
NOVEL GRADIENT-TYPE
OPTIMIZATION ALGORITHMS

FOR
EXTREMELY LARGE-SCALE

NONSMOOTH CONVEX
OPTIMIZATION

Research Thesis

Submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

Elena Olvovsky

SUBMITTED TO THE SENATE OF THE TECHNION - ISRAEL
INSTITUTE OF TECHNOLOGY

TAMUZ 5765 HAIFA JANUARY 2005

The Research Thesis Was Done under the Supervision of Prof.
Alexander Ioffe, Arie Leizarowitz (Faculty of Mathematics) and Prof.

Arkadi Nemirovski (Faculty of Industrial Engineering and
Management).

THE GENEROUS FINANCIAL HELP OF THE TECHNION IS
GRATEFULLY ACKNOWLEDGED.

Contents

Abstract 1

Notation 3
List of Symbols . 3
List of Abbreviations . 5

1 Introduction 6
1.1 Large-Scale Convex Optimization via polynomial time methods: ad-

vantages and limitations . 6
1.2 Gradient-type methods for large-scale convex optimization: advan-

tages and limitations . 7
1.2.1 Black-box-represented convex problems and their information-

based complexity . 7
1.2.2 Information-Based Complexity of Convex Optimization 9
1.2.3 Intermediate conclusions . 12

1.3 Gradient-type methods for large-scale optimization: state of the art . 12
1.3.1 The Mirror Descent scheme 14
1.3.2 Bundle-Mirror algorithm NERML 19

1.4 Overview of results . 26

2 Incremental implementation of NERML 28
2.1 Polyhedral sets and their polyhedral representations 29
2.2 INERML algorithm . 31
2.3 Implementation . 37
2.4 Convergence analysis . 39

3 Problems with functional constrains 44
3.1 Preliminary remarks and notations 44
3.2 Constrained NERML: a description 46
3.3 Constrained NERML: convergence analysis 50
3.4 Constrained NERML: incremental version 54

2

4 Conclusions 55

References 57

Abstract

In this work we develop new gradient-type methods for solving extremely large-scale
convex optimization problems. This type of problems arises in many applications,
e.g., medical imaging, design of mechanical structures, hard combinatorial problems,
etc.

Up to the present moment, the common belief is that the best tools for solving
large-scale “well-structured” convex problems are Polynomial Time Interior Point
methods. The most attractive feature of these algorithms is their computational ef-
ficiency : the computational effort sufficient to find an ε-solution is proportional to
the “number of accuracy digits” with the proportionality coefficient growing poly-
nomially with the design dimension of the problem. This property means rapid
convergence in terms of the number of calculations of the solution approximation
(iterations). This provides for the possibility to get high-accuracy solutions. How-
ever, all known polynomial time algorithms share a common drawback: the com-
putational effort per iteration grows nonlinearly with the design dimension of the
problem. The modern computational facilities rule out processing of nonlinear con-
vex algorithms employing the Interrior Point Methods for design dimensions of 105

order of magnitude and above.
In our research we address very large scale optimisation problems. The above

mentioned limitation of Interrior Point methods requires exploration of alternatives.
A less common approach is to use the so called ”Black-Box” represented techniques.
These techniques exhibit dimension-independent (or nearly dimension-independent)
and nearly optimal, in the sense of Information-Based Complexity Theory, rate of
convergence. Work on these simple gradient-type methods for convex optimiza-
tion was inspired by the Unconstrained Gradient Descent algorithm of N. Shor and
B. Polyak. Recently Non-Euclidean Restricted Memory method (NERML) was in-
troduced by A. Ben-Tal and A. Nemirovskii. This novel subgradient-type technique
is adjustable for the ”geometry” of the problem to be solved and also capable to
utilize information gathered about the function in previous iterations.

We address the two problems which arise in the application of NERML.
First, we provide an incremental implementation of NERML. This implementa-

tion has an added benefit (over incremental implementations of other algorithms)

1

of addressing a wide range of practical problems. In real life applications the ob-
jective function possesses certain specific structure. For instance, in Tomography
Image Reconstruction, the objective is the sum of relatively simple functions, and
the number of these functions is very large. In Shape Design, the objective function
takes the form of the maximum of several other functions. The existing incremental
methods adressed only the ”sum of functions” case, specific to image reconstruction.
We address the more general case of composed function. To be precise, in our work
we develop Incremental implementation of Non-Euclidean Restricted Memory Level
Method aimed to solve optimization problems of minimizing composed nondecreas-
ing convex function of several convex functions. This implementation is based on the
idea of dividing the set of inner functions into subsets and processing these subsets
incrementally, one at a time.

Second, we broaden Non-Euclidean Restricted Memory Level Method to solve
problems with functional constraints in such a manner that it can be used in the
conjunction with the Incremental implementation.

For both Incremental and Constrained algorithms, we prove convergence and
estimate efficiency.

2

Notation

List of Symbols

Rn n-dimensional Euclidean space

X convex compact set, domain of the problem

x, y general elements in the space

O(·) order of complexity

f, g general symbols for function

B general method

xi search point

f ′ gradient or subgradient of f

xi approximate solution generated in course of i steps

P family of optimization problems

ComplP(ε) ε-complexity of P
‖ · ‖p standard p-norm on n-dimensional coordinate space

4(+)
n (full) n-dimensional simplex

∏
X (·) projector onto X

γ stepsize in the Subgradient Descent and Mirror Descent algorithms

〈·, ·〉 inner product

E Euclidean space

3

rintX relative boundary of X

ω(·) distance generating function

α constant of strong convexity

ωx(·) distance function associated with x

‖ · ‖∗ a norm conjugate to ‖ · ‖
Ω is equal to max

x,y∈X
[ω(y)− ω(x)− 〈y − x, ω′(x)〉]

L Lipschitz constant

L‖·‖(f) Lipschitz constant of f with respect to the norm ‖ · ‖
D‖·‖(X) diameter of set X with respect to the norm ‖ · ‖

σ regularization parameter used in the entropy function

Tr trace of matrix

Sn space of real symmetric matrices with Frobenius inner product

s phase

f s best found till phase s feasible solution

fs a valid lower bound on the optimal value of f , found till phase s

f∗ optimal value of f

cs s-th prox-center

ls s-th level

F model of f

t step

F ”outer” function in incremental implementation of NERML

x∗ optimal solution

4

List of Abbreviations

IPM Interior Point Methods

IBCT Information Based Complexity Theory

MD Mirror Descent

NERML Non-Euclidean Restricted Memory Level method

INERML Incremental NERML

5

Chapter 1

Introduction

1.1 Large-Scale Convex Optimization via polyno-

mial time methods: advantages and limita-

tions

The primary goal of our research is to develop new methods for solving extremely
large-scale convex optimization problems of the form

min
x
{f(x) : x ∈ X}, (1.1)

where X is a convex compact set in Rn with a nonempty interior and f is a contin-
uous convex function on X. Such problems arise in many applications, e.g., Medical
Imaging, design of mechanical structures, relaxations of difficult combinatorial prob-
lems, etc.

In order to outline the scientific background of our research and to motivate the
approach we have developed, we start with a brief overview of the state-of-the-art in
large-scale convex optimization. For the time being, the common belief is that the
best tools for solving large-scale “well-structured” convex problems are Polynomial
Time Interior Point methods (IPM’s) (see [34, 36, 7, 26, 35] and references therein),
and we start with addressing strong points and limitations of these techniques. The
most attractive feature of Interior Point algorithms is their polynomiality (theoret-
ical equivalent of “computational efficiency”): the computational effort sufficient to
find an ε-solution is proportional to the “number of accuracy digits” ln(1/ε), with the
proportionality coefficient growing polynomially with the sizes of the problem. From
the practical standpoint, polynomiality means rapid convergence in terms of the it-
eration count and thus – the possibility to get high-accuracy solutions. However, all
known polynomial time algorithms share a common drawback: the computational

6

effort per iteration grows nonlinearly with the design dimension n of the problem.
For example, in an IPM as applied to a typical nonlinear problem (1.1), the cost of
an iteration is O(n3). This phenomenon imposes limitations on the sizes of problems
which can be processed, in a realistic time, by polynomial time algorithms: with n
of order of 105 or more and the cost of an iteration like O(n3), just a single iteration
will last “forever”...

