations and the

performance will approach that of the standard implicit formulation. The method

presented in the next section is designed to accelerate the standard implicit iterations.

5.4 Preconditioning Method

A new method is presented for solving the fully coupled reservoir and surface facility

problem based on preconditioning the standard implicit iterations of the fully coupled and

adaptive explicit facility formulation described in the previous sections. The

preconditioner is constructed by decomposing the global reservoir domain into local

reservoir domains (subdomains), each containing a well. The local domains are of the

same grid resolution as the global reservoir domain. The well and facilities domains are

solved implicitly as a locally fully coupled system which establishes a preconditioned

initial solution for a standard or adaptive implicit treatment of the reservoir flow field.

The local subdomain boundary conditions are established from fine grid information or

by a coarse grid solve. These components are used to accelerate the Newton step locally

in the subdomain and facilities. The method employs several numerical techniques which

when combined provide a broad range of options for improving performance.

The preconditioning method is developed in the context of the standard implicit

formulation for the reservoir flow field. Results based on the application of the method

are presented in Section 5.6.

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 77

5.4.1 Subdomain Boundary Conditions

The subdomain component in the preconditioner is designed to provide local

reservoir information for the solution of the facility model. Each subdomain requires

specification of reservoir boundary conditions that correspond to either the external

reservoir boundary or to an internal subdomain interface. To initiate the solution process

for the first timestep a coarsened problem is solved over one timestep to obtain estimates

of the fine grid pressure and saturation distribution that can be used to construct Dirichlet

or Neumann boundary conditions at the subdomain interfaces. After the first timestep the

subdomain boundary conditions, of either Dirichlet or Neumann type are constructed

from the reservoir fine grid properties. Each type of boundary condition is further

discussed in this section and comparison test results are presented in Section 5.5.1.

Coarse Grid Generated Boundary Conditions for the Well Subdomains

The coarse grid solution algorithm is based on an algebraic coarsening technique applied

to the global fine grid Jacobian matrix. The coarsening is restricted to the areal

dimensions of the grid and only one well per coarse cell is allowed. As shown in Fig. 5.2

the coarse grid problem is fully coupled to the facility model.

The coarse grid operator is derived from multigrid principles and leads to a

Galerkin matrix (Briggs, 1987) which is defined by

h h h
h g hA I A I� �

�

= (5.7)

()Th h
h hI I �

�

= (5.8)

where h and h� are the respective number of unknowns on fine and coarse grids. Ih
h� is a

linear restriction operator from the fine to the coarse grid and Ih
h
�

 is a piecewise constant

prolongation operation from the coarse to the fine grid. The linear restriction operator

sums all the fine grid cell Jacobian coefficients that define a coarse grid cell to obtain a

coarse grid cell coefficient. Similarly the coarse to coarse grid cell dependency

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 78

Boundary
Conditions

 Boundary Interface Cells

Original Model

Coarsened Model

Subdomain Problem

Preconditioned Solution

Figure 5.2: Preconditioning Method (Conceptual Diagram)

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 79

 coefficients are obtained by summing the respective fine to fine grid cell dependency

coefficients. The prolongation operation assigns the solution for a coarsened cell to all the

fine grids cells that define the coarsened cell. Modifications to the operators are required

when a coarse cell contains fine cells with different phases. For example, if a fine cell

contains free gas the primary variable is gas saturation, otherwise it is bubble point

pressure. Threshold criteria are used to ensure consistency of the primary variables and

thus Jacobian terms for the coarse grid cell. A detailed discussion of restriction and

prolongation operators is provided by Briggs (1987).

A coarse grid residual vector is similarly constructed using the restriction

operator. The coarse grid solution can then be obtained by solving

() ()1h h h h
h g h h gX I A I I R

-

� � �

�
= (5.9)

and the interpolated fine grid solution is

h h
g hX I X �

�

= (5.10)

The fine grid solution is applied to the subdomain boundary cells, which are then

used to compute Dirichlet or Neumann boundary conditions.

Fine Grid Generated Boundary Conditions for the Well Subdomains

After the first timestep of the simulation subdomain boundary conditions

generated using boundary cell information generated from the coarse grid problem

introduce smoothed values at the interfaces. An alternative is to construct boundary

conditions based on the previous iteration fine grid boundary values, which contains the

best information available. A test model presented at the end of this section provides a

comparison of the approaches and establishes the configuration that will be used in all

subsequent test results.

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 80

Subdomain Solve

Local fine grid subdomains are defined for each well. The wells and thus the subdomains

are coupled via the facilities. The respective local fine grid solutions are calculated with

boundary conditions supplied by the initial coarse grid solution and facility constraints.

This collective subproblem provides a good starting solution for the fully coupled

reservoir and facility problem. Different variants of the strategy can be devised.

The subproblem unknowns can be expressed as

, , , 1,...,sp sd i f sdX X X i nÑ á= =Ó ã
r r r

(5.11)

where nsd is the total number of locally refined reservoir subdomains and ,sd iX
r

 is the

vector of unknowns for the local well subdomains. The Newton system for the linearized

volume balance equations may be expressed in matrix form as

() ()() (), 0,1,...sp sp spJ X X R Xa ad a= - =
r r r

(5.12)

where () ()1
sp spX X Xa ad += -

r r r
.

The subproblem solution is used to precondition the global solution for the fully

coupled solve. The procedure is described by the flow chart in Figure 5.3. Guidelines for

defining preconditioning frequency and subdomain boundary condition type are presented

in Section 5.5.

5.4.2 Preconditioned Adaptive Implicit Flow Modeling

The preconditioning technique developed for accelerating the standard implicit facility

coupling formulation is a natural candidate for use in an adaptive implicit formulation.

The convergent flow near the wellbore regions will result in high velocity regions that

require an implicit treatment. The initial boundary for implicitness is chosen to coincide

with the well subdomains defined by the preconditioner, resulting in a preconditioning of

the fully coupled standard adaptive implicit problem. Results based on this technique are

presented by Byer et al. (1999) and are summarized here.

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 81

COARSE GRID SOLVE

UPDATE RESERVOIR
STATE

WELL SUBDOMAIN AND
FACILITY SOLVE

SUBPROBLEM
CONVERGENCE

NEXT TIMESTEP

B.C.

PRECONDITION
SOLUTION

GLOBAL
CONVERGENCECOARSE GRID

SUPPLIED B.C.

Yes

COUPLED STANDARD
IMPLICIT SOLVE

FINE GRID
SUPPLIED B.C.

Yes

No

No

Yes
No

Yes

Figure 5.3: Flowchart of Preconditioned Newton Method

A combined reservoir and facility model problem that consists of ten wells tied

into a gathering system was developed to demonstrate the performance characteristics of

the preconditioning method when applied to standard and adaptive implicit formulations.

A fixed rate boundary condition (16000 stb/day) was specified at the sink node in the

gathering system. Ten injection wells are included to provide pressure support, but are

not included in the facilities configuration.

The first test used the model problem to compare an explicit coupling versus the

standard and preconditioned standard implicit formulations. The explicit facility coupling

yielded a maximum error of 8% in oil production rate and 6% in pressure at the facility

boundary condition. The fully implicit formulation did not introduce any additional error

relative to the convergence tolerances. However there was a significant increase in CPU

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 82

time. By comparison, the preconditioned standard implicit formulation reduced the CPU

requirements to that of explicit coupling.

The second test was designed to demonstrate the effectiveness of the

preconditioned adaptive implicit formulation at reducing the computational effort in the

presence of convergent flow near the wellbore. The adaptive implicit formulation was

effective in maintaining an appropriate level of implicitness around the convergent flow

regions. The average percent implicitness ranged from 11% to 21% according to the

subdomain size. The optimal preconditioner with respect to total CPU time resulted in a

16% reduction in CPU time compared to the standard adaptive implicit formulation. The

relative CPU time for the preconditioned fully implicit cases indicated that the optimal

preconditioner reduced the CPU requirements by 28% when compared to the standard

fully implicit case. The differences between the preconditioned fully implicit and

preconditioned adaptive implicit cases can be understood by considering the ratio of the

time required by the preconditioner and linear solve. On average, this value was 18% for

fully implicit and 42% for adaptive implicit formulation. The preconditioned method is

designed to reduce the impact of the facility model through reduced standard implicit

solves. The margin for improvement reduces as the size of the standard adaptive implicit

solve is decreased, thus accounting for the differences in relative CPU time, however the

preconditioner still provides a beneficial reduction in CPU time.

5.5 Improving Performance

The preconditioning method contains several components for improving

performance. The efficiency of the method is determined by the subdomain size,

boundary condition type, and preconditioning frequency, and the interactions between

these components. Guidelines and criteria for defining these options were examined

using the test model shown in Fig 5.4. The facility configuration is defined by a producer

and injector pair of wells located in a channeled reservoir. Constant pressure boundary

conditions are assigned to both wells and the field is developed for 2000 days. Model

data are shown in Tables 5.1-2. Reservoir rock-fluid properties are listed in Appendix B.

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 83

3560

?
inj

g

p psia

q

=

=

1000

?o

p psia

q

=
=

x

y

z

(1,1,3)

(20,20,1)

S1

S2

Figure 5.4: Reservoir and Facilities Configuration - Test Model 1

Table 5.1: Reservoir Data – Test Problem 1

Parameter

nx,ny,nz 20x20x3 depth to top of reservoir 5260’

dx=dy 500’ channel permeability, kx=ky=kz 800 md

dz 30’ permeability outside channel

porosity @ 14.7 psia 0.20 kx=ky 200 md

pressure @ 8325’ 3500 psia kz, layer 1 30 md

connate water saturation 0.12 layer 2 20 md

initial oil saturation 0.88 layer 3 50 md

Table 5.2: Surface Facilities Data – Test Problem 1

Source/Sink Coordinate location1 Boundary Conditions

S1 (5000,5000,0) S1 1000.0 psia

S2 (9750,9750,0) S2 3560 psia

 1reference location is the corner of cell (1,1,3) with coordinates (0,0,0), expressed in units of feet.

Well block Tubing data2 Wellhead to source/sink node2

Well (i,j,k) Vertical length Diameter Horizontal length Diameter

1 (1,1,1) 5335’ 4.5” 6363.96’ 4.5”

2 (20,20,3) 5275’ 3.5” - -

 2absolute roughness equals 0.0001’

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 84

Subdomain Boundary Conditions

The total Newton iterations required for the preconditioned and standard implicit

formulations are compared to measure the effect of subdomain boundary condition type

on preconditioner performance. Several test runs are performed that employed a range of

subdomain sizes. Dirichlet or Neumann boundary conditions are specified at the

subdomain-reservoir interfaces and preconditioning is performed only on the first Newton

iteration of each timestep. The results are shown in Fig. 5.5 and for reference, the

number of iterations required for a run without preconditioning is shown. In all cases,

Dirichlet boundary conditions resulted in better performance than Neumann conditions

and reduced the number of standard implicit fully coupled iterations. In particular, when

using 2x2x3 subdomain and Neumann conditions the number of iterations exceeded that

of the case without preconditioning. In this case the application of the preconditioner

with Neumann boundary conditions resulted in a subdomain solution which provided

300

310

320

330

340

350

360

370

380

390

400

410

420

2x2x3 3x3x3 4x4x3 7x7x3

Subdomain Size

N
ew

to
n

Ite
ra

tio
ns

Dirichlet

NeumannNo Preconditioner

Figure 5.5: Effect of Subdomain Boundary Condition Type on Convergence Rate

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 85

minimal acceleration and required considerable correction by the fully coupled step, and

on a few iterations required a timestep reduction, which was not present with Dirichlet

boundary conditions. The individual Newton step performance did not provide any basis

for developing boundary condition selection criteria and therefore all subsequent runs

employ Dirichlet boundary conditions.

In each test run the first two Newton iterations of the simulation employed fine

grid information obtained from the coarse grid problem to specify Dirichlet or Neumann

conditions at the subdomain boundaries. Similar to the previous results, Dirichlet

boundary conditions are preferable and the application of the coarse grid solution

generally reduces the number of iterations by one to two when compared to boundary

conditions constructed with fine grid initial data. Consequently, it is recommended that

the coarse grid based boundary conditions be applied at the beginning of the simulation

due to the absence of higher quality fine grid information and then on subsequent

timesteps previous iteration fine grid information should be employed.

5.5.1 Subdomain Size and Preconditioning Frequency

The effect of subdomain size and preconditioning frequency on the Newton convergence

behavior are examined as separate components to isolate their impact on the method.

Based on the results of numerous simulations using the model presented at the beginning

of Section 5.5, selection criteria for each component are developed and tested.

Subdomain Size

The subdomain component in the preconditioning method is used to capture local

reservoir behavior around the wellbore in the solution of the facility problem. The impact

of the subdomain size on convergence rate is shown in Fig. 5.6. The first five cases are

defined with an equivalent number of cells in the x and y dimensions and the results show

constant or improved Newton convergence rate with increasing subdomain size. As the

size of the subdomain increases the implicitness of the preconditioner increases and

results in a higher quality preconditioned solution. The cost of the preconditioner in terms

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 86

of Newton convergence rate increases with subdomain size, which is due to convergence

requirements on a larger portion of the reservoir. Also, the CPU requirements for the

preconditioner will increase due to the larger Jacobian in the linear solve. The results

from the first five test runs indicate that the optimal subdomain size is based on the

balance between reduced standard implicit iterations and increased iterations in the

preconditioners, however to establish an optimal configuration requires several trial runs

and is also problem dependent.

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

420

440

2x2x3 3x3x3 4x4x3 5x5x3 6x6x3 3x4x3 3x6x3

Preconditioner Subdomain Size

N
ew

to
n

Ite
ra

tio
ns

Preconditioned Standard Implicit

Preconditioner Alone
Standard Implicit

Figure 5.6: Sensitivity of Newton Convergence Rate to Subdomain Size

The last two cases in Fig 5.6 (3x4x3 and 3x6x3) were included to show that

placement of the subdomains to coincide with dominant flow paths does not necessarily

equate to a higher quality preconditioner. For each of these runs the Newton convergence

rate for the standard implicit problem was similar to the 3x3x3 case. However there were

a few timesteps in which the preconditioned solution considerably slowed convergence

rate. While it is difficult to define the cause precisely, examination of saturation maps

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 87

indicates that injection gas was moving into the producer region, but just outside the

subdomain boundaries. This suggests that the size of the subdomain was not able to

incorporate enough of the local phase behavior to obtain a quality preconditioned

solution. Thus a larger subdomain size (3x6x3 vs. 3x3x3) does not imply better

convergence. This suggests that a criterion for either defining the subdomain size based

on local phase behavior, or alternatively, detecting when to avoid preconditioning, should

be developed. In this research the later approach is employed since the criterion for

preconditioning frequency was determined to be an important component in the efficiency

of the preconditioning method. This aspect is discussed further here.

Development of Preconditioning Strategies

In the tests just demonstrated the best preconditioning frequency was selected by

experiment. Examination of two test runs, which use the same subdomain size (7x7x3)

but different preconditioning frequencies, serve to illustrate the criteria design. The

following strategies have been considered:

1. Early Preconditioning - precondition only the first two iterations of each

timestep.

2. Delayed Preconditioning - precondition only two iterations of the timestep,

but delay preconditioning until after the first two Newton iterations.

3. Variable Preconditioning – precondition based on previous timestep

preconditioner performance and the current timestep global convergence

behavior.

Strategies 1 and 2 – Early and Delayed Preconditioning

The first two strategies both apply the preconditioner for a maximum of two consecutive

iterations per timestep, the first strategy preconditions the first two Newton iterations

while the second delays preconditioning until after the first two Newton iterations. The

performance of each strategy is evaluated with respect to standard implicit results. The

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 88

strategies are then contrasted to identify timesteps that show different preconditioning

behavior.

Each strategy is compared to the standard implicit results based on the difference

in Newton iterations, n
NId , defined as

, ,
n n n
NI t PcSI t SId u u= - (5.13)

where ,
n
t PcSIu and ,

n
t SIu are the respective total number of preconditioned standard implicit

(PcSI) and standard implicit (SI) Newton iterations required for timestep n. The values

for n
NId are interpreted as follows:

1. If 0n
NId > then the standard implicit formulation performed better than the

preconditioned formulation and required n
NId less Newton iterations for

timestep n.

2. If 0n
NId = then preconditioning had no benefit and both formulations

required the same number of Newton iterations for timestep n.

3. If 0n
NId < then the preconditioned formulation performed better than the

standard implicit formulation and required n
NId less Newton iterations for

timestep n.

The differences in global Newton iterations in the preconditioned and nonpreconditioned

runs for each strategy are shown in Figs. 5.7 and 5.8. Preconditioning the first two

Newton iterations resulted in slower convergence rates than without preconditioning

throughout most of the simulation (Fig 5.7). Delayed preconditioning indicates much

better performance, however occasionally preconditioning slowed the rate of convergence

(Fig 5.8). Examination of these timesteps shows that after returning from the

preconditioner, a large correction from the standard implicit solve was required,

indicating that even after two standard implicit iterations, reservoir conditions were not

stabilized enough to obtain a good preconditioned solution.

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 89

-5

-4

-3

-2

-1

0

1

2

3

4

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Timestep Number, n

N
ew

to
n

Ite
ra

tio
n

D
iff

er
en

ce
 (

P
cS

I -
 S

I)

Figure 5.7: Newton Iteration Difference, , ,
n n

NI t PcSI t SId u u= - , (,
n
t PcSIu , Early PcSI)

-5

-4

-3

-2

-1

0

1

2

3

4

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Timestep Number, n

N
ew

to
n

Ite
ra

tio
n

D
iff

er
en

ce
 (

P
cS

I -
 S

I)

Figure 5.8: Newton Iteration Difference, , ,
n n

NI t PcSI t SId u u= - , (,
n
t PcSIu , Delayed PcSI)

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 90

Similar to the previous comparisons, the early and delayed strategies can be

contrasted by examining the difference between the number of Newton iterations required

by each strategy. In this comparison the difference in Newton iterations, n
NId , is defined

as

, () , ()
n n n
NI t PcSI Early t PcSI Delayedd u u= - (5.14)

where , ()
n
t PcSI Earlyu and , ()

n
t SI Delayedu are the total number of preconditioned standard implicit

Newton iterations required for timestep n as a result of the respective early and delayed

strategies. The values for n
NId are then interpreted as follows:

1. If 0n
NId > then the delayed preconditioning strategy performed better than

the early strategy and required n
NId less Newton iterations for timestep n.

2. If 0n
NId = then the early and delayed preconditioning strategies resulted in

the same performance.

3. If 0n
NId < then the early preconditioning strategy performed better than the

delayed strategy and required n
NId less Newton iterations for timestep n.

The differences are shown in Fig. 5.9. The material balance error and linear

solution data for both runs were examined to seek correlations with the preconditioning

quality. The primary indicator for whether to apply preconditioning on the first Newton

step was found to be the material balance error. A large material balance error is

equivalent to a large residual vector for the linear solve and can result in a significant

change in the primary variables. In this case the local subdomain information can be of

poor enough quality to result in a bad preconditioned solution and can even lead to slower

convergence when compared to no preconditioning. However, even if the initial material

balance error is within a specified limit, as the Newton iteration progresses reservoir

conditions can change and adversely affect preconditioning.

Both strategies contained iterations where preconditioning increased the

maximum primary variable change or material balance error, which resulted in an

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 91

increased number of Newton iterations. This condition becomes an integral component

of the variable preconditioning strategy discussed next.

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Timestep Number, n

N
ew

to
n

Ite
rt

io
n

D
iff

er
en

ce
 (

E
ar

ly
-D

el
ay

ed
 P

re
co

nd
iti

on
in

g)

Figure 5.9: Newton Iteration Difference – Early Minus Delayed Preconditioning

Strategy 3 – Variable Preconditioning

The variable preconditioning strategy developed for this research employs

multiple criteria applied over a timestep to determine if preconditioning should be

applied. This strategy is employed in the test problems in Section 5.6. A detailed

presentation and flowchart of the strategy is contained in Appendix C and summarized

here.

The strategy contains criteria that can be categorized by the use of either previous

or current timestep information. The criteria based on current timestep information are

used to initiate or delay preconditioning within the current timestep. The criteria are

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 92

based on the premise that application of the preconditioner should not increase material

balance errors or delay Newton convergence rate in the reservoir domain.

Performance data related to the preconditioning strategy at earlier timesteps is

used to help define the first iteration at which preconditioning can be considered for the

current timestep. The total number of Newton iterations and sequence of preconditioned

iterations from the previous timestep are examined. If the total number of Newton

iterations is less than a threshold value then the previous timestep’s strategy is considered

a success for that threshold value and criteria designed to maintain or improve the

converge rate are employed. Otherwise the sequence of preconditioned Newton

iterations is examined to determine whether preconditioning should be applied earlier or

later in the current timestep. Additional criteria based on the previous two or three

timesteps convergence behavior are used to prevent stagnating or oscillating behavior in

the Newton convergence rate.

The results of applying the variable preconditioning strategy to the above test

model are compared against the strategy which employed delayed preconditioning. The

variable strategy reduced the standard implicit iterations (Fig. 5.10) and the

preconditioner iterations (Fig. 5.11) considerably for all the cases. Also recall that poor

performance of the 3x4x3 and 3x6x3 cases shown in Fig. 5.6 was due to preconditioning

that slowed convergence. The new criteria were able to apply the preconditioning

selectively and the convergence rate of these cases is improved greatly and demonstrates

the ability of the method to accelerate convergence for relatively simple coupled models.

Tests of the method with more complex models are described in Section 5.6.

