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ABSTRACT OF THE DISSERTATION

SQP Methods for Large-Scale Optimization

by

Alexander Barclay

Doctor of Philosophy in Mathematics

University of California San Diego, 1999

Professor Philip Gill, Chair

Sequential quadratic programming methods have proved highly e�ective for

solving constrained optimization problems with smooth nonlinear functions in the

objective and constraints. Sequential quadratic programming methods solve a

sequence of quadratic programming (QP) subproblems, where each iteration of

the QP subproblem requires the solution of a large linear system for the search

direction. For some problems, the number of degrees of freedom, nz, is of moderate

size (say, up to 1000), and the large system can be solved using two smaller dense

systems, one for the QP search direction and one for the QP multipliers. In this

case, the system for the search direction is ZTHZp = �ZTg, where ZTHZ is an

nz � nz reduced Hessian.

The thesis is concerned with the formulation and analysis of two sequential

quadratic programming algorithms that are designed to be e�cient when nz is

large (nz � 1000). The �rst method uses the conjugate-gradient method to

solve the linear systems. The reduced system is shown to be equivalent to a

certain least-squares problem that can be solved using the conjugate-gradient al-

gorithm LSQR. Two preconditioners are proposed to accelerate convergence. The

conjugate-gradient algorithm is implemented in a large-scale sequential quadratic

programming method based on the optimization code SNOPT. Numerical results

xi



are presented to demonstrate the e�ciency of the algorithm for problems with

large degrees of freedom.

The second method uses a Schur-complement approach to solve a large sparse

system derived directly from the optimality conditions. The search directions are

calculated using a �xed large sparse system and a small dense system incorporating

the changes to the active set at each QP iteration. A general algorithm for convex

quadratic programming is discussed, and a Schur-complement method is formu-

lated for use with the algorithm. In addition, a new Schur-complement method is

derived for minimizing an `2 composite objective function when the initial point is

not feasible. Modi�cations to the standard QP algorithm are presented that allow

the use of a composite objective.
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Chapter 1

Introduction

Large-scale sequential quadratic programming (SQP) methods have proved

highly e�ective for solving constrained optimization problems of the form

NP minimize
x2IRn

f(x)

subject to l �

0BB@
x

F (x)

Gx

1CCA � u;
where l and u are constant upper and lower bounds, f(x) is a smooth nonlinear

function, G is a sparse matrix, F (x) is a vector of smooth nonlinear constraint

functions fFi(x)g, and n is large (n � 1000). The upper and lower bounds l

and u allow for the general description of various types of bounds and constraints.

For instance, free rows and unbounded variables are represented by setting the

appropriate li = �1 and ui = +1. Equality constraints and �xed variables are

represented by setting li = ui. If F (x) is not present, and if f(x) is linear, then

problem NP de�nes a linear program.

The success of SQP methods on practical problems of this form has inevitably

lead to a substantial increase in expectation. As SQP methods have gained ac-

ceptance as a numerical tool, the size and di�culty of the problems attempted

has inevitably increased. It is crucial that new SQP methods be developed for

problems that cannot yet be solved e�ciently by using existing technology.

1



2

1.1 Description of a SQP Method

A particular large-scale SQP method is implemented in the optimization code

SNOPT [16]. The SQP method used in SNOPT �rst converts problem NP to an

equality constrained problem with simple bounds. The upper and lower bounds

on the m components of F and Gx are said to de�ne the general constraints of

the problem. SNOPT converts the general constraints to equalities by introducing

a set of slack variables s, where s = (s1; s2; : : : ; sm)
T . For example, the linear

constraint 5 � 2x1 + 3x2 � +1 is replaced by 2x1 + 3x2 � s1 = 0 together with

the bounded slack 5 � s1 � +1. The problem NP can therefore be rewritten in

the following equivalent form

minimize
x;s

f(x)

subject to

0BB@ F (x)
Gx

1CCA� s = 0; l �

0BB@ x

s

1CCA � u: (1.1)

The linear and nonlinear general constraints become equalities of the form F (x)�

sN = 0 and Gx � sL = 0, where sL and sN are known as the linear and nonlinear

slacks.

The basic structure of a SQP method involves major and minor iterations.

The major iterations generate a sequence of iterates (xk) that satisfy the linear

constraints. The iterates (xk) converge to a point that satis�es the �rst-order con-

ditions for optimality. At each iterate, a quadratic programming (QP) subproblem

is used to generate a search direction towards the next iterate (xk+1). Solving the

QP subproblem is itself an iterative procedure, with the minor iterations of an

SQP method being the iterations of the QP method.

1.1.1 Major Iterations

In SNOPT, the constraints of the subproblem are formed from the linear con-

straints Gx � sL = 0 and the nonlinear constraint linearization

F (xk) + F 0(xk)(x� xk)� sN = 0;
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where F 0(xk) denotes the Jacobian matrix , whose rows are the �rst derivatives

of F (x) evaluated at xk. The QP constraints therefore comprise the m linear

constraints

F 0(xk)x �sN = �F (xk) + F 0(xk)xk;

Gx �sL = 0;

where x and s are bounded above and below by u and l as before. If the m � n

matrix A and m-vector b are de�ned as

A =

0BB@ F 0(xk)
G

1CCA and b =

0BB@ �F (xk) + F 0(xk)xk

0

1CCA ;
then the QP subproblem can be written as

minimize
x;s

 (x) subject to Ax� s = b; l �

0BB@ x

s

1CCA � u; (1.2)

where  (x) is a quadratic approximation to a modi�ed Lagrangian function (see

Section 2.1).

1.1.2 Minor Iterations

The QP method of SNOPT is an inertia-controlling active-set method [13, 21].

At each minor iteration of an active-set method, the constraints Ax � s = b are

(conceptually) partitioned into the form

BxB + SxS +NxN = b;

where the basis matrix B is square and nonsingular. The elements of xB, xS

and xN are called the basic, superbasic and nonbasic variables respectively; they

are a permutation of the elements of x and s. At a QP solution, the basic and

superbasic variables will lie somewhere between their bounds, while the nonbasic

variables will be equal to one of their upper or lower bounds. At each iteration, xS

is regarded as a set of independent variables that are free to move in any desired
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direction, namely one that will improve the value of the QP objective (or the

sum of infeasibilities). The basic variables are then adjusted in order to ensure

that (x; s) continues to satisfy Ax � s = b. The number of superbasic variables

(nS say) therefore indicates the number of degrees of freedom remaining after the

constraints have been satis�ed (or nz � nS). In broad terms, nS is a measure of how

nonlinear the problem is. In particular, nS will always be zero for LP problems.

If it appears that no improvement can be made with the current de�nition of

B, S and N , a nonbasic variable is selected to be added to S, and the process

is repeated with the value of nS increased by one. At all stages, if a basic or

superbasic variable encounters one of its bounds, the variable is made nonbasic

and the value of nS is decreased by one.

Associated with each of the m equality constraints Ax � s = b are the dual

variables �. The dual variables are also known as the Lagrange multipliers. Sim-

ilarly, each variable in (x; s) has an associated reduced gradient dj . The reduced

gradients for the variables x are the quantities g�AT�, where g is the gradient of

the QP objective, and the reduced gradients for the slacks are the dual variables

�. The QP subproblem is optimal if dj � 0 for all nonbasic variables at their lower

bounds, dj � 0 for all nonbasic variables at their upper bounds, and dj = 0 for

other variables, including superbasics.

A more detailed description of the QP method used in SNOPT is given in

Chapter 2 .

1.1.3 The Merit Function

After a QP subproblem has been solved, new estimates of the NP solution are

computed using a line search on the augmented Lagrangian merit function

M(x; s; �) = f(x)� �T(F (x)� sN) +
1
2
(F (x)� sN)

T
D(F (x)� sN); (1.3)

where D is a diagonal matrix of penalty parameters. If (xk; sk; �k) denotes the

current solution estimate and (bxk; bsk; b�k) denotes the optimal QP solution, the
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line search determines a step �k (0 < �k � 1) such that the new point0BBBBBB@
xk+1

sk+1

�k+1

1CCCCCCA =

0BBBBBB@
xk

sk

�k

1CCCCCCA + �k

0BBBBBB@
bxk � xk
bsk � sk
b�k � �k

1CCCCCCA
gives a su�cient decrease in the merit function (1.3). When necessary, the penal-

ties in D are increased by the minimum-norm perturbation that ensures descent

forM [22]. In SNOPT, sN is adjusted to minimize the merit function as a function

of s prior to the solution of the QP subproblem. For more details, see [18, 9].

1.1.4 Treatment of Constraint Infeasibilities

SNOPT makes explicit allowance for infeasible constraints. Infeasible linear

constraints are detected �rst by solving a problem of the form

FLP minimize
x;v;w

eT (v + w)

subject to l �

0@ x

Gx� v + w

1A � u; v � 0; w � 0;

where e is a vector of ones. This is equivalent to minimizing the sum of the

general linear constraint violations subject to the simple bounds. (In the linear

programming literature, the approach is often called elastic programming.)

If the linear constraints are infeasible (v 6= 0 or w 6= 0), SNOPT terminates

without computing the nonlinear functions.

If the linear constraints are feasible, all subsequent iterates satisfy the linear

constraints. (Such a strategy allows linear constraints to be used to de�ne a region

in which the functions can be safely evaluated.) SNOPT proceeds to solve NP as

given, using search directions obtained from a sequence of quadratic programming

subproblems (1.2).

If a QP subproblem proves to be infeasible or unbounded (or if the dual vari-

ables � for the linearized constraints become large), SNOPT enters \elastic" mode
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and solves the problem

NP minimize
x;v;w

f(x) + 
eT (v + w)

subject to l �

0BB@
x

F (x)� v + w

Gx

1CCA � u; v � 0; w � 0;

where 
 is a nonnegative parameter (the elastic weight), and f(x) + 
eT (v +

w) is called a composite objective. If 
 is su�ciently large, this is equivalent

to minimizing the sum of the nonlinear constraint violations subject to the linear

constraints and bounds. A similar `1 formulation of NP is fundamental to the

S`1QP algorithm of Fletcher [11]. See also Conn [8].

1.2 Contributions of this Thesis

The general focus of the thesis research is on using iterative methods to solve

the QP subproblems within an SQP method. Currently, SNOPT solves the QP

subproblems by solving a series of linear systems of the form

ZTHZpZ = �ZTg; (1.4)

where ZTHZ 2 IRnS�nS , with nS < n. SNOPT is well suited for problems where

the number of degrees of freedom, nS, is of moderate size (say, up to 1000).

The primary objective of this dissertation is to develop QP algorithms that are

e�cient when nS is large (nS � 1000), for use within an SQP algorithm such as

SNOPT. Two di�erent large-scale QP algorithms are investigated.

1. A conjugate-gradient (CG) method is used to solve the linear system,

ZTHZpZ = �ZTg. This method includes the de�nition of two di�erent

preconditioners for accelerating convergence.

2. A Schur-complement (SC) algorithm is investigated for solving the
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Karush-Kuhn-Tucker (KKT) systems associated with (1.2),0BB@ H W T

W 0

1CCA
0BB@ u

�

1CCA =

0BB@ g

0

1CCA :
See Section 4.1.

The Conjugate-Gradient Method

The CG method solves the reduced-Hessian systems (1.4) by solving an asso-

ciated least-squares problem. This allows the use of a least-squares CG algorithm.

This approach bene�ts from the numerical advantages of using a least-squares CG

algorithm instead of a general symmetric CG algorithm for solving linear systems.

Critical to the successful implementation of the CG method is the calculation and

maintenance of appropriate preconditioners for the associated least-squares prob-

lem. The thesis investigates the use of block diagonal preconditioners, with a dense

upper-triangular block, and a larger diagonal extension.

The numerical results demonstrate the potential of the CG method on problems

with as many as 5625 degrees of freedom. The performance is particularly good on

unconstrained and nonlinearly constrained problems. The need for preconditioning

is evident on some problems. However, when the number of CG iterations is small

relative to the size of the linear system, the bene�ts of the preconditioner are

overwhelmed by its cost.

The workspace size on the computer used for the test results limited the size of

the problems attempted. In the future it should be possible to run problems with

tens of thousands of degrees of freedom. It is assumed that this will show an even

greater bene�t from the CG method, and the preconditioners.

The use of a CG method to solve the QP subproblems within an SQP method

has not been investigated elsewhere. However, a similar approach is used by Chen

et al. [7] for linear programming, where the linear systems of a primal-dual log

barrier algorithm are solved as a least-squares problem using a least-squares CG

algorithm. One of the preconditioners investigated in the thesis uses a block di-

agonal quasi-Newton approximation. In related work, Morales and Nocedal [29]



8

discuss using a CG algorithm with a limited-memory quasi-Newton preconditioner

for solving a sequence of linear systems where the coe�cient matrix and right-hand

side are changing. However, their work is directed towards Hessian-free Newton

methods and �nite-element problems.

The Schur-Complement Method

A SC method is investigated for solving the QP subproblems. The method

extends the work of Gill et al. [20, 21]. The general SC concept of using a �xed

factorization of an initial KKT system, and an updated factorization of a smaller,

dense Schur complement, is preserved. However, the thesis extends this to de�ne

the algorithm in terms of an extended KKT system, whose working set may consist

of constraints whose residual is not necessarily zero. This allows a new Schur-

complement QP method to be de�ned that only requires a positive-semide�nite

Hessian. In addition, by proper formulation of the algorithm, some of the solves

with the initial KKT system are avoided.

Particular attention is given to addressing an infeasible initial point. A new SC

algorithm is derived using an `2 quadratic penalty function for the QP objective.

The use of a composite objective function reduces the number of working set

changes to the dense Schur complement when �nding a feasible point. The choice

of the `2 norm places fewer restrictions on the working set, by not requiring it to

be linearly independent at each step. A linearly independent working set is only

required when the penalty parameter becomes large.

The thesis is organized as follows. Chapter 2 presents background on the SQP

method of SNOPT, with particular attention on the QP algorithm used in SNOPT.

The conjugate-gradient QP method is presented in Chapter 3 , including some

numerical results on a subset large problems from the CUTE test suite [4]. The

Schur-complement QP method is presented in Chapter 4 .
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1.3 Notation

Unless otherwise indicated, the following notation is used throughout the dis-

sertation.

Capital letters are used to represent matrices, lowercase letters represent vectors

and Greek letters represent scalars.

For a matrix, the corresponding lowercase letter with a subscript represents a

column of the matrix. For instance, hi will be the i-th column of the matrixH. An

element of a matrix is indicated by a double indexed subscript of the associated

lowercase letter, i.e., hij will be the ij-th element of H.

Bracketed vectors with a subscript indicate an element of a vector. For example,

(v)i would be the i-th element of the vector v.

The vector et is the t-th column of the identity. The lowercase e is reserved for

a vector of all ones. In all cases, the dimension will depend on the context.

The norm k:k is assumed to be the two-norm.



Chapter 2

Background

The QP solver used in SNOPT (that of SQOPT [15]) is based on an inertia-

controlling method that maintains a Cholesky factorization of the reduced Hessian

(see Section 2.2). The method follows Gill and Murray [13] and is described in

[21]. This chapter brie
y summarizes the main features of the method.

SQOPT solves the QP subproblem given in Chapter 1 as

minimize
x;s

 (x) subject to Ax� s = b; l �

0BB@ x

s

1CCA � u: (2.1)

Since the slack variables are subject to the same upper and lower bounds as the

components of Ax, they allow us to think of the bounds on Ax and x as simply

bounds on the combined vector (x; s). (In order to indicate their special role in

problem (2.1), the original variables x are sometimes known as \column variables",

and the slack variables s are known as \row variables").

SQOPT's method has a feasibility phase (also known as phase 1 ), in which a

feasible point is found by minimizing the sum of infeasibilities, and an optimality

phase (or phase 2 ) in which the quadratic objective is minimizedwithin the feasible

region. The computations of both phases are performed by the same subroutines,

with the change of phase being characterized by the objective changing from the

sum of infeasibilities to the quadratic objective.

10
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In general, an iterative process is required to solve a quadratic program. Given

an iterate (x; s) in both the original variables x and the slack variables s, a new

iterate (�x; �s) is de�ned by 0BB@ �x

�s

1CCA =

0BB@ x

s

1CCA+ �p; (2.2)

where the step length � is a non-negative scalar, and p is called the search direction.

(For simplicity, the reference to the index of the iteration is dropped.) Once an

iterate is feasible (i.e., satis�es the constraints), all subsequent iterates remain

feasible.

2.1 De�nition of the Objective Function

For this section, let xk and �k be estimates of the solution and the Lagrange

multipliers of problem NP at the k-th major iteration. The SQP algorithm imple-

mented in SNOPT is based on the modi�ed Lagrangian associated with problem

NP, namely

L(x; xk; �k) = f(x)� �Tk dL(x; xk); (2.3)

which is de�ned in terms of the constraint linearization and the departure from

linearity:

cL(x; xk) = c(xk) + J(xk)(x� xk);

dL(x; xk) = c(x)� cL(x; xk);

see Robinson [33] and Van der Hoek [34]. The �rst and second derivatives of the

modi�ed Lagrangian with respect to x are

rL(x; xk; �k) = g(x)� (J(x)� J(xk))
T�k;

r2L(x; xk; �k) = r
2f(x)�

X
i

(�k)ir
2ci(x):
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Observe that r2L is independent of xk (and is the same as the Hessian of the

conventional Lagrangian). At x = xk, the modi�ed Lagrangian has the same

function and gradient values as the objective f(x):

L(xk; xk; �k) = f(xk); rL(xk; xk; �k) = g(xk):

The objective of the QP subproblem is a quadratic model of L (2.3), which

(ignoring constant terms) is given by

 (x) = gTx+
1

2
xTHx;

where g is the gradient of f(x) at the current xk, and H is a positive-de�nite

approximation to Hessian of the modi�ed Lagrangian function.

2.1.1 The Approximate Hessian

On completion of the line search, let the change in x and the gradient of the

modi�ed Lagrangian be

�k = xk+1 � xk and yk = rL(xk+1; xk; �)�rL(xk; xk; �); (2.4)

for some vector �. An estimate of the curvature of the modi�ed Lagrangian along

�k is incorporated using the BFGS quasi-Newton update,

Hk+1 = Hk + �kyky
T
k � �kqkq

T
k; (2.5)

where qk = Hk�k, �k = 1=yTk�k and �k = 1=qTk�k. When Hk is positive de�nite,

Hk+1 is positive de�nite if and only if the approximate curvature yTk�k is positive.

Precautions are taken against a negative or small value of yTk�k [16].

The updated multipliers �k+1 from the line search are chosen for �, and the

de�nition of L (2.3) yields

yk = rL(xk+1; xk; �k+1)�rL(xk; xk; �k+1)

= g(xk+1)� (J(xk+1)� J(xk))T�k+1 � g(xk):

In the large-scale case, Hk cannot be treated as an n�n dense matrix. Section

2.1.3 discusses the limited-memory quasi-Newton scheme implemented in SNOPT.
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2.1.2 Linear Variables

If only some of the variables occur nonlinearly in the objective and constraint

functions, they are referred to as linear variables. If there are linear variables,

the Hessian of the Lagrangian has structure that can be exploited during the

optimization. Assume that the nonlinear variables are the �rst �n components of

x. By induction, if H0 is zero in its last n � �n rows and columns, the last n � �n

components of the BFGS update vectors yk and Hk�k are zero for all k, and every

Hk has the form

Hk =

0BB@ �Hk 0

0 0

1CCA ; (2.6)

where �Hk is �n��n. A QP subproblem with Hessian of this form is either unbounded,

or has at least n � �n constraints in the �nal working set. This implies that the

reduced Hessian need never have dimension greater than �n.

In order to treat semide�nite Hessians such as (2.6), SQOPT includes an inertia

controlling working-set strategy, which ensures that the reduced Hessian has at

most one zero eigenvalue [16].

2.1.3 Limited-memory Hessians

To treat problems where the number of nonlinear variables �n is very large, a

limited-memory procedure is used to update an initial Hessian approximation Hr

a limited number of times. The present implementation is quite simple and has

bene�ts in the SQP context when the constraints are linear.

Initially, suppose �n = n. Let ` be preassigned (say ` = 20), and let r and

k denote two major iterations such that r � k � r + `. Up to ` updates to a

positive-de�nite Hr are accumulated to represent the Hessian as

Hk = Hr +
k�1X
j=r

�jyjy
T
j � �jqjq

T
j ; (2.7)

where qj = Hj�j, �j = 1=yTj �j and �j = 1=qTj �j. The quantities (yj; qj; �j; �j)
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are stored for each j. During major iteration k, the QP solver accesses Hk by

requesting products of the form Hkv. These are computed by

Hkv = Hrv +
k�1X
j=r

�j(y
T
jv)yj � �j(q

T
jv)qj: (2.8)

The work for forming vector products with H is 3n(k � r) � 2n 
ops, and n + 2

additional multiplications. On completion of iteration k = r + `, the diagonals of

Hk are computed from (2.7) and saved to form the next positive-de�nite Hr (with

r = k + 1). Storage is then \reset" by discarding the previous updates. (Similar

schemes are suggested by Buckley and LeNir [5, 6] and Gilbert and Lemar�echal

[12].)

If �n < n, Hk has the form (2.6) and the same procedure is applied to �Hk. Note

that the vectors yj and qj have length �n|a bene�t when �n� n.

2.2 De�nition of the Working Set

At each minor iterate (x; s), a working set of constraints is de�ned to be a

linearly independent subset of the constraints that are satis�ed \exactly" (to within

the value of a feasibility tolerance). For problem (2.1), the working set consists of

the equality constraints Ax� s = b, and the bound constraints for those elements

of (x; s) that are on one of their bounds. The working set is the current prediction

of the constraints that hold with equality at a solution of the QP. Let mw denote

the number of constraints in the working set (including bounds), and letW denote

the associated mw � (n+m) working-set matrix consisting of the mw gradients of

the working-set constraints.

The search direction is de�ned so that constraints in the working set remain

unaltered for any value of the step length. It follows that p must satisfy the identity

Wp = 0. This characterization allows p to be computed using any n�nZ full-rank

matrix Z that spans the null space of W . (Thus, nZ = n � mw and WZ = 0.)