At the present state of our knowledge, design dimensions like 105 and more rule
out the possibility to process a nonlinear convex program by advanced polynomial-
time techniques and leave us, essentially, with just two options:

• techniques for unconstrained minimization of smooth convex functions (Con-
jugate Gradients, Quasi-Newton, etc.),

and

• subgradient-type techniques for constrained and/or nonsmooth convex opti-
mization.

In our research, we focused on constrained nonsmooth optimization and thus –
on subgradient-type techniques.

1.2 Gradient-type methods for large-scale convex

optimization: advantages and limitations

The primary motivation for our emphasis on gradient-type methods as a promising
tool for extremely large-scale optimization is given by the results of Information-
Based Complexity Theory, and we start with outline of these results.

1.2.1 Black-box-represented convex problems and their in-
formation-based complexity

As applied to nonlinear problems in the form of (1.1), all traditional optimization
techniques, including the gradient descent ones, assume complete a priori knowledge
of the domain X and thus – possibilities of “global” w.r.t. X operations, like pro-
jecting on X. In contrast to this, the objective is assumed “black-box-represented”
– the only source of information on f is given by a “First Order oracle” – a black-box
routine which, given on input a point x ∈ X, returns on output the value and a
subgradient of f at x. The main advantage of this assumption is its generality: it, in
a sense, is the weakest assumption on the “information base” of the solution process
under which large-scale convex optimization is still possible. In reality, when solving
(1.1), we usually possess more a priori information on f than the minimum required

7

to mimic the First Order oracle, and in this sense the assumption in question is too
pessimistic. However, the traditional optimization techniques are unable to utilize
“rich” a priory information on f , so that for these techniques the disadvantages of
the “black box” model of f are, essentially, irrelevant.

The Information-Based Complexity Theory (IBCT) postulates the black-box rep-
resentation of the objective in (1.1) and is aimed at finding limits of performance of
the corresponding optimization methods. Such a method B is defined as a collec-
tion of search rules which specify the subsequent search points x1 ∈ X, x2 ∈ X,...
where B asks the oracle to compute the values f(xt) and subgradients f ′(xt) of the
objective, along with a collection of generating rules which define the subsequent
approximate solutions x1 ∈ X, x2 ∈ X,... generated by the method. It is assumed
that t-th search rule can be an arbitrary deterministic function, taking values in X,
of the “information” It−1 = (f(x1), f

′(x1), ..., f(xt−1), f
′(xt−1)) accumulated prior

to the t-th step, while t-th generating rule can be an arbitrary deterministic function
of It.

In the IBCT, we fix a family P of optimization problems (1.1), all sharing a
common feasible domain X, so that a particular problem from the family can be
identify with the corresponding objective f , and ask what is the Information-Based
complexity of the family, where the central notion of the complexity is defined as
follows. Let ε > 0. We say that the ε-complexity ComplP(ε) of P is equal to N , if

– first, that there exists an optimization method B such that N -th ap-
proximate solution xN

B (f) generated by B as applied to instance f ∈ P
is, for every instance f ∈ P , ε-solution of the instance:

f(xN
B (f))−min

X
f ≤ ε;

– second, no solution method can solve all instances from P within ac-
curacy ε in less than N steps, i.e., for every integer M < N and every
optimization method B there exists an instance f ∈ P such that the
M -th approximate solution generated by B as applied to f is not an
ε-solution to the instance.

The function ComplP(ε) we have defined is called the information-based complexity
of P .

Informally speaking, ComplP(ε) can be treated as a lower bound on the com-
putational effort allowed to guarantee solving all instances from P within accuracy
ε by a black-box oriented optimization method. The information-based complex-
ity measures this effort in the number of required oracle calls (computations of f
and f ′) and pays no attention on the amount of computations required to process
the answers of the oracle (i.e., to compute the search and the generating rules).

8

Thus, the information-based complexity provides us with limits of performance of
black-box-oriented methods.

Remark 1.1 When defining the complexity, we have restricted ourselves with first
order black-box-oriented methods – those using only the values and the first order
derivatives of the objective. In principle, black-box-oriented methods can use deriva-
tives of the objective of higher order as well, which might reduce the complexity. It
turns out, however, that in the situations we are interested in this reduction does
not occur. In fact, the complexity bounds to follow remain valid when the First
Order oracle is replaced with an arbitrary local oracle reporting at least the first
order information. Here the notion of locality is defined as follows: an oracle is
called local, if for every query point x ∈ X and every pair of objectives f, g which
coincide in a neighbourhood of x, the answers of the oracle when asked at x about
f and about g are identical to each other.

1.2.2 Information-Based Complexity of Convex Optimiza-
tion

Main results on Information-based complexity of Convex Programming can be sum-
marized as follows [23]. Let X be a solid in Rn (a convex compact set with a
nonempty interior), and let P be the family of all convex functions on Rn normal-
ized by the condition

max
X

f −min
X

f ≤ 1. (1.2)

For this family,

C.1. Complexity of finding high-accuracy solutions in fixed dimension is indepen-
dent of the geometry of X. Specifically,

∀(ε ≤ ε(X)) : O(1)n ln
(
2 + 1

ε

) ≤ Compl(ε);
∀(ε > 0) : Compl(ε) ≤ O(1)n ln

(
2 + 1

ε

)
,

(1.3)

where

• O(1) are appropriately chosen positive absolute constants,

• ε(X) depends on the geometry of X, but never is less than 1
n2 , where n

is the dimension of X.

Note that the quantity ln(1/ε) can be though of as the number of accuracy
digits in an ε-solution; with this interpretation, (1.3) says that the “price”
of an accuracy digit is O(n) oracle calls (except, perhaps, for O(ln n) initial
accuracy digits which may be cheaper).

9

C.2. Complexity of finding solutions of fixed accuracy in high dimensions does de-
pend on the geometry of X. Here are 3 typical results:

(a) Let X be an n-dimensional box: X = {x ∈ Rn : ‖x‖∞ ≤ 1}. Then

ε ≤ 1

2
⇒ O(1)n ln(

1

ε
) ≤ Compl(ε) ≤ O(1)n ln(

1

ε
). (1.4)

(b) Let X be an n-dimensional ball: X = {x ∈ Rn : ‖x‖2 ≤ 1}. Then

n ≥ 1

ε2
⇒ O(1)

ε2
≤ Compl(ε) ≤ O(1)

ε2
. (1.5)

(c) Let X be an n-dimensional hyperoctahedron: X = {x ∈ Rn : ‖x‖1 ≤ 1}.
Then

n ≥ 1

ε2
⇒ O(1)

ε2
≤ Compl(ε) ≤ O(ln n)

ε2
(1.6)

(in fact, O(1) in the lower bound can be replaced with O(ln n), provided
that n >> 1

ε2
).

Since we are interested in extremely large-scale problems, the conclusions which we
can extract from the outlined results are as follows:

• C.1 is discouraging: it says that we have no hope to guarantee high accuracy,
like ε = 10−6, when solving large-scale problems with black-box-oriented methods;
indeed, with O(n) steps per accuracy digit and at least O(n) operations per step
(this many operations are required already to input a search point to the oracle),
the arithmetic cost per accuracy digit is at least O(n2), which is prohibitively large
for really large n. Note also that the above O(n2) is just a lower bound given by the
“over-optimistic” assumption that the computational effort per step is O(n). For
all known methods, a “remote” accuracy digit costs at least O(n) oracle calls and
at least O(n4) operations to process the answers of the oracle.

• C.2 is partly discouraging, partly encouraging. A bad news reported by C.2
is that when X is a box (which is the most typical situation in applications), we
have no hope to solve extremely large-scale problems in a reasonable time to a
guaranteed, even low, accuracy, since the required number of steps should be at
least of order of n. A good news reported by C.2 is that there exist situations where
the complexity of minimizing a convex function to a fixed accuracy is independent,
or nearly independent, of the design dimension. Of course, the dependence of the
complexity bounds in (1.5) and (1.6) on ε is very far from being polynomial in
ln(1/ε); however, this drawback is tolerable when we do not intend to get high
accuracy. Another drawback is that there are not that many applications where
the feasible set is a ball or a hyperoctahedron. Note, however, that in fact we can

10

save the most important for us upper complexity bounds in (1.5) and (1.6) when
requiring from X to be a subset of a ball, respectively, of a hyperoctahedron, rather
than to be the entire ball/hyperoctahedron. This extension is not costless: we should
simultaneously strengthen the normalization condition (1.2). Specifically, it turns
out [23, 7] that

C.3. The upper complexity bound in (1.5) remains valid when X ⊂ {x : ‖x‖2 ≤ 1}
and

P = P2
Lip = {f : f is convex and |f(x)− f(y)| ≤ ‖x− y‖2 ∀x, y ∈ X}.