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 93

300

320

340

360

380

400

3x3x3 3x4x3 3x6x3 6x6x3

Subdomain Size

S
ta

nd
ar

d
Im

pl
ic

it
N

ew
to

n
Ite

ra
tio

ns

Variable Preconditioning

Fixed Preconditioning

 391
Standard Implicit Formulation

Figure 5.10: Standard Implicit Iterations Fixed vs. Variable Preconditioning

90

110

130

150

170

190

210

230

250

270

290

3x3x3 3x4x3 3x6x3 6x6x3

Subdomain Size

P
re

co
nd

iti
on

er
 N

ew
to

n
ite

ra
tio

ns

Variable Preconditioning

Fixed Preconditioning

Figure 5.11: Preconditioned Iterations Fixed vs. Variable Preconditioning

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 94

5.6 Comparison of Coupled Formulations

The formulations described earlier in this chapter were applied to two coupled reservoir

and surface facility test models. The test problems are presented separately, with a

description of the model and a brief discussion of operational behavior preceding the

discussion and comparison of the solution methods.

The accuracy of the explicit and adaptive explicit facilities methods are compared

against the standard implicit formulation. The comparisons are based on results obtained

from the nonpreconditioned runs, which were identical to those of the preconditioned

runs.

The computational efficiency of the formulations is compared with respect to

Newton convergence rate and CPU time. The results for the nonpreconditioned explicit,

standard implicit and adaptive explicit formulations are presented first. Next, results

from applying the new preconditioning method to the standard implicit and adaptive

explicit facility formulations are compared against the respective nonpreconditioned

formulations. Additionally, the performance of the preconditioning is tested with respect

to variations in well subdomain size.

The analysis of the formulations includes discussion that refers to individual

formulation components. To facilitate discussion, component definitions and membership

for each formulation are summarized in Table 5.3.

5.6.1 Problem 1 - Model Description

The first test problem was designed to simulate production from three well groups

over a ten year horizon. An additional injection group is included to provide pressure

maintenance. The reservoir is characterized by an isotropic layered permeability field

with homogenous vertical permeability. The rock-fluid and PVT properties are listed in

Appendix B. The reservoir and surface facilities layout and data are shown in Fig. 5.12

and Tables 5.4-6.

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 95

Table 5.3: Major Formulation Components and Definitions

Component
Fully

Coupled
Preconditioner

Reservoir
Domain

Facilities
Domain

Coupling Formulation

Explicit Facilities (Exp-Fac) x x

Standard Implicit
Facilities (SI-Fac) x

Adaptive Explicit
Facilities

(AE-Fac) x x x

Preconditioned Standard
Implicit Facilities

(PcSI-Fac) x x

Preconditioned Adaptive
Explicit Facilities

(PcAE-Fac) x x x x

Component Definition

Fully Coupled global reservoir domain with fully implicit facilities coupling

Preconditioner well subdomains with fully implicit facilities coupling

Reservoir Domain global reservoir domain with well boundary conditions

Facilities Domain
facilities with source/sink boundary conditions corresponding to
production/injection wells

x
y

z

(1,1,5)

(30,20,1)

G1 G3
G2 S1 S2

Figure 5.12: Reservoir and Facilities Model - Problem 1

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 96

Table 5.4: Reservoir Data –Problem 1

Parameter

nx,ny,nz 30x20x5 depth to top of reservoir 5260’

dx=dy 500’ kx=ky, layer 5 600 md

dz 18’ layer 4 500 md

porosity @ 14.7 psia 0.30 layer 3 300 md

Pressure @ 8325’ 3500 psia layer 2 200 md

Initial water saturation 0.12 layer 1 300 md

initial oil saturation 0.88 kz 50 md

Table 5.5: Surface Facilities Data –Problem 1

Junction/Source/Sink Coordinate location1

G1 (2500,5000,0) (not shown in Fig.) G5 (7500,2000,0)

G2 (7500,5000,0) S1 (7500,1000,0)

G3 (12500,5000,0) S2 (7500,1000,0)

(not shown in Fig.) G4 (7500,2000,0)

 1reference location is the corner of cell 1,1,1 with coordinates (0,0,0), expressed in units of feet.

Surface pipe data2 Boundary Conditions

Production Gathering Network Diameter

G1 to G5 6.5” S1 1000.0 psia

G2 to G5 6.5”

G3 to G5 6.5”

G5 to S1 7.5”

Injection Network

S2 to G5 8.5” S2 3505.0 psia

 2absolute roughness of all pipe is 0.0001’

Operational data Choke data

Production group Minimum rate (stb/day) Initial choke setting Discharge coef.

G1 10000.0 0.65” 0.85

G2 15000.0 0.65” 0.85

G3 10000.0 0.65” 0.85

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 97

Table 5.6: Surface Facilities Data –Problem 1

Well block Tubing data2 Wellhead to junction node2

Group Well (i,j,k) Vertical length Diameter Horizontal length Diameter

G1 1 (3,3,1) 5341’ 5.5” 3640’ 6.5”

2 (3,18,1) 5341’ 5.5” 4123’ 6.5”

G2 1 (13,3,1) 5341’ 5.5” 3640’ 6.5”

2 (18,3,1) 5341’ 5.5” 3807’ 6.5”

3 (13,18,1) 5341’ 5.5” 4123’ 6.5”

4 (18,18,1) 5341’ 5.5” 4272’ 6.5”

G3 1 (28,3,1) 5341’ 5.5” 3807’ 6.5”

2 (28,18,1) 5341’ 5.5” 4272’ 6.5”

G4 1 (5,10,5) 5269’ 4.5” 5830’ 4.5”

2 (11,10,5) 5269’ 4.5” 3605’ 4.5”

3 (20,10,5) 5269’ 4.5” 3905’ 4.5”

4 (26,10,5) 5269’ 4.5” 6426’ 4.5”

The operational objective is to produce at least 35,000 stb/day from the reservoir

with the facility constraint defined by constant separator pressure. The total production

rate is distributed among three well groups and the minimum target rate for each group is

controlled using a variable choke. Initially all the chokes are set at 50% open and if the

target specified rate for that group is not achieved the choke is adjusted to meet the target

rate. Fig. 5.13 shows the adjustments made on each choke to maintain the group

production targets shown in Fig 5.14. At the beginning of production the chokes are

adjusted continuously until the injection program reverses the pressure decline. Once the

production meets or exceeds the minimum target, no choke adjustments are required until

a free gas phase begins to flow from the reservoir. The chokes are eventually open 100%

and the minimum target cannot be maintained. The symmetry of the well placement

accounts for the identical choke setting and rate profiles for groups G1 and G2.

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 98

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500

Time (days)

C
ho

ke
 S

et
tin

g
(in

.)

Groups G1 and G3

Group G2

Figure 5.13: Variable Choke Performance – Problem 1

5000

10000

15000

20000

0 500 1000 1500 2000 2500

Time (days)

O
il

R
at

e
(s

tb
/d

ay
)

Groups G1 and G3

Group G2

Minimum Target Group Rate

Figure 5.14: Group Oil Rate Production Profiles – Problem 1

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 99

5.6.2 Problem 1 - Accuracy of Formulations

Explicit Facilities

Recall that the explicit coupling consists of solving the surface facilities problem where

previous timestep reservoir conditions are used to determine flow into the wellbore. The

results of the facility solve establish Neumann or Dirichlet boundary conditions for each

well. In this problem, Dirichlet conditions are employed since constant pressure

boundary conditions are specified for both the sink (S1) and source nodes (S2). The well

flowing pressure is fixed throughout the timestep. There is an error in the flow rate when

comparing, 1) the beginning of timestep rate computed from the explicit facilities solve

and, 2) the rate obtained at the end of the timestep from the reservoir solve. This error

demonstrates the inconsistency that exists within the explicit formulation and an

additional comparison against the rate obtained from standard implicit formulation is

required to establish the error with respect to formulations. Since the magnitude and

profile of these errors (beginning of timestep explicit facility rate vs. end of timestep

reservoir rate, and beginning of timestep explicit facility rate vs. standard implicit rate) is

very similar, only comparisons based on the later combination are presented (Fig. 5.15).

The well production rates are identical for several of the wells and only a subset of the

errors is shown. During the time period between 800 and 1300 days the oil rate errors

ranged from 5 to 11%. A similar error profile is shown in the results presented by

Schiozer (1994). The time period corresponds to a transition from single-phase oil to

two-phase oil-gas flow in the wellbore.

Adaptive Explicit Facilities

An adaptive explicit facilities formulation is introduced that is an ideal candidate for this

model since the rate error is small outside of the transition period. The adaptive method

will apply an explicit facilities formulation outside of the transition period and a standard

implicit formulation within the transition period. In this problem, the method switches

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 100

0

5

10

15

0 500 1000 1500 2000 2500

Time (days)

O
il

R
at

e
E

rr
or

 (
%

)

Well 1
Well 3
Well 1
Well 2

Group G2

Groups G1 and G3

Figure 5.15: Well Oil Rate due to Explicit Treatment of Facilities Model

0

5

10

15

0 500 1000 1500 2000 2500

Time (days)

O
il

R
at

e
E

rr
or

 (
%

)

Adaptive Explicit Facilities

Explicit Facilities

Group G2, Well 1

Figure 5.16: Oil Rate Error Comparison – Explicit and Adaptive Explicit Methods

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 101

from an explicit to implicit facility formulation when the percent change in solution gas-

oil ratio exceeds 1% ()max 1%V = . A comparison of the methods using the rate data for

well 1 of group G2 is shown in Figure 5.16. The oil rate error is significantly reduced and

has a maximum value of only 4%. The errors for the other wells show similar reductions.

5.6.3 Problem 1 - Computational Cost of Formulations

Nonpreconditioned Formulations

The efficiency of the explicit and adaptive explicit formulations is examined with respect

to the standard implicit formulation. The Newton convergence behavior for each

formulation is shown in Table 5.7. The affect of facility coupling on the standard implicit

formulation is evident. The number of fully coupled iterations exceeded the number of

facility domain iterations required by the explicit formulation. In the adaptive explicit

formulation the fully coupled iterations reflect the cost of the standard implicit timesteps,

while the combination of the reservoir domain and facility domain iterations reflects the

cost of the timesteps using the explicit facilities formulation. A comparison of the

standard implicit (fully coupled) and adaptive explicit (fully coupled + reservoir domain)

iterations shows a 24% reduction in the number of iterations involving a linear solve that

includes the reservoir domain when compared to the standard implicit formulation, which

highlights the benefit of the adaptive explicit method

 Table 5.7: Performance Data – Nonpreconditioned Formulations – Problem 1

Newton Iterations CPU Reduction1

Coupled Formulation Fully Coupled Reservoir Domain Facility Domain

SI-Fac 664 - -

Exp-Fac - 429 550 39%

AE-Fac 168 334 421 33%

 1reduction is with respect to CPU requirements of standard implicit facilities (SI-Fac) formulation

The explicit formulation reduced the standard implicit CPU requirements 39% by

decoupling the reservoir and facility domains which allowed for improved convergence

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 102

behavior in the reservoir domain, however at the expense of errors of the order 5 to 11%

in the well rates (Fig. 5.15). The adaptive explicit formulation performed quite well and

reduced the standard implicit CPU requirements 33%, in addition to minimizing the

affect of explicit coupling on well rates (Fig. 5.16).

Preconditioned Standard Implicit

The Newton convergence rate of the standard implicit formulation is considerably

reduced due to the facility coupling. The preconditioned runs resulted in reduced

standard implicit iterations on the fully coupled problem, at the cost of iterations on the

preconditioner (Fig. 5.17). The optimal preconditioner configuration for this problem is a

1x1x1 subdomain size for each well. Preconditioning reduced the fully coupled iterations

by 31% and resulted 17% reduction in total CPU time. The selection strategy (Section

5.5.1) limited preconditioning considerably for the 3x3x5 case and resulted in an

increased number of fully coupled iterations. This behavior may be due to the increased

internal boundary area associated with the 3x3x5 subdomains, which can increase the

occurrence of poor preconditioned solutions.

The performance of the configurations is summarized in Table 5.8. The

difference in savings when comparing iteration and CPU requirements is examined by

first establishing the cost of Jacobian, linear solve and preconditioner components of the

formulations and then examining the total cost per iteration. Note that the Jacobian and

linear solve components are with respect to standard implicit iterations only, while the

preconditioner component contains costs for Jacobian and linear solve computations.

The cost per iteration for the Jacobian calculations and linear solve is consistent

among the standard implicit and preconditioned cases. The reduced cost for these

calculations in the explicit formulation reflects the absence of facility components when

solving on the reservoir domain, which increased the overall efficiency of the formulation

considerably. The cost per iteration of the preconditioner increases only slightly with

subdomain size since the costs of the network calculations dominate this component. The

cost of the preconditioner is discussed further in Chapter 6. In the explicit formulation,

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 103

400

450

500

550

600

650

SI-Fac 1x1x1 3x3x3 3x3x5 Exp-Fac

Subdomain Size, PcSI-Fac

N
ew

to
n

Ite
ra

tio
ns

Fully Coupled
Preconditioner

Reservoir Domain
Facilities Domain

Figure 5.17: Preconditioned Standard Implicit Convergence Behavior – Problem 1

Table 5.8: Preconditioned Standard Implicit Facilities Performance Data – Problem 1

% Reduction2 Cost of Formulation Components (sec/iteration)

Coupled
Formulation1

Newton
Iterations3

Total CPU
Time

Jacobian
Calculations

Linear
Solve Preconditioner4 Total

SI-Fac - - 1.44 4.9 - 6.34

PcSI-Fac, 1x1x1 31.3 16.9 1.53 5.18 0.99 7.70

PcSI-Fac, 3x3x3 30.3 14.6 1.52 5.16 1.09 7.77

 PcSI-Fac, 3x3x5 25.1 6.8 1.50 5.32 1.67 8.49

Exp-Fac 35.4 38.5 0.79 4.0 0.94 5.73

 1well subdomain size included with preconditioned formulations
 2with respect to standard implicit results
 3depending on formulation, reduction based on fully coupled or reservoir domain iterations
 4data for explicit formulation corresponds to computation performed in the facility domain

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 104

the cost per iteration required for solving the facility domain is consistent with these

results.

The average total cost per preconditioned standard implicit iteration is 7.98

seconds/iteration versus 6.34 for a standard implicit iteration. The primary difference is

due to the cost of preconditioner which increased the cost per iteration by 27% when

compared to a standard implicit iteration, and thus accounts for the difference in the

Newton iteration and CPU performance metrics. However, note that even though the net

cost per fully coupled iteration is higher for the preconditioned runs, preconditioning

reduces the number of standard implicit iterations that require a linear solve on the fully

coupled Jacobian matrix and results in a significant savings when compared to the cost of

the preconditioner.

Preconditioned Adaptive Explicit Facilities

The results shown in the previous section demonstrate that the adaptive explicit

formulation is able to minimize the material balances errors associated with the explicit

formulation. Selective application of the standard implicit formulation results in

favorable Newton iteration convergence behavior that is further improved through

preconditioning. The convergence performance of the method is shown in Fig 5.18 and

Table 5.9. To simplify the presentation, the number of iterations shown for the adaptive

formulations represents a combination of components. The iterations required for the

fully coupled and reservoir domains are combined since their cost is similar. Both

iterations require a linear solve based on a Jacobian matrix that includes the full reservoir

flow field coefficients. Similarly, the iterations required for the preconditioner and

facility domains are combined since their cost is similar due to the pipe network

calculations.

The nonpreconditioned adaptive explicit case (AE-Fac) required a total of 502

fully coupled and reservoir domain iterations. The optimal preconditioner configuration

for this problem is a 3x3x5 subdomain size for each well and reduced the fully coupled

iterations by 14% and resulted 4% reduction in total CPU time. This percentage is lower

than the equivalent comparison for the standard implicit and preconditioned standard

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 105

400

425

450

475

500

525

550

575

600

AE-Fac 1x1x1 3x3x3 3x3x5 Exp-Fac

Subdomain Size, PcAE-Fac

N
ew

to
n

Ite
ra

tio
ns

Fully Coupled + Reservoir Domain

Preconditioner + Facility Domain

Reservoir Domain

Facility Domain

Figure 5.18: Preconditioned Adaptive Explicit Facilities Convergence Behavior

Table 5.9: Performance Data – Adaptive Explicit Facilities Formulation – Problem 1

% Reduction1

Formulation Newton Iterations2 Total CPU Time

PcAE-Fac, 1x1x1 12.3 2.6

PcAE-Fac, 3x3x3 12.3 2.3

PcAE-Fac, 3x3x5 14.5 4.0
 1with respect to adaptive explicit facilities (AE-Fac) results
 2reduction based on fully coupled and reservoir domain iterations

implicit cases (Table 5.8) due to the selective application of the standard implicit

formulation, which was applied on only 20% of the timesteps while an explicit facility

coupling was applied for the other 80%.

The difference in facility and preconditioner plus facility domain iterations

required by the respective nonpreconditioned (AE-Fac) and preconditioned adaptive

explicit (PcAE-Fac) formulations are consistent with the strategy design (Fig. 5.18). The

facility domain required for the nonpreconditioned case corresponds to the timesteps

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 106

when the adaptive formulation is in explicit facilities mode. When the preconditioner is

activated, the work performed by the fully coupled iterations for converging the facilities

is shifted to the preconditioner and accounts for the large increase in preconditioner plus

facility domain iterations for the various well subdomain configurations. Note that the

iteration requirements for the preconditioned cases (preconditioner + facility domain) are

similar to the explicit facilities formulation (facility domain), which is due to the cost

facilities Jacobian calculations.

Summary of Results

The results for the explicit facilities and optimal preconditioned standard implicit

adaptive explicit facilities configurations are summarized in Table 5.10. The new

preconditioning method is shown to improve convergence rate and reduce computational

requirements of the base formulations. The preconditioned standard implicit formulation

improved the Newton convergence rate considerably, however due to the cost of

preconditioning, resulted in a reduction in CPU time of only 16%. The adaptive explicit

formulation combined the benefits of improved standard implicit iterations with the

efficiencies of the explicit formulation and resulted in a 36% reduction in total CPU time

when compared to the standard implicit formulation. Additionally, the method only

required 5% more CPU time than the explicit coupling, and minimized the material

balance errors when compared to the explicit coupling.

Table 5.10: Comparison of Optimal Preconditioner Configurations – Problem 1

% Reduction1

Formulation
Newton Iterations2 Total CPU Time

Optimal (1x1x1) PcSI-Fac 31.0 17.0

Optimal (3x3x5) PcAE-Fac 35.9 36.2

Exp-Fac 35.9 38.6

 1with respect to standard implicit results
 2depending on formulation, reduction based on fully coupled and/or reservoir domain iterations

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 107

5.6.4 Problem 2 - Model Description

The second test problem simulates production from three well groups over a four year

time period. The model demonstrates the impact of gas breakthrough and well placement

on the surface facilities behavior. Additionally, results from a variation of the base model

are included to demonstrate the interaction between the reservoir and facilities. The base

model and data are shown in Fig. 5.19 and Tables 5.11-13. The rock-fluid and PVT

properties are listed in Appendix B. The wells are grouped according to completion

interval with a maximum of three wells per group. Similar to Problem 1, an injection

group is included for pressure maintenance.

G1

G2

G3 G4

G5

G6

S1
S2

(20,20,1)

(1,1,5)

x
y

z

Figure 5.19: Reservoir and Surface Facilities Layout - Test Problem 2

Table 5.11: Reservoir Data – Problem 2

Parameter

nx,ny,nz 20x20x5 depth to top of reservoir 8337.5’

dx=dy 500’ kx=ky, layer 5 200 md

dz 25’ layer 4 500 md

porosity @ 14.7 psia 0.25 layer 3 200 md

pressure @ 8325’ 5800 psia layer 2 100 md

initial water saturation 0.12 layer 1 500 md

initial oil saturation 0.88 kz 0.1*kx

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 108

Table 5.12: Surface Facilities Data – Problem 2

Junction/Source/Sink Coordinate location1

G1 (2750,2750,0) G5 (4750,2750,0)

G2 (7750,2250,0) G6 (5250,4750,0)

G3 (4250,7250,0) S1 (8200,4750,0)

G4 (5250,4750,0) S2 (8200,4750,0)

Surface pipe data2

Production Gathering Network Diameter Boundary Conditions

G1 to G5 6.0” S1 1750.0 psia

G2 to G5 6.0” S2 5810.0 psia

G5 to G6 6.0” Choke Parameters3

G3 to G6 6.0” diameter 0.9”

G6 to S1 8.0” discharge coef. 0.85

Injection Network

S2 to G4 6.0”

 1reference location is the corner of cell (1,1,5) with coordinates (0,0,0), expressed in units of feet.
 2absolute roughness of all pipe equals 0.0001’
 3same for all production wells

Table 5.13: Surface Facilities Data – Problem 2

Well block Tubing data1 Wellhead to junction node1

Group Well (i,j,k) Vertical length Diameter Horizontal length Diameter

G1 1 (3,3,1) 8450’ 4.5” 1767’ 4.5”

2 (8,2,1) 8450’ 4.5” 2150’ 4.5”

3 (5,11,1) 8450’ 4.5” 2761’ 4.5”

G2 1 (13,3,2) 8425’ 5.0” 1457’ 4.5”

2 (18,1,2) 8425’ 5.0” 2150’ 4.5”

3 (18,9,2) 8425’ 5.0” 2573’ 4.5”

G3 1 (3,16,,2) 8425’ 3.5” 2850’ 4.5”

2 (9,19,2) 8425’ 3.5” 2263’ 4.5”

3 (17,15,2) 8425’ 3.5” 4257’ 4.5”

G4 1 (6,5,5) 8350’ 3.0” 3181’ 3.0”

2 (16,6,5) 8350’ 3.0” 3259’ 3.0”

3 (9,15,5) 8350’ 3.0” 2850’ 3.0”
 1absolute roughness equals 0.0001’

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 109

The production period is limited to 4 years due to the surface facilities implementation

that does not allow for redefining well membership for a group based on operating

conditions. The injection gas reaches group G2 wells earlier than the other two groups

and at breakthrough results in loss of pressure support for the G2 wells. These wells

would continue to flow only if the downstream pressure decreased enough to compensate

for the drop in reservoir pressure. The production from groups G1 and G2 is combined at

collection point node G5. Since gas breakthrough at the group G2 wells did not affect

production from group G1 wells, pressure support at G5 is unaffected and the group G2

wells cannot flow. Fig 5.20 shows the production profile for well 1 of group G2. The

reservoir deliverability curve represents well flowing rate in the absence of hydraulic and

frictional pressure drops. The facility capacity curve indicates how much fluid from well

1 can flow into collection point G2, given the tubing and surface pipe performance, and

pressure at G2. As shown in Fig. 5.20, well 1 cannot flow for approximately 800 days

due to the loss of pressure support and high backpressure at the collection node.