The null-space matrix Z is de�ned from a sparse LU factorization of part of W ;
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see (2.9){(2.10) below. The direction p will satisfy Wp = 0 if p = ZpZ for any

nZ-vector pZ .

The working set contains the constraints Ax� s = 0 and a subset of the upper

and lower bounds on the variables (x; s). Since the gradient of a bound constraint

xj � lj or xj � uj is a vector of all zeros except for �1 in position j, it follows

that the working-set matrix contains the rows of ( A � I ) and the unit rows

associated with the upper and lower bounds in the working set.

The working-set matrix W can be represented in terms of a certain column

partition of the matrix ( A � I ). We partition the constraints Ax � s = 0 so

that

BxB + SxS +NxN = 0;

where B is a square non-singular basis and xB, xS and xN are the basic, superbasic

and nonbasic variables respectively. The nonbasic variables are equal to their upper

or lower bounds at (x; s), and the superbasic variables are independent variables

that are chosen to improve the value of the current objective. The number of

superbasic variables is ns. Given values of xN and xS, the basic variables xB are

adjusted so that (x; s) satis�es BxB + SxS +NxN = 0.

If P is a permutation such that ( A � I )P = ( B S N ), then the

working-set matrix W satis�es

WP =

0BB@ B S N

0 0 IN

1CCA ; (2.9)

where IN is the identity matrix with the same number of columns as N .

The null-space matrix Z is de�ned from a sparse LU factorization of part of

W . In particular, Z is maintained in \reduced-gradient" form, so that

Z = P

0BBBBBB@
�B�1S

I

0

1CCCCCCA ; (2.10)
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where P is a permutation. This choice of Z implies that nZ, the number of degrees

of freedom at (x; s), is the same as ns, the number of superbasic variables.

The package LUSOL [19] is used to maintain sparse LU factors of the basis

matrix B, which alters as the working set W changes. The matrix Z is used only

as an operator, i.e., it is never computed explicitly. Products of the form Zv and

ZTg are obtained by solving with B or BT. Speci�cally, the calculation of u = Zv

is performed by �rst computing w = Sv, and then solving By = w using the LU

factors of B. The desired vector u is given by

u =

0BBBBBB@
y

v

0

1CCCCCCA :

If B and S were dense, the work of computing matrix-vector products with Z

would be m2+mns 
ops. When the sparse LU factors of B are used, one factor of

m is reduced. Forming matrix-vector products with ZT is a similar computation.

The number of 
ops required is the same, but an additional ns additions are needed

to sum terms.

Let gZ and HZ denote the reduced gradient and reduced Hessian:

gZ = ZTg and HZ = ZTHZ; (2.11)

where g is the objective gradient at (x; s). Roughly speaking, gZ and HZ describe

the �rst and second derivatives of an nZ-dimensional unconstrained problem for

the calculation of pZ.

At each iteration, an upper-triangular factor R is available such thatHZ = RTR.

Normally, R is computed from RTR = ZTHZ at the start of phase 2 and is then

updated as the QP working set changes. For e�ciency, the dimension of R should

not be excessive (say, nZ � 1000). This is guaranteed if the number of nonlinear

variables is \moderate".

If all the constraints are linear, then the computation of R at the start of phase 2

can be avoided. For linear constraints, Z will not change between subproblems. In
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addition, since H is a limited-memory quasi-Newton approximation to Lagrangian

Hessian,R can be modi�ed for the updates toH at each major iteration. Therefore,

the R at the start of each subproblem will be the correct R such that RTR =

ZTHZ, and the factorization of the reduced-Hessian is not necessary. This implies

that SNOPT will be more e�cient on problems where all the constraints are linear.

If the QP contains linear variables, H is positive semi-de�nite and R may be

singular with at least one zero diagonal. In this case, an inertia-controlling active-

set strategy is used to ensure that only the last diagonal of R can be zero. (See

[21] for discussion of a similar strategy for inde�nite quadratic programming.)

At the initial point, some variables are �xed at their current value so that

enough temporary bound constraints are included in the working set to make R

nonsingular. Thereafter, R can become singular only when a constraint is deleted

from the working set (in which case no further constraints are deleted until R

becomes nonsingular).

2.3 The Algorithm SQOPT

2.3.1 Computation of the Lagrange Multipliers

If the reduced gradient is zero, (x; s) is a subspace stationary point with respect

to the current working set. During phase 1, the reduced gradient will usually

be zero only at a vertex (although it may be zero elsewhere in the presence of

constraint dependencies). During phase 2, a zero reduced gradient implies that

x minimizes the quadratic objective when the constraints in the working set are

treated as equalities. At a subspace stationary point, Lagrange multipliers � are

de�ned from the equations W T� = g(x). A Lagrange multiplier �j corresponding

to an inequality constraint in the working set is said to be optimal if �j � � when

the associated constraint is at its upper bound , or if �j � �� when the associated

constraint is at its lower bound , where � depends on the optimality tolerance. If

a multiplier is non-optimal, the objective function (either the true objective or
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the sum of infeasibilities) can be reduced by continuing the minimization with the

corresponding constraint excluded from the working set (this step is sometimes

referred to as \deleting" a constraint from the working set). If optimal multipliers

occur during the feasibility phase but the sum of infeasibilities is not zero, there is

no feasible point.

The special form (2.9) of the working set allows the multiplier vector, the

solution of W T� = g, to be written in terms of the vector

d =

0BB@ g

0

1CCA� ( A � I )T� =

0BB@ g �AT�

�

1CCA ; (2.12)

where � satis�es the equations BT� = gB, and gB denotes the basic components

of g. The components of � are the Lagrange multipliers �j associated with the

equality constraints Ax � s = b. The vector dN of nonbasic components of d

consists of the Lagrange multipliers �j associated with the upper and lower bound

constraints in the working set. The vector dS of superbasic components of d is the

reduced gradient gZ (2.11). The vector dB of basic components of d is zero, by

construction.

2.3.2 Computing the Search Direction

If the reduced gradient is not zero, Lagrange multipliers need not be computed

and the search direction is given by p = ZpZ, where pZ is de�ned below. The step

length is chosen to maintain feasibility with respect to the satis�ed constraints.

There are two possible choices for pZ, depending on whether or not HZ is

singular. If HZ is nonsingular, R is nonsingular and pZ is computed from the

equations,

RTRpZ = �gZ; (2.13)

where gZ is the reduced gradient at x. In this case, (x; s) + p is the minimizer

of the objective function subject to the working-set constraints being treated as

equalities. If (x; s) + p is feasible, � is de�ned to be one. In this case, the reduced
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gradient at (�x; �s) will be zero, and Lagrange multipliers are computed at the next

iteration. Otherwise, � is set to �N , the step to the boundary of the \nearest"

constraint along p. This constraint is added to the working set at the next iteration.

If HZ is singular, then R must also be singular, and an inertia-controlling

strategy is used to ensure that only the last diagonal element of R is zero. In this

case, pZ satis�es

pT
Z
H
Z
p
Z
= 0 and gT

Z
p
Z
� 0; (2.14)

which allows the objective function to be reduced by any step of the form (x; s)+�p,

� > 0. The vector p = ZpZ is a direction of unbounded descent for the QP in the

sense that the QP objective is linear and decreases without bound along p. If no

�nite step of the form (x; s) + �p (� > 0) reaches a constraint not in the working

set, the QP is unbounded and SQOPT terminates at (x; s). Otherwise, � is de�ned

as the maximum feasible step along p and a constraint active at (x; s)+�p is added

to the working set for the next iteration.

As constraints are added to the working set, the working-set matrixW remains

full rank.

2.3.3 The Active Set Strategy

When the working set changes, it is necessary to update the upper-triangular

factor of ZTHZ. There are two possible changes to the working set, a constraint

is either added to, or deleted from, the working set. For problem (2.1), the work-

ing set always includes the linear equality constraints, therefore, changes in the

working set only involve bound constraints. For this reason, it is common to think

of variables being added to, or deleted from, the working set, since each bound

constraint is associated with a single variable.

In an active-set method, these changes are de�ned in terms of the type of

variable being added or deleted. When a variable, or constraint, is deleted from

the working set, this is equivalent to adding a superbasic variable to the active

set. If a constraint is added to the the working set, then either a superbasic or a
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basic variable is deleted from the active set. Thus, adding or deleting a constraint

from the working set corresponds to the removal or addition of a column of S, and

possibly the replacement of a column of the basis B. This changes the null-space

matrix Z de�ned by (2.10) and results in a change to ZTHZ. There are three

cases for updating R.

1. If a nonbasic variable moves o� its bound, the associated column is moved

from N to S. This is referred to as adding a superbasic variable.

2. If a superbasic variable moves to one of its bounds, the associated column is

moved from S to N . This is referred to as deleting a superbasic variable.

3. If a basic variable moves to one of its bounds, the associated column is moved

from B to N , and an appropriate column of S is moved to B. This is referred

to as deleting a basic variable.

Adding a superbasic variable is equivalent to expanding R by a new row and

column. The update to Z is given by �Z = ( Z z ), where

z =

0BBBB@
�B�1st

et

0

1CCCCA ; (2.15)

with st the new column of S. If the update to R is de�ned as

�R =

0@ R v

0 �

1A ;
then the identity �RT �R = �ZTH �Z, implies that v and � can be calculated by

RTv = ZTHz and �2 = zTHz � vTv: (2.16)

On the other hand, deleting a superbasic variable is equivalent to removing a

row and column from R. The relevant column of R is removed and the remaining

columns are permuted forward. A forward sweep of plane rotations is then used

to restore R to upper-triangular form.
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Deleting a basic variable is more complicated because it �rst requires swapping

a column of B with a column of S. This process is sometimes referred to as a BS

swap. If the p-th column of B is being moved to N , let the vector y satisfy y = STw

for BTw = ep. The elements (y)j can be thought of as the pivot elements that

would arise if the j-th column of S were selected for the basis change. The q-th

superbasic could be selected such that j(y)qj = ymax = maxj j(y)jj. If ymax were at,

or very near one of its bounds, another BS swap update might be required in only

a few iterations. Since the BS swap requires extra work for an associated update

to R (see Lemma 1), this condition is relaxed. Let Q be the set of superbasic

variables associated with elements of y of su�cient magnitude, de�ned by

Q = f j j j(y)jj � �jymaxj g;

where 0 < � < 1. The p-th basic variable is swapped with the q-th superbasic,

where q is chosen by

f q j �q = max
j2Q
f�jg g: (2.17)

with �j = minf j(x; s)j�ljj; j(x; s)j�ujj g. This method of selecting the superbasic

variable for the BS swap is the same as that used in MINOS [30].

The matrix R must be updated to re
ect the swap. The update to R for the

BS swap uses the following result, due to Murtaugh and Saunders [30]. This proof,

which has not appeared elsewhere, is included for completeness.

Lemma 1 Let Z be as in (2.10), with B 2 IRm�m nonsingular and S 2 IRm�ns ;

and R be upper-triangular with RTR = ZTHZ. If the p-th column of B and the

q-th column of S are swapped, let y = STw, BTw = ep, assume y 6= 0. Then the

update to R is given by

�R = R �
1

(y)q
rq(y + eq)

T ; (2.18)

where (y)q is the q-th element of y and rq is the q-th column of R.
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Proof. Let P be the permutation matrix used to de�ne Z in (2.10). De�ne

Q = P

0BBBBBB@
�B�1S B�1 0

IS 0 0

0 0 IN

1CCCCCCA =
�
Z Y I�

�
;

so that

Q�1 =

0BBBBBB@
0 IS 0

B S 0

0 0 IN

1CCCCCCAP
T :

Note that �Q�1 is just a column permutation of Q�1 after its q-th row is replaced

by eTp to preserve IS. Therefore,

�Q�1 =
�
Q�1 + eq(ep � em+q)

T
� bP ;

where post-multiplication by bP swaps columns p and (m+ q). Then

�Q�1 =
�
I + eq(ep � em+q)

TQ
�
Q�1 bP :

If y is the vector y = STw, where w the solution of BTw = ep, then

�Q�1 = (I + eqv
T )Q�1 bP ; where v =

0BBBBBB@
�(y + eq)

w

0

1CCCCCCA :

Since y 6= 0 by assumption, it follows that (y)q 6= 0. Therefore, the Sherman-

Morrison-Woodbury formula may be applied to give

�Q = bP TQ

 
I +

1

(y)q
eqv

T

!
4
= bP TQM;

and it follows that

QTHQ = QT bP bP TH bP bP TQ =M�T ( bP �Q)TH( bP �Q)M�1:
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If �Q is assumed to include the permutation bP , so that �Q = bP �Q, then �QTH �Q =

MTQTHQM . Since RTR = ZTHZ and

QTHQ =

0BBBBBB@
ZTHZ ZTHY ZTHI�

Y THZ Y THY Y THI�

IT� HZ IT� HY IT� HI�

1CCCCCCA ;

if MS denotes the leading principal submatrix of M , then

MS = IS �
1

(y)q
eq(y + eq)

T ;

and

�R = RMS = R�
1

(y)q
rq(y + eq)

T ;

where (y)q is the q-th element of y and rq is the q-th column of R.

After R is updated via (2.18), �R is restored to upper-triangular form using two

sweeps of plane rotations. Once the BS swap is complete, the \new" p-th column

of S is moved to N by updating �R as described above for deleting a superbasic

variable.

The implementation of SQOPT stores only the non-zero entries of R, thus the

procedures for updating R are done in place, using the minimum extra work space

necessary.

2.3.4 Algorithm SQOPT

The following pseudo-code description of Algorithm SQOPT is presented to

help clarify the preceding discussion and to provide a reference for the algorithms

presented in Chapter 3 and Chapter 4 . While this chapter provides the details

needed in the development of these algorithms, it is not intended to be a complete

description of SQOPT. For a more complete description of SQOPT, see [15].
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Algorithm 2.3.1. SQOPT

Find a feasible point, (x; s)

Factorize the initial reduced Hessian RTR = ZTHZ

Calculate the initial g and  

while true

Calculate multipliers � and gz = ZT g

stationary-point = kgzk < RGTOL

new-SB = false

if stationary-point then

Calculate multipliers, �

Check (�; �) for optimality and set optimal

if optimal then

stop

else

Select new superbasic

new-SB = true

end if

end if

if new-SB then

Update R and gz

end if

Compute pz to satisfy (2.13) or (2.14)

p = Zpz

�N = maximum feasible step along p

if R is nonsingular then

hit-constraint = �N < 1

else

hit-constraint = �N <1

if not hit-constraint then stop

end if

if hit-constraint then

� = �N

else

� = 1

end if

(x; s) (x; s) + �p



25

g  g + �Hp

Calculate  

if hit-constraint then

Update R

end if

end while

When a superbasic is added, gz is updated by adding the element corresponding

to zTg, where z is de�ned by (2.15). If �q is the multiplier for the new superbasic,

then it follows from (2.12) that zTg = �q and

�gZ =

0BB@ gZ

�q

1CCA :
For details on calculating a descent direction with zero curvature to satisfy

(2.14) when R is singular, see [15].

The reduced gradient tolerance, RGTOL, is used to determine convergence on

the current subspace of active constraints. The value of RGTOL is typically 10�6.

The reduced-Hessian QP algorithm presented in Chapter 3 is derived directly

from SQOPT. In contrast, the Schur-complement QP algorithm of Chapter 4 is a

distinctly di�erent algorithm, however, it does generate the same search directions

as SQOPT.



Chapter 3

The Conjugate-Gradient Method

A well known approach for solving a large symmetric positive-de�nite linear

system Cx = f , without factoring C, is the conjugate-gradient method of Hestenes

and Stiefel [26] (see also [10, 14, 25, 31]). The conjugate-gradient method is an

iterative method based on a �ve-term recurrence relation (see below). The method

proposed in this chapter is based on using a conjugate-gradient algorithm to solve

the reduced-Hessian systems, HZpZ = �gZ.

A conjugate-gradient method generates a sequence of search directions that

are mutually conjugate with respect to C. The conjugate-gradient method exhibits

�nite termination in exact arithmetic; in particular, ifC has ne distinct eigenvalues,

then at most ne iterations are required for convergence. Although, the CG method

was originally conceived as an exact method, in practice, rounding errors degrade

the numerical conjugacy of the search directions and convergence is characteristic

of an iterative method.

The conjugate-gradient method works much better on systems that have only

a few distinct eigenvalues, or clustered eigenvalues [27]. As a consequence, a com-

mon practice is to precondition the linear system to accelerate the convergence.

Preconditioning involves applying CG to a transformed system that has a more

favorable eigenvalue distribution (see below).

26
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3.1 Linear Systems and Least-Squares Problems

Consider applying the conjugate-gradient (CG) method to the system

Cx = f; (3.1)

where C is symmetric and positive de�nite. Given xk, �k�1 and dk�1, a CG iteration

is de�ned by

dk = �rk + �k�1dk�1;

�k =
krkk2

dTkCdk
;

xk+1 = xk + �kdk;

rk+1 = rk + �kCdk;

�k =
krk+1k

2

krkk2
:

(3.2)

For the �rst iteration, ��1 = 0 and d�1 = 0. The iterates fxkg are approximations

to the solution, and the search directions fdkg are such that diCdj = 0 for i 6= j.

The residual at each xk is given by rk = Cxk � f . Note that the CG method only

uses C as part of a matrix-vector product.

Suppose C = ATA for some A 2 IRm�n, where m � n and rank(A) = n.

Similarly, let f = ATb for some b. In this case, the original system Cx = f is

equivalent to

ATAx = ATb: (3.3)

These are the normal equations for the least-squares (LS) problem

min kb�Axk2: (3.4)

It follows that the solution of (3.1) can be found by solving (3.4). In this case,

the solution x can be found using the least-squares CG algorithm LSQR [32] on

(3.4). LSQR requires matrix-vector products of the form Av and ATu, instead of

the ATAv form required by a general symmetric CG algorithm.

The sensitivity of least-squares solutions to perturbations in A and b are sum-

marized in the following theorem. De�ne �(A) to be the spectral condition number
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of A given by �(A) = kAkkA+k, where A+ is the pseudo-inverse of A. If A has

full rank with m � n, A+ = (ATA)�1AT .

Theorem 1 Let x = arg min kAx � bk2 and bx = arg min k(A + �A)bx � (b +

�b)k, where A and �A are in IRm�n with m � n and 0 6= b and �b are in IRm.

Furthermore, let r and br be the residuals associated with x and bx respectively. If

� = max

(
k�Ak

kAk
;
k�bk

kbk

)
<

1

�(A)

and sin � = �=kbk 6= 1, where � = kAx� bk, then

kbx� xk
kxk

� �

(
2�(A)

cos �
+ tan ��(A)2

)
+O(�2); (3.5)

kbr � rk
kbk

� � (1 + 2�(A))min(1;m� n) +O(�2): (3.6)

Proof. See Golub and Van Loan [24].

Golub and Van Loan show that

tan � = �=
q
kbk2 � �2;

therefore, it follows from Theorem 1 that the sensitivity of the LS solution is

proportional to �(A) + ��(A)2. When Ax = b is incompatible, the sensitivity

is dominated by �(A)2 if � is not close to zero. The condition number of C

is �(C) = �(ATA) = �(A)2. Thus, it follows that the sensitivity of solutions

of Cx = d, and the least-squares problem (3.4), are both proportional to �(C).

Therefore, if C = ATA and f = ATb, the relative accuracy of the solutions from the

CG algorithm for (3.1) and from LSQR for (3.4) will be comparable, but products

of the form ATAv are avoided.

Solving the reduced-Hessian systemHZpZ = �gZ using the CG method requires

forming matrix-vector products of the form HZu = ZTHZu. Since both H and

Z are available implicitly, a symmetric linear CG algorithm such as SYMMLQ

[31] can be used. However, by using a CG algorithm based on a least-squares

formulation we bene�t from the numerical advantages discussed in [32].
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3.2 Background on LSQR

Algorithm LSQR is equivalent to the CG method in exact arithmetic. How-

ever, in the least-squares context, LSQR has been shown to be more reliable than

standard CG methods. In Paige and Saunders [32], the authors point out that the

least-squares adaptation of symmetric CG is always more reliable than applying

the symmetric CG algorithm to the normal equations. In addition, they show that

when A is ill-conditioned, LSQR should be more reliable than other least-squares

CG algorithms such as CGLS [3].

The algorithm LSQR is based on the bidiagonalization routine of Golub and

Kahan [23]. This procedure generates a set of vectors fui; vig using the following

algorithm.

Algorithm 3.2.1. BIDIAG

�1u1 = b

�1v1 = ATu1

for i = 1; 2; : : :

�i+1ui+1 = Avi � �iui

�i+1vi+1 = ATui+1 � �i+1vi

end

The scalars �i � 0 and �i � 0 are chosen so that kuik = kvik = 1. By de�ning

Uk � (u1; u2; : : : ; uk);

Vk � (v1; v2; : : : ; vk);
Bk �

0BBBBBBBBBBB@

�1

�2 �2

�3
. . .

. . . �k

�k+1

1CCCCCCCCCCCA
; (3.7)

the recurrence relations of BIDIAG may be written in matrix form as

Uk+1(�1e1) = b; (3.8)

AVk = Uk+1Bk; (3.9)
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ATUk+1 = VkB
T
k + �k+1vk+1e

T
k+1: (3.10)

In exact arithmetic, UT
k+1Uk+1 = I and V T

k+1Vk+1 = I.

LSQR uses the quantities generated by BIDIAG to solve the LS problem (3.4).

Let xk, rk and tk+1 be de�ned by

xk = Vkyk; (3.11)

rk = b�Axk; (3.12)

tk+1 = �1e1 �Bkyk; (3.13)

for some vector yk. Using (3.8) and (3.9) it can be shown that

rk = Uk+1tk+1:

The quantity krkk can be minimized by choosing yk to minimize ktkk, i.e., by

de�ning yk as the solution of

min k�1e1 �Bkykk: (3.14)

The LSQR algorithm is derived by using the standard QR decomposition of Bk to

solve (3.14).