When X is the unit Euclidean ball, or the intersection of this ball with the
nonnegative orthant, the lower complexity bound in (1.5) remains valid when
the family of all convex objectives satisfying (1.2) is replaced with P2

Lip.

C.4. The upper complexity bound in (1.6) remains valid when X ⊂ {x : ‖x‖1 ≤ 1}
and

P = P1
Lip{f : f is convex and |f(x)− f(y)| ≤ ‖x− y‖1 ∀x, y ∈ X}.

When X is the hyperoctahedron, or the intersection of this set with the non-
negative orthant (which is the simplex ∆+

n = {x ∈ Rn : x ≥ 0,
∑
i

xi ≤ 1}, or

the simplex ∆n = {x ∈ Rn : x ≥ 0,
∑
i

xi = 1}, the lower complexity bound in

(1.6) remains valid when the family of all convex objectives satisfying (1.2) is
replaced with P1

Lip.

A crucial good news which makes the complexity results C.3-4 worthy of practical
interest is that if a convex problem (1.1) is as required in C.3-4 and the domain X
of this problem is a simple set, then the (nearly) dimension-independent complexity
bounds in C.3-4 can be achieved by “cheap” gradient-type optimization techniques
– with computational effort per step reducing to a single oracle call plus O(n) opera-
tions to process the answer of the oracle. In light of this fact combined with C.3-4, we
have reasons to hope that under favourable circumstances cheap gradient-type tech-
niques are the techniques of choice for extremely large-scale nonsmooth/constrained
convex optimization.

We should understand, of course, how realistic are “favourable circumstances”
as stated in C.3-4. In this respect, the “ball-like” case mentioned in C.3 seems to
be rather artificial: the Euclidean norm associated with this case is a very natural
mathematical entity, but this is all one can say in its favour. For example, the
normalization of the objective in C.3 is that the Lipschitz constant of f w.r.t. ‖ · ‖2

is ≤ 1, or, which is the same, that the vector of the first order partial derivatives of

11

f should, at every point, be of ‖·‖2-norm not exceeding 1. In other words, “typical”
magnitudes of the partial derivatives of f should become smaller and smaller as the
number of variables grows; what could be the reasons for such a strange behaviour?
In contrast to this, the normalization condition imposed on f in C.4 is that the
Lipschitz constant of f w.r.t. ‖·‖1 is ≤ 1, or, which is the same, that the ‖·‖∞-norm
of the vector of partial derivatives of f is ≤ 1. In other words, the normalization
is that the magnitudes of the first order partial derivatives of f should be ≤ 1,
and this normalization is “dimension-independent”. Of course, in C.3 we deal with
minimization over subsets of the unit ball, while in C.4 we deal with minimization
over the subsets of the unit hyperoctahedron, a set which is much smaller than the
unit ball. However, there do exist problems in reality where we should minimize
over the standard simplex

∆n = {x ∈ Rn : x ≥ 0,
∑

x

xi = 1},

which indeed is a subset of the unit hyperoctahedron, or over much more complicated
sets (“spectahedrons”) allowing for complexity bounds similar to (1.6).

1.2.3 Intermediate conclusions

The discussion above suggests that when solving extremely large-scale convex pro-
grams, it makes sense to look for simple gradient-type techniques which, as ap-
plied to convex programs (1.1) with feasible sets of appropriate geometry, exhibit
dimension-independent (or nearly dimension-independent) and nearly optimal, in
the sense of Information-Based Complexity Theory, rate of convergence. This is the
general approach we intend to undertake in our research.

1.3 Gradient-type methods for large-scale opti-

mization: state of the art

Gradient-type methods for nonsmooth convex optimization originate from the Sub-
gradient Descent algorithm originating from N. Shor [31] and B. Polyak [25]. As
applied to (1.1), the algorithm becomes

xt+1 = ΠX(xt − γf ′(xt)), (1.7)

where ΠX(y) = argminy∈X ‖x − y‖2 is the projector onto X and γt > 0 are “step-
sizes”. With properly chosen stepsizes, this algorithm satisfies C.3 (see below).

Subgradient Descent was extensively studied in the literature (see, e.g., [15, 17]
and references therein) and was the starting point of numerous extensions. This
includes:

12

1. Extensions from convex problems (1.1) with exact First Order oracle to other
problems with convex structure (see [23] and references therein), specifically,

– problems with convex functional constraints

min
x
{f(x) : fi(x) ≤ 0, i = 1, ..., m, x ∈ X} ,

– saddle point problems
min
x∈X

max
y∈Y

F (x, y)

with convex-concave functions F and convex X, Y

– variational inequalities with monotone operators,

in the cases of both exact and noisy oracles;

2. Inventing bundle versions of Subgradient Descent.

As a practical matter, a severe drawback of Subgradient Descent is that the
method is “memoryless”: all the information accumulated at the first t − 1
steps of the method is “summarized” in the corresponding iterate xt, and this
“summary” (which is far from being complete) is all what influences the sub-
sequent computations. As a result of this poor utilization of information, in
practical computations the method typically rapidly progresses at the first
few tens of iterations and then, in full accordance with the complexity bound
(1.5), “gets stuck”, with no significant progress in accuracy during thousands
of subsequent iterations. The bundle versions of Subgradient Descent (origi-
nating from C. Lemarechal [18]; for further developments, see [21, 29, 20, 16])
memorize, completely or partly, the information accumulated so far and, as a
result, exhibit much more attractive practical behaviour than the Subgradient
Descent. Although the theoretical convergence properties of bundle methods
in the situation C.3 are not better than those of the Subgradient Descent (see
(1.5)), an empirical fact is that the “complete memory” bundle methods obey
the complexity bound (1.3) and thus are capable to find high-accuracy solu-
tions, provided that the sizes of the problem allow to carry out O(n ln(1/ε))
steps. Besides this advantage (which is of no importance in the extremely
large-scale case, where just n steps is “too much”), the bundle methods usu-
ally outperform the Subgradient one already at the initial phase of the solution
process.

3. Developing “non-Euclidean” versions of Subgradient Descent and bundle
methods.

It turns out that Subgradient Descent and its extensions we have mentioned so
far are intrinsically related to problems with “Euclidean geometry”, like those

13

described in C.3. For example, no known Subgradient Descent/Bundle meth-
ods satisfy C.4. The “non-Euclidean” extensions of gradient-type methods –
Mirror Descent methods – originate from [23]; for more comprehensive repre-
sentation, see [6, 1]. These methods allow to adjust, to some extent, a method
to the geometry of problems in question. For the time being, only “memo-
ryless” Mirror Descent algorithms were known; only recently a bundle-type
version of this scheme, called NERML (Non-Euclidean Restricted Memory
Level method), and aimed at solving extremely large-scale convex programs,
was developed [8].

The starting points for our research are the general Mirror Descent scheme and
its bundle version – the NERML algorithm. We are about to present a detailed
overview of the corresponding results.

1.3.1 The Mirror Descent scheme

The presentation below follows the one of [1]. We focus on problem (1.1) and make
the following assumption:

A. (i) The feasible domain X in (1.1) is a convex compact subset of a
finite-dimensional Euclidean space E with inner product 〈·, ·〉.
(ii) The objective f is convex and Lipschitz continuous on X. The
subgradients f ′(x), x ∈ X, reported by the First Order oracle are parallel
to the affine span of X. Besides this, when x belongs to the relative
boundary of X, f ′(x) belongs to the closure of the set

⋃
y∈rint X

∂f(y).

The general Mirror Descent scheme

The general MD algorithm for solving problems of the form (1.1) is specified by a
distance-generating function ω(x) which should be a continuously differentiable and
strongly convex function on X:

∀(x, y ∈ X) : 〈ω′(x)− ω′(y), x− y〉 ≥ α‖x− y‖2, (1.8)

where ‖ · ‖ is a once for ever fixed norm on E (not necessary the Euclidean norm
‖u‖2 ≡

√
〈u, u〉 associated with the inner product), and α > 01). Note that (1.8) is

1)Note that strong convexity of ω(·) implies inequality of the type (1.8) w.r.t whatever norm
on E (recall that E is finite-dimensional). What is important for us, however, is the value of
the constant of strong convexity α, which does depend on the choice of the norm, this is why we
consider both ω(·) and ‖ · ‖ as “setup elements” of our construction.