0

1000

2000

3000

4000

0 1000 2000 3000

Time (days)

O
il

R
at

e
(s

tb
/d

ay
)

Facility Capacity

Reservoir Deliverabilty

Figure 5.20: Production Profile, Group G2 Well 1

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 110

After 3200 days the collection node pressure drops enough so that well 1 is brought back

on production. The other two wells in group G2 are removed from production for the

remainder of the simulation. In this situation the group G2 wells could have continued to

flow if they were moved to a lower pressure gathering system.

The operating objective is to obtain the maximum field production rate where

each wellhead choke is fixed at 90% open and the separator pressure for the production

gathering system is held constant at 1750 psia. The production rates for each group (Fig.

5.21) show that group G1 contributes approximately 60% of the total field rate and the

remaining 40% is distributed between groups G2 and G3. For each well the tubing and

surface pipe properties are similar and the primary difference in production rates are due

to well placement. Wells in group G1 are completed in a higher permeability zone when

compared to the permeability zone for wells in groups G1 and G2. Thus for an equivalent

pressure drop, group G1 wells flow at a higher rate than the other wells as shown by the

differences in production profiles.

5000

10000

15000

20000

25000

30000

35000

40000

0 500 1000

Time (days)

O
il

R
at

e
(s

tb
/d

ay
)

Group G1

Group G2

Group G3

Figure 5.21: Group Oil Rate Production Profiles - Test Problem 2

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 111

5.6.5 Problem 2 - Accuracy of Formulations

Explicit Facilities

The performance of the explicit coupling is presented with respect to material balance

errors based on the difference between beginning of timestep explicit facility and standard

implicit well rates. A similar profile exists when comparing beginning of timestep

explicit facility rate versus the end of timestep reservoir rate. As shown in Figs. 5.22-24,

several wells incurred material balance errors that exceeded 10%, with a maximum error

of 25% for well 1 of group G2. In contrast to the previous test problem, where the

development of two-phase flow in the wellbore occurred within a 500 day time interval,

the time interval for this problem spans 800 days, with significant variations in individual

well behavior.

0

5

10

15

0 500 1000

Time (days)

O
il

R
at

e
E

rr
or

 (
%

)

Well 1
Well 2
Well 3

Group G1

Figure 5.22: Oil Rate Error – Explicit Treatment of Facilities Model – Group G1

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 112

0

5

10

15

20

25

30

0 500 1000

Time (days)

O
il

R
at

e
E

rr
or

 (
%

)
Well 1
Well 2
Well 3

Group G2

Figure 5.23: Oil Rate Error – Explicit Treatment of Facilities Model – Group G2

0

5

10

15

20

0 500 1000

Time (days)

O
il

R
at

e
E

rr
or

 (
%

)

Well 1
Well 2
Well 3

Group G3

Figure 5.24: Oil Rate Error – Explicit Treatment of Facilities Model – Group G3

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 113

Adaptive Explicit Facilities

Similar to Problem 1, the adaptive explicit facilities formulation is employed to

exploit the performance benefits of the explicit formulation outside of the transition

periods. In this problem, the method switched from an explicit to implicit facility

formulation when the percent change in solution gas-oil ratio exceeded 5% (max 5%V =).

A comparison of the methods using the rate data for well 1 of groups G1 and G2 is shown

in Figure 5.25. The oil rate error is significantly reduced and has a maximum value of

only 3%. The errors for the other wells show similar reductions.

0

5

10

15

20

25

30

0 250 500 750 1000 1250

Time (days)

O
il

R
at

e
E

rr
or

 (
%

)

Group G1, Well 1

Group G2, Well 1

Group G1, Well 1

Group G2, Well 1

Explicit

Adaptive
 Explicit

Figure 5.25: Oil Rate Error Comparison – Explicit and Adaptive Explicit Methods

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 114

5.6.6 Problem 2 - Computational Cost of Formulations

Nonpreconditioned Formulations

The efficiency of the explicit and adaptive explicit formulations is examined with respect

to the standard implicit formulation. The Newton convergence behavior for each

formulation is shown in Table 5.14. Similar to Problem 1, the convergence rate of the

standard implicit formulation is considerably lower than the rate of the explicit

formulation on the reservoir domain and is more similar to the convergence rate of the

facility domain component. The explicit formulation reduced the standard implicit CPU

requirements 51%, and as shown in Figs. 5.22-24, at the expense of considerable material

balance errors on the order of 5 to 25%. The adaptive explicit formulation minimized the

affect of explicit coupling on well rate errors, but reduced the standard implicit CPU

requirements by only 17%, in contrast to the 33% reduction achieved in Problem 1. This

is due primarily to the large time variance corresponding to the development of two-phase

flow in the wellbore.

Table 5.14: Performance Data – Nonpreconditioned Formulations – Problem 2

Newton Iterations CPU Reduction1

Coupled Formulation Fully Coupled Reservoir Domain Facility Domain

SI-Fac 589 - -

Exp-Fac - 268 534 51%

AE-Fac 471 70 93 17%

1reduction is with respect to CPU requirements of standard implicit formulation

Preconditioned Standard Implicit

The preconditioned runs reduced the number of fully coupled iterations significantly (Fig.

5.26). The optimal preconditioner configuration used a 1x1x1 subdomain size for each

well and reduced the fully coupled iterations by 47.7% and resulted in 35.5% reduction in

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 115

total CPU time. The 3x3x3 configuration employed a lower number of preconditioned

iterations than the 1x1x1 and 3x3x5 configurations and resulted in a slight increase in the

number of fully coupled iterations.

The strategy presented in Section 5.5.2 is used to determine when

preconditioning should be applied and in this problem the 25% of the Newton iterations

are preconditioned for the 1x1x1 and 3x3x5 configuration, in contrast to only 15% for the

3x3x3 configuration. The selection criteria employed by the strategy detected problems

with the 3x3x3 configuration and reduced preconditioning frequency and thereby reduced

the costs associated with preconditioning (Fig. 5.26). This compensated for the added

cost of fully coupled iterations and resulted in computational requirements that are very

similar to the 1x1x1 and 3x3x5 configurations (Table 5.15, avg. % reduction in CPU time

equals 35%). This demonstrates the benefit of the strategy selection criteria since optimal

selection of subdomain size cannot be easily determined and the preconditioning method

must be robust enough to take advantage of arbitrary configurations.

The performance of the configurations is summarized in Table 5.15. The

difference in savings when comparing iteration and CPU requirements is examined by

first establishing the cost of Jacobian, linear solve and preconditioner components of the

formulations (Table 5.15) and then examining the total cost per iteration.

The cost per iteration for the Jacobian calculations and linear solve is consistent

for the standard implicit and preconditioned cases. Similar to the previous test problem

results, the reduced cost for these calculations in the explicit formulation reflects the

absence of the facilities component when solving for the reservoir domain, which

increased the overall efficiency of the formulation considerably. The cost per iteration of

the preconditioner increases only slightly with subdomain size since the costs of the

network calculations dominate this component. The cost per iteration required for

solving the facility domain with the explicit formulation is consistent with these results.

The average total cost per iteration of the preconditioned runs is 5.6

seconds/iteration versus 4.81 for the standard implicit case. The difference is due to a

combination of the added cost of the preconditioner coupled with slightly improved

performance in the linear solve.

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 116

200

250

300

350

400

450

500

550

600

SI-Fac 1x1x1 3x3x3 3x3x5 Exp-Fac

Subdomain Size, PcSI-Fac

N
ew

to
n

Ite
ra

tio
ns

Fully Coupled
Preconditioner

Reservoir Domain
Facilities Domain

Figure 5.26: Preconditioned Standard Implicit Performance Data – Problem 2

Table 5.15: Performance Data for Preconditioned Formulations – Problem 2

% Reduction2 Cost of Formulation Components (sec/iteration)

Coupled
Formulation1

Newton
Iterations3

CPU
Time

Jacobian
Calculations

Linear
Solve Preconditioner4 Total

SI-Fac - - 1.41 3.4 - 4.81

PcSI-Fac, 1x1x1 47.7 35.5 1.53 2.77 1.15 5.54

PcSI-Fac, 3x3x3 46.7 34.0 1.53 2.8 1.28 5.61

PcSI-Fac, 3x3x5 50.2 35.0 1.54 2.83 1.34 5.71

Exp-Fac 54.5 51.0 0.60 2.3 1.13 4.03

 1well subdomain size included with preconditioned formulations
 2with respect to standard implicit results
 3depending on formulation, reduction based on fully coupled or reservoir domain iterations
 4data for explicit formulation corresponds to computation performed in the facility domain

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 117

Preconditioned Adaptive Explicit Facilities

The convergence performance of the preconditioned adaptive explicit method is shown in

Fig 5.27 and Table 5.16. The explicit results are included for reference. All

preconditioner configurations resulted in very similar performance (Table 5.16). The

optimal preconditioned adaptive explicit configuration used a 3x3x3 subdomain size and

reduced the number of fully coupled Newton iterations by 45%, which resulted in a

25.6% reduction in CPU time when compared to the nonpreconditioned adaptive explicit

formulation. These percentages are higher than the equivalent comparison for the first

problem due to the large time variance corresponding to the development of two-phase

flow in the wellbore, and thus a higher percentage of timesteps require the standard

implicit formulation.

50

100

150

200

250

300

350

400

450

500

550

600

650

700

AE-Fac 1x1x1 3x3x3 3x3x5 Exp-Fac

Subdomain Size, PcAE-Fac

N
ew

to
n

Ite
ra

tio
ns

Fully Coupled + Reservoir Domain

Preconditioner + Facility Domain

Reservoir Domain

Facility Domain

Figure 5.27: Preconditioned Adaptive Explicit Implicit Convergence Behavior

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 118

Table 5.16: Performance Data for Adaptive Explicit Formulation – Problem 2

% Reduction1

Formulation Newton Iterations2 Total CPU Time

PcAE-Fac, 1x1x1 41.4 25.2

PcAE-Fac, 3x3x3 45.1 25.6

PcAE-Fac, 3x3x5 46.0 24.5

 1with respect to adaptive explicit facilities results
 2reduction based on fully coupled and reservoir domain iterations

Summary of Results

The optimal configurations for preconditioned standard implicit and adaptive explicit

formulations resulted in very similar performance due to the significant number of fully

coupled iterations required by this problem. When compared to the standard implicit

formulation, the optimal preconditioned adaptive explicit facilities configuration reduced

the iterations by 49.5% and corresponds to a 38.4% reduction in CPU time. As shown in

Fig. 5.25, the formulation reduced the material balance errors of the explicit formulation

considerably. With preconditioning, the method required only 25% more CPU time

when compared to the explicit formulation, which is minor when considering the

magnitude of the errors.

Table 5.17: Comparison of Optimal Preconditioner Configurations – Problem 2

% Reduction1

Formulation
Newton Iterations2 CPU Time

Optimal (1x1x1) PcSI-Fac 47.0 35.0

 Optimal (3x3x3) PcAE-Fac 49.5 38.4

Exp-Fac 54.0 51.0

 1with respect to standard implicit results
 2depending on formulation, reduction based on fully coupled and/or reservoir domain
 iterations

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 119

5.7 Concluding Remarks

The following formulations for solving coupled reservoir and surface facilities

problems have been investigated:

1. Explicit Facilities

2. Standard Implicit Facilities

3. Adaptive Explicit Facilities

4. Adaptive Implicit Reservoir - Standard Implicit Facilities

5. Preconditioned Standard Implicit Facilities

6. Adaptive Implicit Reservoir - Preconditioned Standard Implicit Facilities

7. Preconditioned Adaptive Explicit Facilities

The methods have been analyzed with respect to the accuracy and convergence

characteristics of Newton’s method applied to the nonlinear problem. The explicit

formulation decouples the reservoir and facility domains and allows for efficient solution

of the nonlinear problem at the expense of material balance errors. The standard implicit

facilities formulation eliminates the material balance error to a specified tolerance,

however the convergence rate is reduced severely and results in a significantly increased

CPU requirement. The adaptive implicit reservoir formulation reduces the cost of solving

for the reservoir flow field, but similar to the previous formulation, the full facilities

coupling results in increased CPU requirements.

An adaptive explicit facilities formulation has been developed which combines

the efficiency of the explicit formulation with accuracy close to that of the standard

implicit formulation. A new preconditioning method has been developed that can be

used with the standard implicit and adaptive explicit facilities formulation to accelerate

convergence of the fully coupled iterations. The preconditioning method has been

applied successfully to both formulations and test results indicate that the preconditioned

adaptive explicit formulation is capable of solving the fully coupled reservoir and

CHAPTER 5. COUPLED RESERVOIR AND SURFACE FACILITY MODELS 120

facilities problem within an acceptable level of error while reducing the CPU

requirements to that of the standard explicit formulation.

The preconditioning technique can also be used with an adaptive implicit

treatment of the reservoir flow field. The preconditioner well subdomains are chosen to

coincide with the initial boundaries for implicitness, resulting in a preconditioning of the

fully coupled adaptive implicit reservoir problem. While not investigated, a formulation

which combines the adaptive reservoir flow field and adaptive facility coupling

formulations would capitalize on the individual efficiencies of each method. The

efficiency of the facility coupling could be further improved through the preconditioning

method, resulting in a preconditioned adaptive implicit reservoir adaptive explicit

facilities formulation.

121

Chapter 6

Parallel Formulation

This chapter presents the parallel formulation developed for the coupled reservoir

and surface facilities simulation approach. Basic parallel design criteria that motivated

the final design are first presented. The key elements of the parallel model are discussed.

In addition, the parallel algorithms and code libraries employed from external sources are

presented. The overall and specific component parallel efficiencies of the formulation are

analyzed based on test model results.

6.1 Parallel Program Design

This section presents the basic criteria and design employed to construct the parallel

algorithm. A comprehensive discussion on the design and analysis of parallel programs is

provided by Foster (1989).

The design of an efficient parallel algorithm requires analyzing the solution

method for a problem to identify components that can be solved concurrently. A

component is defined as a unit of parallelism in the algorithm. The component

partitioning should contain more tasks than there are processors and should also avoid

redundant data operations and storage. Additionally the partitioning should result in a

balanced workload among processors and allow for efficient utilization of increased

number of processors, commonly referred to as scalability.

The communication costs associated with remote memory accesses must also be

considered. A processor can address local data more efficiently than remote data and

CHAPTER 6. PARALLEL FORMULATION 122

therefore a design that results in a high frequency of communication will severely restrict

individual processor performance. Data sharing among processors also introduces the

requirement of methods for managing and executing communication. Statically defined

communication patterns between processors simplify the code structure, but may not be

appropriate for the problem. In contrast, when dynamically defined communication

patterns are required, the code complexity can increase substantially.

Communication between two processors can be executed in two contexts,

blocking or nonblocking. A blocking communication operation stops further program

execution until the sending and receiving of data is completed. Nonblocking

communication operations allow for a send or receive operation to be started while the

program execution continues. These contexts have considerable impact on the program

efficiency and integrity. Blocking operations can restrict processor execution

unnecessarily while nonblocking operations require additional coding effort to ensure

data integrity.

6.1.1 Model Design

The problem of coupled reservoir and surface facilities modeling requires the

solution of a set of nonlinear partial differential equations. As discussed in Sections 5.2

and 5.4, the solution algorithm for the nonlinear problem and new preconditioning

method employs Newton’s method. This method involves the same set of tasks for each

Newton iteration, which can be broadly classified as Jacobian generation and the solution

of a linear system of equations. Each of these components contains operations that can be

performed concurrently.

Concurrency within the linear solve is not considered since an external software

package (PETSc) is utilized for this component. A brief discussion of the PETSc

package is included towards the end of this section. The basic model for concurrency in

the Jacobian calculations is presented next and specific component designs are presented

in Sections 6.1.2 and 6.1.3.

CHAPTER 6. PARALLEL FORMULATION 123

Concurrency - Jacobian Calculations

To exploit the maximum concurrency possible, a task for each grid and facilities node can

define the decomposition. The task stores the state information of the node and is

responsible for computations required for the Jacobian generation process. The finite

difference stencil used for the reservoir grid and network connectivity in the facilities

model requires that each task obtain values from the tasks responsible for neighboring

nodes. Hence there are a total of xyz fn n+ (total reservoir cells + total facility nodes) tasks

with data and computation per timestep, each requiring communication with several

neighboring tasks. This fine-grained decomposition of the coupled model results in a

number of tasks that is several orders of magnitude larger than the number of processors,

which coupled with the communication requirements for each node renders this type of

partitioning inefficient.

The communication requirement between neighboring nodes suggests that a

coarsening of the task data and computations will improve efficiencies together with

reducing communication. The calculations required by the reservoir and surface facility

nodes are based on different numerical methods. Therefore coarsening criteria that result

in a balanced distribution of the computation must take into account the differences in

reservoir and facilities based calculations.

Two basic approaches that seek to balance the computational load can be

considered. The first approach considered here treats the facilities components as one

computational task and then decomposes the reservoir domain to achieve an equivalent

distribution of the computational load. The selection of the component distribution

requires performance metrics for the respective reservoir and facilities components. In

this approach the reservoir and facility domain components are performed concurrently.

For example, reservoir Jacobian calculations decomposed corresponding to reservoir

layers could lead to global partitioning where one processor is responsible for

computations on both reservoir and facilities domains.

The second approach broadly decomposes the Jacobian calculations based on

numerical formulation and is a natural strategy for preconditioned adaptive explicit

CHAPTER 6. PARALLEL FORMULATION 124

coupling. The reservoir domain calculations are partitioned and performed concurrently,

independent of the facilities domain partitioning and processing. Thus in this approach

the concurrency is achieved in stages and seeks to achieve load balancing through

partitioning and concurrent processing of similar calculations. Note that this approach is

more general than the first and can accommodate various load balancing strategies within

the high level decompositions.

In this research the latter approach was employed since it reduces program

complexity and facilitates code reuse. By decomposing the Jacobian generation tasks into

reservoir and facilities domain components, much of the code designed for concurrent

processing required by the standard implicit formulation can be reused for concurrent

processing in the new preconditioning method. Concurrency in the preconditioning

method is discussed in Section 6.1.4.

Parallel Communication

The methods for parallel communication are similar for the reservoir and facilities

domain components. In the reservoir domain communication patterns between

processors form a regular structure based on grid layout, which in this research, does not

change over time. Similarly, the partitioning employed for the facilities domain results in

communication patterns that are structured in the context that a facilities node always

communicates with same node(s), however the order of communication is a function of

the machine load and the computational requirements of individual components.

Dynamic structured partitioning of the reservoir problem does not complicate the

communication patterns, however there is an additional complexity due to the code

required for sending, receiving and merging of partitions. The facilities domain problem

is relatively small and a copy of the entire facilities domain problem resides on each

processor. This data layout coupled with the model for achieving concurrency in the

facilities domain does affect the communication patterns when the facilities problem

partitioning is changed.

For the reservoir and facilities domain, data communication between processors

employs functions provided by the Message Passing Interface (MPI) based on the

CHAPTER 6. PARALLEL FORMULATION 125

Argonne National Laboratory and Mississippi State University implementation. A

detailed description of MPI is presented in Gropp et al. (1994). To simplify the program

code, blocking operations are employed that require syncronization among all nodes

before executation can continue, which limit the efficiency of the algorithm.

Recommendations are presented in Chapter 8 for removing these limitations.

Concurrency - Parallel Linear Solve

Parallel linear equation solution methods continue to be an area of active research

and we have chosen to rely on public domain codes for this component of the parallel

formulation. The Portable, Extensible Toolkit for Scientific Computation (PETSc) public

domain package developed at Argonne National Laboratory (Baley et al. 1997, 1999) was

selected due to the ease of integration and availability of user support. The Generalized

Minimal Residual (GMRES) method with parallel block Jacobi preconditioning option

was employed for all the test runs presented in this chapter. The block Jacobi

preconditioning provides a convenient method for constructing a parallel linear solve,

however as the number of processors increases, the quality of the preconditioner

decreases and the overall solver performance decreases. Saad (1995) provides a detailed

discussion of iterative methods for solving linear systems.

6.1.2 Reservoir Domain

In the reservoir domain, the specific partitioning of the Jacobian calculations is

motivated by several factors, which are based on the premise of uniform CPU

performance among all the nodes. The size of the problem coupled with individual

processor data storage limitations requires a partitioning based on the number of reservoir

cells. Since Jacobian calculations require only local cell information, the partitioning is

defined by a contiguous and equal distribution of reservoir cells. In this research the

partitioning of the reservoir cells is obtained via a layered decomposition of the reservoir

and simplifies the parallel linear solver setup. Additionally, to achieve better data locality

for the internal domain interface flux calculations, the decomposition is defined so that

CHAPTER 6. PARALLEL FORMULATION 126

each internal boundary contains one overlapping layer. However, this requires additional

message passing at the end of every Newton iteration for updating the state of the

overlapping cells and increases the processor workload.