3.3 De�ning the Least-Squares Problem

In the SQP method considered here, the matrix Hk of the k-th QP subproblem

(1.2) is a limited-memory quasi-Newton approximation to the Lagrangian Hessian.

The updating scheme for Hk described in Section 2.1.3 is based on the BFGS

update. The product form of the BFGS update for Hk is given by

Hk+1 = (I + vku
T
k )Hk(I + ukv

T
k ); (3.15)

where

uk =
1

kHkskk
sk and vk =

1q
yTk sk

yk �
1

kHkskk
Hksk:
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Here, sk is the change in the position vector and yk is the corresponding change

in the gradient vector. By modifying the updating scheme used for Hk according

to (3.15), a matrix Gk can be de�ned such that Hk = GT
kGk. This alternative

limited-memory scheme stores the update vectors for Gk. The update vectors uk

and vk are given by

uk =
1

kGk�kk
�k and vk =

1q
yTk �k

yk �
1

kGk�kk
GT
kGk�k;

where �k and yk are de�ned by (2.4). Each update to Gk is de�ned by Gk+1 =

Gk(I + ukv
T
k ), which implies

Gk+1 = Gr(I + urv
T
r )(I + ur+1v

T
r+1) � � � (I + ukv

T
k ) = Gr

kY
i=r

(I + uiv
T
i );

where the nonsingular Gr is de�ned by G
T
r Gr = Hr, for theHr described in Section

2.1.3.

This limited-memory scheme easily allows for the formation of matrix-vector

products with the current Gk; in particular, a product of the form w = Gkz can

be computed using the following algorithm.

Algorithm 3.3.1. (Computation of w = Gkz)

w = z

for i = k � 1 : �1 : r

w = w + (vTi w)ui

end

w = Grw

A similar loop can be de�ned for computing w = GT
k z. In addition, by proper

application of the Sherman-Morrison-Woodbury formula, G�Tk is given by

G�Tk = G�1r

k�1Y
i=r

(I �
1

1 + uTi vi
viu

T
i ):

The solution of systems with GT
k can be obtained by computing w = G�Tk z using

the following algorithm.
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Algorithm 3.3.2. (Computation of w = G�Tk z)

w = z

for i = k � 1 : �1 : r

w = w � (uTi w)=(1 + uTi vi)vi

end

w = G�1r w

The work required for computing w = Gkz or w = GT
k z is n(k � r + 1) + (k � r)


ops, while solving GT
kw = z requires (2n + 1)(k � r) + 2(k � r) 
ops and one

division.

The subscript k is now dropped from the relevant quantities since only a single

subproblem is being considered. The direction pZ can be found by using LSQR to

solve the LS problem (3.4) for the appropriate A and b. Let A and b be de�ned by

A = GZ and b = G�T g; (3.16)

where g is the current QP gradient. Then the modi�ed reduced-Hessian system,

ZTGTGZpZ = ZT g, are the normal equations for the least-squares problem (3.4).

If x is the solution to problem (3.4), then pZ = �x.

For the de�nition given (3.16), A 2 IRn�ns , with n > ns and rank(A) = ns.

In addition, the system Ax = b is usually incompatible, i.e., � 6= 0. Thus, the

sensitivity analysis is similar to that discussed in Section 3.1. The following lemma

corresponds to Theorem 1 with a perturbation to A = GZ of the form �A = G�Z.

Lemma 2 Let x = arg min kGZx �G�T gk2 and bx = arg min kG(Z + �Z)bx�
G�T (g+ �g)k, where Z and �Z are in IRn�ns with n � ns and 0 6= g and �g are in

IRn. Furthermore, let r and br be the residuals associated with x and bx respectively.

If

� = max

(
kG�Zk

kGZk
;
kG�T �gk

kG�T gk

)
<
�n(GZ)

�1(GZ)

and, assuming kG�Thk � kG�T gk and sin � = �=kG�T gk 6= 1, where � = kGZx�
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G�T gk, then

kbx� xk
kxk

� �

(
�(GZ)

cos �
(1 + 
 cos �) + 
 tan ��(GZ)2

)
+O(�2); (3.17)

kbr � rk
kG�T gk

� � (1 + 2
�(A))min(1;m� n) +O(�2); (3.18)

where


 =
kGkkZk

kGZk
:

Proof. The proof follows that of Theorem 1 from Golub and Van Loan [24]. Let

E and h be de�ned by E = �Z=� and h = �g=�. Since kG�Zk < �n(GZ) by

assumption, it can be shown that rank(GZ + GEt) = ns for all t 2 [0; �]. Thus,

the solution x(t) such that

(Z + Et)TGTG(Z + Et)x(t) = (Z + Et)TGTG�T (g + ht) (3.19)

is continuously di�erentiable for all t 2 [0; �]. Since x = x(0) and bx = x(�), it

follows that

bx = x+ � _x(0) +O(�2):

The assumptions that g 6= 0 and sin � 6= 1 ensure that x is nonzero, and hence

kbx� xk
kxk

= �
k _x(0)k

kxk
+O(�2): (3.20)

To obtain a bound for k _x(0)k, (3.19) can be di�erentiated, t set to zero and the

equation solved for _x(0). This gives

_x(0) = H�1
Z
fZTGT (G�Th�GEx) + ETGT rg: (3.21)

It can be shown that kEk � kZk and khk � kgk. Therefore, since kG�Thk �

kG�T gk, substituting (3.21) into (3.20) and taking norms yields

kbx� xk
kxk

� �

(
kGZkkH�1

Z
(GZ)Tk

 
kG�T gk

kGZkkxk
+ 


!

+ 
�
kH�1

Z
kkGZk

kxk

)
+O(�2):
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The following relations are easily established using the de�nition of the pseudo-

inverse, and the singular values of GZ:

kGZkkH�1
Z
(GZ)Tk = �(GZ);

kGZk2kH�1
Z
k = �(GZ)2:

(3.22)

In addition, since (GZ)T (GZx�G�T g) = 0, it follows that GZx and GZx�G�T g

are orthogonal with

kGZk2kxk2 � kG�T gk2 � �2:

Finally, using (3.22)

kbx� xk
kxk

� �

(
�(GZ)

cos �
(1 + 
 cos �) + 
 tan ��(GZ)2

)
+O(�2);

which proves (3.17).

To establish (3.18), de�ne r(t) by the di�erentiable function

r(t) = G�T (g + ht)�G(Z + Et)x(t):

Using (3.21), it can be shown that

_r(0) = (I �GZ(H�1
Z
)(GZ)T )(G�Th�GEx)�GZ(H�1

Z
)ETGT r:

Noting that r = r(0) and br = r(�), and using kbr � rk = �k _r(0)k+O(�2), yields

kbr � rk
kG�T gk

= �
k _r(0)k

kG�T gk
+O(�2)

� �

(
kI �GZ(H�1

Z
)(GZ)Tk

 
1 +
kGkkZkkxk

kG�T gk

!

+ kGZ(H�1
Z
)kkGkkZk

�

kG�T gk

)
+O(�2):

The inequality (3.18) follows from

kGZkkxk = kGZkk(GZ)+G�T gk � �(GZ)kG�T gk;

� = kI �GZ(H�1
Z
)(GZ)TG�T gk � kI �GZ(H�1

Z
)(GZ)TkkG�T gk;
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and

kI �GZ(H�1
Z
)(GZ)Tk = min(m� n; 1):

The implication of this result is that the sensitivity of the LS problem with

A = GZ is proportional to 
(�(GZ) + �(GZ)2). Thus, the appearance of G has

the e�ect of increasing the sensitivity by the factor 
 � 1.

Each iteration of LSQR for solving (3.4) will require matrix-vector products

involving GZ and (GZ)T . In addition, forming the right-hand side requires the

solution of a system with GT . The modi�ed updating scheme for H allows for the

formation of matrix-vector products with G, GT and G�T . In addition, calculating

matrix-vector products with Z and ZT can be done using the implicit form given

in Section 2.2.

If there are linear variables, then H is positive semide�nite and has the form

(2.6) (see Section 2.1.2). This type of structural singularity can be handled by

solving the reduced-Hessian system as a damped least-squares problem. In the

linear variable case, H is given by

H =

0BB@ GTG

0

1CCA ;
where G is de�ned by the modi�ed updating scheme forH. LetH be approximated

by

H �

0BB@ GTG

�2I

1CCA ;
for some small positive �. The direction pZ can be found by using LSQR to solve

the damped LS problem of the form (3.4), where

A =

0BB@ G

�I

1CCAZ and b =

0BB@ G�T

��1I

1CCA g:
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3.4 Preconditioning the Least-Squares System

The convergence of the CG algorithm resulting from the recurrence relations

(3.2) can be characterized by the following theorems.

Theorem 2 If C = I + B is an n � n symmetric positive-de�nite matrix and

rank(B) = r, then the CG algorithm applied to Cx = f converges in at most r+1

steps.

Proof. See Golub and Van Loan [24].

This result can be used to show that if C has ne distinct eigenvalues, then the

CG algorithm will require at most ne steps.

The second theorem shows that the CG algorithm will converge more rapidly

when C is well conditioned, or has clustered eigenvalues. The theorem is stated in

terms of the elliptic norm

kwkC =
p
wTCw:

Theorem 3 Suppose C 2 IRn�n is symmetric positive-de�nite and d 2 IRn. If the

CG algorithm applied to Cx = f produces iterates fxkg and �(C) = kCkkC�1k,

then

kx� xkkC � 2kx� x0kC

0@
q
�(C)� 1q
�(C) + 1

1A :
Proof. See Luenberger [28].

The intent of preconditioning is to transform the original system to one that

exploits the convergence properties of the CG algorithm. Let M be a nonsingular

preconditioner for the system Cx = f . The preconditioned matrix M�TCM�1

will have fewer distinct eigenvalues than C, or its eigenvalues will exhibit better

clustering than those of C.

The term exact preconditioner is often used in the context of CG methods.

Loosely speaking, an exact preconditioner is one that gives a preconditioned system

with a block of unit eigenvalues. For example,M = C�
1

2 is an exact preconditioner

since the preconditioned system is the identity.



37

In either case, applying CG to the preconditioned systemM�TCM�1y =M�T f

may be preferable to solving Cx = f directly. The solution x can be obtained

from y by solving Mx = y. For y0 = Mx0 and r0 = M�TCM�1y0 �M�T f (and

again ��1 = 0 and d�1 = 0), the preconditioned CG method can be de�ned for

k = 0; 1; 2; : : : as

dk = �rk + �k�1dk�1;

�k =
rTk rk

dTk (M
�TCM�1)dk

;

yk+1 = yk + �kdk;

rk+1 = rk + �k(M
�TCM�1)dk;

�k =
krk+1k22
krkk22

;

and xk is the solution ofMxk = yk. Note that the preconditioned iterations require

additional solves withM . Thus,M must be such that systems of the formMx = y

can be solved e�ciently. For example,M could be a diagonal or triangular matrix.

If C = ATA and d = ATb, then x can be obtained by using LSQR to solve the

preconditioned least-squares problem

minimize
y

kb�AM�1yk: (3.23)

The basis for the CG method is to use LSQR to solve (3.23) when A and b are

de�ned as in (3.16), and M is one of two di�erent preconditioners investigated in

Sections 3.5 and 3.6.

The �rst preconditioner involves calculating the Cholesky factor Rr of the nr�

nr leading principal submatrix of the reduced Hessian, denoted by ZT
r HZr. This

preconditioner is of the form

RC =

0@ Rr 0

0 D

1A ;
where D is a positive-de�nite diagonal extension. The second preconditioner in-

volves using RC with quasi-Newton approximations to Rr and D.
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Although RT
r Rr = ZT

r HZr, neither preconditioner is exact. Let the R such

that RTR = ZTHZ be partitioned by

R =

0BB@ Rr Rrs

Rs

1CCA ; (3.24)

where, Rr 2 IRnr�nr , Rrs 2 IRnr�(ns�nr) and Rs 2 IR(ns�nr)�(ns�nr). The following

result shows that both Rr and Rrs are required for a block preconditioner based

on R to be exact.

Theorem 4 Let R be as in (3.24) and let A be de�ned as in (3.16). If

M =

0BB@ Rr Rrs

D

1CCA ;
where D is positive-de�nite, then the preconditioned matrix M�TATAM�1 has at

least nr unit eigenvalues.

Proof. Let Z by partitioned as Z = ( Zr Zs ), where Zr has nr columns and Zs

has ns � nr columns. This de�nes a corresponding block partition of the reduced

Hessian, given by

ZTHZ =

0BB@ ZT
r HZr ZT

r HZs

ZT
s HZr ZT

s HZs

1CCA : (3.25)

From RTR = ZTHZ, and substituting from (3.25), it follows that

R�T

0BB@ ZT
r HZr ZT

r HZs

ZT
s HZr ZT

s HZs

1CCAR�1 =
0BB@ Inr 0

0 I(ns�nr)

1CCA ; (3.26)

for

R�1 =

0BB@ R�1r �R�1r RrsR
�1
s

R�1s

1CCA :
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Computing both sides of (3.26) and comparing the one-one block, and the o�-

diagonal blocks, yields

R�Tr ZT
r HZrR

�1
r = I; (3.27)

Rrs = R�Tr (ZT
r HZs): (3.28)

It follows from (3.16) that ATA = ZTHZ. Thus, with

M�1 =

0BB@ R�1r �R�1r RrsD
�1

0 D�1

1CCA ;
M�TATAM�1 reduces to0BB@ R�Tr (ZT

r HZr)R
�1
r �RrsD

�1 +R�Tr (ZT
r HZs)D

�1

�D�TRrs +D�T (ZT
s HZr)R

�1
r D�T (ZT

s HZs �RT
rsRrs)D

�1

1CCA : (3.29)

Using (3.27) and (3.28), it follows that

M�TATAM�1 =

0BB@ Inr 0

0 B

1CCA ;
where B is the (2,2) block of (3.29).

While the e�ciency of an exact preconditioner would be bene�cial, Rrs is a

nr � (ns � nr) dense matrix. Since the dimension nr is of moderate size, for

problems where ns is large, the column dimension ns � nr will be large as well.

Thus, the expense of computing and maintaining Rrs is prohibitive. Therefore,

using RC as a preconditioner will not yield a system with nr unit eigenvalues,

but it is expected that the eigenvalues of the preconditioned system will be more

clustered than those of HZ.

3.5 The Partial Reduced-Hessian Preconditioner

The �rst preconditioner to be investigated has block diagonal structure

RC =

0@ Rr 0

0 D

1A ;
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with Rr the Cholesky factor of ZT
r HZr, the nr �nr leading principal submatrix of

the reduced Hessian. The matrix D is a positive diagonal matrix whose elements

approximate the associated diagonal elements of the Cholesky factor of the full

reduced Hessian.

After each QP search direction is calculated and a step taken, the preconditioner

RC must be updated to re
ect changes to the working set. When the working set

changes, the strategy for updating RC is to maintain Rr as the Cholesky factor of

the current ZT
r HZr. The two possible changes to the working set correspond to

the three updates discussed in Section 2.3.3; adding a superbasic variable, deleting

a superbasic variable or deleting a basic variable.

3.5.1 Adding a Superbasic Variable

When a superbasic variable is added, the row and column associated with the

new superbasic are added to Rr. Let gZ be partitioned as gZ = ( g1 g2 )
T , where

g1 2 IRnr corresponds to the variables that de�ne Rr. The expectation is that

as the QP algorithm reduces the norm of the reduced gradient, the reduction in

the magnitude of the elements of g1 associated with Rr will be greater than the

corresponding reduction in the elements of g2 associated with D. By including

the new superbasic with the variables de�ning the dense upper-triangular block,

the aim is to emphasize the reduction of the component of the reduced gradient

associated with the new variable. Since the dimension of Rr is �xed, one of the

variables already associated with Rr must be moved to D. The q-th superbasic is

moved, where q is chosen to correspond to the smallest element in magnitude of

g1; i.e.,

fq j j(ZTg)qj � j(Z
Tg)j j; 1 � j � nrg: (3.30)

The q-th diagonal of Rr is added to the end of the diagonal matrix D, so that

�D =

0@ D 0

0 rqq

1A :
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The q-th column of Rr is then deleted using the algorithm for deleting a super-

basic from the Cholesky factor of the full reduced Hessian. Columns q+1 through

nr are then cyclicly permuted forward, and a sweep of plane rotations are applied

to restore Rr to upper-triangular form. After the plane rotations have been ap-

plied, the last row and column of Rr are zero. Let bRr be the (nr � 1) � (nr � 1)

upper-triangular submatrix of Rr without the zero row and column.

The calculation of the new column of Rr requires �rst partitioning S as S =

( S1 S2 ), where S1 is the �rst nr columns of S and S2 the remaining ns � nr

columns. After updating D and deleting the q-th column from Rr, the updated S

is given by

�S = ( �S1 snr �S2 );

where snr is the new column of S. The matrix �S1 results from deleting the q-th

column of S1, and the updated �S2 is the result of adding this column to the end

of S2. The new Z is given by

�Z =

0BBBB@
�B�1 �S

I

0

1CCCCA =

0BBBBBBB@

�B�1 �S1 �B�1snr �B
�1 �S2

~I enr 0

0 0 I

0 0 0

1CCCCCCCA = ( �Z1 w �Z2 ):

where ~I is an identity matrix of dimension nr � 1 augmented by a row of zeros.

The update to Rr is given by

�Rr =

0@ bRr v

0 �

1A ;
where the new column of Rr is calculated from

bRT
r v =

�ZT
1Hw and �2 = wTHw � vTv: (3.31)

The work for calculating the new column is dominated by the cost of forming the

right-hand side, �ZT
1Hw. From the discussions in Section 2.2 on Z, and Section 3.3

on H = GTG, it easily follows that the work required to form the right-hand side
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is at most m2 + mnr + 2nN 
ops. Here, N is the maximum number of limited-

memory quasi-Newton updates before a reset. The work estimates are based on

using an LU factorization of the matrixB to form products with Z. When a sparse

LU factorization is used, there is a corresponding reduction in the work.

Finally, the update to the full RC is

�RC =

0@ �Rr 0

0 �D

1A : (3.32)

3.5.2 Deleting a Superbasic Variable

The method for deleting a superbasic variable depends on whether or not the

variable is associated with Rr or D. If the q-th superbasic variable is to be deleted

and q � nr, then the q-th column of Rr is deleted in the same manner a column is

deleted to make room for a new superbasic. The submatrix bRr of the modi�ed Rr

is de�ned as above.

To maintain Rr as a nr � nr matrix, a variable currently associated with D

must be moved to Rr. The index of a superbasic variable associated with D is

chosen by

ft j j(ZTg)tj � j(Z
T g)jj; nr + 1 � j � nsg: (3.33)

This corresponds to selecting the variable associated with the element of largest

magnitude in g2. The update to S is given by

�S = ( �S1 st �S2 );

where st was the t-th column of S. The updated �S1 results from deleting the q-th

column of S1, and the matrix �S2 is the result of deleting st from S2. Then,

�Z1 =

0BBBB@
�B�1 �S1

~I

0

1CCCCA and w =

0BBBB@
�B�1st

enr

0

1CCCCA
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yield

�Rr =

0@ bRr v

0 �

1A ;
where v and � are calculated as in (3.31). For D = diag(d1; ::; dns�nr ), the updated

�D = diag(d1; :::; dt�nr�1; dt�nr+1; :::; dns�nr ) and �RC is given by (3.32). In this case,

the work for deleting a superbasic is the same as for adding a superbasic, since in

both cases a new column has to be computed for Rr.

When q > nr, no update to Rr is needed since �ZT
1H

�Z1 = ZT
1 HZ1. Therefore,

�Rr = Rr and �D = diag(d1; ::; dq�nr�1; dq�nr+1; ::; dns�nr ). Again, �RC is given by

(3.32).

3.5.3 Deleting a Basic Variable

Recall from Section 2.3.3 that deleting a basic variable corresponds to deleting

a column of the basis matrix B. To maintain a nonsingular basis, an appropriate

column of S is chosen to swap into B. The BS swap for RC will depend on whether

or not the superbasic to be swapped is associated with Rr or D. In contrast to

the case where a superbasic is deleted, if the variable to be swapped is associated

with D, there is a change to Rr. This is because the change to B a�ects both Z1

and Z2, and �ZT
1H

�Z1 6= ZT
1 HZ1.

Assume that the p-th basic variable is being deleted. Let y = STw, where

BTw = ep. The q-th superbasic variable is selected for the BS swap by (2.17).

The BS swap update to R, the Cholesky factor of the reduced Hessian, is given

by (2.18). The update can be stated in terms of y and R as

�R = R � U where Ui;j =

8>>>><>>>>:
((y)j=(y)q)Ri;q i � q; j 6= q

(((y)q + 1)=(y)q)Ri;q i � q; j = q

0 i > q

This update requires knowledge of the nonzero entries of the q-th column of R,

indicated by the elements Ri;q for i � q. If q � nr, this column is well de�ned and
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the update to Rr is given by

�Rr = Rr �
1

(y)q
r1(y + eq)

T ; (3.34)

where r1 is the q-th column of Rr. The nonzero entries of r1 are identical to the

nonzero entries of rq, the q-th column of R. In this case, two sweeps of plane

rotations restore �Rr to triangular form.

If q > nr, however, some nonzero entries of rq are not explicitly available. In

this case, all that is required is to update Rr by

�Rr = Rr � eU; where eUi;j =

8<: ((y)j=(y)q)Ri;q; i � nr;

0; i > nr:

Thus, only the �rst nr elements of rq are needed, which can be obtained from

RT
r r1 = ZT

1 Hw where w =

0BBBB@
�B�1sq

eq

0

1CCCCA ;

and sq is the q-th column of S.