14

equivalent to the fact that all distance functions

ωx(y) = ω(y)− ω(x)− 〈y − x, ω′(x)〉 (1.9)

(other names: “prox-terms”, “Bregman distances”) associated with x ∈ X satisfy
the relation

∀(x, y ∈ X) : ωx(y) ≥ α

2
‖x− y‖2. (1.10)

The generic MD algorithm associated with X, ω(·) generates the search points
xt ∈ X according to the rule

xt+1 = argmin
y∈X

[ωxt(y) + γt〈f ′(xt), y − xt〉] , (1.11)

where γt > 0 are stepsizes. Informally speaking, at a step we are minimizing over X
a linear approximation, taken at xt, of the objective and augmented by the “prox
term” 1

γt
ωxt(y) which, according to (1.10), penalizes the deviation of a point from

xt and therefore “tries” to keep the next iterate close to the previous one, thus
preventing too long steps (since a too long step may lead to a point where the local
linear model of f is very far from f).

The MD algorithm starts with an arbitrary point x1 ∈ X; the approximate
solution xt generated in course of t steps is the best (with the smallest value of the
objective) of the search points x1, ..., xt:

xt ∈ Argmin
x∈{x1,...,xt}

f(x). (1.12)

Convergence analysis

Convergence properties of the general MD algorithm can be summarized in the
following

Theorem 1.1 [6, 1] Under assumption A, one has

f(xt)−min
X

f ≤ min
1≤p≤q≤t

Ω + α−1
q∑

τ=p

γ2
τ‖f ′(xτ)‖2

∗

q∑
τ=p

γτ

 , (1.13)

where

• α is the constant of strong convexity of ω(·) with respect to the norm ‖ · ‖ (see
(1.8)),

15

• Ω = max
x,y∈X

[ω(y)− ω(x)− 〈y − x, ω′(x)〉] (Ω < ∞, since ω(·) is continuously

differentiable on X and X is compact),

• ‖x‖∗ = max{〈x, ξ〉 : ‖ξ‖ ≤ 1 is the norm conjugate to ‖ · ‖.
In particular,

(i) Whenever γt → 0, t →∞, and
∑
t

γt = ∞, one has f(xt) → min
X

f ;

(ii) With the “optimal” stepsizes

γt =

√
Ωα

‖f ′(xt)‖∗
√

t
(1.14)

one has

f(xt)−min
X

f ≤ 2L
√

Ω√
αt

, (1.15)

where

L = L‖·‖(f) = sup
x,y∈X

x6=y

|f(x)− f(y)|
‖x− y‖

is the Lipschitz constant of f w.r.t. the norm ‖ · ‖.
Proof. For u, x ∈ X, let us set

Hu(x) = 〈x− u, ω′(x)〉 − ω(x).

For τ fixed, let us set x = xt, γ = γt and x+ = xt+1. We have

x+ = argmin
y∈X

[γ〈f ′(x), y − x〉+ ωx(y)] ⇒
(a) 0 ≤ 〈ω′(x+)− ω′(x) + γf ′(x), v − x+〉 ∀v ∈ X

16

Further,

Hu(x+) = 〈x+ − u, ω′(x+)〉 − ω(x+)
= 〈(x+ − x) + (x− u), (ω′(x+)− ω′(x)) + ω′(x)〉

−ω(x+)
= [〈x− u, ω′(x)〉 − ω(x)]

+〈x+ − x, ω′(x)〉+ 〈x+ − x, ω′(x+)− ω′(x)〉
+〈x− u, ω′(x+)− ω′(x)〉
+ [ω(x)− ω(x+)]

= Hu(x) + [ω(x) + 〈x+ − x, ω′(x)〉 − ω(x+)]
+〈x+ − u, ω′(x+)− ω′(x)〉

⇒ Hu(x+) ≤ Hu(x) + [ω(x) + 〈x+ − x, ω′(x)〉 − ω(x+)]
+γ〈u− x+, γf ′(x)〉

[by (a)]
⇒
(b) γ〈f ′(x), x− u〉 ≤ [Hu(x)−Hu(x+)]

+ [ω(x) + 〈x+ − x, ω′(x)〉 − ω(x+)]︸ ︷︷ ︸
≤0

+γ〈f ′(x), x− x+〉

Besides this,

0 ≤ 〈ω′(x+)− ω′(x) + γf ′(x), u− x+〉
[by (a)]

⇒ 0 ≤ 〈ω′(x+)− ω′(x) + γf ′(x), x− x+〉
⇒ 〈ω′(x+)− ω′(x), x+ − x〉 ≤ γ〈f ′(x), x− x+〉
⇒ α‖x+ − x‖2 ≤ γ〈f ′(x), x− x+〉
⇒
(c) ‖x+ − x‖ ≤ α−1γ‖f ′(x)‖∗,

It follows from (b, c) that

γ(f(x)− f(u)) ≤ γ〈f ′(x), x− u〉 ≤ [Hu(x)−Hu(x+)] + α−1γ2‖f ′(x)‖2
∗.

Recalling that with x = xτ , γ = γτ one has x+ = xτ+1, we see that for τ ≤ t and
every u ∈ X one has

γτ (f(xτ)− f(u)) ≤ [Hu(xτ)−Hu(xτ+1)] + α−1γ2
τ‖f ′(xτ)‖2

∗. (1.16)

Specifying u as the minimizer x∗ of f on X, summing up the resulting inequalities
(1.16) over τ = p, p + 1, ..., q and taking into account that f(xτ)− f(x∗) ≥ f(xt)−

17

f(x∗) for τ ≤ t, we arrive at the relation
(

q∑
τ=p

γτ

)
(f(xt)− f(x∗))

≤ Hx∗(xp)−Hx∗(xq+1) + α−1
q∑

τ=p

γ2
τ‖f ′(xτ)‖2

∗

= [ω(xq+1) + 〈x∗ − xq+1, ω
′(xq+1)〉]︸ ︷︷ ︸

≤ω(x∗)

− [ω(xp) + 〈x∗ − xp, ω
′(xp)〉]

+α−1
q∑

τ=p

γ2
τ‖f ′(xτ)‖2

∗

≤ [ω(x∗)− [ω(xp) + 〈x∗ − xp, ω
′(xp)〉]]︸ ︷︷ ︸

≤Ω

+α−1
q∑

τ=p

γ2
τ‖f ′(xτ)‖2

∗

and (1.13) follows.
(i), (ii) are straightforward corollaries of (1.13).

Implications

Playing with the “setup parameters” ω(·), ‖ · ‖, one can adjust, to some extent, the
MD algorithm to the geometry of the problem to be solved. Let us look at three
instructive examples:

Ball setup. Here ω(x) = 1
2
〈x, x〉 and ‖ · ‖ = ‖ · ‖2, which results in

α = 1, Ω =
1

2
D2
‖·‖2(X),

where D‖·‖2(X) = max
x,y∈X

‖x− y‖2 is the ‖ · ‖2-diameter of X. Theorem 1.1.(ii) reads

γt =
D‖·‖2 (X)

‖f ′(xt)‖∗
√

2t
⇒ f(xt)−min

X
f ≤ L‖·‖2 (f)D‖·‖2 (X)√

2t[
L‖·‖2(f) = sup

x∈rint X

‖f ′(x)‖2

]
(1.17)

which implies the result announced in C.3. Note that with the Ball setup, the MD
method becomes exactly the Subgradient Descent method (1.7).

Simplex setup. Here E is the space Rn, n > 1, with the standard Euclidean
structure, X is a convex compact subset of the standard simplex

∆+
n = {x ∈ Rn : x ≥ 0,

∑
i

xi ≤ 1},

18

the distance-generating function is the “regularized entropy”

ω(x) =
n∑

i=1

(xi + n−1σ) ln(xi + n−1σ),

where the σ ∈ [10−20, 1] is a regularization parameter, and ‖u‖ = ‖u‖1 ≡
∑
i

|ui|, so

that ‖u‖∗ = ‖u‖∞ ≡ max
i
|ui|. It is easily seen [8] that with this setup one has

α = O(1), Ω ≤ O(1) ln(n) (1.18)

(from now on, all O(1)’s are positive absolute constants). With this setup, Theorem
1.1.(ii) reads

γt =

√
ln(n)

‖f ′(xt)‖∗
√

t
⇒ f(xt)−min

X
f ≤ O(1)

L‖cdot‖1 (f)
√

ln(n)√
t[

L‖·‖1(f) = sup
x∈rint X

‖f ′(x)‖∞
]

(1.19)

which implies the result announced in C.4.