6.1.3 Facilities Domain

The Jacobian calculations for the surface facilities components require a different

approach than described previously, which is due primarily to the defined unit of

parallelism coupled with the order dependence of the surface facility calculations

discussed in Section 4.4.1. The unit of parallelism is defined as the collection of tasks

that can be decoupled from the global problem and solved independently. For example in

the reservoir domain, the number of layers assigned to each processing node defines the

unit of parallelism. In the facility domain the unit of parallelism is defined to be all

computations between either a well and junction node, or between two junction nodes.

The order dependence of the flow calculations motivates this partitioning and is examined

further by considering the pipe network shown in Fig. 6.1.

Level 1

Level 2

1 2 3 4

5 6

7

8

Figure 6.1: Order Dependence in Network Calculations

CHAPTER 6. PARALLEL FORMULATION 127

In this facilities configuration there are two levels of parallelism. The

computations that are performed first correspond to level one, which is defined by the

connections 1-5, 2-5, 3-6, and 4-6. Using current pressure solutions for each node

Jacobian calculations for each of these connections can be performed concurrently.

Similarly the calculations for the level two connections, 5-7 and 6-7, can be performed

concurrently once the respective calculations upstream of nodes 5 and 7 are completed.

Note that the CPU requirement for each connection is a function of the device

configuration and phase behavior between the upstream and downstream nodes of the

connection. This example also demonstrates how the parallel content is constrained by

the surface facility configuration, in addition to the defined unit of parallelism. The first

level of parallelism requires at most four processors, and the second level requires at most

only two.

The order dependency in the facilities calculations requires a method for task

management. Two models for task management are investigated and are referred to as

the worker-worker and the manager-worker model. Both models designate one

processor, referred to as the manager, for task and data management. The other

processors are referred to as workers and perform computation-based tasks. Each model

is described further here.

Worker - Worker

The worker-worker model is characterized by the requirement that all processors

are candidates for computational tasks, including the manager. Therefore the manager

requires a scheme for balancing task and data management with computational

assignments. A simple scheme is employed where the manager initially assigns a task to

all the workers and then operates in an expanded capacity. The manager performs one

computational task and then checks to see if any workers have completed their tasks.

Once a worker signals completion, the manager receives the results and allocates another

task to the worker. At this stage the manager performs another computational task. The

operation sequence for the managers expanded role is summarized as

CHAPTER 6. PARALLEL FORMULATION 128

one local computation –> one receive –> one allocate –> one local computation.

This scheme does not contain any criteria for balancing the task assignments with

respect to computational cost. When the manager performs a computational task, several

workers may be idle, waiting to send their results to the manager. As the number of

workers increase, the parallel efficiency can be severely restricted since many workers are

idle, only for the benefit of the manager’s one computational task.

Manager-Worker

The second model employs a scheme designed to maximize the worker’s

computation time. The manager’s role is restricted to task and data management so that

the workers’ wait time is only limited by the amount of time the manager spends

allocating or receiving other respective workers tasks or data. However, since the

manager does not perform any computational tasks, the scheme reduces the maximum

parallel efficiency by dividing the total amount of computational work over a subset of

the available processors.

6.1.4 Newton Step Preconditioner

The preconditioning method developed in Section 5.4 requires construction of a

nonlinear problem defined by a collection of subdomains, one for each well, where each

well is fully coupled to the facilities domain. The strategies described in Section 6.1.3

for the facilities domain are also employed for parallel implementation of the

preconditioner. Since the preconditioner formulation employs fixed size subdomains,

the unit of parallelism for the reservoir Jacobian calculations is defined to be a

subdomain. Therefore each processor is assigned one or more subdomains so that the

load imbalance is minimized with respect to the unit of parallelism. Additionally, since

the subdomains are not allowed to overlap, there is no communication required between

the subdomains. The following section presents a test problem that is used to analyze the

performance of the decomposition schemes.

CHAPTER 6. PARALLEL FORMULATION 129

6.2 Test Results

The performance of the parallel formulations employed for the Jacobian calculations is

analyzed here. Linear solver performance data are included for reference. The results are

based on data obtained using the coupled model defined in Section 6.2.1. The parallel

computing platform used is a Silicon Graphics Power Challenge with 18 R8000

processors and two gigabytes of shared memory. However, the test results are based on

runs using only up to 12 processors. The MPI libraries were configured to use shared

memory for fast message passing and all codes were compiled with the highest level of

optimization available.

6.2.1 Problem Description

The test problem employed simulates production from a 32,000 cell reservoir model. 40

wells are assigned to five production groups and are placed uniformly within the field.

The production gathering system is designed so that identical production profiles are

obtained for groups G1 and G5. A similar relationship exists for groups G2 and G4. The

surface facilities layout and reservoir data are shown in Fig. 6.2 and Tables 6.1-2. The

reservoir rock-fluid and PVT properties are listed in Appendix B.

G1 G2 G3 G4 G5

S1

G6 G7

G8

Figure 6.2: Surface Facilities Production Gathering System - Parallel Test Problem

CHAPTER 6. PARALLEL FORMULATION 130

Table 6.1: Model Data – Parallel Test Problem

Parameter

nx,ny,nz 50x20x32 depth to top of reservoir 4260’

dx=dy 500’ kx=ky 300 md

dz 30’ kz 100 md

connate water saturation 0.12 porosity @ 14.7 psia 0.30

initial oil saturation 0.88 pressure @ 4260’ 3000 psia

Table 6.2: Model Data – Parallel Test Problem

Group Well1.2,3 Cell (i,j,k) Wellhead to
junction node3 Well1.2,3 Cell (i,j,k) Wellhead to

junction node3

G1 1 (3,3,1) 5 5 (8,13,1) 3.5”

2 (8,3,1) 6 6 (3,18,1) 3.5”

3 (8,8,1) 7 7 (3,18,1) 3.5”

4 (3,13,1) 8 8 (8,18,1) 3.5”

Junction/Source/Sink Coordinate location4

G1 (2500,5000,0) G6 (5000,2500,0)

G2 (7500,5000,0) G7 (20000,2500,0)

G3 (12500,5000,0) G8 (12500,1000,0)

G4 (17500,5000,0) S1 (12500,1000,0)

G5 (22500,5000,0)

Surface pipe data3 Diameter Diameter

G1 to G6 4.5” G6 to G8 5.5”

G2 to G6 4.5” G3 to G8 5.5”

G4 to G7 4.5” G3 to G8 5.5”

G5 to G7 4.5” G8 to S1 8.5”

Boundary Conditions

S1 1500.0 psi

1remaining wells are groups in similar pattern with respect to 10x20 areal section
2vertical depth (=5335’) and tubing diameter (=3.5”) is the same for all wells
3absolute pipe is roughness 0.0001’
4reference location is the corner of cell 1,1,3 with coordinates (0,0,4260), expressed in units of feet.

CHAPTER 6. PARALLEL FORMULATION 131

6.2.2 Performance Results

The methods for parallel reservoir and facilities domain Jacobian calculations are

analyzed with respect to results obtained from solving the test model using the

preconditioned standard implicit formulation presented in Section 5.3. The 40 wells

establish 40 subdomains for preconditioned standard implicit formulation. The well

subdomain size for all wells is 3x3x3. The preconditioned method reduced the number

of Newton iterations by 34% and resulted in a CPU time reduction of 30% when

compared to the nonpreconditioned results.

Performance Metrics

The analysis is based on scalability for a fixed problem size and two performance

metrics are used to compare the results. The first metric is the absolute efficiency, ,p ae ,

and is defined as follows:

,

cpu

seq
p a

cpu n

T
e

n T
= (6.1)

where seqT is the CPU time required for the sequential run (using one processor),
cpunT is

the time required when using cpun processors. When , 1p ae = the formulation is

considered to be 100% efficient. A value of , 1p ae < indicates that the formulation does

not scale with the number of processors. The metric ,p ae is referred to as “absolute” to

indicate that seqT is from the “best” available sequential algorithms, which may not

correspond to the “best” available parallel algorithms. This metric constitutes a measure

of absolute merit. For example in the following results, the linear solver configuration is

not identical for any of the runs and therefore does not permit a comparison of the

sequential formulation scalability. If the results are based on state of the art sequential

and parallel solvers, then the results would be of value in determining the merit of

investing in parallel architectures, assuming speed was the primary concern.

The second metric is the relative efficiency, ,p re , and is defined similar to Eq. 6.1,

however
cpunT is defined to be the CPU time based on algorithms that are equivalent to

CHAPTER 6. PARALLEL FORMULATION 132

those used by the sequential run. This metric characterizes the effectiveness with which a

parallel algorithm uses computer resources, independent of problem size. Some

algorithms are not designed to achieve 100% efficiency and in those cases an appropriate

performance model is required to analyze the efficiency of the formulation. For example,

when evaluating the performance of the manager-worker formulation for facilities

Jacobian calculations it is important to remember that the parallel model is not designed

to achieve 100% parallel efficiency since the manager of the processor does not perform

any computation. Therefore the performance of the formulation is analyzed using the

following efficiency model:

()
1

1
cpu

seq
p

cpu n

T
e

n T
-

=
-

(6.2)

Parallel Efficiency – Overall and Major Solution Components

The parallel efficiency is analyzed for 2, 4, 6, 8 and 12 processor runs, with the

uniprocessor run providing baseline data. The overall and component absolute parallel

efficiencies are shown in Fig. 6.3. The overall efficiency ranged from 97 to 56% with the

best and worst efficiencies corresponding respectively to the 2 and 12 processor

configurations. The percent total CPU time spent in each component for the sequential

run is also included in Fig. 6.3. The overall parallel efficiency is influenced primarily by

the linear solver, which accounts for 72% of the total run time. The reservoir and

facilities domain data represents work done outside the preconditioner. The overall

efficiency is examined further with respect to the component operations.

Reservoir Domain

The parallel efficiency of the reservoir domain calculations ranged from 95 to

78% for the 2 through 12 processor configurations (Fig 6.3). The reservoir decomposition

for each configuration is shown in Table 6.3. The decrease in parallel efficiency is due to

the additional cost of calculations for the overlap layers. However, the reduction is

considerably less than is to be expected based on percent increase in workload data

CHAPTER 6. PARALLEL FORMULATION 133

40

50

60

70

80

90

100

2 4 6 8 10 12
Processors

A
bs

ol
ut

e
P

ar
al

le
l E

ffi
ci

en
cy

 (
%

)

Overall

Reservoir Domain - 13.88*

Facilites Domain (M-W)** - 6.12

Linear Solve - 71.85

Preconditioner - 8.15

*% of Total CPU Time for Sequential Run

**W-W Model for 2 Processor Case

Figure 6.3: Absolute Parallel Efficiencies − Global Solution Procedure Components

Table 6.3: Layered Reservoir Decomposition

Layers Assigned to Each CPU – without Overlap
Maximum %
Increase with

Overlap1

CPU # 1 2 3 4 5 6 7 8 9 10 11 12

cpun

2 16 16 6.25

4 8 8 8 8 25

6 6 6 5 5 5 5 40

8 4 4 4 4 4 4 4 4 50

12 3 3 3 3 3 3 3 3 2 2 2 2 100

1equals number of overlap layers divided by number of non-overlap layers

CHAPTER 6. PARALLEL FORMULATION 134

shown in Table 6.3. For example, the parallel efficiency of the reservoir domain

calculations for 12 processor run is 78%. However, the workload for processors 9

through 11 increases by 100%. This indicates that other factors are influencing these

results. One possibility is that as the size of each reservoir domain decreases the

computational performance of the processor increases due to better data caching which

offsets the increased workload.

Facilities Domain

The parallel efficiency of the facilities domain calculations ranged from 94 to 50%.

Except for the two processor results, the results for the facilities domain calculations are

based on the manager-worker parallel model. The profile for facilities domain and

preconditioner efficiencies is similar and allows for analysis of the facilities domain

calculations to be included with the analysis of the preconditioner component.

Preconditioner

The parallel efficiencies for the preconditioner components are shown in Fig. 6.4 and

highlight several performance features of the method. The efficiency of the linear solve is

limited due to the size of the linear problem. As the number of processors increases the

efficiency decreases more rapidly than in the linear solve for the global problem (Fig 6.3).

Also, note that the linear solver only accounted for 3.5% of the total preconditioner time.

The preconditioner subdomain calculations scaled perfectly and accounted for

12% of the total preconditioner time. The results are consistent with the workload

distributions for each case shown in Table 6.4. In several of the cases the 40 subdomains

are equally distributed and in the remaining cases the allocation variance is minimal.

Since facilities calculations accounted for 84% of the total preconditioner CPU

time, the overall preconditioner and facilities domain efficiencies are nearly identical.

Except for the two processor results, the results for the facilities domain calculations are

based on the manager-worker parallel model. In general this model performed better than

the worker-worker model. An analysis of the worker-worker and manager-worker

follows.

CHAPTER 6. PARALLEL FORMULATION 135

Worker-Worker Model

The intent of the worker-worker model is to allow for all processors to participate in the

computational work, with a designated manager processor assigned the additional

responsibility of task and data management. The performance of this model is examined

by comparing the individual processor performance for the two and four processor cases.

0

20

40

60

80

100

2 4 6 8 10 12
Processors

A
bs

ol
ut

e
P

ar
al

le
l E

ffi
ci

en
cy

 (
%

)

Overall - Preconditioner

Well Subdomain - 12.22*

Facilites Domain (M-W)** - 84.31

Linear Solve - 3.52

*% of Total Preconditioner CPU Time

**W-W Model for 2 Processor Case

Figure 6.4: Absolute Parallel Efficiencies for Preconditioner Components

Table 6.4: Preconditioner Decomposition

Number of Subdomains Assigned to Each CPU Distribution
Variance

CPU # 1 2 3 4 5 6 7 8 9 10 11 12

cpun

2 20 20 0

4 10 10 10 10 0

6 7 7 7 7 6 6 0.22

8 5 5 5 5 5 5 5 5 0

12 4 4 4 4 3 3 3 3 3 3 3 3 0.22

CHAPTER 6. PARALLEL FORMULATION 136

Processor Utilization

The processor utilization measures the amount of work performed by an individual

processor with respect to the total amount of work required for a task. The individual

processor utilization is compared with respect to the distribution of the time spent on

computational tasks (Jacobian calculations) and waiting for tasks, or in the case of the

manager, the time spent waiting to assign tasks. The processor utilization u, is defined

by

,
,

j o o
j o

o

t t
u

t

-
= (6.3)

where ,j ot is the total time spent by processor j on an operation o (computational, wait

state/task assignment) and ot is the average time spent on an operation when considering

all processors. Note that in this definition an optimal allocation is shown by , 0j ou = for

all processors and operations. In the case of a computational operation, if , 0j ou > , then

the processor was assigned a higher fraction of the total computation time required for

that operation when compared to the other processor’s assignments. If the operation is a

wait state, then , 0j ou > indicates that the processor spent more time waiting on

assignments than other processors. Similarly, if , 0j ou < , then the processor was

assigned a lower fraction of the total time required for that operation when compared to

the other processor’s assignments. The larger the discrepancy among individual processor

utilization, the more inefficient is the allocation model. An alternative measure could

have been the variance of the time spent for each operation, however much of the model

performance is abstracted from the analysis of load balance.

The first and second charts in Fig. 6.5 show the processor utilization for the

respective two and four processor configurations. The last processor for both cases is

designated as the manager. The two processor configuration is examined first. Recall

that parallel efficiency of the worker-worker model for the two processor case is 94%

(Fig. 6.4, Facilities Domain). The difference in processor utilization for the

computational based tasks is minor (< 4%) and accounts the parallel efficiency (data not

shown). The total time spent by each processor in a wait state is less than 3% of the total

CHAPTER 6. PARALLEL FORMULATION 137

time spent on facilities calculations. The large wait state time for the manager (processor

1) reflects the cost of blocking send and receive operations. As discussed in Section 6.1.2

the sequence of operations conducted by this processor is:

one local computation –> one receive –> one allocate –> one local computation.

The manager completes a local computation and cannot continue further computation

until a worker process sends data. If nonblocking operations were employed the manager

process would query worker processes for task completion and continue operation if no

worker is ready to send results. However this functionality complicates the code

implementation and therefore was not implemented.

-100

-75

-50

-25

0

25

50

75

100

Facilities Calculations Wait State

U
til

iz
at

io
n

(%
)

CPU 1

CPU 2

-100

-75

-50

-25

0

25

50

75

100

Facilities Calculations Wait State

U
til

iz
at

io
n

(%
)

CPU 1

CPU 2

CPU 3

CPU 4

 Figure 6.5: Processor Utilization – W-W Model – 2 and 4 CPU Cases

The parallel efficiency of the facilities calculations for the four processor

configurations is only 52%. Examination of the second chart in Fig 6.5 shows that the

manager took over a significant percentage of the computation load. For every three tasks

sent to the workers, the manager would perform three tasks, thereby reducing the

efficiency of the remaining processors. The wait state data reflects the order of task

CHAPTER 6. PARALLEL FORMULATION 138

assignment by the manager. The manager checks for task completion and performs task

assignment in order of increasing processor rank. Thus processor 1 spends considerably

less time in a wait state than processor 3.

The results based on configurations with more than four processors demonstrated

similar limitations as the four processor case. The manager’s strategy for balancing task

assignment with individual computation tasks severely limited the parallel efficiency

beyond two processors. The efficiency of the manager-work model is examined next.

Manager-Worker Model

The absolute parallel efficiencies of the facilities domain calculations ranged from

75 to 50% (Fig. 6.3) and reflect a reduced efficiency due to the role of the manager.

However, when the parallel efficiency of the formulation is examined via the efficiency

model shown in Eq. 6.2, the manager-worker strategy is shown (Fig. 6.6) to perform as

designed for four and six processor configurations, and resulted in respective parallel

efficiency of 98 and 92%. An analysis of the individual processor performance of the

four processor configuration reinforces these results. The eight processor configuration is

included to complete the analysis. The load and wait state utilization for these

configurations are shown in Fig. 6.7. The computational load for the three processors is

nearly identical and accounts for the 98% relative efficiency. In this configuration the

manager was able to keep the workers operating at peak efficiency. A similar behavior is

observed for the six processor configuration. However, in the eight processor

configuration, the computational load imbalance reduced the relative parallel efficiency

of the formulation to 81%. This result is quite significant because it indicates that even

with a dedicated manager, as the number of workers increase, the manager is unable to

effectively allocate tasks. The wait state load utilization shows this result through the

high percent of wait state time associated with the higher rank processors.

CHAPTER 6. PARALLEL FORMULATION 139

50

60

70

80

90

100

4 6 8 10 12
Processors

R
el

at
iv

e
P

ar
al

le
l E

ffi
ci

en
cy

 (
%

)
Facilites Domain (M-W)

Figure 6.6: Relative Parallel Efficiencies – Facilities Domain – M/W Model

-100

-75

-50

-25

0

25

50

75

100

Facilities Calculations Wait State

U
til

iz
at

io
n

(%
)

CPU 1 CPU 2

CPU 3 CPU 4

CPU 5 CPU 6

CPU 7

-100

-75

-50

-25

0

25

50

75

100

Facilities Calculations Wait State

U
til

iz
at

io
n

(%
)

CPU 1

CPU 2

CPU 3

Figure 6.7: Processor Utilization – M-W Model – 2 and 8 CPU Cases

CHAPTER 6. PARALLEL FORMULATION 140

6.3 Concluding Remarks

The parallel strategies applied here have been developed for the Jacobian calculations for

the reservoir, facilities domains and Newton preconditioner. The decomposition of the

reservoir domain is motivated by problem size. The overlap layers at the internal domain

boundary interfaces influence the parallel efficiency. The well subdomains require

similar reservoir calculations in the preconditioner. The computations required for the

subdomains are distributed among all the processors so that the load imbalance with

respect to the number of subdomains assigned to one processor is minimized. This

allocation scheme was shown to scale very well since the subdomains are not

overlapping. In addition to the subdomain components, the parallel formulation for the

preconditioner contained facility domain components, which influenced the overall

parallel efficiency of the preconditioner strongly.

The decomposition of the facilities domain is motivated by the network

configuration and order dependency of the calculations. Two parallel models were

investigated, the worker-worker and manager-worker. The worker-worker model

distributed the computational tasks among all processors. One of the processors is

designated as the manager and also performed task management operations. The

manager’s strategy for balancing task assignment with local computation severely

restricted parallel efficiency beyond two processors.

The manager-worker model is designed to maximize the computation efficiency

of the worker processors at the expense of limiting the manager’s responsibility to task

management. Therefore the overall parallel efficiency is restricted by the parallel model,

however it was shown that given a facility problem with 40 wells, the efficiency of the

implementation was consistent with the parallel model’s peak performance capability for

up to six processors. However, for processor configurations greater than six the

efficiency of the formulation degraded and indicated that even with a dedicated processor

for task management, the efficiency of the worker processors can be limited.

CHAPTER 6. PARALLEL FORMULATION 141

The combination of the results from the worker-worker and manager-worker

model are used to develop the recommendations for further improving the parallel

efficiency of the facilities calculations and are presented in Chapter 8.

142

Chapter 7

Object-Oriented Design

This chapter focuses on the design and development of the application code used for this

research. The design is based on object-oriented techniques and the application is

developed with the C++ programming language. The framework of the code is presented

in terms of object and computational domain models. Each of these models is discussed

in detail and several examples are presented to demonstrate the reuse and extendibility of

the model designs.

The reader is recommended to review the basic object-oriented terminology,

concepts and symbolic notation that are presented in Appendix D before reading this

chapter. Additionally, the Standard Template Library (STL), which is used to provide

data storage functionality for the object design, is also discussed in Appendix D.

7.1 Object Model

The object model provides a structural point of view to describe the physical components

and their relationships in the application. The main components of the object model are

presented first and are followed by examples that demonstrate construction of the object

model.