Once r1 has been obtained, Rr can be updated using (3.34), and �Rr can be

restored to triangular form using two sweeps of plane rotations. Let rq be parti-

tioned as rq = ( r1 r2 )
T , where r1 is de�ned as above, and the nonzero entries of

the (ns � nr)-vector r2 are unknown. Applying the plane rotations to �Rr requires

the two-norm of r2. Since r
T
q rq = rT1 r1 + rT2 r2, and r

T
q rq is the q-th diagonal of the

reduced Hessian ZTHZ, the desired norm can be obtained from

kr2k
2 = (ZTHw)q � kr1k

2:

Computing kr2k requires forming ZTHw (instead of ZT
1 Hw). This dominates the

work of the BS swap, and requires approximatelym2+mns+2nN 
ops. As before,

N is the maximumnumber of stored limited-memory quasi-Newton updates before

a reset. and when a sparse LU factorization of B is used, there is a corresponding

reduction in the work.
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The update to Z is given by

Z =

0BBBBBB@
� �B�1 �S

I

0

1CCCCCCA ; (3.35)

where �B and �S are the result of swapping the p-th column of B with the q-th

column of S.

The diagonal matrix D is not updated after the BS Swap, and the \new" q-th

superbasic variable is deleted as in Section 3.5.2.

3.6 A Quasi-Newton Preconditioner

The second preconditioner is a quasi-Newton approximation of the form

RQ =

0@ T 0

0 D

1A ;
where T is a dense nr � nr upper-triangular matrix and D is a positive diagonal.

The matrix T is a quasi-Newton approximation to Rr, and the elements of D ap-

proximate the corresponding diagonal elements of a quasi-Newton approximation

to the exact R.

As in Section 3.5 for RC , the preconditioner RQ will need to be updated for

changes in the working set. In addition, a quasi-Newton update for RQ must be

de�ned.

3.6.1 Updating the Preconditioner

The quasi-Newton update for RQ is derived from the BFGS formula. To de�ne

a BFGS update for RQ, consider the product form of the BFGS update given by

(3.15). Let the vectors u and v be given by

u =
1

kRQqk
q; v =

1q
yT q

y �
1

kRQqk
RT
QRQq;
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where q = �pZ and y is the change in gZ. From (3.15), the standard BFGS update

to RQ is

�RQ = RQ(I + uvT ) =

0@ T 0

0 D

1A (I + uvT ): (3.36)

For the BFGS update to RQ, only elements of T are updated.

Thus, the new T is given by

�T = T (I + urv
T
r ); (3.37)

where ur and vr are the �rst nr elements of u and v. After the update to T , two

sweeps of plane rotations are used to restore �T to upper-triangular form. The work

for updating T is O(n2r) 
ops.

Let Rq be a full dense upper-triangular quasi-Newton approximation to the

exact R. For the appropriate u and v, the update to Rq from (3.15) would be

�Rq = Rq +Rquv
T :

Therefore, the update to the diagonals of Rq given by

( �Rq)ii = (Rq)ii + (Rqu)iv
T
i

depends on the vector Rqu. For the approximation RQ, the (1,2) block is zero,

and the (2,2) block is diagonal. Thus, all the information needed for Rqu is not

available. From (3.36), the update to the diagonal elements of D can be de�ned

by

( �d)i = (d)i[1 + (u)nr+i(v)nr+i] for i = 1; : : : ; (ns � nr): (3.38)

This method is similar to the one used in MINOS for updating a quasi-Newton

diagonal extension. However, these are not the diagonals of the quasi-Newton

approximation Rq. For this reason, when RQ is used as the preconditioner, the

algorithmmust include safeguards to ensure that the elements ofD remain positive.

The e�ciency of any quasi-Newton method depends signi�cantly on the initial

RQ. When no other information is available, common practice is to initialize RQ
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to a multiple of the identity. This convention is used for the �rst QP subproblem.

For subsequent subproblems, the �nal RQ of the previous subproblem is used. This

greatly enhances the potential accuracy of the initial estimate, especially for the

latter subproblems, when the working set has settled down.

3.6.2 The Active Set Strategy

The quasi-Newton approximation RQ must be updated to re
ect changes to

the working set. This requires updates for the three cases de�ned in Section 2.3.3;

adding a superbasic variable, deleting a superbasic variable and deleting a basic

variable. Changes to RQ for changes in the working set will occur after the quasi-

Newton update to RQ.

Adding a Superbasic Variable

When adding a new superbasic, the new row and column are added to T .

Therefore, the quasi-Newton update of (3.37) will be applied to the new column to

allow the approximation to incorporate more of the new information. As in Section

3.5.1, one of the superbasics associated with T must be moved to D. The q-th

superbasic is chosen by (3.30) and the q-th diagonal of T is moved to D, giving

�D =

0BB@D
tqq

1CCA :
The q-th column of T is deleted and a forward sweep of plane rotations restores

T to triangular form. As in Section 3.5.1 for Rr, after the plane rotations are

applied, the last row and column of T are zero. Let bT be the (nr � 1) � (nr � 1)

upper-triangular submatrix of T with the zero row and column omitted. A new

column for T may be calculated using equations (3.31), with bT in place of bRr. This

new column will be an approximation to the associated column of Rr. However, to

avoid the work of calculating this column, the new column of T is approximated
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by a column of the identity. The update to T is given by

�T =

0BB@ bT 0

0 1

1CCA ;
and the update to RQ is

�RQ =

0BB@ �T

�D

1CCA : (3.39)

Deleting a Superbasic Variable

As in Section 3.5.2, the method of deleting a superbasic variable depends on if

the superbasic is associated with T or D. Suppose that the q-th superbasic is to

be deleted. If q � nr, then the q-th column of T is deleted in the same manner as a

column is deleted for adding a superbasic. In this case, bT is de�ned as above, i.e.,

a superbasic associated with D is chosen by (3.33), and the updated T is given by

�T =

0BB@ bT 0

0 dt

1CCA :
The update to D is �D = diag(d1; :::; dt�nr�1; dt�nr+1; :::; dns�nr ) and �RQ is given by

(3.39).

If q > nr, then �T = T and �D = diag(d1; ::; dq�nr�1; dq�nr+1; ::; dns�nr ), and �RQ

is given by (3.39).

Deleting a Basic Variable

If the p-th basic variable is deleted, the q-th superbasic is chosen to swap into

the basis by (2.17). For the quasi-Newton preconditioner, the BS swap update is

only performed if q � nr. The update to T is given by

�T = T �
1

(y)q
tq(y + eq)

T ;
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where (y)q is the q-th element of the vector y such that, y = STw with BTw = ep.

The vector tq is the q-th column of T . The diagonal extension D is not updated

for the BS swap, and two sweeps of plane rotations restore �T to triangular form.

If q > nr, neither T nor D are updated for the BS swap. While RQ may not be

updated for the BS swap, Z must always be updated according to (3.35).

Again, once the BS swap is performed, the \new" q-th superbasic variable can

be deleted.

3.7 Using Relaxed Tolerances

The e�ciency of the QP method can be improved by appropriate relaxation

of RGTOL, the tolerance on the reduced gradient used to indicate convergence on

the subspace de�ned by the current working-set constraints. During the early

iterations of each subproblem many of the multipliers will have a non-optimal

sign. The work of minimizing accurately on a subspace can be avoided for these

early iterations by removing constraints from the working set before a subspace

stationary point is reached. When RGTOL is small, constraints are only deleted

at subspace stationary points. Thus, the values of (�; �) represent the Lagrange

multipliers at those points. If RGTOL is relaxed, then constraints are deleted at

non-stationary points. The values of (�; �) at these points are no longer Lagrange

multipliers, but are approximations that converge to the multipliers as the iterates

approach a subspace stationary point. Relaxing RGTOL exploits the fact that these

approximation will often have the correct sign, even though the numerical value is

not accurate.

The conjugate-gradient tolerance, CGTOL, is used to terminate the iterates of the

CG algorithm. If CGTOL is small, say O(10�17), then the reduced-Hessian systems

are solved accurately, and the QP search directions generated by the CG method

are the same as those generated by SQOPT. During the early iterations when the

working set is settling down, a relaxed CGTOL can be used to decrease the work of

getting a precise CG solution. The following theorem shows that termination at
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any iterate of LSQR will yield a descent direction.

Theorem 5 Assume that HZ is positive de�nite, and that LSQR is applied to

(3.4) with A and b de�ned by (3.16). Then, if the algorithm is terminated after t

iterations, the truncated solution dt is a descent direction, in the sense that g
T
Z
dt < 0

for 0 � t � n.

Proof. The algorithm LSQR is based on the bidiagonalization routine described

by BIDIAG. The proof makes use of the description of LSQR presented in Section

3.2. The matrices Ut+1, Vt and Bt are de�ned by (3.7).

From (3.11), the current iterate is de�ned as

dt = Vtyt; (3.40)

where yt is the solution to the least-squares problem

mink�1e1 �Btytk:

Therefore, yt is given by

yt = �1(B
T
t Bt)

�1BT
t e1: (3.41)

Furthermore, from (3.4) and (3.16) for the reduced-Hessian system, it follows that

gZ = �A
Tb: (3.42)

Substituting (3.40) and (3.42) into gT
Z
dt yields

gT
Z
dt = �b

TAVtyt:

By using equations (3.8) and (3.9) this reduces to

gT
Z
dt = ��1e

T
1Btyt = ��1�1(e

T
1 yt):

Noting that BT
t e1 = �1e1, and substituting from (3.41) yields

gT
Z
dt = ��

2
1�

2
1(e

T
1 (B

T
t Bt)

�1e1):
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By de�nition, UT
t+1Ut+1 = I, and it follows from (3.9) that

BT
t Bt = BT

t U
T
t+1Ut+1Bt = V T

t A
TAVt:

For the de�nition of A given in (3.16), ATA = HZ, thus B
T
t Bt = V T

t HZVt. Since

HZ is positive de�nite by assumption, and Vt is full rank, it follows that B
T
t Bt is

positive de�nite. Therefore, eT1 (B
T
t Bt)

�1e1 > 0, which yields gT
Z
dt < 0.

This result allows the possibility of using CGTOL to terminate LSQR after only a

few LSQR iterations (or possibly none). The initial search direction is the steepest-

descent direction, �gZ. If the system is solved accurately the search direction is

equivalent to the SQOPT search direction (up to rounding errors). Thus, the

\coarse" descent directions interpolate between these two directions. These coarse

directions are often su�cient while the working set is settling down. However, once

the working set is optimal, the reduced-Hessian system must be solved accurately

to yield the SQOPT direction. Linking the magnitude of CGTOL to the magnitude

of the \most" non-optimal multiplier, ensures that the value will be small when

the working set is optimal. Let �q be the largest magnitude non-optimal multiplier

(�q = 0 if all the multipliers have the correct sign) . Each time the multipliers are

calculated, CGTOL is updated by

CGTOL = maxf�j�qj; CGTOL0g; (3.43)

where � is a constant parameter such that 0 < � < 1. The �xed small tolerance

CGTOL0 must be chosen su�ciently small to ensure that when all the multipliers

have optimal sign the algorithm will generate the SQOPT direction.

One possible strategy for implementing the relaxed tolerances would be to use

one LSQR iteration, take a step and immediately change the working set if some

of the multipliers are non-optimal. This procedure would be repeated until the

working set is optimal, at which time the tolerances would be tightened and the

problem solved accurately. A 
aw of this strategy is that deleting constraints

without exact Lagrange multipliers can lead to a bound repeatedly moving in and

out of the working set. When the exact Lagrange multipliers are available, and
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the t-th constraint is deleted from the working set, the search direction satis�es

the relations

gTp < 0 and aTt p > 0;

where aTt is the normal of the t-th constraint. However, when the exact multipliers

are not available, it is possible for aTt p � 0. This results in the t-th constraint

immediately being added back into the working set. Thus, precautions have to be

taken to safeguard against cycling.

An alternative strategy is to not delete a constraint until the reduced gradient

has been signi�cantly reduced, in the sense that the norm of gZ should be less than

the magnitude of the \most" non-optimal multiplier, �q.

Assume that kgZk is less than the current relaxed RGTOL. If some of the multi-

pliers have a non-optimal sign, then a constraint is deleted only if

kgZk1 � �j�qj; (3.44)

where 0 < � < 1. The smaller the value of �, the greater the reduction required in

gZ. When a constraint is successfully deleted, RGTOL is reset for the new subspace

to be

RGTOL = maxf�k�gZk1; RGTOL0g;

where � is a constant parameter such that 0 < � < 1, �gZ = ( gZ �q )T , and

RGTOL0 is a �xed small tolerance. The smaller the value of � the more accurate

the optimization on each subspace. If all the multipliers have their optimal sign, a

test is made to see if a solution has been found by checking kgZk � RGTOL0. If the

current point is not a solution, or if (3.44) is not satis�ed, then RGTOL is updated

by

RGTOL = maxf0:9kgZk1; RGTOL0g; (3.45)

and optimization continues on the current subspace.

While this strategy is admittedly heuristic, a similar approach has been imple-

mented in MINOS with practical success.
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3.8 Algorithm SQOPT-CG

With the modi�cations necessary for calculating the search direction and the

preconditioner, the algorithm SQOPT-CG can be de�ned from algorithm SQOPT

(see Section 2.3.4). The algorithm is the same as SQOPT except in the de�nition of

the search direction and the choice of tolerances. If ns � nr the standard method of

SQOPT is used to calculate the search directions. If ns > nr the least-squares CG

algorithm LSQR is used. If a small CGTOL is used in LSQR, the search directions

of the two algorithms are identical except for rounding error.

The e�ciency of Algorithm SQOPT-CG on a given problem is dependent on

three modi�able settings.

1. The choice of preconditioner. The work required to calculate and update the

preconditioner is signi�cantly greater for the partial reduced-Hessian precon-

ditioner, RC , than for the quasi-Newton preconditioner RQ. However, the

eigenvalue clustering of the preconditioned system should be better with RC

than with RQ. As mentioned, the degree of clustering has a signi�cant im-

pact on the number of CG iterations needed to solve the system. The work

needed to maintain a particular preconditioner has to be balanced against

the savings in CG iterations.

Obviously, it would be advantageous to avoid the work associated with calcu-

lating and updating the preconditioner. For well-conditioned problems, pre-

conditioning is unnecessary and the use of a preconditioner can be avoided.

2. The choice of nr. The value of nr represents the size of the dense upper-

triangular block of the preconditioners (Rr or T ). The larger the value of nr,

the more bene�cial the e�ect of Rr and T on the preconditioned system.

Since the direct method is used for ns � nr, it would be preferable to use

nr � 1000. However, for problems with ns � 1000, the work associated with

using a matrix Rr of this size is prohibitive. The work for calculating the

initial Rr is of O(n3r), and each solve with Rr requires O(n2r) operations. A
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more reasonable value of nr, say 200 � nr � 500, results in approximately

8-125 times less work in calculating the initial Rr, and about 4-25 times less

work in performing the solves with Rr.

For the quasi-Newton preconditioner, the work for performing the solves with

T remainsO(n2r). However, the work for calculating the initial Rr is avoided.

This means that larger values of nr can exploit the full e�ciency of the direct

method.

3. The values of �, � and �. Section 3.7 contains a discussion on the bene�ts

of relaxing RGTOL and CGTOL. When RGTOL is relaxed, not minimizing on

the subspace saves minor iterations. However, for every constraint deleted in

error, the search direction must be recomputed, requiring an additional call

to the CG algorithm. The more accurate the optimization on each subspace,

the less likely this is to occur. As mentioned is Section 3.7, the accuracy of

the optimization on each subspace is controlled by the value of �. A smaller

value of � will require more minor iterations, but will result in fewer erroneous

modi�cations to the working set. In addition, constraints are only deleted

if (3.44) is satis�ed. The smaller the value of �, the greater the required

reduction in the reduced gradient before a constraint can be deleted. A

similar scheme implemented in MINOS uses � = 0:9 and � = 0:2.

A relaxed CGTOL gives a direction that interpolates between the steepest-

descent direction and the direction generated by SQOPT. The larger the

value of CGTOL, the fewer CG iterations required, and the closer the resulting

direction is to the steepest-descent direction. However, the steepest-descent

method is notoriously ine�cient and a larger than necessary value for CGTOL

can yield search directions that are ine�cient. The smaller the value of j�qj,

the more accurately the system is solved. A typical value for � is � = 0:9.

The algorithm SQOPT-CG is now given as follows. The value of �, � and � are

given, and the initial RGTOL and CGTOL are set prior to entering the QP subproblem.
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Algorithm SQOPT-CG

Find an initial feasible point, (x; s).

Set nr and choose preconditioner RC or RQ

Set QN-precon = true or false

if ns > nr then

Initialize the preconditioner:

RQ = RQ of previous subproblem, or T = I and D = I

OR, calculate the initial RT
r Rr = ZT

r HZr and set D = I

else

Calculate the initial RTR = ZTHZ

end if

Calculate the initial g and  

while true

Calculate gz and �

stationary-point = kgzk < RGTOL

new-SB = false

if stationary-point then

Calculate multipliers, �

Set �q to largest magnitude non-optimal multiplier

CGTOL = maxf�j�qj; CGTOL0g

if �q = 0 then

if kgZk < RGTOL0 then stop

RGTOL = maxf0:9kgZk1; RGTOL0g

else

if kgZk1 � �j�q j then

Add superbasic corresponding to �q

�gZ = ( gZ �q )
T

new-SB = true

RGTOL = maxf�k�gZk1; RGTOL0g

else

RGTOL = maxf0:9kgZk1; RGTOL0g

end if

end if

end if
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if new-SB then

if ns > nr then

Update the preconditioner

else

Update R

end if

Update gz

end if

if ns > nr then

Solve LS problem (3.23) for pz

else

Solve for pz as in SQOPT

end if

Set p = Zpz

�N = maximum feasible step along p

hit-constraint = �N < 1

if hit-constraint then

� = �N

else

� = 1

end if

(x; s) (x; s) + �p

g  g + �Hp

Calculate  

if ns > nr and QN-precon then

Perform BFGS update to RQ

end if

if hit-constraint then

if ns > nr then

Update the preconditioner

else

Update R

end if

end if

end while
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Typical values for CGTOL0 and RGTOL0 are 10�17 and 10�6 respectively. The

same storage space is used for R and the preconditioner (RC or RQ).

3.9 Numerical Results

This section gives numerical results for the CG method on a subset of problems

from the CUTE test suite [4]. The CUTE test suite is a diverse set of test problems

of varying sizes. The CUTE package provides an interface to run the test prob-

lems using preset starting points. The problems chosen have a large number of

superbasics, with most problems having a maximum value of ns that exceeds 1000.

Over half of the problems have a value of ns of approximately 3000 or more. The

largest value of ns was 5625. Two problems had a maximum value of ns � 600.

The test set consists of 74 problems. Of these, 35 are unconstrained prob-

lems (UC), 22 are problems with simple bounds only (BO), 10 are nonlinearly

constrained problems (NC) and 7 are linearly constrained problems (LC). Table

3.1 lists the problems in the test set, along with the number of variables, n, the

maximum value of ns attained during the runs, and the problem type.

For all runs, the CG tolerance was set to CGTOL = 10�17. The value of reduced-

gradient tolerance was �xed at RGTOL = 10�6. The relaxed tolerance strategy

was not used for these runs, therefore, the results compare the methods when

generating numerically equivalent search directions. For the SNOPT-CG runs, the

value of nr was set to 500, and the partial reduced-Hessian preconditioner, RC,

was used.

The algorithm was implemented in FORTRAN 77 with SNOPT. The runs were

made on an SGI R10000 (180MhZ). The performance varied by problem type, thus

the results are presented by problem type, with a general summary at the end.
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Table 3.1: CUTE test problems with ns large

Problem Name n ns Type Problem Name n ns Type

ARWHEAD 5000 5000 UC NONDQUAR 5000 5000 UC
BDEXP 5000 5000 BO NONSCOMP 5000 5000 BO
BLOWEYA 2002 1000 LC OBSTCLAE 5625 5329 BO
BLOWEYB 2002 1000 LC OBSTCLAL 5625 2917 BO
BLOWEYC 2002 1000 LC OBSTCLBL 5625 4120 BO
BRYBND 5000 5000 UC OBSTCLBM 5625 4916 BO
CRAGGLVY 5000 5000 UC OBSTCLBU 5625 4042 BO
DIXMAANA 3000 3000 UC ORTHRDM2 4003 2001 NC
DIXMAANB 3000 3000 UC ORTHREGC 4005 2005 NC
DIXMAANC 3000 3000 UC ORTHREGD 4003 2002 NC
DIXMAAND 3000 3000 UC ORTHREGE 3006 1006 NC
DIXMAANE 3000 3000 UC ORTHREGF 1880 1255 NC
DIXMAANF 3000 3000 UC ORTHRGDM 4003 2003 NC
DIXMAANG 3000 3000 UC POWELLSG 5000 5000 UC
DIXMAANH 3000 3000 UC QUARTC 5000 4999 UC
DIXMAANI 3000 3000 UC READING9 2002 680 NC
DIXMAANJ 3000 3000 UC SCHMVETT 5000 5000 UC
DIXMAANK 3000 3000 UC SINROSNB 2000 2000 NC
DIXMAANL 3000 3000 UC SROSENBR 5000 5000 UC
DQDRTIC 5000 5000 UC STCQP1 4097 2923 LC
DQRTIC 5000 4999 UC STCQP2 4097 2023 LC
DTOC6 10001 5000 NC STNQP1 4097 2560 LC
EDENSCH 2000 2000 UC TESTQUAD 1000 1000 UC
ENGVAL1 5000 5000 UC TOINTGSS 5000 4998 UC
FMINSRF2 5625 5625 UC TORSION1 5476 3696 BO
FMINSURF 5625 5625 UC TORSION2 5476 5184 BO
FREUROTH 5000 5000 UC TORSION3 5476 1912 BO
JNLBRNG2 5625 3198 BO TORSION4 5476 5184 BO
JNLBRNGA 5625 3529 BO TORSION6 5476 5184 BO
JNLBRNGB 5625 2989 BO TORSIONA 5476 3664 BO
LCH 600 599 NC TORSIONB 5476 5184 BO
LIARWHD 5000 5000 UC TORSIONC 5476 1952 BO
LINVERSE 1999 1988 BO TORSIOND 5476 5184 BO
MOSARQP1 2500 1073 LC TORSIONF 5476 5184 BO
NCB20 2010 2009 UC TQUARTIC 5000 5000 UC
NCB20B 2000 2000 UC TRIDIA 5000 5000 UC
NOBNDTOR 5476 4366 BO VAREIGVL 5000 5000 UC



59

3.9.1 Unconstrained Problems

Table 3.2 gives the run times on the unconstrained problems for SNOPT 5.3

and SNOPT-CG, with and without preconditioning. The times are in seconds.