Spectahedron setup. Here E is the space Sn, n > 1, of real symmetric n × n
matrices with the Frobenius inner product 〈A,B〉 = Tr(AB), X is a convex compact
subset of the spectahedron

Σ+
n = {x ∈ Sn : x º 0, Tr(x) ≤ 1},

the distance-generating function is the “regularized matrix entropy”

ω(x) = Tr((x + n−1σI) ln(x + n−1σI)) =
∑

i

(λi(x) + n−1σ) ln(λi(x) + n−1σ),

where the λ1(x) ≥ λ2(x) ≥ ... ≥ λn(x) are the eigenvalues of x, σ ∈ [10−20, , 1] is
a regularization parameter, and ‖u‖ = |u|1 ≡

∑
i

|λi(u)|, so that ‖u‖∗ = |u|∞ ≡
max

i
|λi(u)| is the standard matrix norm of u. It can be shown [8] that for this

setup relations (1.18) are valid, so that the rate of convergence of the associated
MD method satisfies (1.19).

1.3.2 Bundle-Mirror algorithm NERML

The presentation to follows is a slight modification of the original description of the
NERML method as given in [8].

19

Setup for NERML is identical to the setup ω(·), ‖·‖ of the general Mirror Descent
scheme. And, to make NERML algorithm implementable, the pair (X,ω(·)) should
be simple enough to allow for rapid solving of auxiliary problems of the form

x[p] = argmin
x∈X

[ω(x) + pT x] (1.20)

Execution of NERML as applied to (1.1) is partitioned into subsequent phases.
At the beginning of phase s (s = 1, 2, ...) we have in our disposal

• the best found so far, in terms of the objective, feasible solution, let the cor-
responding objective value be f s;

• a valid lower bound fs < f s on the optimal value f∗ in (1.1);

• a prox-center cs ∈ X (which can be an arbitrary point of X). We associate
with this point the distance function

ωs(x) = ω(x)− 〈x, ω′(cs)〉

To initiate the very first phase, we choose somehow the first prox-center c1 ∈ X,
compute f(c1), f

′(c1) and set

f 1 = f(c1), f1 = min
x∈X

[f(c1) + 〈x− c1, f
′(c1)〉.

The outlined data define s-th level

`s = fs + λ(f s − fs),

where λ ∈ (0, 1) is a parameter of the method.

Phase s is comprised of subsequent steps; to simplify notation, we mark all entities
related to a step by index t of the step, skipping the phase index s.

Step t of phase s is as follows. At the beginning of step t, we have in our
disposal

• t-th search point xt of the phase,

• t-th model Ft(x) of the objective, which is a Lipschitz continuous, with con-
stant L‖·‖(f) w.r.t. ‖·‖, piecewise linear convex function satisfying the relation

∀(x ∈ X) : f(x) ≥ Ft(x); (at)

20

• t-th localizer Xt – a set cut off X by a system of finitely many linear inequalities
and intersecting the relative interior of X;

• t-th best found value of the objective f s,t ≤ f s – the minimum of values of the
objective at the search points of the phases preceding phase t and the search
points of phase s preceding xt;

• t-th lower bound fs,t ≥ fs on f∗

The outlined entities satisfy the relations

xt = argmin
x∈Xt

ωs(x) (bt)

x ∈ X\Xt ⇒ f(x) > `s (ct)

To initialize the first step of phase s, we can set, e.g.,

x1 = cs, X1 = X, F1(x) = f(c1) + 〈x− x1, f
′(c1)〉, f s,1 = f s, fs,1 = fs,

thus ensuring (a1 − c1).
Our actions at step t are as follows:

1. [calling oracle, updating the upper bound, enriching the model] We compute
f(xt), f ′(xt) and set

f s,t+1 = min[f s,t, f(xt)].

If
f s,t+1 − `s ≤ θ(f s − `s), (1.21)

where θ ∈ (0, 1) is a parameter of the method, we terminate phase s (“ter-
mination due to essential progress in the objective”) and pass to phase s + 1,
setting

f s+1 = f s,t+1, fs+1 = fs,t,

otherwise we enrich the model by setting

gt(x) = f(xt) + 〈x− xt, f
′(xt)〉,

F+
t (x) = max[Ft(x), gt(x)].

Remark 1.2 Note that by construction and in view of (at) the function F+
t (·)

is a Lipschitz continuous, with constant L‖·‖(f) w.r.t. ‖ · ‖, piecewise linear
convex function satisfying the relation

∀(x ∈ X) : f(x) ≥ F+
t (x). (1.22)

21

2. [updating the lower bound] We solve the auxiliary optimization problem

f̃t = min
x∈Xt

F+
t (x) (Lt)

and set
fs,t+1 = max[min[`s, f̃t], fs,t].

Remark 1.3 Note that min[`s, f̃t] (and thus – fs,t+1) is a lower bound on f∗;
indeed, on X\Xt we have f(x) ≥ `t by (ct), while on Xt, by (1.22), we have
f(x) ≥ F+

t (x) ≥ f̃t.

In the case of
fs,t+1 ≥ `s − θ(`s − fs) (1.23)

(“significant progress in the lower bound”) we terminate the phase s and pass
to the phase s + 1, setting

f s+1 = f s,t+1, fs+1 = fs,t+1.

3. [updating the search point, the localizer and the model] We solve the auxil-
iary problem

xt+1 = argmin
{
ωs(x) : x ∈ X+

t+1 ≡ Xt ∩ {x : F+
t (x) ≤ `s}

}
. (Nt)

Remark 1.4 Note that the feasible set X+
t+1 of (Nt) is cut off X by finitely

many linear inequalities (since Xt is so and F+
t is piecewise linear) and in-

tersects the relative interior of X (since Xt is so and the minimum of F+
t on

Xt is < `s – otherwise (1.23) would be satisfied, which is not the case); in
particular, (Nt) is solvable, so that the new search point xt+1 is well-defined.

Finally, we

• Choose, as Xt+1, any set, cut off X by finitely many linear inequalities,
which is in-between the sets X+

t+1 and

X−
t+1 = {x ∈ X : 〈x− xt+1, ω

′
s(xt+1)〉 ≥ 0} ,

so that
X−

t+1 ⊃ Xt+1 ⊃ X+
t+1. (1.24)

Remark 1.5 Note that

– the rule makes sense, since X−
t+1 ⊃ X+

t+1 due to the fact that xt+1 is
the minimizer of ωs(·) on X+

t+1,

22

– Xt+1, by construction, is cut off X by finitely many linear inequalities
and intersects the relative interior of X (since X+

t+1 is so),

– xt+1, Xt+1 satisfy (bt+1) (since xt+1 is the minimizer of f on both
X+

t+1 and X−
t+1) and (ct+1) (since f(x) ≥ F+

t (x) > `s for x ∈
Xt\X+

t+1 ⊃ Xt\Xt+1 by (1.22), and f(x) > `s for x ∈ X\Xt by
(ct)).

• Update the model F+
t (·) into the model Ft+1(·) in a way which ensure that

Ft+1(·) is a convex piecewise linear Lipschitz continuous, with constant
L‖cdot‖(f), w.r.t. ‖ · ‖, function satisfying (at+1).

Remark 1.6 To implement the latter rule, we can set Ft+1 ≡ F+
t , or can

delete several components from the representation of F+
t as the maximum

of finitely many affine functions, or can replace these components with a
number of their convex combinations.

Step t of phase s is completed, and we loop to step t + 1.

Approximate solution xs found in course of the first s phases is the best – with
the smallest value of the objective – of the search points generated when running
the phases 1, ..., s.

Convergence analysis. We shall introduce here the main result on convergence
properties of NERML. In the next sections the reader will find extended versions of
this algorithm along with the corresponding convergence analysis, and the proof of
the convergence and complexity properties will be carried out there.

Let us define s-th gap as the quantity εs = f s − fs By its origin, the gap is
nonnegative, nonincreasing in s, and is a valid upper bound on the inaccuracy, in
terms of the objective, of the approximate solution zs we have at the beginning of
phase s (i.e., f(zs) is the smallest value of the objective found so far).

The convergence and the complexity properties of the basic NERML algorithm
are given by the following result.