The problem of full field modeling has several subsystems that map directly into

the object model. The high-level description of the physical system includes four

subsystems: 1) Field, 2) Reservoir, 3) WellGroupManager, and 4) Facilities. The

relationships among the subsystems are shown in Fig 7.1. The WellGroupManager

CHAPTER 7. OBJECT-ORIENTED DESIGN 143

system is used to store well group information and to perform collective operations on the

wells. The Reservoir, Well and Facilities subsystems are further defined below.

Reservoir Facilities

Field

Well

WellGroupM anager

Figure 7.1: Basic Domains of the Object Model

Field

The field object has natural parallels with an actual field development scenario. A field

can contain one or more reservoirs, wells, or facility models. The role of a Field object is

to store these components and to coordinate their use with the objects and methods

defined in the computational model. The components are stored in the container object,

list, provided by the STL. Examples of list containers are presented in Appendix D.

Reservoir

The reservoir object also contains subsystems that parallel the physical description of a

reservoir as well as numerical solution components required by the simulation

formulation. The main subsystems of the reservoir object are shown and described below

(Fig 7.2).

• The association between the Reservoir and Rock classes is one-to-one. The Rock

class contains the compressibility, reference pressure data and methods to

compute porosity for all the reservoir cells. The data is stored with respect to

region number so that the reservoir model can be easily extended to incorporate

multiple rock regions.

CHAPTER 7. OBJECT-ORIENTED DESIGN 144

CartesianGrid

Oil Gas Water

FluidManager

RockFluidP rop

GridRock

Reservoir

Figure 7.2: Reservoir Object Diagram

• A FluidManager object stores the fluid phases present in the reservoir. An

aggregate relationship is assigned to the Reservoir and FluidManager classes

since by definition, a reservoir contains fluids. There is a one to one association

between the FluidManager and the Oil, Gas, and Water phase classes. The weak

cohesion connected with an association relationship reflects the fact that not all

phases may be present in the reservoir.

• The association between the Reservoir and RockFluidProp classes is one-to-

many. The RockFluidProp is a base class with specializations for oil-gas and oil-

water permeability properties (not shown). The specializations of the

RockFluidProp class are discussed in context of the computational model

presented in Section 7.3.

• The association between the Reservoir and Grid classes is one-to-one. The Grid

class is a base class with a specialization for Cartesian grids. The Grid class

provides a set of integer arrays for storing cell number mappings, number of

connections per cell, and the connected cell numbers. Interface methods for

accessing cell connectivity information are provided by the CartesianGrid class.

The specialized CartesianGrid implementation provides interfaces for populating

and accessing the data, thereby reusing the base class data storage methods.

CHAPTER 7. OBJECT-ORIENTED DESIGN 145

Additionally the interface methods can be coupled with methods local to the

specialized grid object for exploiting efficiencies associated with the grid layout.

 The design of the grid classes demonstrates a fundamental difference in the

designs between the code used hear and the codes of Verma (FLEX, 1996) and Nogaret

(SPARTA, 1996). In FLEX and SPARTA, grid stencil information is stored in the form

of connection objects, one object per connection. The connection object references cell

objects that store cell property and state data. The number of cell objects equals the

number of control volumes in the discretized model. This is in contrast to the design used

here where a single Grid object stores all the connectivity information and cell properties

in arrays accessed via data pool managers. The design of the data pool managers is

discussed in Section 7.2.

Well

The Well object contains a list of completion and constraint objects and also has

relationships with the facility model (Figure 7.3). As shown in Section 3.2.5, calculation

of the total well rate requires individual completion rate data, which are functions of

wellbore and well block properties. The completion object is responsible for computation

of the well block flow rates and requires access to the well block information. An easy

approach for accessing this information is by direct reference to the data vectors that store

reservoir cell information. However, this results in a tight coupling between the

Reservoir and Well objects and makes parallel well calculations difficult since a desired

decomposition of well calculations may not correspond to the reservoir decomposition.

The approach used here is to provide the completion object with a pointer to a copy of the

global Reservoir object, which contains one cell corresponding to the relevant wellblock.

The data required for well rate calculations is completely decoupled from the global

reservoir object and facilitates parallel methods through compact data representation for

message passing. An example that demonstrates reuse of the Reservoir class is presented

Section 7.2 and is discussed with respect to construction of the preconditioning method.

CHAPTER 7. OBJECT-ORIENTED DESIGN 146

NetworkNodeWellConstraint

Well

Completion

Reservoir

Figure 7.3: Well Object Model

Facilities

The object design for the facilities model was developed by Shaw and Byer (1998). The

object hierarchy is shown in Figure 7.4. The Facilities object maintains a list of

NetworkNode objects. Specializations of the NetworkNode class represent facility

devices or connection points in the facility network. The base NetworkNode class

provides interfaces for operations common to all nodes and the device specific

implementations are provided via the specialized classes (Junction, Pipe, Choke). The

base class also provides operations that are common to all types of nodes, such as

Junction Choke Pipe
JunctionAttributes

ChokeAttributes PipeAttributes

Facilities

NodeAttributes

Well

FlowState
NetworkNode

Figure 7.4: Facilities Object Model

CHAPTER 7. OBJECT-ORIENTED DESIGN 147

constructing and maintaining a list of neighboring nodes. A similar relationship exists

between the base class NodeAttributes and the specialized implementations. The

NetworkNode class has an association with the Well class for obtaining reservoir inflow

data.

7.2 Object Model - Construction

The key features in construction of the reservoir and facilities object model are presented

and contrasted. Additionally, the data pool managers developed here are presented. The

presentation also provides background information required for Section 7.3.

Object Model Instantiation

The reservoir and facilities model is defined using a keyword-based data input file. The

keywords identify model data and are used internally the code to instantiate the object

model. A FileIO object is employed to parse the data file via basic methods such as

popLine, popWord, popInteger, and popReal. The FileIO object, fio, maintains a current

file location pointer for the active object. The following code fragment (Fig. 7.5)

illustrates how the Field object uses the fio object to instantiate Reservoir and Facilities

objects:

Field::defineModel(FileIO & fio,DomMan *DM) {

 fio.popLine(); // read line from the data file

 fio.popWord(); // read first word from the line

 if(strcmp(fio.cv, "RESERVOIR") == 0) { // is keyword RESERVOIR

 Reservoir *aReservoir = new Reservoir(fio,DM); create Reservoir object and

 addReservoir(aReservoir); add object to STL container

 } else if(strcmp(fio.cv, " FACILITIES ") == 0) { // is keyword FACILITIES

 Facilities *facilities = new Facilities (fio); create Facilities object and

 addFacilities(facilities); add object to STL container

 } else if …

Figure 7.5: Object Model Construction

CHAPTER 7. OBJECT-ORIENTED DESIGN 148

Operations Required to Construct the Reservoir Object Model

A subset of the keywords and internal operations required for constructing the Reservoir

object are shown in Table 7.1. The sequence of keywords and operations reflects the

class hierarchy shown in Figs. 7.1 and 7.2. For example, in Table 7.1, the input line

GRID_DATA N50 CARTESIAN indicates the beginning of a section of Cartesian grid

data belonging to reservoir N50. Since the Grid object is associated with a Reservoir

object, the Reservoir object is responsible for parsing the GRID input line. The next line

of input GRIDSIZE, is related to the grid definition and therefore the CartesianGrid

object is responsible for processing the data. The operation addData required by the next

line of input, DX, introduces the data model employed.

Data Model

Since all reservoir cell properties can be classified by property name, size and unit

type, a DataVector class is employed to abstract this information from the data storage

methods. The class encapsulates the data and attributes, and provides access methods

(Fig 7.6). The complete vector of property values can be accessed via the Vec() method

and a similar method exists for accessing a single property value given a vector index.

The data pool scheme is demonstrated by examining the operations required for

processing the DX keyword shown in Table 7.1. The addData method (Fig. 7.7)

represents an interface to an operation that takes data, which can originate from sources

other than file input, for example, intermediate computation results, and instantiates a

DataVector object to encapsulate the data. The DataVector object is then inserted in STL

list container object. An example of the method used to retrieve data from the STL list

container via the data pool manager is shown in Appendix D.

By decoupling the property data and attributes from specific variable names, the

program can accommodate the data requirements for new algorithms or formulations

easily. Additionally, the data pool manager approach removes the memory requirements

associated with storing a cell object for each control volume as in FLEX or SPARTA. It

is interesting to note that the storage of data via vectors is commonly used

CHAPTER 7. OBJECT-ORIENTED DESIGN 149

Table 7.1: Construction Process for Reservoir Object Model

Current File Location Pointer Active Object Operation Invoked

RESERVOIR N50 BLACKOIL OWG Field Reservoir *aRes = new Reservoir(fio,DM);

GRID_DATA N50 CARTESIAN Reservoir aGrid = new CartesianGrid(fio,DM);

GRIDSIZE 50 20 3 CartesianGrid SetGridDimension(nx,ny,nz)

DX 500 CartesianGrid addData("DX",x,nx,len,unittype);

KX 500 CartesianGrid addData("KX",x,nxyz,len,unittype);

END_GRID_DATA CartesianGrid return to Reservoir Object

CELL_PROPERTIES N50 Reservoir aGrid->readCellProp(fio,DM);

SWIR 0.12 CartesianGrid addData(name,x,nxyz,unittype);

WSAT 0.12 CartesianGrid SS.addData(name,x,nxyz,,unittype);

END_CELL_PROPERTIES CartesianGrid return to Reservoir Object

END_RESERVOIR Reservoir return to Field Object

class DataVector {

 // attributes

 char *name; // unique data id

 UnitType unittype; // data unit type (SI or ENGLISH)

 int size; // number of data entries

 double *data; // array storing data

 // operations

 DataVector(char *aname,
 double *data,
 int size,
 UnitType Aut);

// constructor method for loading
 attributes

 int Size(); // return number of data entries

 double *Vec(); // return data vector

 double Vec(int offset); // return single array value

}

Figure 7.6: Generic Data Storage Class - DataVector

void CartesianGrid::addData (char* name, double *data,
 int n,UnitType ut)

// generic addData method for
// Cartesian grid data

 DataVector *dv = new DataVector(name,data,n,ut); // create DataVector object

 listofData.insert(listofData.end(),dv); // store data in listofData STL container

}

Figure 7.7: Example of Data Pool Manager for DataVector Objects

CHAPTER 7. OBJECT-ORIENTED DESIGN 150

in Fortran programs, where data structures are limited to scalar and vector storage

schemes.

A SystemState object, SS, stores time dependant properties of the grid using the

same data pool manager methods discussed previously. Note the use of a similar

SS.addData method for the WSAT keyword (Table 7.1). Also a DomainManager object,

DM is shown in the argument list of several methods. This object provides information

related to parallel and preconditioner configurations and is further discussed in Section

7.4.

Operations Required to Construct Facilities Devices

The method for constructing the Facilities object model is based on a design that

decouples the operations required for assembling device attributes such as PipeAttributes,

Code Segment 1

Facilities::Facilities(FileIO &fio) { // constructs Facilities object from
 input file specifications

 NetworkNode *temp_node; // temporary pointers

 NodeAttributes *temp_attrib;

 fio.popWord(); // read first word of input line

 if(strcmp(fio.cva[0], "PIPE") == 0) { // is it a PIPE specification

 temp_attrib = PipeAttributes::Create(fio); // create attribute object that is
 responsible for reading attributes

 temp_node= Device::Create(Device::PIPE,
 temp_attrib);

// send attribute type and data to Device
 factory that creates the node object

 AddDevice(temp_node); // insert node into STL list container
 }
}

Code Segment 2

NetworkNode * Device::Create (Device::Type type,
 NodeAttributes &attrib_in) {

// create and return a specialized
 NetworkNode object

switch (type) {

 case Facility::CHOKE: // specialized Choke object created

 return Choke::Create(attrib_in); and attributes stored

 case Facility::PIPE: // specialized Pipe object created

 return Pipe::Create(attrib_in); and attributes stored

Figure 7.8: Factory Method for Facility Devices

CHAPTER 7. OBJECT-ORIENTED DESIGN 151

from the object to which they describe, thereby making the component classes for a

facility device more specialized and limits the proliferation of unrelated methods in the

same class. This is in contrast to the CartesianGrid class design, which requires local

operations for computing grid connectivity information, in addition to the data input

operations provided by the Grid object. The approach employed for the Facilities object

is commonly referred to as the "Factory" method in computer science literature

(Rumbaugh, et. al. 1991) due to the repetitive nature of construction. An example for the

construction of a Pipe object is shown in Fig 7.8. Similar to the construction of the

reservoir object, a Facilities constructor method (code segment 1) is used to control the

instantiation of the Facilities object model. When a PIPE keyword is found, a

PipeAttributes object is created that is responsible for reading the pipe attributes from the

input file. The Device object is a factory used to create specific devices. The Device

object’s Create method (code segment 2) uses “type” information to defer (via the switch

operation) object creation to the appropriate method. The same pattern of operations can

be used for other devices and therefore increases the extendibility of the Facilities object

model.

7.3 Computational Model

Coupled reservoir and facilities modeling is primarily a problem of simulation based on

diversity of mathematical models, which are computationally intensive. The role of a

computational object model is to capture algorithmic and performance requirements

through operation specifications. Several views of the computational models used in this

research are presented. The first view describes the operations and class structure

required to simulate one timestep of a coupled model and defines a level abstraction

common among other formulations provided here. The second view focuses on rock-

fluid computations required within the solution of a timestep and is representative of the

design employed for similar computations involving all reservoir cells. The final view

represents an alternative design for coupling computational operations to the object

structure and is based on the work by Shaw and Byer (1998).

CHAPTER 7. OBJECT-ORIENTED DESIGN 152

Newton’s Method

The primary operation required for simulation of a coupled reservoir and facility model is

the solution of the nonlinear conservation equations over a timestep. As discussed in

Section 3.3, Newton’s method is employed for solving the nonlinear problem. The

method requirements are used to define the computational model and form the basis for

the class hierarchy and operations shown in Figure 7.9 and Table 7.2, respectively. The

inputs to the ResFacSolver object include the following objects: 1) Reservoir,

WellGroupManager, Facilities and DomainManager. These objects encapsulate all

information related to their definition and current state, and represents a decoupling of the

object model from the computational model. The operations provided by the

computational model extract information from the object model using standardized

interface methods. This allows for extensive reuse of the strategies and operations

provided by the computational model. For example, the ResFacSolver class provides

base methods for controlling the application of Newton’s method to the explicit, standard,

and preconditioned implicit formulations, each of which used the same Jacobian

calculation operations. Through reuse of the control methods, combinations of the

strategies were easily investigated and led to the preconditioned adaptive explicit

formulation presented in Chapter 6.

DirectSolver PETSCSolver

ResCalc WellCalc

LinEqSolverWellJacGenResJacGen FacJacGen

ResFacSolver

Figure 7.9: Computational Model Class Hierarchy - Numerical Solution Methods

CHAPTER 7. OBJECT-ORIENTED DESIGN 153

Table 7.2: Computational Model Class Operations -- Numerical Solution

Class Name Operation

ReservoirFacilitiesSolver Assemble data and parameters required for the following Newton’s method
and the preconditioning technique.

ResCalc Compute reservoir flow properties and/or Jacobian coefficients
ResJacGen Provide interfaces for accessing ResCalc’s methods for computing Jacobian

matrix coefficients

WellCalc Compute well rates and/or Jacobian coefficients

WellJacGen Provide interfaces for utilizing WellCalc results

Facilities Provide interface to methods for computing Facility Jacobian terms

LinEqSolver Provide common interface methods for specialized solvers

DirectSolver Provide interface methods for direct equation solver

PETSCSolver Provide interface methods for iterative solvers

Additionally, by decoupling the computational components from the object

model, the code can be easily extended to simulate development of a field containing

several reservoirs that are brought on or taken off production at different times, and

whose facility configurations may change with time.

Example of Reservoir Calculations

The computational model shown above describes classes designed to abstract

specific calculations required to assemble Jacobian coefficients from the type of coupled

formulation. An example of the design employed to compute specific components of the

Jacobian coefficients is presented with respect to the operations required for relative

permeability data. Specific code examples are restricted to the oil-water calculations.

The data assembly operations and the structure of the calculations represent a design

common to most of the computationally intensive operations found the code.

The RockFluidProp and OilWatPerm classes (Fig. 7.10 and Table 7.3) provide

common interfaces for external access to the functionality provided by OilWatPermImpl,

which is a specific implementation for computing oil-water relative permeability. A code

sample is presented in Fig. 7.11 to illustrate how water relative permeability data is

computed and incorporates several design features discussed previously.

CHAPTER 7. OBJECT-ORIENTED DESIGN 154

RockFluidProp

OilGasPerm OilWatPermTable

OilGasPermImpl OilWatPermImpl

Figure 7.10: Class Hierarchy - Relative Permeability Computations

Table 7.3: Class Operations - Relative Permeability Computations

Class Name Operation

RockFluidProp Provide common interfaces for accessing rock-fluid property information

Table Provide operations for table interpolation based on scalar or vector data input

OilWatPerm Provide generic interfaces which abstract the computation of a oil-water
permeability properties from the object requesting the property

OilWatPermImpl Provide specific methods for computing oil-water permeability properties

Code Segment 1 - Method Requiring Water Relative Permeability Data

ResCalc::computeWatTrans(Reservoir *aRes) {

 double *sw = aRes ->retGBProp("WSAT"); // access water saturation vector from data
 pool manager

 RockFluidProp * OWRFP =
 aRes->retRockFluidProp(OWPERM);

// access RockFluidProp object corresponding to
 oil-water relative permeability properties

 int n = aRes->retGridIndex(NCELL); // access number of reservoir cells

 double *krw = new double[n]; // create storage space for n krw values

 OWRFP->krw(n,sw,krw); // retrieve krw’s corresponding sw’s for all cells
}

Code Segment 2 - Method Computing Water Relative Permeability

OWPermTableImpl::krw(int n,double *xsw,
 double *krw) {

// method for computing water relative
 permeability via table properties

 sw = getData("SW")->Vec(); // access water sat. vector from property table

 krw = getData("KRW")->Vec(); // access krw vector from property table

 Vinterpolate(n,xsw,xkrw,ntblentries,sw,krw); // use Table’s vector interpolation routine to
// compute krw’s corresponding to xsw’s

}

Figure 7.11: Example of Computational Objects for Relative Permeability

CHAPTER 7. OBJECT-ORIENTED DESIGN 155

The ResCalc method accesses the required saturation and property information

through interface routines provided by the Reservoir object (aRes), which subsequently

accesses the requested information from data pool managers. The number of saturation

values could have been obtained by the DataVector object that encapsulates the saturation

data, however the information is obtained by interfaces to the grid description information

to demonstrate how similar access methods are applied to grid connectivity data. The

OWPermTableImpl operation employs similar data access methods for assembling the

required property table components for input to an interpolation routine that operates on a

vector of input values.

This example further illustrates the differences between the approach used here

and that used by FLEX or SPARTA. In the process of computing Jacobian terms there

are several operations, similar to relative permeability, that must be applied to all cells in

the model. Here, the data are assembled for all the cells requiring a specific operation

prior to execution of the operation, which is very similar to the Fortran style of

programming. This is in contrast to FLEX or SPARTA, where calculation of Jacobian

terms requires looping through all the cell or connection objects and within each object

data are assembled and the operation is then executed. These differences can be

classified broadly as code designs based on either an “array of objects” (FLEX and

SPARTA) or an “object of arrays” (here).

Example of Facilities Calculations

The class design employed to provide the operations for Jacobian calculations in the

facilities model is now presented. In contrast to the operations for the reservoir model

where identical calculations are applied to a large amount of data, the Jacobian

calculations required for the facilities model are a function of the device type, for

example pipeflow versus choke calculations. The design employed is similar to the

connection approach employed by FLEX and SPARTA, however the connectivity is

stored via list containers provided by the STL versus connection objects that must be

provided by the programmer as required in FLEX and SPARTA.

CHAPTER 7. OBJECT-ORIENTED DESIGN 156

The class design and a sample implementation are shown in Figs 7.12 and 7.13.

The Facilities class provides an interface method (code segment 1) for the timestep

control routines that require Jacobian data for the facilities domain. The Facilities object

creates a ProcessManager object that stores a ProcessInfo object. The ProcessInfo object

encapsulates information that can be accessed by the objects performing the process

operations (i.e. Jacobian calculations). The Pipe object provides an interface routine,

GenerateJacobian for external access (code segment 2). Internally the Pipe object

contains a pointer to a PipeProcess object that is responsible for all pipeflow related

calculations. The Pipe object passes execution along with the ProcessManager object to

the next connection. The next connection (device) is accessed via the same

GenerateJacobian interface and represents how recursion is used in facilities related

operations.

As shown in Fig. 7.12, computations are decoupled from the device object via the

processing base. This follows the design for processing attribute information presented in

Section 7.2. The class ProcessManager and ProcessBase methods do not fully exploit the

level of operation decoupling possible using the process methods, which is evident by the

methods whose names are process specific. Recommendations for improving the

implementation are presented in Chapter 8. However the process design does contain

PipeProcessChokeProcess ProcessInfo

Facilities

ProcessManager

NetworkNode

ProcessingB ase

Figure 7.12: Computational Model - Facilities Classes

CHAPTER 7. OBJECT-ORIENTED DESIGN 157

Code Segment 1

Facilities::GenerateJacobian() { // control method for Facilities Jacobian
 calculations

 ProcessManager *pm =
 new ProcessManager; // create a ProcessManager object

 ProcessInfo *in; = new ProcessInfo; // create a ProcessInfo object

 in->DebugOff(); // set process debug reporting flag in to off

 pm->ProcessInfoData(in); // store ProcessInfo object in ProcessManager

 NetworkNode * root = returnStartNode(); // retrieve starting node of network tree

 root->GenerateJacobian(pm); // begin Jacobian calculations

}

Code Segment 2

Pipe::GenerateJacobian(ProcessManager *pm) { // control method for device Jacobian calculations

 ProcessInfo *in = pm->ProcessInfoData(); // retrieve ProcessInfo object from
 ProcessManager

 ProcessingBase * process =
 new PipeProcess;

// create PipeProcess object for accessing
 computational methods

 process_ptr->GenerateJacobian(in); // start Jacobian calculations for current pipe

 for(i= connlist.begin(); i != connlist.end(); ++i)

 (*i)->GenerateJacobian(pm);

// recurs through Facilities nodes and compute
 Jacobian terms

}

Figure 7.13: Example of Computational Objects for Pipe Device

several features that allow for significant reuse of the computational methods and provide

pathways for directly extending the computations to parallel formulations, which are

discussed further in Section 7.4.3.