The values of n and ns are also included.

The performance of SNOPT-CG on the unconstrained problems is signi�cantly

better than SNOPT 5.3. Most of the problems were solved 8-16 times faster

using SNOPT-CG with the preconditioner. There were three problems, NCB20,

NCB20B and TESTQUAD, where the preconditioned SNOPT-CG runs did not

show an improvement, or the performance was worse. In contrast, the SNOPT-

CG runs without preconditioning showed improvement for all of the unconstrained

problems. The run times for most problems improved by 20-40 times.

Table 3.3, lists the number of major (Maj) iterations, minor (Min) iterations

and LSQR iterations for each of the runs. The table shows the number of major and

minor iterations for the preconditioned and non-preconditioned runs is the same

for most problems. In general, the number of minor iterations for SNOPT-CG was

greater than for SNOPT 5.3. The e�ect of the preconditioner can be examined

by comparing the number of LSQR iterations. For most problems, the number

of LSQR iterations were approximately the same for both the preconditioned and

non-preconditioned runs. In this case, the signi�cant di�erence in run times re
ects

the extra work of applying the preconditioner.

The cumulative summary of the results on the unconstrained problems is pre-

sented in Table 3.4. The run times are, on average, about 8 times faster using

SNOPT-CG with preconditioning, and 20 times faster without preconditioning.

Note that the average number of LSQR iterations per minor iterations is very low

when compared to the maximum size of ns for the test problems.

3.9.2 Nonlinearly Constrained Problems

The run times in Table 3.5 indicate the potential of SNOPT-CG on nonlin-

early constrained problems. In general, performance was 3-5 times faster, and



60

Table 3.2: Unconstrained problems - SNOPT-CG vs. SNOPT 5.3 Run Times

SNOPT-CG
Problem Name n ns w/o precnd with precnd SNOPT 5.3
ARWHEAD 5000 5000 58.47 153.54 2727.43
BRYBND 5000 5000 79.11 195.55 3430.44
CRAGGLVY 5000 5000 121.61 319.17 4601.94
DIXMAANA 3000 3000 20.79 68.59 615.44
DIXMAANB 3000 3000 21.46 75.34 711.44
DIXMAANC 3000 3000 22.03 71.94 660.99
DIXMAAND 3000 3000 22.88 73.86 669.82
DIXMAANE 3000 3000 66.04 166.31 1435.93
DIXMAANF 3000 3000 52.17 137.78 1294.44
DIXMAANG 3000 3000 49.77 132.65 1248.14
DIXMAANH 3000 3000 40.39 117.49 1104.58
DIXMAANI 3000 3000 649:521 1402:891 5201:641

DIXMAANJ 3000 3000 133.95 322.74 2415.27
DIXMAANK 3000 3000 79.12 191.23 1729.05
DIXMAANL 3000 3000 101.22 244.77 1938.36
DQDRTIC 5000 5000 69.98 180.63 2803.18
DQRTIC 5000 4999 76:952 208:102 2779:212

EDENSCH 2000 2000 17.30 64.84 254.28
ENGVAL1 5000 5000 65.35 166.76 3081.08
FMINSRF2 5625 5625 1266.28 3343.23 15486.19
FMINSURF 5625 5625 671.99 1147.27 23558.69
FREUROTH 5000 5000 180.03 439.58 4699.69
LIARWHD 5000 5000 73.58 185.78 3314.88
NCB20 2010 2009 506.49 1776.28 1628.29
NCB20B 2000 2000 453:281 1844:971 1872:851

NONDQUAR 5000 5000 377.39 653.42 11944.72
POWELLSG 5000 5000 73.87 190.13 3671.06
QUARTC 5000 4999 77:872 223:432 2780:662

SCHMVETT 5000 5000 87.30 218.26 3567.18
SROSENBR 5000 5000 62.56 161.97 2914.90
TESTQUAD 1000 1000 243.08 4450.28 296.63
TOINTGSS 5000 4998 57.14 152.86 2631.76
TQUARTIC 5000 5000 97.37 362.84 3476.58
TRIDIA 5000 5000 1155.25 3920.86 19213.10
VAREIGVL 5000 5000 96.85 251.36 4642.57

1 major iteration limit exceeded. 2 problem is unbounded.
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Table 3.3: Number of iterations for the unconstrained problems

SNOPT-CG SNOPT 5.3
w/o precnd with precnd

Problem Name Min Maj LSQR Min Maj LSQR Min Maj

ARWHEAD 5012 9 8696 5014 9 8711 5014 9
BRYBND 5186 40 9965 5169 40 10264 5062 40
CRAGGLVY 7878 99 13523 7881 99 15364 7637 99
DIXMAANA 3015 14 4736 3015 14 4768 3016 14
DIXMAANB 3019 18 4791 3020 18 4840 3021 18
DIXMAANC 3050 23 4839 3035 23 4890 3026 23
DIXMAAND 3127 25 4968 3100 25 5028 3030 25
DIXMAANE 3190 190 8331 3191 190 8643 3191 190
DIXMAANF 3161 160 6628 3161 160 6967 3161 160
DIXMAANG 3180 149 6337 3163 149 6648 3151 149
DIXMAANH 3530 119 5377 3407 119 5872 3122 119
DIXMAANI 4000 1000 91941 4001 1000 86833 4001 1000
DIXMAANJ 3402 401 17357 3402 401 17542 3404 401
DIXMAANK 3277 253 9769 3261 253 9778 3254 253
DIXMAANL 3737 296 13239 3596 296 13093 3304 296
DQDRTIC 6265 13 9887 6147 13 9867 5022 13
DQRTIC 9000 0 8037 9000 0 8430 5623 0
EDENSCH 3448 52 4624 3111 52 4951 2072 52
ENGVAL1 5157 29 9138 5139 29 9133 5033 29
FMINSRF2 6053 428 75107 6053 428 126797 6053 428
FMINSURF 6697 1072 43548 6529 904 39819 6449 820
FREUROTH 5781 106 17679 5737 106 19273 5160 106
LIARWHD 5959 39 9695 5853 39 9840 5074 39
NCB20 2806 785 131571 2826 806 131702 2830 809
NCB20B 3006 1000 111441 3006 1000 135360 3006 1000
NONDQUAR 5525 490 31457 5531 491 28051 5597 523
POWELLSG 5271 60 9200 5234 61 9759 5081 61
QUARTC 9000 0 8037 9000 0 8430 5623 0
SCHMVETT 5064 56 10642 5062 56 11306 5062 56
SROSENBR 5158 19 8774 5139 19 8846 5029 19
TESTQUAD 2704 797 147833 2739 912 476261 2400 883
TOINTGSS 5002 4 8676 5002 4 8671 5003 4
TQUARTIC 5024 15 13602 5023 15 18159 5025 15
TRIDIA 10495 905 90768 10386 897 164201 6708 899
VAREIGVL 6408 117 7705 6200 117 9378 5118 117



62

Table 3.4: Summary of unconstrained problems

SNOPT-CG SNOPT 5.3
Summary w/o precnd with precnd

No. problems attempted : 35 35 35
No. optimal : 31 31 31
No. iterations limit : 2 2 2
No. cannot be improved : 0 0 0
No. Unbounded : 2 2 2
No. Major iterations : 8783 8745 8669
No. Minor iterations : 171587 170133 153362
Avg. LSQR itrs / minor : 5.6 8.5
No. Function evals. : 9669 9625 9515
Total Time : 7228.44 23616.70 144402.41

in the case of DTOC6 and SINROSNB, over 50 times faster. The improvement

is most signi�cant for problems where many iterations are required with a large

number of degrees of freedom. The combined e�ect of not computing the full R,

and only computing new columns of dimension nr (vs. ns) is magni�ed for the

nonlinear problems. This bene�t is even re
ected in the smaller problems LCH

and READING9, where ns is only 600, but the run continues for 1000 iterations.

The preconditioner has the greatest success in reducing the number of LSQR

iterations on the nonlinearly constrained problems. In Table 3.6, most problems

show a reduction in the number of LSQR iterations with the preconditioner. The

average reduction for these problems was 23%. In addition, without precondition-

ing the problem SINROSNB terminates at a search direction that is not a descent

direction. However, the execution times for the runs without preconditioning are

still better than those with preconditioning. Thus, the bene�t of the preconditioner

is not su�cient to overcome its inherent additional cost.

The number of minor iterations for SNOPT-CG is higher than for SNOPT 5.3.

However, the use of the preconditioner required fewer minor iterations than the

runs without preconditioning.

Table 3.7 summarizes the totals for the nonlinearly constrained problems. The



63

results for SINROSNB are not included. The numbers are dominated by the results

for DTOC6. The average number of LSQR iterations per minor iteration is again

very small.

Table 3.5: Nonlinearly constrained problems - SNOPT-CG vs. SNOPT 5.3 Run

Times

SNOPT-CG
Problem Name n ns w/o precnd with precnd SNOPT 5.3
DTOC6 10001 5000 1567.54 3196.50 169057.88
LCH 600 599 58:851 1825:921 2265:991

ORTHRDM2 4003 2001 252.27 396.56 2170.32
ORTHREGC 4005 2005 419.30 607.27 9477.25
ORTHREGD 4003 2002 259.34 412.69 2415.71
ORTHREGE 3006 1006 370.18 2288.41 4576.41
ORTHREGF 1880 1255 83.84 256.59 1328.20
ORTHRGDM 4003 2003 257.04 422.00 2902.12
READING9 2002 680 55:811 1475:721 4040:471

SINROSNB 2000 2000 1109:622 5134:351 235767:251

1 major iteration limit exceeded. 2 �nal point cannot be improved on.

3.9.3 Linearly Constrained Problems

In contrast to the unconstrained and nonlinearly constrained problems, where

SNOPT-CG exhibits a signi�cant improvement, the performance on linearly con-

strained problems is generally poorer than for SNOPT 5.3. Table 3.8 gives the

run times for SNOPT-CG on the linearly constrained problems. As mentioned in

Section 2.2, SNOPT 5.3 is more e�cient on problems where all the constraints

are linear. This is a result of R not needing to be refactorized after each major

iteration. The performance of SNOPT-CG on the problems where ns � 1000 is

worse than SNOPT 5.3. However, on problems where ns > 2000, SNOPT-CG

starts to show modest improvement, with the best results being for the problem

with the largest maximum value of ns.
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Table 3.6: Number of iterations for the nonlinearly constrained problems

SNOPT-CG SNOPT 5.3
w/o precnd with precnd

Problem Name Min Maj LSQR Min Maj LSQR Min Maj

DTOC6 14510 22 180379 14278 22 170307 10030 22
LCH 1761 1000 40896 1616 1000 76013 1605 1000
ORTHRDM2 5499 8 39238 4208 8 24773 4018 8
ORTHREGC 5319 94 54480 4064 33 29055 4081 38
ORTHREGD 5699 9 40065 4508 9 25301 4204 9
ORTHREGE 3860 280 41487 3514 333 55388 3223 204
ORTHREGF 2686 32 26556 1915 32 18366 1914 32
ORTHRGDM 5521 11 39576 4398 11 25284 4117 11
READING9 2679 1000 3540 2679 1000 4536 2679 1000
SINROSNB 21391 13 83571 36028 1000 148420 65599 1000

Table 3.7: Summary of nonlinearly constrained problems

SNOPT-CG SNOPT 5.3
Summary w/o precnd with precnd

No. problems attempted : 10 10 10
No. optimal : 7 7 7
No. iterations limit : 2 3 3
No. cannot be improved : 1 0 0
No. Unbounded : 0 0 0
No. Major iterations : 2456 2448 2324
No. Minor iterations : 47534 41180 35871
Avg. LSQR itrs / minor : 9.8 10.4
No. Function evals. : 4146 3631 3775
Total Time : 3322.17 10881.66 198234.35
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Table 3.9 shows the number of major and minor iterations is essentially the

same for all the runs. In general, the number of LSQR iterations is signi�cantly

higher for the preconditioned runs. A notable exception was MOSARQP1, where

the preconditioner reduced the number of LSQR iterations by almost 80%. How-

ever, despite the signi�cant reduction in the LSQR iterations, there was only a

modest improvement in the run time.

The cumulative totals for the linearly constrained problems are given in Table

3.10. The average number of LSQR iterations per minor iteration is larger than

for the unconstrained and nonlinearly constrained problems. However, the values

are still small relative to the size of ns.

Table 3.8: Linearly constrained problems - SNOPT-CG vs. SNOPT 5.3 Run Times

SNOPT-CG
Problem Name n ns w/o precnd with precnd SNOPT 5.3

BLOWEYA 2002 1000 701.10 2996.99 399.83
BLOWEYB 2002 1000 485.96 2161.20 336.64
BLOWEYC 2002 1000 817.72 2469.84 294.72
MOSARQP1 2500 1073 273.42 248.66 151.44
STCQP1 4097 2923 111.21 500.29 1028.94
STCQP2 4097 2023 95.20 580.14 390.74
STNQP1 4097 2560 59.41 212.58 483.65

Table 3.9: Number of iterations for the linearly constrained problems

SNOPT-CG SNOPT 5.3
w/o precnd with precnd

Problem Name Min Maj LSQR Min Maj LSQR Min Maj

BLOWEYA 1536 390 170842 1565 436 241274 1483 390
BLOWEYB 1453 310 109735 1372 310 175303 1329 310
BLOWEYC 1410 388 196966 1325 311 185921 1325 311
MOSARQP1 4199 13 123874 4155 13 25444 3823 13
STCQP1 6963 14 11221 6982 14 28520 6963 14
STCQP2 5856 60 9277 5900 60 28998 5856 60
STNQP1 6270 3 4123 6270 3 10161 6270 3
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3.9.4 Problems with Only Simple Bounds

The results for problems with only simple bounds are mixed. In general, per-

formance depends on the number of active bounds. Times on problems where

n� ns stays small (say � 1200) more closely resemble those for an unconstrained

problem. In contrast, when n � ns is large, which implies that many bounds are

active, the run-times resemble those for the simple linearly constrained problems,

and the performance on these problems is more modest.

A notable exception to this trend are the TORSION problems. When precon-

ditioning was used, the performance on these problems was generally worse than

that of SNOPT 5.3. Without preconditioning, SNOPT-CG showed only a modest

improvement

Comparing the LSQR iterations in Table 3.12 shows that the preconditioner

performed very poorly on problems with only simple bounds.

The cumulative totals for the problems with only simple bounds are given in

Table 3.13. The average number of LSQR iterations per minor iteration is similar

to the numbers for the linearly constrained problems.

3.9.5 Summary

The overall performance of the CG method is typical of that of other itera-

tive methods, in the sense that performance is extremely problem dependent. In

general, the method performed well on unconstrained problems, nonlinearly con-

strained problems, and problems with simple bounds with relatively few active

bounds (i.e., ns � n).

The preconditioner performed best on problems with nonlinear constraints.

However, the improvement in iterations tended to be overwhelmed by the cost of

applying the preconditioner. Performance was best for SNOPT-CG without pre-

conditioning. This may be caused by the low average number of LSQR iterations

per minor iteration. The overall average for the runs without preconditioning was

14.7 LSQR iterations per minor iteration. This value is small relative to the typical
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size of ns, thus it may have been di�cult for the preconditioner to signi�cantly

reduce the number of LSQR iterations. However, there is evidence that precondi-

tioning is necessary for some problems. The quasi-Newton preconditioner avoids

much of the work associated with preconditioning and will likely provide a better

alternative to the partial reduced-Hessian preconditioner.
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Table 3.10: Summary of linearly constrained problems

SNOPT-CG SNOPT 5.3
Summary w/o precnd with precnd
No. problems attempted : 7 7 7
No. optimal : 7 7 7
No. iterations limit : 0 0 0
No. cannot be improved : 0 0 0
No. Unbounded : 0 0 0
No. Major iterations : 1178 1147 1101
No. Minor iterations : 27687 27569 27049
Avg. LSQR itrs / minor : 22.6 25.2
No. Function evals. : 1339 1308 1254
Total Time : 2544.02 9169.70 3085.96
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Table 3.11: Problems with only simple bounds - SNOPT-CG vs. SNOPT 5.3 Run

Times

SNOPT-CG
Problem Name n ns w/o precnd with precnd SNOPT 5.3

BDEXP 5000 5000 58.82 154.51 2909.09
JNLBRNG2 5625 3198 936.56 1803.77 3974.54
JNLBRNGA 5625 3529 2247.08 16877.73 4758.04
JNLBRNGB 5625 2989 3994.34 13889.41 5754.79
LINVERSE 1999 1988 2426.85 9524.32 4555.55
NOBNDTOR 5476 4366 591.31 1440.70 5526.85
NONSCOMP 5000 5000 1000.98 1794.35 10944.32
OBSTCLAE 5625 5329 2191.45 7382.87 16112.66
OBSTCLAL 5625 2917 580.42 1819.50 1725.03
OBSTCLBL 5625 4120 3743.52 12765.81 11381.93
OBSTCLBM 5625 4916 1484.87 5168.41 15895.72
OBSTCLBU 5625 4042 4846.31 15187.39 8381.12
TORSION1 5476 3696 1075.65 3370.38 4709.72
TORSION2 5476 5184 15836.76 48779.39 36296.82
TORSION3 5476 1912 350.27 1000.93 450.09
TORSION4 5476 5184 13635.31 48756.90 21950.53
TORSION6 5476 5184 10543.89 34678.18 17692.28
TORSIONA 5476 3664 1102.13 3527.48 5289.43
TORSIONB 5476 5184 13313.99 40639.84 43210.66
TORSIONC 5476 1952 370.10 1089.07 534.54
TORSIOND 5476 5184 12783.09 39232.64 25700.64
TORSIONF 5476 5184 9106.59 23918.17 16373.41
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Table 3.12: Number of iterations for the problems with only simple bounds

SNOPT-CG SNOPT 5.3
w/o precnd with precnd

Problem Name Min Maj LSQR Min Maj LSQR Min Maj
BDEXP 5015 15 8674 5015 15 8699 5015 15
JNLBRNG2 4764 437 63808 4762 433 60427 4752 426
JNLBRNGA 5929 264 153284 5928 264 561229 5928 264
JNLBRNGB 9917 633 321862 9816 594 521080 9159 548
LINVERSE 20968 198 655965 20968 198 711705 20968 198
NOBNDTOR 5426 184 39881 5424 184 58556 5424 184
NONSCOMP 17534 44 61336 17361 44 63235 16798 44
OBSTCLAE 11805 168 130137 11806 168 263701 11805 168
OBSTCLAL 3637 112 40608 3637 112 65944 3637 112
OBSTCLBL 22178 92 301590 22178 92 513859 22178 92
OBSTCLBM 11969 85 99634 11969 85 198653 11969 85
OBSTCLBU 22970 97 370134 22970 97 583751 22970 97
TORSION1 5895 174 76193 5890 174 139079 5893 174
TORSION2 46104 263 1147404 46017 220 1855646 45373 228
TORSION3 2584 74 26105 2586 74 43170 2586 74
TORSION4 44718 122 988519 44733 122 2050675 44706 122
TORSION6 42754 82 633782 42761 82 1727239 42792 81
TORSIONA 6001 181 73936 6000 181 137304 6005 181
TORSIONB 41553 190 922034 41558 191 1573115 41510 191
TORSIONC 2859 76 28075 2860 76 46474 2858 76
TORSIOND 48014 127 989224 48026 127 1778269 42379 65
TORSIONF 42399 65 706682 42397 65 1228068 47974 127
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Table 3.13: Summary of problems with only simple bounds

SNOPT-CG SNOPT 5.3
Summary w/o precnd with precnd
No. problems attempted : 22 22 22
No. optimal : 22 22 22
No. iterations limit : 0 0 0
No. cannot be improved : 0 0 0
No. Unbounded : 0 0 0
No. Major iterations : 3683 3598 3552
No. Minor iterations : 424993 424662 422679
Avg. LSQR itrs / minor : 18.4 33.4
No. Function evals. : 4243 4141 4105
Total Time : 102220.49 332801.75 264127.76



Chapter 4

The Schur-Complement Method

The Schur-complement QP algorithm of Gill et al. [20], maintains a �xed fac-

torization of the initial KKT system, and updates a smaller dense factorization of a

Schur complement. These factorizations are used to compute the search directions

and multipliers for the quadratic program. The method proposed in this chapter

uses a Schur complement-based algorithm to solve the QP subproblems.

The method uses an extended KKT system associated with a specially de�ned

working set (see below). This modi�cation improves the e�ciency of existing meth-

ods by de�ning simpler linear systems at each iteration. In addition, the e�ciency

is improved by limiting the number of updates to the dense Schur complement.

In the �nal section of this chapter, a new Schur-complement method is derived

based on minimizing an `2 composite objective function. This single phase algo-

rithm does not require the two-phase approach of SQOPT for �nding a feasible

point.

Sections 4.1 and 4.2 review the theory and development of a general algorithm

for convex quadratic programming used for the Schur-complement method. The

proposed Schur-complement method is presented in Sections 4.3{4.4. Finally, Sec-

tion 4.5 discusses the use of a composite objective function, with an `2 penalty

term, when the initial point is not feasible.

72
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4.1 Convex Quadratic Programming

Consider a QP of the form:

minimize
x2IRn

f(x) � cTx+ 1
2
xTHx

subject to Ax � b:

Assume that H is positive semide�nite and x0 is feasible. De�ne the constraint

residual r(x) = Ax� b and objective gradient g(x) = c+Hx.

Active-set quadratic programming (QP) methods use a working set of the con-

straint gradients to de�ne the search direction and multiplier estimates. In the

methods proposed here, the working set is chosen to control the inertia of the re-

duced Hessian, which is never permitted to have more than one zero eigenvalue.

Such methods are called inertia-controlling.

Given a matrix W of full row rank, a point x such that g(x) = W T� for some

vector � is known as a subspace stationary point (with respect to W ). Given a

null-space basis Z for W , a subspace stationary point such that ZTHZ is positive

de�nite is known as a subspace minimizer (with respect to W ). A feasible point is

optimal if the vector � is nonnegative at a subspace minimizer.