Theorem 1.2 [8] (i) The number Ns of oracle calls at a phase s is bounded from
above as follows:

Ns ≤
4ΩL2

‖·‖(f)

θ2(1− λ)2αε2
s

, (1.25)

where
Ω = Ω[ω(·)] = max

x,y∈X
[ω(y)− ω(x)− (y − x)T∇ω(x)]. (1.26)

23

(ii) Consequently, for every ε > 0, the total number of oracle calls before the first
phase s with εs ≤ ε is started (i.e., before an ε-solution to the problem is built) does
not exceed

N(ε) = c(θ, λ)
ΩL2

‖·‖(f)

αε2
(1.27)

with an appropriate c(θ, λ) depending solely and continuously on θ, λ ∈ (0, 1).

NERML: Major implementation issues

Solving auxiliary problems (Lt), (Nt). The major issue in the implementation
of the NERML algorithm is how to solve efficiently the auxiliary problems (Lt), (Nt).
Formally, these problems are of the same design dimension as the problem of interest;
what then is gained by reducing the solution of a single large-scale problem (1.1) to
a long series of auxiliary problems of the same dimension? To answer this question,
observe that set Xt is something between sets X− and X+, where X− is cut off
X by finite number of linear inequalities, and X+ is cut off X by only one linear
inequality. So, we a priori can choose integer m and insure Xt to be cut off X by
at most m linear inequalities for all t (for instance by combining some inequalities
in a convex manner). Consequently, we may assume that the feasible set of (Pt) is
cut off X by m + 1 linear inequalities.

The crucial point is that with this approach, applying Lagrange duality, we can
reduce (Lt), (Nt) to black-box-represented convex programs with at most m + 1
decision variables and thus can solve them at a relatively low computational cost,
provided that m (which is in our full control) is not too big (for details, see [8]).

When the standard setups are implementable? As we have seen, the possi-
bility to implement the NERML algorithm depends on the ability to solve rapidly
optimization problems of the form (1.20). Let us look at several important cases
when this indeed is possible.

Ball setup. Here problem (1.20) becomes min
x∈X

[
1
2
xT x− pT x

]
, or, equivalently,

min
s∈X

[
1
2
‖x− p‖2

2

]
. We see that to solve (1.20) is the same as to project on X - to

find the point in X which is as close as possible, in the usual ‖ · ‖2-norm, to a given
point p. This problem is easy to solve for several simple solids X, e.g.,

• a ball {x : ‖x− a‖2 ≤ r},
• a box {x : a ≤ x ≤ b},
• the simplex ∆n = {x : x ≥ 0,

∑
i

xi = 1}.

24

In all these cases, it takes O(n) operations to compute the solution.

Simplex setup. Consider the two simplest cases:
S.A: X is the standard simplex ∆n;
S.B: X is the standard full-dimensional simplex ∆+

n .
Case S.A. When X = ∆n, problem (1.20) becomes

min

{∑
i

(xi + σ) ln(xi + σ)− pT x : x ≥ 0,
∑

i

xi = 1

}
[σ = σn−1] (1.28)

Case S.B. Analogously, when X = ∆+
n , problem (1.20) becomes

min

{∑
i

(xi + σ) ln(xi + σ)− pT x : x ≥ 0,
∑

i

xi ≤ 1

}
[σ = σn−1] (1.29)

It is easy to verify (see [8]) that the solutions to (1.28), (1.29) can be found, within
machine precision, in O(n) operations.

Spectahedron setup. Consider two simple cases of the spectahedron setup:
Sp.A: X is comprised of all block-diagonal matrices of a given block-diagonal

structure belonging to Σn,
or

Sp.B: X is comprised of all block-diagonal matrices of a given block-diagonal
structure belonging to Σ+

n .
Case Sp.A. Here problem (1.20) becomes

min
x∈X

{Tr((x + σIn) ln(x + σIn)) + Tr(px)} [σ = σn−1].

It turns out that we can convert this problem to

min
ξ∈X

{Tr((ξ + σIn) ln(ξ + σIn)) + Tr(πξ)} , (1.30)

where p = UπUT is the eigenvalue decomposition of p with orthogonal U and diag-
onal π of the same block-diagonal structure as that of p and x = UξUT .

It is shown in [8] that the unique (due to strong convexity of the function ω)
optimal solution ξ∗ to the latter problem is a diagonal matrix. Thus, when solving
(1.30), we may from the very beginning restrict ourselves with diagonal ξ, and with
this restriction the problem becomes

min
ξ∈Rn

{∑
i

(ξi + σ) ln(ξi + σ) + πT ξ : ξ ≥ 0,
∑

i

ξi = 1

}
, (1.31)

25

which is exactly the the same problem as in the case of the simplex setup with
X = ∆n. We see that the only extra work needed in the case of the spectahedron
setup, as compared to the simplex one, is in the necessity to find the eigenvalue
decomposition of p. The latter task is easy, provided that the diagonal blocks in
the matrices in question are of small sizes. Note that this favourable situation does
occur in several important applications, e.g., in Shape Design.
Case Sp.B is completely similar to the previous one; the only difference is that the
role of (1.30) is now played by the problem

min
ξ∈Rn

{∑
i

(ξi + σ) ln(ξi + σ) + πT ξ : ξ ≥ 0,
∑

i

ξi ≤ 1

}
,

which we have already considered discussing the simplex setup.

Updating prox-centers. The complexity results stated in Theorem 1.2 are inde-
pendent of how the prox-centers are updated, so that in this respect one, in principle,
is completely free. It is reasonable, however, to choose as the prox-center at every
stage the best (with the smallest value of f) solution obtained up to the current
stage.

Accumulating information. The set Xt summarizes, in a sense, all the infor-
mation on f accumulated so far and to be used in the sequel. Relation (1.24) allows
for a tradeoff between the quality (and the volume) of this information and the
computational effort required to solve the auxiliary problems (Nt−1). With no re-
strictions on this effort, the most promising policy for updating Xt’s would be to
set Xt = X t−1 (“collecting information without compressing it”). With this policy
the NERML algorithm with the ball setup is basically identical to the Prox-Level
Algorithm of Lemarechal, Nemirovski and Nesterov [20]; the “restricted memory”
version of the latter method (that is, the generic NERML algorithm with ball setup)
was proposed by Kiwiel [16].

1.4 Overview of results

In our work we develop Incremental implementation of NERML aimed to solve opti-
mization problems of minimizing composed nondecreasing convex function of several
convex functions. This incremental implementation is based on the idea to divide
the set of inner functions into subsets and process these subsets incrementally, one
at a time. The algorithm is arranged in cycles: to perform one cycle, it goes through
all the subsets. Thus, finishing one cycle is equivalent to performing one ”regular”

26

iteration. To the best of our knowledge, till now, incremental algorithms were used
only for processing objectives with simple additive structure, while NERML allowed
to handle pretty general objective frames.

We also broaden Non-Euclidean Restricted Memory Level Method to solve prob-
lems with functional constraints. Our implementation is rest on the reformulation
of original task as a set of non-constrained problems of minimizing composed convex
function. The resulting algorithm suits well to work in conjunction with Incremental
NERML too.

For both Incremental and Constrained algorithms, we prove convergence and
estimate efficiency.

In the next two chapters we present our results.

27

Chapter 2

Incremental implementation of
NERML

In real life applications the objective function of problem (1.1) possesses certain
specific structure. For instance, in Tomography Image Reconstruction, the objective
is the sum of relatively simple functions, and the number of these functions is very
large. In Shape Design, the objective function takes the form of the maximum of
several other functions. Thus, it makes sense to consider optimization problems of
the type

min
x

f(x), f(x) = F(f1(x), . . . , fm(x)), (2.1)

where F(·) is a known in advance nondecreasing Lipschitz continuous convex func-
tion and f1(x), . . . , fm(x) are convex and Lipschitz continuous.

Following the basic NERML scheme, to carry out a step of the algorithm,
we need to get from the oracle the value and a subgradient of the function
f(·) = F(f1(·), . . . , fm(·)) at certain point x, and this answer requires computing
the values and subgradients of all “inner” functions fi at x. In principle, there exists
another option – at every step, the oracle is requested to provide the value and a
subgradient of a single “component” fi of f at a current point. This “incremental”
implementation of optimization algorithms goes back to D. Bertsekas [9, 10, 11]),
and rationale behind the idea is as follows: in many cases, the computational effort
required to provide the first order information on a single component of the objective
is nearly m times cheaper than to provide this information for the entire objective.
When speaking about a “cheap” optimization method (with O(n) operations per
step, modulo the computational expenses of the oracle), this implies that a usual –
“full” – iteration is equivalent, in terms of the computational effort, to m “incre-
mental” iterations. At the same time, computational experience demonstrates that
progress in accuracy, especially at the initial steps, with m incremental iterations
is significantly better than with a single “full” iteration, so that an “incremental

28

implementation” improves the practical performance of the algorithm. It should be
stressed that, to the best of our knowledge, the only structure of f which, for the
time being, was considered as appropriate for an incremental implementation, is the
additive structure: f(x) = f1(x) + ... + fm(x).