7.4 Extendibility and Domain Oriented Reuse

Several components of the basic object design facilitated development of new solution

methodologies and modeling capabilities. The three most notable examples are

presented with respect to the preconditioning method and parallel formulation presented

in Chapters 5 and 6, respectively. The first example demonstrates how Reservoir and

CHAPTER 7. OBJECT-ORIENTED DESIGN 158

Grid objects are extended for construction of subdomains used by the Newton

preconditioner. The second example demonstrates how the base class design is reused to

construct reservoir domains for the parallel formulation. The final example demonstrates

how the facilities class structure is reused and extended to provide parallelism in the

facilities Jacobian calculations.

7.4.1 Construction of Preconditioner Subdomains

The preconditioning method requires construction of local reservoir domains. A

DomainManager object stores subdomain configuration information and provides

operations for constructing cell index mappings and defining domain boundary cells. The

objects responsible for constructing subdomain objects can access this information using

interface methods provided by the DomainManager. The primary operations required to

construct subdomains are shown in Figure 7.14. Consistent with the design of other

Newton control methods, the ResFacSolver object provides the method (code segment 1)

that controls the construction and solution of the preconditioner.

The Reservoir and CartesianGrid object design is extended through addition of a

specialized subdomain related constructor and copy methods (code segments 2 and 3). A

reservoir subdomain is instantiated from a parent Reservoir object, DomainManager

object and subdomain index. As noted above the DomainManager provides information

that defines the subdomain configuration. This information is used by the new

CartesianGrid object for copying grid and cell data. The specialized copy methods access

the global data of the parent grid and then extract and store data required for the

subdomain grid. Once the subdomain grid information is copied from the parent grid, the

local grid connectivity is computed using existing class methods.

This example demonstrates how concepts in base object design are reused for

operations required by the new formulation. The chain of operations for creating

preconditioner subdomains follows directly from the operations used to create the parent

reservoir from input data as shown in Table 7.1. Thus all that is needed to construct the

subdomains are the addition of a few specialized constructor and copy

CHAPTER 7. OBJECT-ORIENTED DESIGN 159

Code Segment 1 - Preconditioner Control Method

ResFacSolver::preconditionIteration(…) {

Int ndom = DM->retNDom (); // obtain number of subdomains

Reservoir **SubDomReservoir =
 new * Reservoir[ndom] // create pointer array to reservoir objects

For(int domid=0; domid < ndom; domid ++)

 SubDomReservoir[domid] =
 new Reservoir(baseRes,DM, domid)

// construct reservoir subdomain from
// base reservoir object

}

Code Segment 2 - Reservoir Class Method for Constructing Reservoir Subdomain from
Parent Reservoir Object

Reservoir::Reservoir(Reservoir *baseRes ,
 DomainManager *DM,
 int domid) {

// specialized constructor method for
// creating a local reservoir object from a
// base reservoir object

 DM->loadSubdomainIJK_Bndry(&i1,&i2,
 &j1,&j2,
 &k1,&k2)

// retrieve IJK indices that define
// subdomain boundaries

 aGrid = new CartesianGrid(DM,domid,
 baseRes ->aGrid,
 i1,i2,j1,j2,k1,k2);

// create subdomain grid from base
// reservoir's grid

}

Code Segment 3 - CartesianGrid Class Method for Constructing a Local Grid from Parent
Grid Object

CartesianGrid::CartesianGrid(DomMan *DM,int domid,
 Grid *aGrid,
 int i1,int i2,
 int j1,int j2,
 int k1,int k2):Grid(aGrid) {

// specialized constructor method for
// creating a local Cartesian grid object
// from a base grid object

 copyData(DM,aGrid,i1,i2,j1,j2,k1,k2); // copy local grid and cell property data

 SS.copyVars(DM,
 aGrid-retReservoirState(),
 i1,i2,j1,j2,k1,k2,);

// retrieve base grid's reservoir state
object and copy state for local grid

 setup7PT_GS();
// construct connectivity information
based
// from local grid definition

}

Figure 7.14: Extendibility and Domain Reuse - Preconditioner Construction

CHAPTER 7. OBJECT-ORIENTED DESIGN 160

methods, the data pool manager and computational methods are completely reused.

Additionally, since the subdomain objects are defined using native Reservoir class

definitions, the Jacobian generation operations supplied in the computational model are

reused in solution of the preconditioner. The following example shows how the parallel

design further leveraged the base object design.

7.4.2 Construction of Reservoir Domains for Parallel Formulation

The construction of reservoir domains for the parallel formulation requires

extending the object design to provide operations for data sharing and parallel data input.

The parallel formulation requires that copies of the same program execute on different

processors and each program is responsible for only one reservoir partition. Therefore the

methods for construction of a reservoir object in a sequential formulation can be reused in

the parallel formulation with only minor, highly localized modifications. Similarly many

of the DomainManager class methods developed for cell index mapping operations

required by the preconditioning method are reused to provide mapping operations for the

reservoir decomposition.

The sequential and parallel formulations use the same input file for building the

object model, however in the parallel formulation one processor is designated as the

master node and is responsible for reading and broadcasting the input file data. Recall

that the construction process for the sequential formulation utilized the getLine()

operation for parsing the input file, which was provided by the FileIO object. The

getLine() method is modified to provide parallel data input and enables significant reuse

of the object model class structure. The objects that use the getLine() operation also use

DomainManager operations to identify partitions of the broadcast data. The example

shown in Fig. 7.15 demonstrates the operations for parallel processing of cell property

data. In this example assume that all the processes are synchronized at the popLine()

operation in the method readCellProp() (code segment 1). The processes enter the

popLine() method (code segment 2) and the master process reads from the input file and

CHAPTER 7. OBJECT-ORIENTED DESIGN 161

Code Segment 1 - Object Requiring FileIO Methods

CartesianGrid::readCellProp(FileIO &fio,
 DomMan *DM) {

 fio.PopLine(); // read the next line of input data

 if (checkValidKW(fio.popWord()) { // check for valid keyword

 loadArray(fio,x,nxyz,DM); // load property array from FileIO
// object into local data array

 addData(aname,x,nxyz,,comp_unit); // add data to data pool manager

 }
}

Code Segement 2 - FileIO popLine Method - Sequential and Parallel Version

FileIO::popLine() {

 if (myid == 0 && ndomains > 1) { // check if master process and parallel run

 i = SeqPopLine(); // read data for global domain and store
// character data array labeled line

 for(int to=1;to<ndomains;to++) // send line of input to slave processes

 MPI_Send(line, length, MPI_CHAR,to,
 tag, MPI_COMM_WORLD);

// via MPI supplied functions

 } else if (ndomains > 1) { // check if parallel run and slave process

 MPI_Recv(line, count, MPI_CHAR, from,
 tag,MPI_COMM_WORLD,
 &status);

// receive data for global domain via MPI
// supplied functions

 } else // sequential run

 SeqPopLine(); // interface routine to low level C++ input
// methods

}

Code Segment 3 – loadArray method - Sequential & Parallel Version

CartesianGrid::loadArray(FileIO &fio,
 double *x,
 int nentry,
 DomainManager *DM) {

// copy data from FileIO object into local
 array

for(j=0;j<fio.naval;j++)

 tempx[j] = fio.PopReal(); // pop data from line

 if (DM->ndomains > 1) // if parallel run use information provided by

 copyDataWindow(x, tempx,DM)
// DomainManager to extract local domain
// data from tempx containing global data

 else // sequential run, extract all data from

 copyData(x, tempx) // tempx
}

Figure 7.15: Parallel Input and Object Model Construction Methods

CHAPTER 7. OBJECT-ORIENTED DESIGN 162

sends the data to the slave processes using MPI send functions. The slave process

bypasses the file read operations (SeqPopLine()) and receive the data using MPI receive

functions. Each processor now has a copy of the file-input line, which represents data for

the global problem and does not contain any information related to data decomposition.

The loadArray() method is employed to copy the data from the FileIO object into

temporary arrays. Within the loadArray() method (code segment 3) the

copyDataWindow() method is employed, which uses domain information supplied by the

DomainManager to copy the local reservoir domain data from the global data vector.

The basic design employed for parallel processing of cell property data is reused

throughout the object model. The FileIO and DomainManager objects work together to

provide data sharing and domain partitioning information for the object construction

methods. This example demonstrates the ease with which the sequential code is extended

to a parallel formulation. The modifications to the object model are very localized and

also allow for extensive reuse of methods provided by the computational model.

7.4.3 Parallel Computation of Facilities Jacobian Coefficients

The object and computation model design developed for the sequential formulation was

almost entirely reused in the parallel formulation. The ProcessManager, ProcessInfo,

and ProcessingBase classes provided sufficient decoupling of device computations from

the formulation so that the parallelization of the Jacobian generation process could be

abstracted at a high level in the facility model class structure, thereby removing any

issues associated with formulation from the lower level class methods. No new objects

are required, only the ProcessManager and specialized NetworkNode classes required

new methods. The ProcessManager is the control routine for Jacobian calculations and

provides methods for both the manager-worker and worker-worker parallel formulations

discussed in Section 6.1.3.

A pseudocode example that shows the key methods employed to facilitate

discussion of the class modifications and extensions (Fig. 7.16). The ProcessManager

uses the Facilities and DomainManager objects to obtain respective facilities and

CHAPTER 7. OBJECT-ORIENTED DESIGN 163

Code Segment 1

ProcessManager::GenerateJacobian() {

 if (DM->ManagerCPU()) { // if manager setup task list

 SetupTaskList(); // setup prioritized task list

 ProcessTask(GENJAC); // process tasks

 RegisterProcess(RETURN); // computation finished broadcast RETURN

 } else {

 WaitForProcess(); // worker - wait for assignments

 }
}

Code Segment 2
ProcessManager::ProcessTasks(TaskType tasktype) { // control method for task assignment

 while (SourceAvailable()) // process parallels tasks starting with
SOURCE node

 if (CPU_Available()) { // is there a CPU available

 RegisterProcess(NextCPU(),
 NextSource(),
 tasktype);

// assign the next CPU available the task of
Jacobian generation to the next SOURCE
node available

 } else if (ManagerDoesWork) { // no CPU’s available

 RegisterProcess(DM->ManagerCPU(),
 NextSource(),
 tasktype);

// if manager does work assign it a task

 } else {

 WaitForProcess(); // wait for worker nodes to finish task

 }

}
Code Segment 3

ProcessManager:: WaitForProcess () { // worker control method

x0: message = ReceiveMessage(); // wait for message

 switch (message) {

 case RETURN; // return, no more assignments

 return;

 case GENJAC; // Jacobian calculation task

 i = ReceiveProcessInfo();
// receive task assignment details,
 current node state and encapsulate in
 ProcessManager object

 Facilities->node[i]-GenerateJacobian(pm) // start computations

 SendResults(); // send results back to manager

 }

goto x0; // wait for more messages

Figure 7.16: Process Management for Parallel Facilities Jacobian Calculations

CHAPTER 7. OBJECT-ORIENTED DESIGN 164

solution domain information, such as the list of NetworkNode objects that require

computation and the number of available processors. The master process (code segment

1) constructs a task list using the method SetupTaskList(), which also initializes

processor and task queues used by the ProcessTask() method. The ProcessTask() method

(code segment 2) embodies the parallel computation strategy discussed in Section 6.1.3.

The source nodes form the first set of parallel tasks as indicated by the SourceAvailable()

method. A similar execution loop (not shown) exists for the next level of parallel

computation defined by Junction nodes. The RegisterProcess method is used by the

manager node to send task assignment and device state data to a worker node, which

resides in a wait state until the messages and data are received. The worker node

receives and encapsulates the process information in a ProcessInfo object (code segment

3). The FlowState object (Fig. 7.4) provides methods that encapsulate MPI functions for

sending and receiving state data. Once all the state data is received, the Jacobian

computations are started using the same methods employed by the sequential

formulations. The specific device method GenerateJacobian is modified to use

ProcessInfo data from the ProcessManager object to determine when to stop

computation. This check is required due to the recursive nature of the network

calculations and therefore the stop calculation signal must come from data available with

the recursive flow calculation.

The control and execution processes described here demonstrate the reusability of

the facilities class structure. Only minor highly localized modifications to the specialized

implementations of the NetworkNode class are required. The extensions required in order

to achieve the data passing functionality are also highly localized and reside in

specialized methods that have no impact on the sequential formulation. Additionally, the

techniques for achieving parallelism (manager-worker, worker-worker) are restricted to

the SetupTaskList() and ProcessTask() methods. The RegisterProcess() method, which is

responsible for the critical support methods of assigning tasks and sending/receiving

results, is decoupled from the specific parallel formulation. Therefore, the majority of the

modifications required for testing a new formulation are with respect to the code

CHAPTER 7. OBJECT-ORIENTED DESIGN 165

implementation for the strategy and the support methods can be reused, which enables the

code developer to focus primarily on algorithmic issues and less on coding requirements.

7.5 Concluding Remarks

The major features of the object-oriented design of the research code have been

presented. Several examples serve to demonstrate the reusability of the object model data

structure and computational methods. Additionally, the object and computational model

design provide significant insights into the design of objects and methods required for the

new preconditioning technique and parallel formulations.

166

Chapter 8

Conclusions and Recommendations

8.1 Conclusions

The primary focus of this research is to develop methods for increasing the computational

efficiency of fully coupled implicit reservoir and surface facility problems, that can utilize

both sequential and parallel processing environments. This research also focuses on the

object-oriented design of the application code with the goals of reusability and

extendibility. The following comments and conclusions can be made as a result of this

research:

Surface Facilities Models

1. Test results for surface facility problems with specified source and sink

boundary conditions indicate that the number of Newton iterations required

for convergence can be significantly higher than the number of iterations

required for a reservoir problem with specified well boundary conditions.

2. The solution procedure must be capable of resolving flow reversals

associated with a poor initial solution or equipment reconfigurations.

Newton step scaling may improve the convergence rate, however, the scaling

factor is problem dependent.

CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 167

3. Flow reversal in the pipe network can be resolved using Newton’s method.

The residual terms can be modified to force the method to generate solution

updates that serve to lower or raise a node pressure until flow can occur. This

technique represents a simplified approach improving the robustness of

Newton’s method.

Coupled Reservoir and Surface Facilities Models

4. The explicit formulation decouples the reservoir and facility domains and

allows for efficient solution of the nonlinear reservoir problem at the

expense of material balance errors at the reservoir and facilities domain

interfaces.

5. The standard implicit facilities formulation eliminates the material balance

errors to a specified tolerance. However the convergence rate is similar to

that observed when solving only the facility domain. Associated with each

additional Newton iteration is the cost of the linear solve using a Jacobian

matrix containing coefficients for the entire reservoir flow field, which

considerably increases the CPU requirements.

6. The adaptive implicit reservoir formulation reduces the cost of solving for

the reservoir flow field, but similar to the standard implicit facilities

formulation, the full facilities coupling results in increased CPU

requirements

7. An adaptive explicit facilities formulation has been developed which

combines the efficiency of the explicit formulation with accuracy close to

that of the standard implicit formulation. The method is based on the

observation that the most significant material balance errors associated with

the explicit formulation occur during transition periods defined by the

occurrence of two-phase flow in the wellbore. The method contains criteria

CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 168

based on wellbore phase behavior for switching between explicit and

implicit formulations.

8. A new preconditioning method has been developed that can be used with the

standard implicit and adaptive explicit facilities formulation to accelerate

convergence of the fully coupled iterations. Test results show that the

computational cost of the standard implicit formulation can be reduced by 15

to 40%. Additionally, the preconditioned adaptive explicit formulation is

capable of solving the fully coupled reservoir and facilities problem within

an acceptable level of material balance error while reducing the CPU

requirements to that of the explicit facilities formulation.

9. The preconditioning method can also be used with an adaptive implicit

treatment of the reservoir flow field. The preconditioner well subdomains

are chosen to coincide to the initial boundaries for implicitness, resulting in a

preconditioning of the fully coupled adaptive implicit reservoir problem.

10. The preconditioned standard implicit facilities formulation was developed to

run in sequential and parallel computing environments. The parallel linear

solve is the most expensive component in the standard implicit formulation.

In the preconditioning method, the facilities Jacobian calculations were

found to be the most expensive component.

11. Two strategies for achieving parallel facilities Jacobian calculations were

investigated. The worker-worker model distributed the computational tasks

among all processors. One of the processors was designated as the manager

and also performed task management operations. The manager’s strategy

for balancing task assignment with local computations severely restricted

parallel efficiency beyond two processors. The manager-worker model was

designed to maximize the computation efficiency of the worker processors at

CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 169

the expense of limiting the manager’s responsibility to task management.

Therefore the parallel model restricted the overall parallel efficiency. The

scalability for both of these methods is limited and suggestions for

improving efficiency are presented.

12. The major features of the object-oriented design of the code have been

presented. The decoupling of the object and computation model components

of the design is critical to achieving the features of reusability and

extendibility. The object-oriented approach allows for rapid development of

methods for solving coupled systems. The object design applied data

encapsulation techniques to provide consistency with the physical

description of the model and to provide a strong cohesion of the object

entities. The weak coupling of the computational and object models

enhances the reusability and extendibility of the numerical methods.

Additionally a parallel object model was easily obtainable with only minor

highly localized modifications to the object construction methods.

8.2 Recommendations for Further Study

The research presented in this dissertation has addressed the important issues of

efficiency and accuracy of methods for solving coupled reservoir and surface facilities

models. The following recommendations pertain to simulator development items and to

research areas for improved coupled reservoir and facility modeling.

1. The surface facilities model employs a simplified homogeneous model for

pipeflow. This model could be replaced with advanced formulations that are

capable of modeling the flow regimes commonly present in pipeflow.

2. The surface facility model allows for pipe, choke, and simple separator

devices. The model could be extended to include compressor, pump, and

CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 170

rigorous separation devices to allow for more comprehensive coupled model

configurations. When appropriate the device attribute should be allowed as a

primary variable in the formulation. For example a solution variable for the

compressor device may be the horsepower requirements.

3. The pipe network is limited to gathering systems with tree-like structures.

The network and solution procedure should allow for looped networks as a

method for increasing production capacity.

4. Newton’s method with simple scaling and heuristic rules was employed to

solve the nonlinear problem. Other methods for solving the nonlinear

problem should be investigated with the objectives of improving efficiency

and robustness of the solution procedure

5. A formulation, which combines the adaptive reservoir flow field and

adaptive explicit facility coupling formulations, will capitalize on the

individual efficiencies of each method and should be developed. The

efficiency of the facility coupling could be further improved through the

preconditioning method, resulting in a preconditioned adaptive implicit

reservoir adaptive explicit facilities formulation.

6. The linear equation solver for both the sequential and parallel formulations

restricted the size of the reservoir model. More efficient methods for

solving linear systems are essential for the modeling of coupled systems that

contain more realistic reservoir descriptions, thereby allowing for more

complex flow patterns that can complicate the design and operation of the

surface facilities model. Additionally, the impact on the facility domain

equations on current preconditioning methods used by the linear solver

should be investigated.

CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 171

7. Parallelization of the facilities Jacobian calculations should be further

investigated. The current manager-worker task allocation scheme should be

redesigned so that the processor utilization is maximized for arbitrary

numbers of processors. This would require incorporating cost per task

information, which is obtained via previous iteration performance, into the

allocation scheme.

8. Optimization based algorithms should be investigated that allow for

improved evaluation of alternate development scenarios. While global

optimization is currently impossible, methods designed to improve the

decision making process over a limited production horizon can employ

optimization methods. For example, given a set of specified objectives

coupled with alternate action plans, if those objectives are not achieved, an

optimization algorithm can be employed to evaluate the best action

alternative when the objectives are not met. The challenge associated with

applying optimization techniques to coupled models is related to the

evaluation of the objective function, which requires solution of the nonlinear

problem. However, the preconditioning method also provides a basis for

considering optimization methods. The preconditioning method is defined by

a local problem, which is easy to solve and can be employed as a coarsened

representation of the full model description, and thereby provides for more

efficient iterations in the optimization algorithm.

9. The object-oriented design developed for the facilities model can be further

improved by abstracting the Jacobian generation process from the

ProcessManager object, thereby simplifying the extensions of the parallel

capability provided by the ProcessManager to other calculations required for

the surface facilities, such as solution estimation or optimization.