At a point xk, the matrixW will be de�ned as a linearly independent subsetWk

of the rows of A determined by an index set Wk known as a working set . Assume

for the moment that xk and Wk are de�ned such that every constraint in Wk is

active, i.e., Wk = fi j aTi xk = �kg. Moreover, assume that xk is a non-optimal

subspace minimizer with respect to Wk, in which case there exists an index t in

Wk such that

gk =W T
k �k; and (�k)t < 0: (4.1)

At this point it is useful to partitionWk so that the constraint a
T
t x � �t is separate

from the other constraints in the working set. In particular, it is assumed for

notational purposes that the working-set matrix can be arranged in the form

Wk =

0BB@ Ak

aTt

1CCA ; (4.2)
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where Ak is the matrix with rows faTi g for i 2 Wk, i 6= t.

As (�k)t is negative, Farkas' Lemma implies that there must exist a direction

p that reduces f while satisfying the feasibility conditions

Akp = 0 and aTt p > 0:

These conditions ensure that the constraints with gradients in Ak will remain active

at any step of the form xk + �pk. (This motivates the use of the notation \A" for

\active" working-set constraints.) An obvious choice for p is the vector that both

satis�es these conditions and minimizes f(xk + p). This vector, denoted by pk, is

de�ned by the equality-constraint subproblem

minimize
p2IRn

gTk p+
1
2
pTHp; subject to Akp = 0;

and satis�es the system0BB@ H AT
k

Ak 0

1CCA
0BB@ pk

��k

1CCA =

0BB@ �gk
0

1CCA ; (4.3)

where the vector �k is the vector of multipliers at the subspace stationary point

xk + pk (which may or may not be feasible with respect to constraints not in the

working set). Once pk is de�ned, the step �k is required to retain feasibility with

respect to constraints not in the working set. If �B denotes the step to the blocking

constraint, the step �k is given by �k = minf1; �Bg. If �B � 1, then xk + pk is

feasible, and xk+ pk is a subspace stationary point with respect to Ak. Otherwise,

�k = �B < 1 and the working set is modi�ed to include the blocking constraint

that is satis�ed exactly at the new point. (If �B is the maximum feasible step for

more than one constraint, so that there is a \tie" in the nearest constraint, an

active-set method typically adds only one constraint to the working set at each

iteration.)

In the strictly convex case, H is positive de�nite and the system (4.3) for pk

is nonsingular. However, in the general convex case, the reduced Hessian ZT
k HZk

(and hence also the system (4.3)) may be singular. The strategy used here is
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to choose the working set to control the inertia of the reduced Hessian, which is

never permitted to have more than one zero eigenvalue. Such methods are called

inertia-controlling. At any initial iterate x0, it is always possible to �nd enough real

or temporary constraints to de�ne a working set W0 with a nonsingular ZT
0HZ0.

Thereafter, it can be shown that the reduced Hessian can become singular only

when a constraint is deleted from the working set. When ZT
k HZk is singular at a

non-optimal point, it is used to de�ne a direction pZ such that

ZT
k HZkpZ = 0 and gTk ZkpZ < 0:

The vector pk = ZkpZ is a direction of unbounded descent in the sense that the ob-

jective is linear in that direction and decreases without bound along pk. Normally,

a step along pk reaches a new constraint, which is then added to the working set

for the next iteration. (If no constraint can be added to the working set, the prob-

lem must be unbounded and the algorithm terminates.) In an inertia-controlling

strategy, no further constraints are deleted until the reduced Hessian becomes

nonsingular.

The calculation of a direction of unbounded descent is relatively straightforward

if ZT
k HZk is computed explicitly. In this case, pk can be computed from a triangular

system involving the (singular) Cholesky factor of ZT
k HZk (see, e.g., [21]). If

the reduced Hessian cannot be computed (because of sparsity considerations for

example) a vector pk can be computed from a nonsingular system with matrix

K =

0BB@ H W T
k

Wk 0

1CCA ; (4.4)

where Wk includes the gradient at of the most recently deleted constraint. The

theory of this type of method is based on the next result, given, e.g., by [21].

Lemma 3 LetWk be an m�n matrix of full row rank, and let A denote W with its

t-th row omitted, so that Ak also has full row rank. The matrices Z and ZW denote

null-space bases for Ak and Wk, and Z
T
kHZk and ZT

W
HZ

W
denote the associated
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reduced Hessian matrices. De�ne K and KW as

K =

0BB@ H AT
k

Ak 0

1CCA and KW =

0BB@ H W T
k

Wk 0

1CCA ;
where H is an n � n symmetric matrix. Consider the nonsingular linear system0BB@ H W T

k

Wk 0

1CCA
0BB@ uk

�k

1CCA = KW

0BB@ uk

�k

1CCA =

0BB@ 0

et

1CCA ; (4.5)

where uk has n components. Let (�k)t denote the t-th component of �k. If Z
T
W
HZ

W

is positive de�nite, then if (�k)t < 0 then ZT
kHZk is positive de�nite; if (�k)t = 0

then ZT
kHZk is singular.

In the singular case, (�k)t = 0, and the �rst n equations of (4.5) imply that

0 = uTkHuk + uTkA
T
k �E = uTkHuk:

It follows that the direction pk = uk satis�es both the descent condition p
T
kHpk = 0

and gTk pk < 0, as well as the feasibility conditions Akpk = 0 and aTt pk > 0.

It remains to be shown how the direction pk of (4.3) may be computed from a

system with matrix (4.4). The following result shows how this can be done.

Lemma 4 Let xk be a non-optimal subspace minimizer with respect to Wk. Let t

be the index of a column of Wk such that gk = W T
k �k and (�k)t < 0. Let uk denote

the solution of the system0BB@ H W T
k

Wk 0

1CCA
0BB@ uk

��k

1CCA =

0BB@ �gk
et

1CCA : (4.6)

If pk is the direction pk = �kuk, with �k = (�k)t=(�k)t, then xk + pk minimizes f

on the manifold fx j Akx = bkg.
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Proof. The vector pk de�ned by the system (4.3) minimizes f on the manifold

fx j aTi x = �i; i 2 Wk; i 6= tg. Let ��k denote the mk-vector obtained from �k by

inserting a zero component in the t-th position, i.e.,

(��k)i =

8>>>>><>>>>>:
(�k)i if i < t;

0 if i = t;

(�k)i�1 if i > t.

Then 0BB@ H W T
k

Wk 0

1CCA
0BB@ pk

���k

1CCA =

0BB@ �gk
�et

1CCA ; (4.7)

where � = aTt pk and at is the t-th row of Wk.

Since xk is a subspace minimizer with respect to Wk, the optimality conditions

gk =W T
k �k must hold, and the multipliers �k may be interpreted as satisfying the

expanded system 0BB@ H W T
k

Wk 0

1CCA
0BB@ 0

��k

1CCA =

0BB@ �gk
0

1CCA : (4.8)

Subtracting this equation from (4.7) yields0BB@ H W T
k

Wk 0

1CCA
0BB@ pk

�k � ��k

1CCA =

0BB@ 0

�et

1CCA :
Similarly, subtracting (4.8) from (4.6) gives0BB@ H W T

k

Wk 0

1CCA
0BB@ uk

�k

1CCA =

0BB@ 0

et

1CCA ; with �k = �k � �k. (4.9)

(cf . (4.5) These identities imply that pk = �uk and xk + pk = xk + �uk.

It remains to �nd a form of � that is independent of pk. From the de�nition

of pk, the point � = 1 minimizes f(xk + �pk) as a function of �. If �k minimizes

f(xk + �uk), the collinearity of pk and uk implies that xk + pk and xk + �kuk are
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the same point. The univariate minimizer �k may be computed using the identity

d

d�
f(xk + �uk)

�����
�=�k

= gTk uk + �ku
T
kHuk = 0;

which implies �k = �gTk uk=u
T
kHuk. The required form of �k now follows from

(4.9) and (4.1) using the relations �uTkHuk = uTkW
T
k �k = eTt �k = (�k)t, and

gTk uk = �TkWkuk = �Tk et = (�k)t.

Once pk is de�ned, the step �k is required to retain feasibility with respect to

constraints not in the working set. If �B denotes the step to the blocking constraint,

the step �k is given by �k = minf1; �Bg. If �B � 1, then xk + pk is feasible, and

xk + pk is a subspace stationary point with respect to Ak. Otherwise, if �B < 1,

then �k = �B and the working set is modi�ed to include the blocking constraint

that is satis�ed exactly at the new point. (If �B is the maximum feasible step for

more than one constraint, so that there is a \tie" in the nearest constraint, an

active-set method typically adds only one constraint to the working set at each

iteration.)

The intent is to be able to use a system of the form (4.6) to de�ne the search

direction at every iteration. However, the properties of the linear system (4.6) of

Lemma 4 depend upon xk being a subspace minimizer with respect to Wk. This is

certainly the case if the step xk+1 = xk+ pk is taken, since xk+1 is then a subspace

minimizer with respect to the constraints in Ak. (In this case the new working set

Wk+1 is just Ak, which is Wk with row aTt deleted.)

Unfortunately, stationarity with respect to Ak does not usually hold when �k <

1 (i.e., when progress along pk is impeded by a blocking constraint). This di�culty

is treated by rede�ning what is meant by a \working set". In particular, the most

recently deleted constraint aTt x � �t may be retained in the working set even

though the constraint may be inactive at the current point. Suppose that pk is

computed as in Lemma 4, and a new constraint aTr x � �r is added to the working
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set at xk+1 = xk + �kpk. De�ne the new working-set matrix as

Wk+1 =

0BB@ Ak+1

aTt

1CCA ; where Ak+1 =

0BB@ Ak

aTr

1CCA :
Consider a non-optimal subspace minimizer xk at which all the working-set

constraints are active. If Wk is partitioned in terms of Ak and the constraint to

be deleted (see (4.2)), it follows that

gk = AT
k �

k
E
+ �kt at; with �kt < 0; (4.10)

where �k
E
denotes the multiplier vector corresponding to Ak and �kt denotes the

(necessarily negative) multiplier (�k)t.

The next result shows that xk+1 is itself a subspace minimizer with respect to

a particular set of shifted constraints with working-set matrix Wk+1.

Lemma 5 Let gk and Wk denote the gradient and working set at a non-optimal

subspace minimizer xk. Assume that Wk is partitioned as in (4.2), with at de�ned

so that

gk = AT
k �

k
E
+ �kt at; with �kt < 0; (4.11)

for some vector �k
E
and scalar �kt . Let xk+1 = xk+�kpk, and assume that constraint

ar is added to Wk at xk+1 to give the working set Wk+1. Then

(a) gk+1, the gradient at xk+1, is also a linear combination of AT
k and at;

(b) There exist a vector �k+1
E

and scalar �k+1t such that

gk+1 = AT
k+1�

k+1
E

+ �k+1t at; with �k+1t < 0: (4.12)

Proof. Because f is quadratic, the gradients at xk and xk+1 are related by the

identity

gk+1 = g(xk + �kpk) = gk + �kHpk : (4.13)

The form of gk+1 for the two de�nitions of pk is now considered.
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When the reduced Hessian is positive de�nite, p satis�es (4.3), and it follows

that Hpk = �gk + AT
k �k. Substituting from this expression and (4.10) in (4.13),

yields

gk+1 = gk + �kHpk = (1� �k)gk + �kA
T
k �k = AT

k �E + �k+1t at;

where �E = (1 � �k)�k + �k�k and �
k+1
t = (1 � �k)�kt . Because a constraint was

added to the working set at xk+1, it must hold that �k < 1 and hence �k+1t < 0.

The expression (b) is obtained by forming �k+1 from �E and a zero component

corresponding to row aTr in Ak+1.

When the reduced Hessian is singular, pk is de�ned as uk, where uk satis�es

(4.9), so that Hpk = �AT
k �E. Substituting from this relation and (4.10) in (4.13)

gives

gk+1 = gk + �kHpk = gk � �kA
T
k �E = AT

k (�
k
E
� �k�E) + �kt at;

and (4.12) holds with �k+1t = �kt and �
k+1
E

formed by augmenting �E = �k
E
� �k�E

with a zero component as above.

This lemma implies that xk+1 can be regarded as the solution of a problem

in which the most recently deleted constraint is shifted to pass through the point

xk+1; i.e., xk+1 solves the equality-constraint problem

minimize
x2IRn

cTx+ 1
2
xTHx

subject to Akx = bk; aTt x = aTt xk+1:

Note that this problem can be solved without needing to know xk+1 in advance.

The optimal multipliers are the quantities (�k+1
E

; �k+1t ) of Lemma 5. More speci�-

cally, the scalar �kt is the multiplier corresponding to the shifted constraint aTt x �

aTt xk+1.

If the step �k = 1 is taken to reach the point xk+1, this multiplier becomes

zero, which implies that xk+1 is a subspace minimizer with respect to both Ak and

Wk.

A simple inductive argument shows that in a sequence of consecutive steps at

which a constraint is added to the working set, each iterate is a subspace minimizer
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of an appropriately shifted problem. To simplify the notation, consider an initial

feasible point x0, and an initial working set A0 such that x0 is not a minimizer

with respect to A0. It follows from the above discussion that a sequence of N + 1

(N � 0) consecutive iterates is de�ned such that xN+1 is the �rst minimizer|i.e.,

xN+1 is a minimizer with respect to AN+1, but none of the xk is a minimizer with

respect to Ak for 0 � k � N . At each of the �rst N steps, �k < 1 and a constraint

is added to the working set. At the Nth iteration one of two things can happen. If

AN+1 = AN and an \unconstrained" step �N = 1 is taken, the sequence of iterates

may be represented schematically as

A0

move & add
�! A1 � � �

move & add
�! AN

move
�! AN+1 (min)

Alternatively, xN+1 can be a minimizer after a constrained step �N < 1. This

will happen, for example, if xN+1 is a vertex, since a vertex is trivially a subspace

minimizer with respect to Ak. In this case,

A0

move & add
�! A1 � � �

move & add
�! AN

move & add
�! AN+1 (min)

The structure above suggests the name of intermediate iterates for the points fxkg,

k = 0, 1, . . . , N . Essentially, a point xk is an intermediate iterate if it is not a

subspace stationary point with respect to Ak.

If a constraint is now deleted at xN+1, a new sequence of intermediate iterates is

started, beginning with the point xN+1 (suitably relabeled to re
ect the fact that a

constraint has been deleted from AN+1). Note that for any sequence of consecutive

intermediate iterates, N can be zero (when the �rst step locates a minimizer), but

no greater than n (the number of steps from an unconstrained point to a vertex

minimizer).

The properties of a group of consecutive intermediate iterates that occur after

a constraint is deleted at a subspace minimizer, but before the next minimizer is

reached, are now examined. Each such iterate is associated with a unique most re-

cently deleted constraint . Consider a sequence of consecutive intermediate iterates
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fxkg, k = 0, . . . , N , such that xk is intermediate with respect to Ak. Assume that

the �rst working set has the form

W0 =

0BB@ A0

aTt

1CCA ; (4.14)

and that x0 is a subspace minimizer with respect to W0.

Let ZW denote a basis for the null space ofW . Because of the inertia-controlling

strategy, the reduced Hessian ZT
W
HZ

W
must be positive de�nite. Relation (4.14)

implies that

pTHp > 0 for any nonzero p such that A0p = 0 and aTt p = 0. (4.15)

If the iterate following xk is intermediate and the algorithm continues, �k is

the step to the nearest constraint, and a constraint is added to the working set at

each xk, k � 1. If a constraint is added, it must hold that �k < 1. (Otherwise, if

�k = 1, xk + pk is a subspace minimizer with respect to Ak, and the sequence of

intermediate iterates ends.) Let ak denote the normal of the constraint added to

Ak at xk+1 to produce Ak+1, so that the form of Wk+1 and Ak+1 is

Wk+1 =

0BB@ Ak+1

aTt

1CCA ; and Ak+1 =

0BB@ Ak

aTk

1CCA =

0BBBBBBBBBB@

A0

aT0
...

aTk

1CCCCCCCCCCA
: (4.16)

Some useful results are now derived concerning the sequence of intermediate

iterates.

Lemma 6 Given a sequence of consecutive intermediate iterates fxkg, the gradient

gk satis�es (4.11) for k � 0.

Proof. To begin the induction, note that if the multiplier associated with at at

x0 is negative, then, from (4.14),

g0 = AT
0 �

0
E
+ �0t at;
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where �0t < 0. Lemma 5 therefore applies at all subsequent intermediate iterates,

with the convention that � increases in dimension by one at each step to re
ect

the fact that Ak has one more row than Ak�1.

Lemma 7 Let fxkg be a sequence of consecutive intermediate iterates. Each

search direction satis�es gTk pk < 0 and aTt pk > 0.

Proof. From part (b) of Lemma 6, for the stated values of k, there exist a vector

�k
E
and positive scalar �kt such that

gk = AT
k �

k
E
+ �kt at:

Therefore, gTk pk = �kt a
T
t pk and the desired results are immediate.

Lemma 8 Let fxkg, k = 0 ,. . . , N , denote a sequence of consecutive intermediate

iterates. Assume further that �N is the step to the constraint with normal aN, which

is added to AN to form the working set AN+1. Let xN+1 = xN + �NpN . Then

(a) If xN+1 is a stationary point with respect to AN+1, then aN is linearly depen-

dent on AT
N
and at, and Z

T
N+1HZN+1 is positive de�nite;

(b) If aN is linearly dependent on AT
N
and at, then xN+1 is a minimizer with

respect to AN+1.

Proof. By construction, the working set (4.14) has full row rank, so that at is

linearly independent of the rows of A0. From part (b) of Lemma 6

gk = AT
k �

k
E
+ �kt at; k = 0; : : : ; N; (4.17)

where �kt < 0. Since it is assumed that xk is not a subspace stationary point with

respect to Ak for any 1 � k � N , (4.17) shows that aTt is linearly independent of

Ak. Furthermore, part (a) of Lemma 5 implies that there exists a vector �E such

that

gN+1 = AT
N
�E + �N+1t at; (4.18)
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where �N+1t < 0. It follows from the linear independence of aTt and AN that xN+1

cannot be a minimizer with respect to AN .

To show part (a), assume that xN+1 is a stationary point with respect to AN+1

(which includes aN), i.e.,

g
N+1 = AT

N
� + �

N
a
N
; (4.19)

where �N (the multiplier associated with aN) must be nonzero. Equating the right-

hand sides of (4.18) and (4.19), yields

AT
N
� + �N+1t at = AT

N
� + �

N
a
N
: (4.20)

Since �N+1t 6= 0 and �N 6= 0, this expression implies that at may be expressed as a

linear combination of AT
N
and aN , where the coe�cient of aN is nonzero:

at = AT
N
� + 
aN; with 
 =

�N

�N+1t

6= 0 (4.21)

and � = (1=�N+1t )(� � �).

Stationarity of xN+1 with respect to AN+1 thus implies a special relationship

among the most recently deleted constraint, the working set at xN and the newly

encountered constraint. Any nonzero vector p in the null space of AN+1 satis�es

A
N+1p =

0BB@ AN

aT
N

1CCA p = 0: (4.22)

For any such p, it follows from the structure of AN+1 (see (4.16)) that A0p = 0, and

from (4.21) that aTt p = 0; hence, p lies in the null space of W . Since ZT
W
HZ

W
is

positive de�nite (i.e., (4.15) holds), it follows that pTHp > 0 for p satisfying (4.22).

Thus, the reduced Hessian at xN+1 with respect to AN+1 is positive de�nite, and

xN+1 is a minimizer with respect to AN+1.

To verify part (b), assume that aN is linearly dependent on AN and at, i.e.,

that aN = AT
N
� + at�t, where �t 6= 0. Simple rearrangement then gives at =

(1=�t)aN � (1=�t)A
T
N
�. Substituting in (4.18), yields

gN+1 = AT
N
� +

�N+1t

�t
a
N
+
�N+1t

�t
AT
N
�;
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which shows that xN+1 must be a subspace stationary point with respect to AN+1.

Positive de�niteness of the reduced Hessian follows as before, and hence xN+1 is a

minimizer with respect to AN+1.

Lemma 8 is crucial in ensuring that adding a constraint in an inertia-controlling

algorithm cannot produce a stationary point where the reduced Hessian is not

positive de�nite.

4.2 Implementation

In addition to the search direction and work vectors, the proposed algorithm

requires the storage of the �ve vectors: u, �, z, �, and �, where � is the multi-

plier vector satisfying W T� = g. These vectors are needed to solve the following

systems:

System 0 (initialization)

0BB@ H W T
0

W0 0

1CCA
0BB@ p0

��0

1CCA = �

0BB@ g0
r0

1CCA ; (4.23)

System 1 (constraint deletion)

0BB@ H W T

W 0

1CCA
0BB@ u

�

1CCA =

0BB@ 0

et

1CCA ; (4.24)

System 2 (constraint addition)

0BB@ H W T

W 0

1CCA
0BB@ z

�

1CCA =

0BB@ ar
0

1CCA : (4.25)

System 0 is solved only once, for the initial values of x and �. At a subspace

minimizer, System 1 is solved for u and �. The search direction p is de�ned to

be either �u or u depending on whether or not the reduced Hessian is singular

after at is deleted from the working set. (This information is provided by the sign

of (�)t). Once the step � has been determined, the multipliers � are updated to

re
ect the change in g resulting from the move from x to x + �p. (The speci�c

updates require the current values of the vectors u and �.) If a constraint is added

to the working set, the vectors u, � and � must be updated to re
ect the addition
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of the new row to W . These vectors are updated using the quantities z and �

calculated from System 2. Each time a constraint is added, u and � are updated,

requiring an additional solve with System 2.

This discussion implies that a sequence of N intermediate iterations involves

the solution of N + 1 systems, comprising one solve with System 1 and N solves

with System 2.

4.2.1 Updating the Required Vectors

This section concerns the details of how u, � and � are updated. To simplify the

discussion, the subscript k is suppressed whenever possible. With this notation,

unbarred quantities belong to iteration k. Similarly, a bar over a quantity will

indicate its updated value.