In course of our research, we have found that the NERML method allows for
incremental implementation, and, moreover, this implementation can handle pretty
general structures of f , not only the simplest additive structure. Besides this, we
have found that under mild additional restrictions on F (specifically, in the case
of polyhedrally representable F), we are able to solve easily the auxiliary problems
arising in the resulting method.

So, in the next subsections we shall provide an essential information about poly-
hedral sets, the incremental version of NERML (INERML), its implementation and
convergence analysis.

2.1 Polyhedral sets and their polyhedral repre-

sentations

Recall that a set M ⊂ Rn is called polyhedral if it is the set of all solutions to a
system of finitely many linear inequalities:

M = {x ∈ Rn : Ax− b ≥ 0,Am×n, bm×1}. (2.2)

It is well-known that the image, under an affine mapping, of a polyhedral set is
polyhedral as well. It follows that a set given as

M =

{
x ∈ Rn : ∃u ∈ Rm : A

(
w

z

)
− b ≥ 0

}
(2.3)

is polyhedral. Representation (2.3) is called a polyhedral representation of M .

Remark 2.1 The “algorithmic advantage” of “advanced” representations (2.3) as
compared with “straightforward” representations (2.2) is that a polyhedral set with a
fairly complicated straightforward representation can admit a pretty simple advanced
one. For example, the straightforward polyhedral representation of the hyperoctahe-
dron M = {x ∈ Rn :

∑
i

|xi| ≤ 1} requires 2n linear inequalities, while the advanced

representation

M =

{
x ∈ Rn : ∃t ∈ Rn : −ti ≤ xi ≤ ti,

∑
i

ti ≤ 1

}

requires just 2n + 1 linear inequalities.

29

Definition 2.1 A function F(y) is called polyhedrally representable, if the epigraph
Epi(F) ≡ {(y, t) : F(y) ≤ t} of F is polyhedral. A polyhedral representation of
Epi(F) is called a polyhedral representation of F .

Note that a polyhedral representation of a function F always can be written as

{(y, t) : t ≥ F(y)} = {(y, t) : ∃z : Ay + pt + Bz − b ≥ 0} , (2.4)

where the matrices A,B and the vectors p, b are the “data” of the representation.
In the sequel, we will use exactly polyhedral representations in the form of (2.4).

Calculus of polyhedrally representable functions. Polyhedrally representable
functions admit a kind of “calculus”; in fact, all of them can be obtained from a
single “generic” example – an affine function

h(y) = aT y + c 1) by applying operations preserving polyhedral representability.
The most frequently used operations of the latter type are as follows:

1. Taking maximum of a finite set functions:
{

Epi{fi} = {(y, t) : ∃zi : Aiy + pit + Bizi − bi ≥ 0}, i = 1, ..., m
f = max

i
fi

⇓
Epi{f} = {(y, t) : ∃{zi} : Aiy + pit + Bizi − bi ≥ 0, i = 1, ...,m}

2. Taking linear combination with nonnegative coefficients:
{

Epi{fi} = {(y, ti) : ∃zi : Aiy + piti + Bizi − bi ≥ 0}, i = 1, ..., m
f =

∑
i

αifi

⇓
Epi{f} =

{
(y, t) : ∃{zi, ti} :

Aiy + piti + Bizi − bi ≥ 0, i = 1, ..., m,
t−∑

i

αiti ≥ 0

}

3. Affine substitution of argument:

Epi{F} = {(x, t) : ∃z : Ax + pt + Bz − b ≥ 0}, f(y) = F (Qy + q)
⇓

Epi{f} = {(y, t) : ∃z : A(Qy + q) + pt + Bz − b ≥ 0}
1)An affine function is polyhedrally representable by trivial reasons – its epigraph is given by a

single linear inequality. Formally speaking,

Epi(h) = {(y, t) : Ay + pt + b ≥ 0}, A = −aT , p = 1, b = c}.

30

4. Partial minimization: assuming that min
x:Qx=y

below is always achieved, one has

Epi{F} = {(x, t) : ∃z : Ax + pt + Bz − b ≥ 0}, f(y) = min
x:Qx=y

F (x)

⇓
Epi{f} = {(y, t) : ∃(x, z) : Ax + pt + Bz − b,Qx− y ≥ 0,−Qx + y ≥ 0}

5. Superposition: let F : Rm → R ∪ {+∞} be monotone and polyhedrally
representable, and let fi : Rn → R, i = 1, ..., m, be polyhedrally representable.
Then the superposition

f(x) =

{ F(f1(x), ..., fm(x)), fi(x) < ∞, i = 1, ..., m
+∞, otherwise

is polyhedrally representable:

{
Epi{F} = {(y, t) : ∃z : Ay + pt + Bz − b ≥ 0}
Epi{fi} = {(x, ti) : ∃zi : Aix + piti + Bizi − bi ≥ 0}

⇓

Epi{f} =

(x, t) : ∃(y, z, {zi, ti}) :

Aix + piti + Bizi − bi ≥ 0,
i = 1, ..., m

Ay + pt + Bz − b ≥ 0,
ti ≤ yi, i = 1, ..., m

For more information on polyhedral sets and polyhedrally representable functions,
see [32], [33].

2.2 INERML algorithm

Suppose we have to solve the problem:

min
x∈X

f(x), f(x) = F(f1(x), f2(x), . . . , fm(x)) (2.5)

where X ⊂ Rn is a convex compact set, fi(x) is convex and Lipschitz continuous for
all i = 1, . . . , m and F(·) is a Lipschitz continuous polyhedrally representable and
monotone function.

Setup for the Incremental NERML (INERML) scheme, similarly to the general
NERML scheme (see Section 1.3.2), is given by a strongly convex C1 function ω(·)
on X and a norm ‖ · ‖ on Rn.

31

The information. We assume that we have access to the First Order oracle
which, given on input an index i ∈ {1, ..., m} and a point x ∈ X, returns the value
fi(x) and a subgradient gi(x) ≡ f ′i(x) of fi at x. We assume that the oracle satisfies
Assumption A (see the beginning of Section 1.3.1), so that

‖gi(x)‖∗ ≤ L‖·‖(fi), (2.6)

where L‖·‖(fi) is the Lipschitz constant of fi.
Let Ci be Lipschitz constant of F(u) taken with respect to i-th argument:

Ci = sup
t>0,u

t−1|F(u + tei)−F(u)|,

where ei is i-th standard basic orth in Rm. We set

L(f) =
m∑

i=1

CiL‖·‖(fi); (2.7)

note that f is Lipschitz continuous with constant L(f) w.r.t. ‖ · ‖.

The idea of incremental implementation is inspired by the fact that NERML
admits significant freedom in choosing the models Ft of the objective f : the model
should be convex Lipschitz continuous (with an independent of t constant) piecewise
linear function which is a minorant of f (see (at)). In the case of “structured”
objective (2.5), it is natural to build such a model in the form

Ft(x) = F(F1,t(x), ..., Fm,t(x)), (2.8)

where Fi,t(·) is a model of fi(·), i.e., a piecewise linear Lipschitz continuous, with
constant L‖·‖(fi) w.r.t. the norm ‖ · ‖, convex function of x which satisfies the
relation

Fi,t(x) ≤ fi(x), x ∈ X. (2.9)

Note that since F is polyhedrally representable (and thus piecewise linear) and
monotone, relation (2.8) indeed defines a model of f , provided that Fi,t are models
of the components fi of f .

With the just outlined approach, the policy of building models for f reduces
to policies of building models of the components fi. These latter policies can be
implemented in the same manner as in the basic NERML. Namely, whenever the
First Order oracle reports information fi(u), gi(u) on fi at a point u ∈ X, we get an
affine function

hu
i (x) = fi(u) + 〈gi(u), x− u〉

32

which is Lipschitz continuous, with constant L‖·‖(fi) w.r.t. ‖ · ‖, minorant of fi(x);
taking maximum of (convex combinations of) these minorants obtained so far, or of
a part of these minorants, we get a model of fi. The main observation underlying the
incremental implementation of NERML is that with the outlined approach, there
is no necessity to update at every step all the models of fi; we could update these
models one at a time (say, in cyclic order), which allows at every step to ask the
First Order oracle on a single one of the m components fi of f rather than to ask
the oracle at every step on all m components.