172

Nomenclature

A pipe cross-sectional area or coefficient matrix

pA area occupied by phase p

xA grid block area in the x-direction

Â Schur complement or capacitance matrix

cfA matrix of Jacobian coefficients defining coarse to fine grid coupling

fcA matrix of Jacobian coefficients defining fine to coarse grid coupling

spA matrix of Jacobian coefficients for preconditioner subproblem

fA matrix of Jacobian coefficients for fine grid or facilities domain

cA matrix of Jacobian coefficients for coarse grid

gA matrix of Jacobian coefficients for reservoir and facility domain

rA matrix of Jacobian coefficients for reservoir domain cells

wA matrix of Jacobian coefficients for well equation coefficients

rwA matrix of Jacobian coefficients defining reservoir to well coupling

wfA matrix of Jacobian coefficients defining well to facilities coupling

wrA matrix of Jacobian coefficients defining well to reservoir coupling

fwA matrix of Jacobian coefficients defining facilities to well
hA � matrix of Jacobian coefficients for grid level h′

pB formation volume factor of phase p

dC distribution coefficient

d pipe or tubing diameter

NId difference in preconditioned standard and standard implicit Newton

iterations

D vertical depth

pe parallel efficiency

,p ae absolute parallel efficiency

NOMENCLATURE 173

,p re relative parallel efficiency

pE phase holdup

f friction factor

g acceleration due to gravity

h fine grid

h� coarse grid
h
hI � linear restriction operator from the fine to coarse grid
h
hI

�

piecewise constant prolongation operator from the coarse to fine grid

J Jacobian operator

rJ Jacobian matrix for reservoir coefficients

fJ Jacobian matrix for facilities coefficients

k diagonal permeability tensor

rpk relative permeability of phase p

cpM% mass injection/production rate of component c in phase p per unit reservoir

volume

cpM mass injection/production rate of component c in phase p

cn number of components

cpun number of processors

pn number of phases

pvn number of primary variables

p pressure

bpp bubble-point pressure

op oil phase pressure

wp water phase pressure

gp gas phase pressure

sepp separator pressure

wbp wellbore pressure

cowP oil-water capillary pressure

cgoP gas-oil capillary pressure

NOMENCLATURE 174

rbp reservoir boundary pressure

cq component mass flow rate

spq specified mass flow rate

r pipe or tubing radius

or equivalent wellbore radius

wr wellbore radius

wellr well equation residual

R residual operator

,c lR mass balance error for component c, cell l

eR Reynolds number

cpR solubility of component c in phase p

s skin factor

S pipe perimeter or surface area

pS saturation of phase p

,cp lT transmissibility coefficient of component c in phase p in the l-direction

,cp lT% transmissibility of component c in phase p in the l-direction

,g lT geometric factor in the l-direction

seqT CPU time required for sequential run

cpunT CPU time required for cpun processor run

t time

,j ot the total time spent by processor j on an operation o

ot the average time spent on an operation when considering all processors

,j ou processor j utilization for an operation o

bU bubble rise velocity

pU phase velocity

mU mixture velocity

soU oil phase superficial velocity

sgU gas phase superficial velocity

V volume

NOMENCLATURE 175

bV bulk grid block volume

n
r

unit outward normal vector

s surface area

,c lR mass balance residual for component c , cell l

wR
r

residual vector for well equations

rR
r

residual vector for reservoir flow equations

fR
r

residual vector for fine grid reservoir flow equations or facility domain

cR
r

residual vector for coarse grid reservoir flow equations

gR
r

residual vector for reservoir and surface facility flow equations

spR
r

residual vector for preconditioner subproblem

cv
r

component velocity vector

pv
r

phase velocity vector

WI well index

x primary variable

cpx mass fraction of component c in phase p

pvX set of primary variables

rX
r

vector of unknowns for reservoir flow equations

wX
r

vector of unknowns for well equations

fX
r

vector of unknowns, fine grid reservoir flow equations or facility domain

cX
r

vector of unknowns for coarse grid reservoir flow equations

gX
r

vector of unknowns for reservoir and surface facility flow equations

,sd iX
r

vector of unknowns for well subdomain i

spX
r

vector of unknowns for preconditioner problem

tD time interval

xD grid block length in x-direction

yD grid block length in y-direction

zD grid block length in z-direction

NOMENCLATURE 176

Greek Letters

pb coefficient that indicates if rate of phase p is specified

lg wellbore gravity for completed layer l

h maximum fraction change in previous solution value

t material balance error relaxation factor

wmt mixture-wall friction shear stress

maxV threshold parameter for switching from explicit to implicit facilities

formulation

V percent change in solution gas-oil ratio over consecutive timesteps

Re maximum material balance error

cr component density
*
cr component density at standard conditions

mr mixture density

pr phase density

mm mixture viscosity

pm viscosity of phase p

u current Newton iteration number

fpu first preconditioned Newton iteration of timestep

lpu last preconditioned Newton iteration of timestep

lnpu last nonpreconditioned Newton iteration of timestep

ptu preconditioning threshold

spu first Newton iteration that preconditioning can be considered

tu total number of Newton iterations required for a timestep

,t PcSIu total number of preconditioned standard implicit Newton iterations

required for a timestep

,t SIu total number of standard implicit Newton iterations required for a timestep

f reservoir porosity

s interfacial tension

¹ gradient

NOMENCLATURE 177

tD time difference operator

pF fluid potential of phase p

Y time dependant property

lW set of all grid blocks connected to block l or set of all nodes connected to

node l

Subscripts

c component

g gas phase

o oil phase

m mixture

, ,i j k counter in summation terms

Superscripts

n timestep level

u Newton iteration level

Abbreviations

CPU central processing unit

SI standard implicit facilities coupling formulation

PcSI preconditioned standard implicit facilities coupling formulation

PcAI preconditioned adaptive implicit facilities coupling formulation

PcAE preconditioned adaptive explicit facilities coupling formulation

Exp-Fac explicit facilities formulation

SI-Fac standard implicit facilities formulation

AE-Fac adaptive explicit facilities formulation

PcSI-Fac preconditioned standard implicit facilities coupling formulation

PcAE-Fac preconditioned adaptive explicit facilities coupling formulation

178

Bibliography

[1] Ames, W.F.: Numerical Methods for Partial Differential Equations, Academic

Press, New York City (1977), second edition.

[2] Arnold, K., Stewart, M.: Surface Production Operations, Design of Oil Handling

Systems and Facilities, Gulf Publishing (1986), Volume 1.

[3] Aziz, K.: Notes for Petroleum Reservoir, Stanford University (1995).

[4] Aziz, K., and Settari, A.: Petroleum Reservoir Simulation, Applied Science

Publishers ltd., London (1979).

[5] Balay, S., Gropp, W.D., McInnes, C., and Smith, B.F.: "Efficient Management of

Parallelism in Object Oriented Numerical Software Libraries," Modern Software

Tools in Scientific Computing, E. Arge, A.M. Bruaset, and H.P. Langtangen, eds.

Boston, Massachusetts: Birkhauser Press (1997).

[6] Balay, S., Gropp, W.D., McInnes, C., and Smith, B.F.: "PETSc home page",

"http://www.mcs.anl.gov/petsc," (1999).

[7] Balay, S., Gropp, W.D., McInnes, C., and Smith, B.F.: "PETSc 2.0 Users

Manual", ANL-95/11 - Revision 2.0.24, Argonne National Laboratory (1999).

[8] Beggs, H.D.: Production Optimization, OGCI Publications, Oil and Gas

Consultants International Inc., Tulsa (1991).

[9] Bell, J.B., Trangenstein, J.A., and Shubin, G.R.: “Conservation Laws of Mixed

Type Describing Three-Phase Flow in Porous Media,” SIAM J. Appl. Math. (Dec.

1986), 1000-1017.

[10] Booch, G.: Object-Oriented Analysis and Design with Applications, The

Benjamin/Cummings Publishing Company, Inc. (1994).

BIBLIOGRAPHY 179

[11] Bramble, J.H., Ewing, R.E., Pasciak, J.E. and Schatz, A.H.: "A Preconditioning

Technique for the Efficient Solution of Problems with Local Grid Refinement,"

Comput. Meth. Appl. Mech. Eng. (1988), 149-159.

[12] Briggs, W.L.: A Multigrid Tutorial, Lancaster Press, Pennsylvania (1987).

[13] Brill, J.P. and Beggs, H.D.: Two-Phase Flow in Pipes, Tulsa (Feb. 1991).

[14] Brown, K.E. and Lea, J.F.: “Nodal Systems Analysis of Oil and Gas Wells”, SPE

Distinguished Author Series (Oct. 1985).

[15] Byer, T.J., Edwards, M.G., and Aziz, K.: “Preconditioned Newton Methods for

Fully Coupled Reservoir and Surface Facility Models,” SPE paper 49001 (1998).

[16] Byer, T.J., Edwards, M.G., and Aziz, K.: “A Preconditioned Adaptive Implicit

Method for Reservoirs with Surface Facilities,” SPE paper 51895 (1999).

[17] Chien, M.C.H., and Northrup, E.J.: “Vectorization and Parallel Processing of

Local Grid Refinement and Adaptive Implicit Schemes in a General Purpose

Reservoir Simulation” SPE paper 25258 (Feb. 1993), 279-290.

[18] Chien, M.C.H., Tchelepi, H.A., Yardumian, H.E., and Chen, W.H.: “A Scalable

Parallel Multipurpose Reservoir Simulator,” SPE (June 1997), 17-30.

[19] Deimbacher, F.X., Komlosi, F., and Heinemann, Z.E.: ”Fundamental Concepts

and Potential Applications of the Windowing Technique in Reservoir

Simulation”, SPE paper 29851 (Mar 1995), 105-117.

[20] Edwards, M.G., and Rogers, C.F.: “A Flux Continuous Scheme for the Full

Tensor Pressure Equation,” proceedings, 4th European Conference on the

Mathematics of Oil Recovery, Roros (1994).

[21] Emanuel, A. S., and Ranney, J.C.: “Studies of Offshore Reservoir with an

Interface Reservoir/Piping Network Simulator,” JPT (Mar. 1981), 399-406.

[22] Forsyth, P.A. and Sammon, P.H.: “Practical Considerations for Adaptive Implicit

Methods in Reservoir Simulations,” J. Comp. Phys. (Feb. 1986) 62, 265-81.

[23] Forsyth, P.A. and Sammon, P.H.: “Quadratic Convergence for Cell-Centered

Grids,” Appl. Numer. Math (1988) 4, 377.

BIBLIOGRAPHY 180

[24] Foster, I.: Designing and Building Parallel Programs, Addison-Wesley

Publishing Company (1994).

[25] Fujii, H.: "Multivariate Production Systems Optimization in Pipeline Networks",

M.S. Thesis, Stanford University, August 1993.

[26] Fung, L.S., Collins, D.A. and Nghiem, L.X.: “An Adaptive-Implicit Switching

Criterion Based on Numerical Stability Analysis,” SPER (Feb. 1989), 45-51.

[27] Golub, G.H. and Ortega, J.M.: Scientific Computing: An Introduction with

Parallel Computing, Academic Press, Boston (1993)

[28] Govier, G. W. and Aziz, K.: The Flow of Complex Mixtures in Pipes, Van

Nostrand Reinhold Co., New York City (1972).

[29] Grabenstetter, J., Li, Y.K. and Nghiem, L.X.: “Stability-Based Switching

Criterion for Adaptive-Implicit Compositional Reservoir Simulation,” SPE (Feb.

1991), 243-258.

[30] Gropp, W., Lusk, E., and Skjellum, A.: Using MPI, Portable Parallel

Programming with the Message Passing Interface, The MIT Press (1994).

[31] Hepguler, G., Barua, S., and Bard, W.: “Integration of a Field Surface and

Production Network with a Reservoir Simulator,” SPE paper 38937 (Apr. 1997).

[32] Jain, A.K.: "Accurate Explicit Equation for Friction Factor", ASCE Hydraulics

Div. J. (1976), 102(HY5): 674-677.

[33] Jeppson, R.: Analysis of Flow in Pipe Networks, Ann Arbor Science Publishers,

Inc., Michigan (1977).

[34] Killough, J.E., and Wheeler, M.F.: “Parallel Iterative Linear Equation Solvers: An

Investigation of Domain Decomposition Algorithms for Reservoir Simulation,”

SPE paper 16021 (Feb. 1987) ,294-312.

[35] Lim, K.T., Schiozer, D.J., and Aziz, K.: "A New Approach for Residual and

Jacobian Array Construction in Reservoir Simulators," SPE Computer

Applications (August 1995), No. 4, 93-97.

[36] Lippman, S.B.: C++ Primer, Addison-Wesley Publishing Company (1989).

BIBLIOGRAPHY 181

[37] Litvack, M., Clark, B., Farichild, J., Fossum, M., Macdonald, C., Wood, A.:

“Integration of Prudhoe Bay Surface Pipeline Network and Full Field Reservoir

Models”, SPE (Oct. 1997) 435-443.

[38] Mattax, C. C., and Dalton, R.L.: Reservoir Simulation, Society of Petroleum

Engineers, Monograph (1977), vol. 13.

[39] Meyer, B.: Object-Oriented Software Construction, Prentice Hall International

(1988).

[40] Mucharam, L. and Adewumi, M.A.: “A Compositional Two-Phase Flow Model

for Analyzing and Designing Complex Pipeline Network Systems,” SPE paper

21562 (June 1990).

[41] Musser, D.R. and Saini, A.: STL Tutorial and Reference Guide: C++

Programming with the Standard Template Library, Addison-Wesley Professional

Computing Series (1996).

[42] Nacul, E.C.: "Use of Domain Decomposition and Local Grid Refinement in

Reservoir Simulation", Ph.D. Dissertation, Stanford University, March 1991.

[43] Nogaret, C.: "Implementation of a Network-Based Approach in an Object

Oriented Reservoir Simulator", M.S. Thesis, Stanford University, May 1996.

[44] Nolan, J.S.: "Treatment of Wells in Reservoir Simulation," presented at the Third

International Forum on Reservoir Simulation, Baden, Austria, July 23-27, 1990.

[45] Ouyang, L-B. and Aziz, K.: "Steady-State Gas Flow in Pipe", Journal of

Petroleum Science and Engineering (1996), vol. 14, No. 1, 137-158.

[46] Ouyang, L-B.: "Single Phase and Multiphase Fluid Flow in Horizontal Wells",

Ph.D. Dissertation, Stanford University, August 1998.

[47] Palagi, C.L.: “Generation and Application of Voronoi Grids to Model Flow in

Heterogeneous Reservoirs,” Ph.D. Dissertation, Stanford University, May 1992.

[48] Parashar, M., J. Wheeler, G. Pope, K. Wang, and P. Wang. "A New Generation

EOS Compositional Reservoir Simulator: Part I–Formulation and Discretization,"

and "Part II–Framework and Multiprocessing," presented at the Society of

BIBLIOGRAPHY 182

Petroleum Engineers Reservoir Simulation Symposium, Dallas, Texas, June 8–11,

1997.

[49] Peaceman, D.: Fundamentals of Numerical Reservoir Simulation, Elsevier

Scientific Publishing Company (1977).

[50] Peaceman, D.W.: “A Nonlinear Stability Analysis for Difference Equations Using

Semi-Implicit Mobility,” SPEJ (Feb. 1977), 79-91.

[51] Peaceman, D.W.: “Discussion of an Adaptive Implicit Switching Criterion Based

on Numerical Stability Analysis”, SPER (May 1989), 255-256.

[52] Peaceman, D.W.: “Interpretation of Well-Block Pressure in Numerical Reservoir

Simulation”, SPEJ (June 1978), 183-194.

[53] Peaceman, D.W.: “Interpretation of Well-Block Pressure in Numerical Reservoir

Simulation with Nonsquare Grid Blocks and Anisotropic Permeability,” SPEJ

(June 1993), 531-543.

[54] Pedrosa, O. A., Jr.: "Use of Hybrid Grid in Reservoir Simulation", Ph.D.

Dissertation, Stanford University (Dec. 1984).

[55] Richtmyer, R.D: Difference Methods for Initial-Value Problems, Interscience

Publishers Inc., New York (1957), Chapter 10.

[56] Ros, N.C.J.: "An Analysis of Critical Simultaneous Gas-Liquid Flow Through a

Restriction and its Application to Flow Metering," Applied Sci. Research, (1960),

2, pp. 374.

[57] Rumbaugh, J., Blaha, M., Premerlani, W. and Lorenson W.: Object Oriented

Modeling and Design, Prentice-Hall, Englewood Cliffs, (1991).

[58] Russell, T.F., “Stability Analysis and Switching Criteria for Adaptive Implicit

Methods Based on the CFL Condition” SPE paper 18416 (Feb. 1989), 97-106.

[59] Saad, Y.: Iterative Methods for Sparse Linear Systems, PWS Kent (1995).

[60] Sachdeva, R., Schmidt, Z., Brill, J. P., and Blais, R. M.: "Two-Phase Flow

through Chokes," SPE paper 15667, presented at 61st SPE Fall Conf. New

Orleans, LA, 1986.

BIBLIOGRAPHY 183

[61] Schiozer, D.J.: "Simultaneous Simulation of Reservoir and Surface Facilities,"

Ph.D. Dissertation, Stanford University, March 1994.

[62] Shamir, U. and Howard, C. D.: “Water Distribution Systems Analysis,” Journal

of the Hydraulics Division (Jan. 1968), ASCE, vol. 94, 219-234.

[63] Shaw, R., and Byer, T.J.: Object-Oriented Design of Surface Facilities Model

using Design Patterns (unpublished), 1998.

[64] Smith, B., Bjorstad, P., and Gropp, W.: Domain Decomposition, Parallel

Multilevel Methods for Elliptic Partial Differential Equations, Cambridge

University Press (1996).

[65] Startzman, G. A., Barnes, and Wong, S.A.,: “Applications of a Microcomputer

Facilities Network Modeling Program,” SPE paper 16506 (June 1987).

[66] Stone, H.L.: “Estimation of Three-Phase Relative Permeability and Residual Oil

Data,” Journal of Canadian Petroleum Technology (Oct.-Dec. 1973), 12, 53-61.

[67] Stright, D.H., Aziz, K., Settari, A., and Starratt, F.: "Carbon Dioxide Injection

into Bottom-Water, Undersaturated Viscous Oil Reservoirs," Journal of

Petroleum Technology (Oct. 1973) 29, 1248-1258.

[68] Stroustrup, B.: The C++ Programming Language, Addison-Wesley Publishing

Company (1987).

[69] Thomas, G.W.: Principle of Hydrocarbon Reservoir Simulation, International

Human Resources Development Corporation (1982).

[70] Thomas, G.W. and Thurnau, D.H.: “Reservoir Simulation Using an Adaptive

Implicit Method,” SPEJ (Oct. 1983) 759-68.

[71] Verma, S.: Flexible Grids for Reservoir Simulation, Ph.D. Dissertation, Stanford

University, June 1996.

[72] Wallis, G.B.: One-Dimensional Two-Phase Flow, McGraw-Hill (1969) first

edition.

BIBLIOGRAPHY 184

[73] Wallis, J.R. and Nolen, J.S.: “Efficient Iterative Linear Solution of Locally

Refined Grids Using Algebraic Multilevel Approximate Factorizations,” SPE

(Feb. 1993) 59-68.

[74] Wallis, J.R., Foster, J.A., and Kendal, R.P.: “A New Parallel Iterative Linear

Solution Method for Large-Scale Reservoir Simulation”, SPE paper 21209 (Feb

1991) 84-92.

[75] Wasserman, M.L.: “Local Grid Refinement for Three-Dimensional Simulators,”

SPE paper 16013 (Feb. 1987).

[76] Wiener, R.S., and Pinson, L.J.: An Introduction to Object-Oriented Programming

and C++, Addison-Wesley Publishing Company (1988).

[77] Wood, D.J., and Charles, C.: “Hydraulic Network Analysis Using Linear Theory

Simulators,” Jo. Hydraulics Div., Proc. Amer. Soc. Civil Engineers (1972), vol.

98, 1157-1170.

185

Appendix A

Simplified Network Solution Method

A.1 Network Solution Method

This appendix presents an analysis of the network solution method used by Schiozer

(1991) and demonstrates that for problems with two-phase pipeflow, the method can

result in convergence problems due to incorrect Jacobian terms. In a coupled system,

additional equations are required at the pipe junctions to maintain continuity principles.

To simplify the numerical implementation for the coupled system a technique that

reduces the number of equations required to formulate the pipe network is employed. The

reduction technique is analyzed in the context of the coupled reservoir and surface facility

model shown in Fig A.1.

Reservoir

,1wbp ,2wbp
,3wbp ,4wbp

,gr Ap ,gr Bp

,gr Cp

Figure A.1: Example Network

APPENDIX A. SIMPLIFIED NETWORK SOLUTION METHOD 186

Treatment of Boundary Conditions

Only constant pressure boundaries are considered in the facility model. A residual

equation is used for implementation of the network boundary condition and is expressed

as

(), , 0S gr sp gr CR p p= - = (A.1)

where ,gr spp is the specified pressure condition at node C and ,gr Cp is an artificial

unknown which at convergence, equals ,gr spp .

Reduction Method

In the facility network, pipe segments are identified as pipe sections between a well and

junction node or between two junction nodes. For each pipe segment the following

residual equation is formulated:

() 0i o i ioR p p p= - + D = (A.2)

where iopD is the pressure drop from node i to j, and pi and po are the inlet and outlet

pressures, respectively. The reduction procedure can be demonstrated by considering the

flow path connecting the first well and group node C shown in Fig. A.1. Noting that

D D Dp p pC A AC1 1= + , the intermediate group A pressure unknown can be eliminated by

combining

()1 , , 0gr C gr A ACR p p p= - + D = (A.3)

and

()2 , ,1 1 0gr A wb AR p p p= - + D = (A.4)

to obtain

()2 , ,1 1 0gr C wb CR p p p= - + D =% (A.5)

APPENDIX A. SIMPLIFIED NETWORK SOLUTION METHOD 187

The new residual equation involves only pressures at the well nodes and facility

boundary. A general form of the residual equation for this example is given by

(), , 0i gr C wb i iCR p p p= - + D =% (A.6)

where the pressure drop iCpD , is computed using multiphase flow correlations using

current iteration node pressure estimates.

In this approach only one equation per well is required and the Jacobian

construction for the facility terms has been simplified. However, it is shown next that

this type of reduction may introduce convergence problems in the Newton iteration.