Lemma 9 (Move to a new iterate.) Suppose that x is an iterate of an inertia-

controlling method. Let �x = x+ �p. The solution of W T �� = �g, where �g = g(�x) =

g + �Hp, is related to the vector � via the equations

��E = �E � �(a
T
t p)�E and ��t =

8><>:
(1� �)�t if p = �u;

�t � ��t if p = u.

Proof. In this lemma, the move from x to �x changes only the gradient (not the

working set). The desired result can be obtained by substituting p and the relation

Hu = �W T� (from (4.24)) in the expression �g = g + �Hp.

Updates following the addition of a constraint (say, ar) to the working set use

vectors z and � de�ned by the system0BB@ H W T

W 0

1CCA
0BB@ z

�

1CCA =

0BB@ ar

0

1CCA ; (4.26)

i.e., z and � satisfy

Hz +AT�E + �tat = ar; Az = 0 and aTt z = 0: (4.27)
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The case when ar can be added directly to W is considered �rst. Following the

updates given in the next lemma,m increases by one and the \new" � and � have

one additional component.

Lemma 10 (Constraint addition; independent case.) Let x denote an iterate of

an inertia-controlling method. Assume that constraint ar is to be added to the

working set at x, where W T and ar are linearly independent. Let � = aTru=a
T
rz.

Then the vectors �u and �� de�ned by

�u = u� �z; �� =

0BB@ �� ��

�

1CCA (4.28)

satisfy 0BB@ H �W T

�W 0

1CCA
0BB@ �u

��

1CCA =

0BB@ 0

et

1CCA : (4.29)

Proof. When ar and W
T are linearly independent, (4.27) shows that z must be

nonzero. Since Wz = 0 and ZT
W
HZ

W
is positive de�nite, aTrz = zTHz > 0, so that

� is well de�ned.

For any scalar �, (4.24) and (4.26) imply that0BBBBBB@
H W T ar

W 0 0

aTr 0 0

1CCCCCCA

0BBBBBB@
u� �z

� � ��

�

1CCCCCCA =

0BBBBBB@
0

et

aTru� �a
T
rz

1CCCCCCA : (4.30)

The linear independence of ar and W
T means that the solution vectors of (4.29)

are unique. If � is chosen so that the last component of the right-hand side of

(4.30) vanishes, then the �u and �� of (4.28) satisfy (4.29).

If ZTHZ is positive de�nite and W 6= A, at can be deleted from W , and W

then becomes A itself. The following lemma may be applied in two situations:

when a constraint is deleted from the working set at a minimizer and the reduced

Hessian remains positive de�nite after deletion; and at an intermediate iterate after

a constraint has been added that makes ZTHZ positive de�nite.
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Lemma 11 (Deleting at from W .) Suppose that x is an iterate of an inertia-

controlling method, W 6= A, and ZTHZ is positive de�nite. Then the vector �� is

de�ned by

�� = �E + ��E; where � = �
�t

�t
; (4.31)

satis�es AT �� = g.

Proof. Let �0 = � + �� for some scalar �. Substituting these values in W T� = g,

yields

AT (�E + ��E) + at(�t + ��t) = g:

It follows that AT �� = g will be satis�ed by �0
E
if �t + ��t = 0. It is permissible to

delete at from W only if ZTHZ is positive de�nite, which means that �t < 0, and

hence � is well de�ned.

Note that u and � are no longer needed to de�ne the search direction after at

has been removed.

The only remaining possibility occurs when ar, the constraint to be added, is

linearly dependent on W T ; in this case, z = 0 in (4.26). It follows from Lemma 8

that the iterate just reached must be a minimizer with respect to the working set

composed of AT and ar, which means that at is no longer necessary. However, it

is not possible to apply Lemma 11 because �t may be zero. The following lemma

gives an update that simultaneously removes at fromW and adds ar to the working

set. After application of these updates, �A is the \real" working set at �x, and the

algorithm either terminates or deletes a constraint (which cannot be ar).

Lemma 12 (Constraint addition; dependent case.) Suppose that x is an interme-

diate iterate. Assume that ar is to be added to the working set at x, and that ar

and W T are linearly dependent. Let �A denote A with aTr as an additional row, and

de�ne ! = �t=�t. The vector �� speci�ed by

��E = �E � !�E; ��a = !; (4.32)

where ��a denotes the component of �� corresponding to ar, satis�es �W T �� = g.
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Proof. First, observe that linear dependence of W T and ar means that z = 0. As

the initial working set has full row rank, for an active-set QP algorithm of the form

described, any constraint added to the working set must be linearly independent of

the constraints in the working set. Hence ar cannot be linearly dependent on AT ,

which implies that �t 6= 0. Lemma 8 tells us that x must be a subspace minimizer

with respect to a working set. The desired results follow from substitution.

Algorithm 4.2.1. Convex Quadratic Programming.

Solve System 0 for p0 and �0;

x x0 + p0;

subspace minimizer true; � �0;

repeat

if subspace minimizer then

�t  minimum � ;

optimal (�t � 0);

if optimal then stop;

Solve System 1 for u and �;

singular H (�t = 0);

end

p if singular H then u else (�t=�t)u end;

�B  maximum feasible step along p;

� if singular H then �B else minf1; �Bg end;

x x+ �p;

� if singular H then �� �� else �� �(�t=�t)� end;

subspace minimizer �t = 0;

hit constraint (� = �B);

if hit constraint then

Solve System 2 for z and �;

singular W (z = 0);

if singular W then

Swap ar and at;

!  �t=�t; �E  �E � !�E; �t  !;

subspace minimizer true;
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else

Add constraint with normal ar;

De�ne � aTr u=a
T
r z;

u u� �z; v  

0@ � � ��

�

1A; � 

0@ �

0

1A;
end;

else

Delete t-th row of W ;

end;

until optimal ;

4.3 Special Properties of the Standard Form

For the development of the Schur-complement (SC) method, the QP is assumed

to be of the form

minimize
x

 (x) = cTx+ 1
2
xTHx

subject to Ax � b; x � 0;

where H is positive semi-de�nite. The corresponding slack variable form is given

by

minimize
x;s

 (x) = cTx+ 1
2
xTHx;

subject to Ax� s = b; x � 0; s � 0;
(4.33)

where s are the slack variables. This form simpli�es the notation used in the

following sections, however, the results of these sections can easily be extended to

the general form given in (2.1).

So far, we have discussed the role of the working set matrix W without par-

ticular attention to the computational advantages that arise when the constraints

are in the standard form (4.33). Standard form allows the nonzero (\free") com-

ponents of the search direction to be computed using a matrix whose column

dimension is equal to the number of free variables (rather than the total number of

variables). To formalize this idea, assume that W is associated with a working set

containing only active constraints, and let nFR denote the number of free variables
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(i.e., corresponding to bounds not in W ), and let the subscript \FR" denote the

corresponding components of a vector or matrix. For example, AFR denotes the

m� nFR submatrix of columns of A corresponding to free variables. Similarly, the

subscript \FX" means the components corresponding to �xed variables (i.e., those

whose bounds are in the working set). (We shall henceforth switch freely between

the terminologies of \working sets" and \free/�xed variables".)

Since the rows of ( A � I ) are linearly independent, a working set will

include all the constraints Ax � s = b together with the gradients of a subset of

the nonnegativity constraints. Hence, we can always �nd a permutation P such

that

WP =

0BB@ AFR AFX

0 IFX

1CCA ; (4.34)

where AFR and AFX contain the columns of ( A � I ) corresponding to the free

and �xed variables respectively. In the notation of Chapter 2, AFX = N and

AFR = ( B S ).

Given this form of the working set, the symmetrically permuted version of

System 1 can be written as0BBBBBBBBBB@

HFR HOD AT
FR

0

HT
OD

HFX AT
FX

IFX

AFR AFX 0 0

0 IFX 0 0

1CCCCCCCCCCA

0BBBBBBBBBB@

uFR

uFX

�E

�X

1CCCCCCCCCCA
=

0BBBBBBBBBB@

0

0

0

et

1CCCCCCCCCCA
;

where HOD is the matrix of o�-diagonal mixed terms of the Hessian, and �E and �B

are elements of � corresponding to the general and bound constraints respectively.

Close inspection of these partitioned equations reveals that uFX = et and �B =

�AT
FX
�E �HT

OD
uFR � ht, where uFR and �E satisfy0BB@ HFR AT

FR

AFR 0

1CCA
0BB@ uFR
�E

1CCA = �

0BB@ ht

at

1CCA : (4.35)
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This system, which is analogous to System 1, preserves the two-by-two block struc-

ture of the KKT matrix, but only involves the free variables.

Now we turn to System 2. The symmetrically permuted system is0BBBBBBBBBB@

HFR HOD AT
FR

0

HT
OD

HFX AT
FX

IFX

AFR AFX 0 0

0 IFX 0 0

1CCCCCCCCCCA

0BBBBBBBBBB@

zFR

zFX

�E

�X

1CCCCCCCCCCA
=

0BBBBBBBBBB@

er

0

0

0

1CCCCCCCCCCA
;

where the elements of �E and �B match the general and bound constraints as above.

These equations give zFX = 0 and �B = �HT
OD
uFR�AT

FX
�E, where uFR and �E satisfy0BB@ HFR AT

FR

AFR 0

1CCA
0BB@ zFR

�E

1CCA =

0BB@ er

0

1CCA : (4.36)

This is the \free-variable form" of System 2.

4.4 Schur Complement QP

Schur-complement QP methods are based on the properties of certain block-

bordered linear systems. Consider the nonsingular block two-by-two system0BB@ K0 V

V T D

1CCA
0BB@ y1

y2

1CCA =

0BB@ f1

f2

1CCA ; (4.37)

where K0 and D are symmetric. This system can be solved using factorizations of

K0 and C, the Schur complement of K0:

C � D � V TK�1
0 V; (4.38)

(see, e.g., Bisschop and Meerhaus, [1, 2]; Gill et al., [17]). To show this, we write0BB@ K0 V

V T D

1CCA =

0BB@ K0 0

V T I

1CCA
0BB@ I W

0 C

1CCA ;
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where W satis�es K0W = V . A simple calculation gives0BB@ K0 0

V T I

1CCA
0BB@ z1

z2

1CCA =

0BB@ f1

f2

1CCA ;
0BB@ I W

0 C

1CCA
0BB@ y1
y2

1CCA =

0BB@ z1

z2

1CCA ;
and the following equations are solved in turn:

K0z1 = f1

z2 = f2 � V T z1

Cy2 = z2

K0y1 = f1 � V y2 or y1 = z1 �Wy2

(4.39)

It will be shown in the next section that solutions of System 1 (4.35) and

System 2 (4.36) can be de�ned in terms of a block two-by-two matrix of the form

(4.37). Moreover, at each iteration, a column is added to V and a row and column

are added to D. This results in the addition of a single row and column to the

Schur complement C. To show this, we write the associated KKT system as0BB@ K0
�V

�V T �D

1CCA ; where �V =
�
V v

�
and �D =

0BB@ D d

dT �

1CCA : (4.40)

(The de�nitions of v, d and � depend on the nature of the change in the working

set.) The new Schur complement �C for (4.40) is given by

�C = �D � �V TK�1
0

�V =

0BB@ D d

dT �

1CCA�
0BB@ V T

vT

1CCAK�1
0

�
V v

�
: (4.41)

Comparison of this identity with (4.38) reveals that the Schur complement is bor-

dered by a single row and column;

�C =

0BB@ C c

cT �

1CCA ; (4.42)

where

K0q = v; c = d � V Tq and � = � � vTq: (4.43)

Note that a solve with K0 is needed to update C.
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4.4.1 The Schur Complement Update

To illustrate the application of the Schur-complement method to convex QP, we

consider a sequence of intermediate iterates, starting at a non-optimal subspace

minimizer (x0; s0). Let K0 denote the KKT matrix of free variables at (x0; s0),

with

K0 =

0BB@ H0 AT
0

A0 0

1CCA ;
where A0 and H0 denote the free rows and columns of ( A �I ) and H. If variable

t0 is moved away from its bound at (x0; s0), it is necessary to solve System 1 (4.35)

at (x0; s0), i.e., 0BB@ H0 AT
0

A0 0

1CCA
0BB@ u0

�0

1CCA = �

0BB@ ht0
at0

1CCA ;
where ht0 and at0 denote the t0-th columns of H and ( A � I ). The vector u0 is

used to de�ne p0.

Assume that the next iterate (x1; s1) is intermediate, with variable r1 blocking

at (x1; s1) = (x0; s0) + �0p0. In this case, u1 and �1 are found by updating the

vectors u0 and �0 using z1 and �1 de�ned by System 2 (4.36), i.e.,0BB@ H0 AT
0

A0 0

1CCA
0BB@ z1

�1

1CCA =

0BB@ er1
0

1CCA :
Once u1 is known, the new iterate (x2; s2) = (x1; s1) +�1p1 is calculated using the

direction p1.

So far, all the systems to be solved have been in terms of K0. At (x1; s1),

however, the set of free variables will either increase or decrease, thereby increasing

or decreasing the the dimension of the underlying KKT system changes. The two

alternative cases will be considered separately.

First, assume that (x2; s2) is also intermediate, with variable r2 blocking. One

obvious way to proceed would be to rede�ne the set of �xed and free variables and



95

solve System 2 (4.36) with right-hand-side er2 for z2 and �2. This method would

need to e�ciently solve a KKT system that varies in composition and size as the

set of �xed and free variables changes. In contrast, we now show that the special

nature of these changes allows us to de�ne an algorithm in which the solution

of (4.35) and (4.36) may be obtained during k successive iterations using a �xed

sparse factorization of K0, and a dense factorization of the Schur complement of

(at most) order k.

We return to the calculation of z2 and �2 from System 2 (4.36). Consider the

system 0BBBBBB@
H0 AT

0 er1

A0 0 0

eTr1 0 0

1CCCCCCA

0BBBBBB@
z02

�02

�0r1

1CCCCCCA =

0BBBBBB@
er2

0

0

1CCCCCCA :

Every component of z02 is a component of z2 except the r2th, which has been forced

to be zero. The variable �0r1 appears only in the r1th equation, which is redundant.

Observe that the matrix of this system has the form

K1
4
=

0BB@ K0 er1

eTr1 0

1CCA ; (4.44)

which has the bordered structure (4.37). Solutions with K1 can be determined

using the Schur complement of K0 in K1.

Once z2 and �2 are computed, they are used to de�ne new vectors u2 and �2

and to de�ne the Schur complement update for

K2 =

0BB@ K1 er2

eTr2 0

1CCA
(cf . (4.41)). Subsequent intermediate iterates are treated the same way, i.e., after

each step to an intermediate iterate, the KKT matrix is bordered by a row and

column of the identity matrix.
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Now suppose that (x2; s2) = (x1; s1) + �1p1 is a subspace minimizer instead

of an intermediate iterate. In this case, variable t0 is added to the list of free

variables, which implies that the Schur complement for the bordered matrix0BBBBBBBBBB@

H0 AT
0 er1 ht0

A0 0 0 at0

eTr1 0 0 0

hTt0 aTt0 0 ht0;t0

1CCCCCCCCCCA
is computed from the Schur complement of (4.44). Given a new variable t2 to be

moved from its bound, the new values of u and � are determined from the system0BBBBBBBBBB@

H0 AT
0 er1 ht0

A0 0 0 at0

eTr1 0 0 0

hTt0 aTt0 0 ht0;t0

1CCCCCCCCCCA

0BBBBBBBBBB@

u02

�02

�0r1

u0t0

1CCCCCCCCCCA
= �

0BBBBBBBBBB@

(ht2)0

at2

0

ht0;t2

1CCCCCCCCCCA
;

where (ht2)0 denotes the elements of the t2th column of H that correspond to the

list of free variables at (x0; s0).

We have shown that at each iteration, the free-variable KKT system is bordered

by a single row and column. When a variable is �xed on its bound, this column

is a column of the identity. When a variable is added to the free list, the column

is formed from the free elements of a row and column of H and a column of

( A � I ).

A typical iteration requires three solves with K0: two solves to obtain the

solution of System 1 or 2, and one solve to update the Schur complement. However,

if the vectors of the form

K�1
0

0BB@ ht

at

1CCA and K�1
0

0BB@ er

0

1CCA
are stored as they are computed, only one solve with K0 is required at each step.
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4.4.2 Algorithmic Details

When a variable (x; s)j changes state, there are only three possible changes:

free ! �xed,

�xed ! t;

t ! free.

The notation ! t implies that (x; s)j becomes the t-th variable, and t! implies

that the t-th variable is changing state.

Initially t = 0, so all the variables are either free or �xed. For all possible

relative states to K0, Table 4.1 indicates the e�ect on the size of C, and the value

of t, when each of these states is encountered.

Table 4.1: The change in value of t and size of C for active-set updates

For (x; s)j initially free size of C value of t

1. free! �xed increases by 1 no change
2. free! �xed ! t no change t j

3. free! �xed ! t! free decreases by 1 t 0

For (x; s)j initially �xed

4. �xed! t no change t j

5. �xed! t! free increases by 1 t 0
6. �xed! t! free! �xed decreases by 1 no change

If (x; s)j hits its bound, and j 6= t, then a free variable is becoming �xed. If the

variable was originally �xed (6), then the row and column associated with freeing

the j-th variable can be deleted from C. If the j-th variable was originally free

(1), then a row and column must be added to C. This corresponds to expanding

V and D as given in (4.40), where, if the r-th free variable is being �xed, v = er,

d = 0 and � = 0. In either case, there is no change to t.

At a stationary point, if (x; s)j is to be freed, it is �rst held as the next variable

to be deleted (�xed ! t, (2, 4)). If the current t = 0, as it is initially and after it

has been reset, there is no change to C. Otherwise, there must be a corresponding

t! free change to �rst delete the current t-th variable. Depending on the status
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of the t-th variable at (x0; s0), the size of C either increases (5) or decreases (3) by

an associated row and column. For an increase in the size of C, the extensions to

V and D are given by by,

v =

0BB@ (ht)FR

at

1CCA ; (4.45)

where at is the t-th column of ( A �I ), and (ht)FR is de�ned by the free variables

at the initial point (x0; s0). The vector d is given by

d = (ht)FR; (4.46)

where (ht)FR is de�ned by the variables freed during iterations 1; : : : ; j � 1. The

scalar � = htt. In all cases, the value of t is updated to j, t j.

The update to C for the addition of a row and column is given by (4.42) and

(4.43). The updated LU factors of C will be of the form

�L =

0BB@ L 0

lT 1

1CCA and �U =

0BB@ U u

0 �

1CCA ; (4.47)

where here l and u are the new row of L and column of U respectively. Setting

�L �U = �C, substituting from (4.47) and comparing sides, indicates that l, u and �

can be calculated by

Lu = c;

Ul = c;

� = � � lTu:

(4.48)

Now consider the update to C that deletes a row and column. Let C be de�ned

by 0BBBBBB@
C11 c1 C12

cT1 
 cT2

CT
12 c2 C22

1CCCCCCA =

0BBBBBB@
L11

lT1 1

L21 l2 L22

1CCCCCCA

0BBBBBB@
U11 u1 U12

� uT2

U22

1CCCCCCA ; (4.49)
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and let the row and column to be deleted be associated with c1, c2 and 
. The

updated LU factors of �C are given by

�C =

0BB@ C11 C12

CT
12 C22

1CCA =

0BB@ L11

L21 L22

1CCA
0BB@ U11 U12

�U22

1CCA ; (4.50)

where �U22 satis�es

L22
�U22 = L22U22 + l2u

T
2 : (4.51)

The implementation requires two extra vectors, i0 2 IRn+m de�ned by

(i0)j =

8<: +1 if (x; s)j is free at (x0; s0);

�1 if (x; s)j is �xed at (x0; s0);

and isc with

(isc)j =

8<: +r if (x; s)r was freed for column j of C;

�r if (x; s)r was �xed for column j of C;

for j = 1; : : : ; k, where the dimension of C is k�k. If nc is the maximumdimension

of C allowed, then isc 2 IRnc.

When (x; s)r hits a bound, and C must be updated, a check can be done to see

if r = j(isc)jj for some j. If not, then a new row and column is added to C, and

(isc)k+1 = �r:

Otherwise, the j-th row and column of C are deleted, and the j-th element of isc

is deleted as well. The value of t remains unchanged.

If the current point is a subspace minimizer (i.e., p = 0), then a check is made

to see if t 6= 0. If t is nonzero, then a check is �rst made to see if t = j(isc)jj for

some j. If j 6= 0 then the j-th row and column of C are deleted, as is the j-th

element of isc. If t is not part of the Schur complement (i.e., j = 0), then a row

and column are added to C, and

(isc)k+1 = +t:
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In both cases, t is temporarily reset to 0.

At a subspace minimizer, if t = 0 (including after the update to free the t-th

variable), the value of t needs to be updated. If the r-th variable is chosen to be

the new t-th variable, then t  r. A check can be made to see if r = j(isc)j j for

some j. If j 6= 0, then the j-th element of isc can be ignored in extracting the

solution of the linear systems. If j = 0, then isc is una�ected. There is no e�ect

on C for setting the new t.

Then, i0 and isc can be used to reconstruct the solution of0BB@ H W T

W 0

1CCA
0BB@ u

�

1CCA =

0BB@ 0

et

1CCA
from (4.37). The initial values of u and � can be set using i0 and y1, then while

stepping through isc the appropriate changes can be made using elements of y2

to overwrite elements of u and � depending on if isc is positive or negative. If

(isc)j = t, then the j-th element of q is ignored. A similar approach can be used

to unscramble the solution of System 2.

4.5 Using an `2 Penalty Objective Function

For the SC method described in the previous sections, it was assumed that

an initial subspace minimizer was available. Thus, a constraint was deleted at

(x0; s0). Of course, in general this will not be true. A system of the form (4.23)

can be solved for a given (x0; s0), and the solution will yield a search direction p0

such that (x0; s0) + p0 is a subspace minimizer. However, for problem (4.33) the

point (x0; s0)+p0 may not be feasible. In this section, a method using a composite

objective function is derived to address the case when (x0; s0) + p0 is not feasible.

A two-phase approach such as that used in SQOPT could be used, where the �rst

phase minimizes the sum of infeasibilities. Since the �rst phase is a linear program,

the solution is generally a vertex solution. For problems where the number of

degrees of freedom is large, this can imply a large number of changes to the active
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set during the �rst subproblem. For an SC method this would be disastrous since

the size of the dense LU factors of C usually increases for each change to the active

set.

A method that avoids this disadvantage uses a composite objective function in

which the objective function  (x) is augmented by a penalty term involving the

constraint violations. This composite objective is of the form

minimize
x

 (x) + �kvk; (4.52)

where k:k is an appropriate norm, � is a large positive constant and v represents

the constraint violations of the linear constraints and variable bounds at x. The

approach developed in this section is to use the SC method to minimize the com-

posite objective function subject to the original constraints. If v = 0 at some point,

then the penalty term can be dropped. If the composite objective is minimized at

a point where v 6= 0, then the original QP is infeasible or � must be increased.

4.5.1 Selecting the Penalty Norm

As mentioned in Section 1.1.4, the method of SNOPT uses a composite objective

function when the QP subproblem is infeasible or unbounded. The algorithm enters

elastic mode, where the objective is modi�ed as in (4.52), using the `1 norm for

the constraint violations.

The general form for the KKT system of the modi�ed subproblem is given by0BBBBBB@
H 0 W T

0 0 I

W I 0

1CCCCCCA

0BBBBBB@
p

pv

��

1CCCCCCA = �

0BBBBBB@
g

�e

0

1CCCCCCA ; (4.53)

where pv is the search direction for the constraint violations. The form of the KKT

matrix in (4.53) implies that the working set matrixW is still linearly independent.

In the case of SNOPT, where the composite objective is used when the algorithm

enters elastic mode, the working set is already linearly independent.
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As a step is taken along the QP search directions derived from (4.53), con-

straints change from being violated to being on one of their bounds. As the step

increases, a constraint that moved onto one of its bounds will become satis�ed.

Thus, it is not always necessary to compute a new search direction. Instead, the

search can continue along the same search direction, with the previously violated

constraint now satis�ed. This is repeated until a satis�ed constraint is about to

go infeasible, or until the minimizer of the composite objective is found along the

search direction. A change to the working set only occurs for the variable �xed at

the last step. The other variables go from being violated to satis�ed, but remain

free.

For illustration, consider the simple example of

minimize
x

cTx+
1

2
xTHx; subject to x � bl;

where cT = (1; 1; 1; 1), bl = (0:8; 1:6; 2:4; 3:2)T , � = 10 and

H = 10�1 �

0BBBBBBBBBB@

4 3 2 1

3 4 3 2

2 3 4 3

1 2 3 4

1CCCCCCCCCCA
:

At x0 = 0, all the bounds are violated. Let the search direction p = e, where

e is a vector of all ones. The plot of the original objective and the `1 penalty

objective along p are shown in Figure 4.1. The break points, i.e., the points where

the derivative is discontinuous, of the `1 penalty function along p are evident as

each bound becomes satis�ed. When the �nal bound on x4 becomes satis�ed, at

� = 3:2, the composite and original objective functions are the same. The `1

objective is minimized at the third break point, with � = 2:4. The algorithm

would continue the search along p up to this point, where the bound on x3 would

be added to the working set. Both x1 and x2 would remain free, however, their

associated bound constraints would no longer be violated. The remaining variable,

x4, remains free with its bound still violated.
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Figure 4.1: A plot of q(x) (solid line), and q(x) + kvk1 (dashed line) along the search

direction p. Note that once � � 3:2 all the bounds are satis�ed and the two functions

are the same. The penalty function is minimized where � = 2:4, thus only the bound on

(x)3 is added to the working set.
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For the SC method, a phase 1 approach can be used to �nd an initial feasi-

ble point, and a composite objective used for infeasible or unbounded problems.

This two-phase approach can be de�ned with the phase 1 Hessian consisting of an

identity matrix associated with the sum of infeasibilities, and the phase 2 Hessian

being H. However, this strategy has two major disadvantages for a SC method.

First, the transition from phase 1 to phase 2 requires the initial K0 to be refac-

torized. Moreover, the phase 1 solution is often a vertex solution. Therefore, for

problems with a large number of degrees of freedom, many working set changes are

required to free variables from their bounds. This can cause the size of the Schur

complement to grow very rapidly, forcing K0 to be factorized many times.

To avoid the disadvantages of a two-phase approach on an SC method, a com-

posite objective can be used initially. Thus, the algorithm starts in elastic mode,

without the bene�t of a previously determined linearly independent working set.

The modi�ed subproblem, using the `2 penalty term, is given by

minimize
x;s

cTx+ 1
2
xTHx+ �

2
kvk22;

subject to Ax� s = b;

x � 0; s � 0; v � 0;

(4.54)

where v represents the violations of the bounds on (x; s). The general form of the

KKT system for problem (4.54) is given by0BB@ H W T

W �1
�
I

1CCA
0BB@ p

��

1CCA = �

0BB@ g

�v

1CCA : (4.55)

Note that the search direction for the constraint violations is dependent on both

v and � (see Section 4.5.2). In addition, the constraints in the working set do not

have to be linearly independent.

It can be shown for the `1 penalty function, that there exists a ��, such that for

� > ��, the solution of the composite objective is a solution of the original problem.

Thus, the `1 penalty function is often referred to as the \exact" penalty function.

A disadvantage of the `2 penalty function is that the solutions with the penalty and
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original objectives are only the same as �!1. Therefore, the penalty parameter

must be made very large to get an accurate solution of the original problem. If

the working set is not full rank, the KKT matrix becomes more ill-conditioned as

�!1.

Another disadvantage of using the `2 penalty function is that minimizing the

composite objective function for a given search direction requires updates to the

Schur complement. In SNOPT, when using the `1 penalty function, no working

set updates are required at the intermediate break-points. For the SC method,

with the `2 penalty function, even though the search direction remains the same,

updates to the Schur complement are required as each break-point is encountered

(see Section 4.5.6). On the other hand, the `2 penalty function is a piecewise

quadratic, with continuous �rst derivatives. Thus, the minimizer along a given

search direction will usually occur between break points.

A picture of the di�erent objective functions for the previous simple example is

given in Figure 4.2. The continuity of the �rst derivatives of the `2 penalty function

along p are evident. The `2 objective is minimized between the second and third

break points. The algorithm continues along p until this point point is reached,

at which no change is required to the working set. Both x1 and x2 would remain

free, however, their associated bound constraints would no longer be violated. An

update to the Schur complement is required as each variable changes from being

violated to being satis�ed. The remaining variables, x3 and x4, remain free with

their bounds violated.

4.5.2 Deriving the KKT System

The (n +m)-vector v of constraint violations is de�ned by

v =

0BB@ �Ixx
�Iss

1CCA ; (4.56)
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Figure 4.2: A plot of q(x) (solid line), q(x)+ kvk1 (dashed line) and q(x)+ kvk22 ( dash-
dot line) along the search direction p. Note that once � � 3:2 all the bounds are satis�ed

and all the functions are the same. The `2 penalty function is minimized between the

second and third break points.
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where Ix is a diagonal matrix whose entries are

Ixii =

8<: 0 if (x)i � 0;

1 if (x)i < 0:

The matrix Is is similarly de�ned for the slack variables. Both Ix and Is are

symmetric and idempotent, thus the problem (4.54) can be stated more precisely

as
minimize

x;s
cTx+ 1

2
xTHx+ �

2
xTIxx+ �

2
sT Iss

subject to Ax� s = b; x � 0; s � 0:
(4.57)

Let ( A � I )P = ( AFR AFX Isv ), where P is a permutation matrix.

The columns of AFR correspond to variables such that xi 6= 0 and si > 0. If

(x; s)j = 0 then the j-th column of ( A � I ) is in AFX . The matrix Isv consists

of the nonzero columns of Is corresponding to the violated slacks (si < 0). The

working-set matrix W satis�es

WP =

0BB@ AFR AFX �Isv

0 IFX 0

1CCA ;
where IFX is an identity matrix with the same number of columns as AFX . By an

appropriate permutation, the KKT system for (4.57) is equivalent to0BBBBBBBBBBBBBB@

HFR + �Ixs HOD 0 AT
FR

0

HT
OD

HFX 0 AT
FX

IFX

0 0 �I (�Isv)
T 0

AFR AFX �Isv 0 0

0 IFX 0 0 0

1CCCCCCCCCCCCCCA

0BBBBBBBBBBBBBB@

pFR

pFX

pv

��E

��X

1CCCCCCCCCCCCCCA
= �

0BBBBBBBBBBBBBB@

gFR

gFX

gv

0

0

1CCCCCCCCCCCCCCA
: (4.58)

The vectors pv and gv are the search direction and objective gradient corresponding

to the violations of the slack variables. The matrix Ixs is de�ned similar to AFR

with columns from Ix and Is. If (x)i 6= 0 then the i-th column of Ix is in Ixs , and

if (s)j > 0 then the j-th column of Ixs is a zero column of appropriate dimension.
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If the SC method is applied to (4.57), then the solution of Systems 0 , 1 and 2 ,

and the updates to the Schur complement, must be de�ned for the KKT system

(4.58).

4.5.3 Solving System 0

The system (4.58) can be reduced to a KKT system in the free variables given

by 0BB@ HFR + �Ixs AT
FR

AFR �1
�
Is

1CCA
0BB@ pFR

��E

1CCA = �

0BB@ gFR

Iss

1CCA : (4.59)

When the system is solved at the initial point for System 0, the matrix in (4.59)

is the initial K0 for the SC method. If pFR and �E are the solution of (4.59) at the

initial point, then the required �0 can be recovered from �E and

�X = gFX +HT
OD
pFR �A

T
FX
�E:

In addition, p0 can be obtained by permuting pFR, pFX and pv, where pFX = 0 and

pv = �(I
s
v)

T (s+
1

�
�E):

4.5.4 Solving System 1

The solution of System 1 is derived from the KKT based system (4.24). From

the KKT system (4.58), the solution of System 1 for problem (4.57) can be calcu-

lated by �rst solving0BB@ HFR + �Ixs AT
FR

AFR �1
�
Is

1CCA
0BB@ uFR

�E

1CCA = �

0BB@ (ht)FR

at

1CCA ; (4.60)
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for uFR and �E. Then uv, uFX , (u)t, �X and (�)t are given by

uv = �1
�
(Isv)

T�E;0BB@ uFX

(u)t

1CCA =

0BB@ 0

1

1CCA ;
0BB@ �X

(�)t

1CCA = �

0BB@ HT
OD

(ht)
T
FR

1CCA uFR �
0BB@ (ht)FXbhtt

1CCA�
0BB@ AT

FX

aTt

1CCA�E:

(4.61)

where the de�nition of bhtt depends on if the t-th variable is a slack variable (bhtt = �

or 0), or an x variable (bhtt = htt + �Ixtt).

The reduced KKT system is not reformulated for each iteration. A system of

the form (4.37) is solved at each iteration, where K0 is the matrix in (4.60) at the

initial point (x0; s0). For the SC method there were only two cases for updates to

the Schur complement. Either a �xed variable was being freed, or a free variable

was being �xed. The same basic two cases exist for the modi�ed problem, however,

the updates are dependent on whether the a�ected variable is an x variable or a

slack variable. In the case of the slack variables, it also depends on if the free

variable is violated or satis�ed, or if the �xed variable is becoming violated or

satis�ed. The three distinct cases resulting from changes to the active set can be

explicitly de�ned by

CASE 1 { A �xed (x)j is freed, becoming satis�ed or violated; or a �xed (s)j is

freed, becoming satis�ed.

CASE 2 { A free, satis�ed or violated, (x)j is �xed; or a free satis�ed (s)j is �xed.

CASE 3 { A �xed (s)j is freed, becoming violated; or a free violated (s)j is �xed.

The updates to Schur complement for each of the three cases are given in Section

4.5.6.
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The vectors y1 and f1 in (4.37) for System 1 are de�ned by y1 = [uFR �E]
T

and f1 = [(ht)FR at]
T , where uFR, �E and (ht)FR are all de�ned at the initial point.

The elements of y2 and f2 are de�ned for the k-th iteration by

(y2)k =

8>>>><>>>>:
(u)j for CASE 1,

(�)j for CASE 2,

(y2)j for CASE 3,

and

(f2)k =

8<: hjt for CASE 1,

0 for CASE 2 and CASE 3.

The element (y2)j is not part of the current uFR or �E, but is a working variable

needed to de�ne a rank-one update to Is in SC form (see Section 4.5.6).

4.5.5 Solving System 2

The solution of System 2 for problem (4.57) requires solving (4.25) with the

matrix in (4.58). By appropriate permutation, the system is equivalent to

0BBBBBBBBBBBBBBBBBBBBB@

HFR + �Ixs HOD (ht)FR 0 AT
FR

0 0

HT
OD

HFX (ht)FX 0 AT
FX

IFX 0

(ht)
T
FR

(ht)
T
FX

bhtt 0 aTt 0 1

0 0 0 �I (�Isv)
T 0 0

AFR AFX at �Isv 0 0 0

0 IFX 0 0 0 0 0

0 0 1 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBBBBBBB@

zFR

zFX

(z)t

zv

�E

�X

(�)t

1CCCCCCCCCCCCCCCCCCCCCA

=

0BBBBBBBBBBBBBBBBBBBBB@

eFR

0

0

ev

0

0

0

1CCCCCCCCCCCCCCCCCCCCCA

:

The right-hand side of this system is always a unit vector corresponding to the

bound constraint of the free variable that has stepped onto its bound. Thus, if a

violated slack variable has stepped onto its bound, ev is a unit vector and eFR = 0.

Otherwise, ev = 0 and eFR is a unit vector.
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The associated reduced system for zFR and �E is0BB@ HFR + �Ixs AT
FR

AFR �1
�
Is

1CCA
0BB@ zFR

�E

1CCA =

0BB@ eFR

1
�
ev

1CCA ; (4.62)

and zv, zFX , (z)t, �X and (�)t are computed via

zv = 1
�
( (Isv)

T�E � ev )0BB@ zFX

(z)t

1CCA =

0BB@ 0

0

1CCA ;
0BB@ �X

(�)t

1CCA = �

0BB@ HT
OD

(ht)
T
FR

1CCA zFR �
0BB@ AT

FX

aTt

1CCA �E:

(4.63)

The algorithm starts with (4.62) at the initial point, and a bordered system of

the form (4.37) is used to solve subsequent systems. The vector y1 = [zFR �E]
T at

(x0; s0), and the elements of y2 for the k-th iteration de�ned by

(y2)k =

8>>>><>>>>:
(z)j for CASE 1,

(�)j for CASE 2,

(y2)j for CASE 3.

The right-hand side [f1 f2]
T is always a unit vector, (or a multiple of a unit

vector, i.e. 1
�
ev), corresponding to the variable that has hit its bound.

4.5.6 Updating the Schur Complement

When a variable changes state there are now �ve possible changes:

violated ! �xed,

satis�ed ! �xed,

�xed ! t;

t ! violated,

t ! satis�ed.
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The notation ! t implies that (x; s)j becomes the t-th variable, and t! implies

that the t-th variable is changing state. The notation violated represents a free

variable that is outside its bounds, and similarly satis�ed represents a free variable

within its bounds.

Table 4.2 corresponds to the e�ect on the dimension of C, and value of t, for

each of the relative states to K0. Initially t = 0, so all variables are either violated,

satis�ed or �xed.

Table 4.2: The change in value of t and size of C for active-set updates

For (x; s)j initially violated size of C value of t

1. violated ! �xed increases by 1 no change
2. violated ! �xed! t no change t j

3. violated ! �xed! t! violated decreases by 1 t 0
4. violated ! �xed! t! satis�ed increases by 1 t 0
5. violated ! �xed! t! satis�ed ! �xed decreases by 1 no change

For (x; s)j initially satis�ed
6. satis�ed ! �xed increases by 1 no change
7. satis�ed ! �xed! t no change t j

8. satis�ed ! �xed! t! satis�ed decreases by 1 t 0
9. satis�ed ! �xed! t! violated increases by 1 t 0
10. satis�ed ! �xed! t! violated! �xed decreases by 1 no change

For (x; s)j initially �xed

11. �xed ! t no change t j

12. �xed ! t! violated increases by 1 t 0
13. �xed ! t! satis�ed increases by 1 t 0
14. �xed ! t! violated ! �xed decreases by 1 no change
15. �xed ! t! satis�ed ! �xed decreases by 1 no change

If (x; s)j hits its bound, and j 6= t, then either a violated or satis�ed free

variable is becoming �xed. If the variable was previously �xed (5, 10, 14, 15), then

the row and column associated with freeing the j-th variable can be deleted from

C. If the j-th variable was originally free, then a row and column must be added

to C. For a satis�ed variable (6), or a violated (x)j (1, CASE 2), the corresponding

expansion to V and D given by (4.40) is de�ned by v = er, d = 0 and � = 0, where
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the r-th variable is being freed. If (x; s)j corresponds to a violated slack that is

becoming �xed (1, CASE 3), then the update to V and D is given by

v =
1
p
�
er; (4.64)

with d = 0 and � = �1. For all cases of a free variable becoming �xed, there is no

change to t.

As before, if (x; s)j is to be freed at a stationary point, it is �rst held as the

next variable to be deleted (�xed ! t, (2, 7, 11)). If the current t = 0, there is

again no change to C. Otherwise, there must be a corresponding t! violated (3,

9, 12), or t ! satis�ed (4, 8, 13), to �rst delete the current t-th variable. If the

t-th variable is returning to the state it had at (x0; s0), then C decreases in size

by a row and column (3, 8). However, if the t-th variable was originally �xed (12,

13), or if the new state di�ers from the state at (x0; s0) (4, 9), then C increases by

a row and column. The de�nition of v, d and � for the update depend on if the

t-th variable is in x or s, and if it is becoming satis�ed or violated .

If the t-variable is becoming satis�ed, then v and d are given by (4.45) and

(4.46) respectively, and the scalar is de�ned by � = htt as before. If (x; s)t = (x)t,

and (x)t is becoming violated, then v and d are also de�ned by (4.45) and (4.46),

but � = htt + �. Finally, if the t-th variable is a slack that is becoming violated,

then d = 0, v is given by (4.64) and � = 1. The value of t is updated to j, t j,

for all cases.

4.5.7 Algorithmic Details

The updates for adding and deleting rows and columns of C are the same as

those given in Sections 4.4.1{4.4.2.

For the `2 formulation, the implementation requires three extra vectors instead
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of the two needed in Section 4.4.2. These are de�ned as i0 2 IRn+m with

(i0)j =

8>>>><>>>>:
+1 if (x; s)j is satis�ed at (x0; s0);

0 if (x; s)j is �xed at (x0; s0);

�1 if (x; s)j is violated at (x0; s0);

and isc
FR

with

(isc
FR
)j =

8>>>><>>>>:
+r if (x; s)r was becoming satis�ed for column j of C;

�r if (x; s)r was becoming violated for column j of C;

0 otherwise,

and isc
FX

with

(isc
FX
)j =

8>>>>>>>>>><>>>>>>>>>>:

+r if (x; s)r was �xed from being satis�ed for

column j of C;

�r if (x; s)r was �xed from being violated for

column j of C;

0 otherwise,

for j = 1; : : : ; k, where the dimension of C is k�k. If nc is the maximumdimension

of C allowed, then isc
FR
2 IRnc and isc

FX
2 IRnc. Here, the subscripts FR and FX do

not refer to a partition of the same vector, instead isc
FR

and isc
FX

are distinct vectors.

To update C when (x; s)r hits a bound (r 6= t), a check is made to see if

r = (isc
FR
)j for some j. If not, then a new row and column is added to C, and

(isc
FR
)k+1 = 0;

(isc
FX
)k+1 =

8<: +r if (x; s)r was satis�ed,

�r if (x; s)r was violated.

As mentioned above, the row and column added depend on if (x; s)r was a violated

slack ( r > n and (x; s)r < 0). This case is part of CASE 3 de�ned in Section 4.5.4,

therefore qk+1 is a dummy variable and will be ignored in extracting the solution

of the linear system. If j 6= 0, the j-th row and column of C are deleted, and the

j-th element of isc
FR

and isc
FX

are deleted as well. The value of t remains unchanged.
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If the current point is a subspace minimizer, a check is made to see if t 6= 0. If

t is nonzero, a check is made to see if t = j(isc
FX
)j j for some j. If j = 0, or if j 6= 0

and (isc
FX
)j and (i0)t are of opposite sign, then a row and column is added to C,

and

(isc
FR
)k+1 =

8<: +t if (x; s)t is becoming satis�ed,

�t if (x; s)t is becoming violated.

(isc
FR
)k+1 = 0;

The row and column added to C will depend on if t is a slack (t > n) that is

becoming violated. This case also corresponds to CASE 3 de�ned in Section 4.5.4,

thus qk+1 is a dummy variable and will be ignored. If j 6= 0, and (isc
FX
)j and (i0)t

have the same sign, the j-th row and column of C can be deleted, as well as the

j-th elements of isc
FX

and isc
FR
.

When t = 0 at a subspace minimizer (including after the update to free the t-th

variable), the value of t is reset to r (t r). A check is made to see if r = j(isc
FX
)jj

for some j. If j 6= 0 then (isc
FX
)j is ignored in extracting the solution of the linear

systems. Otherwise, isc
FX

is una�ected. There is no update to C for reseting the

value of t.

To extract the correct u and �, the initial values can be set using i0 and y1.

By stepping through isc
FX
, the appropriate changes can be made to �. If isc

FX
= 0, or

(isc
FX
)k < 0 and j(isc

FX
)kj > n, then (y2)k is ignored in updating �. Similarly, u can

be updated by stepping through isc
FR
. If (isc

FR
)k = 0, or (isc

FR
)k < 0 and j(isc

FR
)kj > n,

then (y2)k is ignored. Additionally, if j(isc
FR
)kj = t, then the k-th element of q is

ignored. A similar approach can used to unscramble the solution of System 2.
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