A.2 Analysis of Jacobian Terms

The problem associated with the reduced set of residual equations is established by

examining the Newton iteration ()u for Eq. A.5 versus an equivalent form given by

(), 1 0
Ce gr wb i A ACR p p p p= - + D + D =% (A.7)

The Newton Eqs. A.5 and A.7 are given by

1 2 2
2 2 , ,1

, ,1
gr C wb

gr C wb

R R
R R p p

p p
u u+

� �= + D + D
� �

% %
% % (A.8)

and

1
, ,1

, ,1

e e
e e gr C wb

gr C wb

R R
R R p p

p p
u u+

� �= + D + D
� �

% %
% % (A.9)

Since these equations are equivalent, the derivative terms should be equivalent and

therefore require the same number of Newton iterations for convergence. The

coefficients in Eq. A.8 are given by

APPENDIX A. SIMPLIFIED NETWORK SOLUTION METHOD 188

()

()

12

, ,

12

,1 ,1

1

1

C

gr C gr C

C

wb wb

pR

p p

pR

p p

� D� = +
� �

� D� = - +
� �

%

%
(A.10)

Similarly in Eq. A.9 the coefficients are given by

()

()
, ,

1

,1 ,1

1

1

ACe

gr C gr C

Ae

wb wb

pR

p p

pR

p p

� D� = +
� �

� D� = - +
� �

%

%
(A.11)

Comparing A.10 and A.11 shows that computation of the Jacobian terms based on the

equation reduction method requires that

() ()

() ()

1

, ,

1 1

,1 ,1

C AC

gr C gr C

C A

wb wb

p p

p p

p p

p p

� D � D
=

� �

� D � D
=

� �

(A.12)

Under multiphase flow conditions, application of the coefficients in Eq. A.12

represent an assumption that the derivatives can be linearly extrapolated. This can result

in an excessive number of Newton iterations, which leads to convergence failure due to

maximum iteration limits.

189

Appendix B

Auxiliary Test Model Data

B.1 Reservoir Fuild and Rock Properties

Table B.1: Fluid Properties

psia

p

/

o

bbl STB

B

/

w

bbl STB

B
/
g

bbl scf

B

/

w

bbl STB

B o

cp

m w

cp

m g

cp

m
/

s

scf STB

R

14.7 1.062 1.0410 0.166666 1.062 1.040 0.31 0.0080 1.0

264.7 1.150 1.0403 0.012093 1.150 0.975 0.31 0.0096 90.5

514.7 1.207 1.0395 0.006274 1.207 0.910 0.31 0.0112 180.0

1014.7 1.295 1.0380 0.003197 1.295 0.830 0.31 0.0140 371.0

2014.7 1.435 1.0350 0.001614 1.435 0.695 0.31 0.0189 636.0

2514.7 1.500 1.0335 0.001294 1.500 0.641 0.31 0.0208 775.0

3014.7 1.565 1.0320 0.001080 1.565 0.594 0.31 0.0228 930.0

4014.7 1.695 1.0290 0.000811 1.695 0.510 0.31 0.0268 1270.0

5014.7 1.827 0.000649 1.827 0.449 0.31 0.0309 1618.0

9014.7 2.357 1.0130 0.000386 2.357 0.203 0.31 0.0470 2984.0

Table B.2: Rock and Fluid Data Rock and Fluid Data

3(/)std
g lbm ftr 0.0647 ()std

g cpm 0.008

3(/)std
w lbm ftr 62.238 ()std

w cpm 0.31

3(/)std
o lbm ftr 42.244 ()std

o cpm 1.04

1()rc psia- 3(10)-6 1()oc psia - 1.3687(10)-5

APPENDIX B. AUXILIARY TEST MODEL DATA 190

Table B.3: Oil-Water Relative Permeability Data

wS rwk rowk

0.12000 0.00000 1.00000

0.13000 0.00000 1.00000

0.92000 1.00000 0.00000

Table B.4: Oil-Gas Relative Permeability Data

gS rgk rogk

0.00000 0.00000 1.00000

0.00100 0.00000 1.00000

0.02000 0.00000 0.99700

0.05000 0.00500 0.98000

0.12000 0.02500 0.70000

0.20000 0.07500 0.35000

0.25000 0.12500 0.20000

0.30000 0.19000 0.09000

0.40000 0.41000 0.02100

0.45000 0.60000 0.01000

0.50000 0.72000 0.00100

0.60000 0.87000 0.00010

0.70000 0.94000 0.00000

0.85000 0.98000 0.00000

1.00000 1.00000 0.00000

191

Appendix C

Variable Preconditioning Strategy

C.1 Description

The variable preconditioning strategy developed for this research employs multiple

criteria applied over a timestep to determine whether preconditioning should be applied.

The criteria are defined in terms of material balance errors, Newton iteration convergence

behavior, and the performance of the previous iterations preconditioning strategy. The

strategy is presented in Fig. C.1 and the flowchart variables are defined as:

u - current Newton iteration number of standard implicit problem

n
tu - total Newton iterations for timestep n

n
fpu - first preconditioned Newton iteration for timestep n

n
lnpu - last nonpreconditioned Newton iteration for timestep n

n
lpu - last preconditioned Newton iteration for timestep n

n
spu - first iteration at which preconditioning can be considered for timestep n

ptu - preconditioning threshold iteration number

The flowchart contains several decision points that can be categorized into two

general types of criteria defined by the use of either previous (left side of diagram) or

current timestep information (right side of diagram). Each of these criteria are defined in

APPENDIX C. VARIABLE PRECONDITIONING STRATEGY 192

1

r rR R
u u-

� �

<
r r

0u =

1

r rX X
u u-

� �

<
r r

No
Preconditioning

1 1n n
sp fpu u -= +

1n n
sp lnpu u -=

n
spu u�

Yes

1u =

No

Apply
Preconditioning

Yes

No

Yes

No

No

0

1n

u =
�

3n �

3 1

2 1

n n
t t

n n
t t

u u

u u

- -

- -

=

<

2

2

n
pt t

n n
sp sp

u u

u u

-

-

=

=

No

Yes

2 1

1

n n
t t

n
t pt

u u

u u

- -

-

=

=

1n
t ptu u- �

1pt ptu u= -

Yes

Yes

No

1 1 1n n
lp tu u- -= -

1 1n n
sp lnpu u -= +

Yes

1n
t ptu u- <

No

A

B

C

D

E

F

G
1n

pt tu u -=

Figure C.1: Preconditioning Frequency Strategy

APPENDIX C. VARIABLE PRECONDITIONING STRATEGY 193

detail, beginning with the core decision logic. Note that in Fig. C.1 timestep and Newton

iteration indexing is relative to 0, following the C/C++ coding conventions. However,

the number of iterations required for a timestep ()n
tu and threshold value ()ptu are

absolute totals.

The criteria based on current timestep information are used to control the

application of the preconditioner within the current timestep. The criteria are based on

the premise that application of the preconditioner should not increase material balance

errors or delay Newton convergence rate, thus preconditioning will only occur if the

material balance error and/or Newton solution vector are in a descent direction.

The selection of the first iteration at which preconditioning is considered for the

current timestep is based on performance data of the preconditioning strategy at earlier

timesteps. Application of the criteria described in Fig. C.1 yields a sequence of Newton

iterations that can be classified as either preconditioned or nonpreconditioned. The

criteria developed using this data is explained by examining possible preconditioning

sequences defined by { }, 0,1,2,...pcu u = , where 1pcu = if iteration u was

preconditioned, otherwise 0pcu = . With respect to the decision logic shown in Fig. C.1,

a succession of criteria is defined as follows:

1. This criterion is designed to delay preconditioning. The condition
1 1 1n n

lp tu u- -¡ - (decision point A) is for sequences such as { }0,0,...,0 or

{ }1,0,1,0,..,0 where preconditioning was either not started, or was started,

disabled, and never resumed. This implies that application of the

preconditioner may have been of limited benefit since the reservoir

conditions were changing later in the iterations. Therefore on the current

iteration this criterion will delay the possibility of preconditioning by one

iteration with respect to the first preconditioned iteration of the previous

timestep, 1n
fpu - .

2. This criterion seeks to find the earliest iteration that preconditioning can

begin and continue uninterrupted. The condition corresponding to

APPENDIX C. VARIABLE PRECONDITIONING STRATEGY 194

1 1 1n n
lp tu u- -= - (decision point A) is designed for sequences of the form

{ }0,..,0,1,1 or { }1,1,0,..,0,1,1 , where early in the iterations preconditioning

was either disabled or delayed and continued uninterrupted only towards the

end of the iterations. In this case the current iteration cannot begin

preconditioning until the iteration number corresponding to the last

nonpreconditioned iteration of the previous timestep 1n
lnpu - .

Criteria selection is determined via the preconditioning threshold parameter, ptu ,

which defines an acceptable number of Newton iterations per timestep. If this parameter

is exceeded, 1n
t ptu u- > , and then modifications to the strategy are employed that are

based on the first two criteria. Otherwise, the current strategy is considered successful and

steps are taken to maintain or improve the convergence rate. The threshold parameter

initially assumes a specified value and then under various conditions, can change with

convergence behavior. These conditions are discussed with respect to Fig. C.1 and help

further define ptu .

1. The condition 1n
t ptu u- � (decision point B) indicates the previous number of

Newton iterations required for convergence is less than or equal to the

threshold value. The previous timestep’s preconditioning strategy coupled

with reservoir behavior resulted in an acceptable convergence rate as defined

by the threshold value. Therefore the first iteration at which preconditioning

will be considered is set to one iteration beyond the last nonpreconditioned

iteration of the previous timestep, 1 1n
sp lnpu u -= + .

2. The more restrictive condition, 1n
t ptu u- < (decision point C) indicates that

the previous number of Newton iterations required for convergence is less

than the threshold value. The previous timesteps preconditioning strategy

coupled with reservoir behavior resulted in accelerated convergence rate and

defines a new goal for the preconditioner. Therefore the threshold value is

APPENDIX C. VARIABLE PRECONDITIONING STRATEGY 195

set equal to the number of iterations required for the previous timestep,
1n

pt tu u -= .

3. The condition 2 1n n
t tu u- -= (decision point D) is designed to prevent the

strategy from operating at a threshold value for more than two iterations. In

this case the threshold value is decreased 1pt ptu u= - . This criterion helps

the strategy continually test starting points for preconditioning.

4. The conditions 3 1n n
t tu u- -= and 2 1n n

t tu u- -< (decision point E) are designed to

detect oscillating behavior in the Newton convergence rate over the last three

timesteps. Note that timestep n-2 required the least iterations. If this

condition is satisfied, in an attempt to regain the better convergence rate, the

first iteration in which preconditioning can be considered, n
spu , is set equal to

the value used at timestep n-2, 2n
spu - . Also the preconditioning threshold is

reset to the number of iterations required for timestep n-2. For low threshold

values this has the effect of delayed preconditioning and for high threshold

values this has the effect of considering preconditioning earlier than before.

C.2 Sample Data

The variable preconditioning strategy is demonstrated with four sets of preconditioning

sequences that correspond to 4 timesteps. The data are not from an actual run, however

are representative of observed behavior. The sequences are presented in the following

Table C.1. Recall that 1pvu = indicates that the iteration is preconditioned,

otherwise 0pvu = and a standard implicit iteration is performed. The initial

preconditioning threshold is initially set to four ()4ptu = and preconditioning is

automatically applied on the first iteration of the simulation run ()0 0spu = . Note that

since 0 0spu = , preconditioning will be considered at all iterations of the first timestep.

APPENDIX C. VARIABLE PRECONDITIONING STRATEGY 196

Table C.1: Sample Preconditioning Performance Data

pcu

Newton Iteration, u 0 1 2 3 4 5

Timestep Number, n

0 1 0 0 1 1 1

1 0 0 1 1 0 -

2 0 0 0 1 - -

3 0 0 0 1 - -

Timestep Number, n
n
spu n

ptu n
tu

n
fpu n

lpu n
lnpu

0 0 4 6 0 5 2

1 2 4 5 2 3 4

2 3 4 4 3 3 2

3 3 4 4 2 2 1

Timestep n=0

The first timestep required 6 Newton iterations for convergence. Preconditioning is

applied the on first iteration and subsequently disabled until 3u = , due to a non-decent

direction in the material balance error and/or linear solution vector (decision points F, G).

At 3u = preconditioning was activated and applied every iteration for the remainder of

the timestep.

Timestep n=1

The total number of iterations required for the previous iteration ()0 6tu = exceeded the

threshold value ()4, decision point Bptu = and therefore logic beginning at decision

point A is used to establish when preconditioning can be considered. Since the last

iteration of the previous timestep was preconditioned, the first iteration at which

preconditioning can be considered is equal to the last nonpreconditioned iteration of the

APPENDIX C. VARIABLE PRECONDITIONING STRATEGY 197

previous timestep, ()1 0
sp lnpu u= . In this case the strategy is exploring how early

preconditioning can be started. Preconditioning is applied for iterations 2 and 3, and then

disabled due to a non-decent direction in the material balance error and/or linear solution

vector (decision points F, G). A total of 5 iterations are required for the timestep.

Timestep n=2

The total number of iterations required for the previous iteration ()1 5tu = still exceeds the

threshold value ()4, decision point Bptu = and therefore logic beginning at decision

point A is used to establish when preconditioning can be considered. Since the last

iteration of the previous timestep was not preconditioned, the first iteration that

preconditioning can be considered is equal to one iteration beyond the first

preconditioned iteration of the previous timestep, ()2 1 1sp fpu u= + . In this case,

preconditioning was applied too early in the previous timestep and therefore the strategy

will delay preconditioning for the current timestep. Preconditioning is applied only for

iteration 3. A total of 4 iterations are required for the timestep.

Timestep n=3

The total number of iterations required for the previous iteration ()2 4tu = equals the

threshold value ()4, decision point Bptu = , therefore preconditioning is considered at the

one iteration beyond the last nonpreconditioned iteration of the previous timestep,
3 2 1sp lnpu u= + . This corresponds to iteration 3 and reflects a strategy of maintaining the

preconditioning strategy used for the previous timestep. Since the condition 2
t ptu u<

(decision point C) is false the strategy will examine the number of iterations required by

the previous two timesteps to determine whether the strategy has been operating at the

threshold value. If so, then the strategy will seek to improve the convergence rate by

reducing the threshold value by one iteration. This has the affect of employing the logic

beginning at decision point A if the number of iterations required for the current iteration

exceeds the threshold value. In this example, the threshold value is not reset since
2 1
t tu u¡ .

APPENDIX C. VARIABLE PRECONDITIONING STRATEGY 198

C.3 Concluding Remarks

These criteria are designed to improve the quality of preconditioning by

responding to preconditioner performance based on specified well subdomain size. The

variable preconditioning criteria are independent of subdomain size and therefore this

strategy is a critical component in the overall preconditioning method since determination

of the optimal subdomain size requires numerous trial runs and is problem dependant.

199

Appendix D

Object-Oriented Concepts

D.1 Object-Oriented Terminology and Concepts

The purpose of this section is to present the basic entities in object-oriented modeling. A

detailed discussion of these concepts can be found in Rumbaugh (1991) or Meyer (1992).

D.1.1 Class

A class is a description of a group of objects with similar attributes, operations, and

relationships. An attribute is a characteristic or property of an object. An operation is

function or set of actions. Two important default functions are the constructor and

destructor. The constructor is called whenever a class is instantiated and serves to

initialize or define attributes and establish relationships. The destructor is called

whenever a class is deleted and serves to deallocate any resources assigned to the class.

A relationship is a connection or link between classes or objects. The primary

relationships are association (“has a”), aggregation (“part of”), and generalization

specialization (“is a”).

D.2.1 Object

An object is an instance of a class and responds to messages from other objects. Objects

are complete entities, they encapsulate the required data and concepts to define a real

world object. There are three major forms of objects: atomic, structured and collection.

An atomic object is an object of a primitive class or data type, e.g. integer, float, or point.

APPENDIX D. OBJECT ORIENTED CONCEPTS 200

A structured object is an object of a class with attributes, operations, and relationships. A

collection object is an object containing an array, list, or set.

D.3.1 Relationship

A relationship is a link or connection between two classes or between two objects. The

three major types of relationships are described.

Association

An association relationship may be described as “has a”, “associated with”, or “knows

about”. An association can be one to one, or one to many. An association is

implemented as through dynamic membership in a class, thus reflecting a weak cohesion

between classes.

Aggregation

Aggregation is a link between classes that represents a “part of “ relationship. An

aggregation represents a stronger cohesion between objects than an association, and

indicates an integral part of the object. An association can also have a one to one, or one

to many relationship. An aggregation is implemented as a static definition in a class.

Generalization Specialization

A generalization specialization relationship indicates a commonality between a superclass

and subclass, which can be expressed via common attributes, operations or relationships.

This relationship is commonly identified via the “is a” type connotation. The

programming implementation employs inheritance to achieve the common elements.

APPENDIX D. OBJECT ORIENTED CONCEPTS 201

D.4.1 Diagram Notation

Part-1 Class

Assembly Class

Part-2 Class

Superclass

Subclass-1 Subclass-2

Class Name

Attributes

Methods()

Associations

Class

Inheritance Aggregation

Class-1 Class-2
1 to 1

Class-1 Class-21 or more

Figure D.1: Class Diagram Notations

D.2 Standard Template Library

Several class libraries are commercially available, which provide functionality such as

string manipulation, matrix manipulation, data persistence, or thread management. The

most significant library addition to the C++ standard is the Standard Template Library

(STL). The STL is a library of container classes, algorithms, and iterators. The container

classes include vectors, lists, and sets. The algorithms include sort, reverse or splice

operations on the container classes. The iterators provide a standard method for

accessing data in container classes. Some of these components are discussed further

here. For a detailed description of the STL see Musser and Saini (1996).

APPENDIX D. OBJECT ORIENTED CONCEPTS 202

Vector Container

The vector container is similar to a contiguous C array and provides array-like random

access. Several support operations are available for insertion and deletion at any point in

the array. The vector automatically resizes, though functions are provided to reserve a

minimum amount of storage. The following example demonstrates the use of a vector

container for integers.

vector<int> v(3); // declare a vector of 3 integer elements

vector<char> s(3); // declare a vector of 3 character elements.

v[0] = 6; // vector assignments

v[1] = 1;

v[2] = v[0] + v[1]; // v[0] = 6, v[1] = 1 => v[2] = 7

v.insert(v.begin()+2,3); // insert 3 at index location 2

reverse(v.begin(), v.end()); // v[0] = 7, v[1] = 3, v[2] = 1, v[3] = 6

The flexibility of the vector container can be summarized with the following

observations:

• the type of vector is arbitrary

• the vector can be resized dynamically

• no additional code is required in order to insert new data or perform elementary

operations on the data

• the reverse function is independent of data type

Additionally the vector container is internally designed to be almost as efficient as

standard data arrays with respect to operations available to standard data arrays. But

inserting into the middle of a vector is expensive, because elements must be moved

down, and growing the vector is costly because it must be copied to another vector

internally.

APPENDIX D. OBJECT ORIENTED CONCEPTS 203

List Container and Iterators

The list container is similar to a doubly linked list. The list differs from the vector class

in two main areas. The list does not provide random access to the data elements, however

it is more efficient when adding or deleting an item in the middle of the list. The

following example demonstrates the use of the list container and iterators.

double array1 [] = { 9.6, 1.6, 3.6 }; // declare array of 3 double elements

double array2 [] = { .1, 4.5 }; // declare array of 3 double elements

list< double > D1 (array1, array1 + 3); // create list D1 of type double and initialize

 with array1 data

list< double > D2 (array2, array2 + 2); // create list D2 of type double and initialize

 with array2 data

list< double >::iterator iter = D1.begin (); // get pointer to beginning of D1 list

iter.splice (D1, D2); // add data from D2 list to beginning of D1 list

list< double >::iterator iter = D1.begin (); // get pointer (iter) to beginning of D1 list

while (iter != D1.end ()) // while iter does not point to end of list

 cout << * iter ++ << endl; print list D1 contents to standard output

Note the iterator type specification of D1 and D2. The iterator points to objects in the list

container and also contains several member functions to index the data. In this example

the begin() and end() member functions return pointers to the beginning and end of the

D1 list. Also an iterator type is used to define the input for many of the STL algorithms,

for example see the splice() function used above. Similar to the vector container, the

flexibility of the list container is demonstrated in the following areas:

• the type of list is arbitrary

• the size of the list can be dynamically resized

• no additional code is required to insert new data or perform elementary operations

on the data

• the splice function is independent of data type

• the list can return an object of type iterator for use in data operations provided by

the iterator and algorithm

APPENDIX D. OBJECT ORIENTED CONCEPTS 204

The simple examples presented above demonstrate the generic programming

capability provided by the STL. The container classes provide a strong basis for

development of specialized data storage features required by simulation applications.

The following example demonstrates how the list container is employed to provide access

to an array of cell pressures via the request

double *opres = getDataVec("OPRES");.

DataVector * CartesianGrid::getData(char *aname) { // interface to getData operation

list<DataVector*>::iterator iter = listofData.begin(); // set pointer to beginning of list

int found=1;

while (iter != listofData.end() && found != 0) { // while the pointer is not at end of list and

 data has not been found

 found = strcmp(aname,(*iter)->getname()); // access DataVector name and compare

 ++iter; // increment pointer

}

if (found != 0) return NULL; // data not found return NULL

iter--; // backup pointer

return(*iter)->Vec(); // return vector stored inside DataVector

}

D.3 Concluding Remarks

A brief discussion has been presented on basic object-oriented concepts. Other references

that will help the reader better understand object-oriented programming using the C++

language include Lippman (1989), Stroustrup (1987), and Wiener and Pinson (1988).

Also the PETSc home page (Baley et al. 1999) provides links to excellent discussions

related to the object-oriented design of numerical toolkits.