The implementation of the outlined idea is as follows.

Execution of INERML as applied to (2.5) is partitioned into subsequent phases.
At the beginning of phase s (s = 1, 2, ...) we have in our disposal

• the best found so far, in terms of the objective, feasible solution, let the cor-
responding objective value be f s;

• a valid lower bound fs < f s on the optimal value f∗ in (2.5);

• a prox-center cs ∈ X (which can be an arbitrary point of X). We associate
with this point the distance function

ωs(x) = ω(x)− 〈x, ω′(cs)〉

To initiate the very first phase, we choose somehow the first prox-center c1 ∈ X,
compute fi(c1), gi(c1), i = 1, ...,m, and set

F 1(x) = F(hc1
1 (x), ..., hc1

m(x)),
f 1 = f(c1) [= F 1(c1)],
f1 = min

x∈X
F 1(x).

(2.10)

The outlined data define s-th level

`s = fs + λ(f s − fs),

where λ ∈ (0, 1) is a parameter of the method.

Phase s is comprised of subsequent steps; to simplify notation, we mark all entities
related to a step by index t of the step, skipping the phase index s.

33

Step t of phase s is as follows. At the beginning of step t, we have in our
disposal

• t-th search point xt of the phase,

• t-th models Fi,t(x) of the components fi of the objective, which are Lipschitz
continuous, with constants L‖·‖(fi) w.r.t. ‖·‖, piecewise linear convex functions
satisfying the relation

∀(x ∈ X) : fi(x) ≥ Fi,t(x). (ai,t)

These models, according to (2.8), define the current model

Ft(x) = F(F1,t(x), ..., Fm,t(x))

of f ;

• t-th localizer Xt – a set cut off X by a system of finitely many linear inequalities
and intersecting the relative interior of X;

• t-th lower bounds Li,t on the quantities L‖·‖(fi);

• t-th lower bound fs,t ≥ fs on f∗

The outlined entities satisfy the relations

xt = argmin
x∈Xt

ωs(x) (bt)

x ∈ X\Xt ⇒ f(x) > `s (ct)

To initialize the first step of phase s, we can set, e.g.,

x1 = cs,
Fi,1(x) = hc1

i (x), i = 1, ..., m,
X1 = X,
Li,1 = ‖gi(c1)‖∗, i = 1, ...,m,
fs,1 = fs,

thus ensuring (a·,1, b1, c1).
Our actions at step t are as follows:

1. [calling oracle and enriching the models] We choose somehow t-th working set
It, which is a nonempty subset of the index set I = {1, ..., m}, compute fi(xt),
gi(xt), i ∈ It, update the bounds on Lipschitz constants according to

Li,t+1 =

{
max[Li,t, ‖gi(xt)‖∗], i ∈ It

Li,t, otherwise
,

34

enrich the models of fi by setting

F+
i,t(x) =

{
max [Fi,t(x), hxt

i (x)] , i ∈ It

Fi,t(x), otherwise

and enrich accordingly the model of f by setting

F+
t (x) = F(F+

1,t(x), ..., F+
m,t(x)).

Then we pass to Progress Check (see below); as a result, we either terminate
phase s and get a new best found so far solution xs+1 along with the corre-
sponding value of the objective f s+1 and an updated lower bound fs+1 on f∗
(in this case we pass to phase s + 1) or proceed with step t of phase s.

2. [updating the lower bound] We solve the auxiliary optimization problem

f̃t = min
x∈Xt

F+
t (x) (Lt)

and set
fs,t+1 = max[min[`s, f̃t], fs,t].

Remark 2.2 Note that min[`s, f̃t] (and thus – fs,t+1) is a lower bound on f∗;
indeed, on X\Xt we have f(x) ≥ `t by (ct), while on Xt we have f(x) ≥
F+

t (x) ≥ f̃t.

In the case of
fs,t+1 ≥ `s − θ(`s − fs) (2.11)

(“significant progress in the lower bound”) we terminate the phase s and pass
to the phase s + 1, setting

f s+1 = f s, fs+1 = fs,t+1.

Here, as in the basic NERML, θ ∈ (0, 1) is a parameter of the method.

3. [updating the search point, the localizer and the models] We solve the auxil-
iary problem

xt+1 = argmin
{
ωs(x) : x ∈ X+

t+1 ≡ Xt ∩ {x : F+
t (x) ≤ `s}

}
. (Nt)

Finally, we

35

• Choose, as Xt+1, any set, cut off X by finitely many linear inequalities,
which is in-between the sets X+

t+1 and

X−
t+1 = {x ∈ X : 〈x− xt+1, ω

′
s(xt+1)〉 ≥ 0} ,

so that
X−

t+1 ⊃ Xt+1 ⊃ X+
t+1. (2.12)

• Update the models F+
i,t(·) into the models Fi,t+1(·) in a way which ensure

that

(a) Fi,t+1(·) is a convex piecewise linear Lipschitz continuous, with con-
stant L‖·‖(fi), w.r.t. ‖ · ‖, function satisfying (ai,t+1) (cf. Remark
1.6);

(b) One has
i ∈ It ⇒ Fi,t+1(xt) = F+

i,t(xt) [= fi(xt)] (2.13)

Step t of phase s is completed, and we loop to step t + 1.

Progress Check. From now on we assume that the policy for handling the work-
ing sets It satisfies the following requirement:

(W) For certain integer k ≤ m, the union of the working sets associated
with k subsequent steps of a phase is the entire index set I = {1, ..., m}.

Requirement (W) is satisfied, e.g., by the following two natural policies:

• trivial policy It = I (here k = 1)

• cyclic policy, where I1, I2,... are singletons, and the corresponding indices are
chosen in I in the cyclic order (here k = m).

Now we are ready to describe the Progress Check. Informally, the goal of this
procedure is to find out whether a “significant progress in the objective” is achieved
(cf. the basic NERML). The implementation is as follows. Consider step t of phase
s. It may happen that the union of the working sets associated with step t and all
preceding steps of the phase is less than I; in this case, the Progress Check reports
to the calling algorithm that the phase should not be terminated at step t. Now
consider the situation when the union of the working sets associated with the steps
1, ..., t of the phase equals I. In this case, we can find the shortest segments of steps
t, t + 1, ..., t such that the union of the associated working sets equals I; let us call
this segment the major iteration associated with step t, and let Jt = {t, t + 1, ..., t}.
The Progress Check works as follows:

36

1. For every τ ∈ Jt, we build a guess f τ,t
i for the quantity fi(xt), i ∈ Iτ , according

to
f τ,t

i = fi(xτ) + Li,t‖xt − xτ‖ (2.14)

(note that we do know fi(xτ) due to i ∈ Iτ).

2. Since
⋃

τ∈Jt

Iτ = I, we, for every i ∈ I, get at least one (or perhaps more)

guesses for the quantity fi(xt). From these guesses, we choose the smallest
one, let it be denoted by f t

i .

3. The guesses f t
i imply the guess

f t = F(f t
1, ..., f

t
m)

for the quantity f(xt). We compare this guess with `s, namely

(a) In the case of f t−`s > θ(f s−`s), we conclude that no significant progress
in the objective is achieved, so that the phase s should not be terminated.

(b) In the case of f t − `s > θ(f s − `s), we call the First Order oracle to
compute all the quantities fi(xt), i = 1, ...,m, and thus get the exact
value f(xt) of the objective at xt.

(b.i.) In the case of f(xt) − `s > θ(f s − `s), we again conclude that
no significant progress in the objective is achieved, so that the phase s
should not be terminated.

(b.ii.) In the case of f(xt)−`s ≤ θ(f s−`s), we conclude that a significant
progress in the objective is achieved, set xs+1 = xt, f s+1 = f(xt), fs+1 =
fs,t and terminate phase s.

2.3 Implementation

Now we have to discuss how to solve arising in the described above scheme mini-
mization problems. Namely, we have got two types of problems:

(a) min
x∈Xτ

F+
τ (x), F+

τ (x) = F(T+
1,t(x), ..., T+

m,t(x));

(b) min
x∈Xτ

{ωs(x) : F+
τ (x) ≤ `s}. (2.15)

Problem (2.15.a). 2.15 Recall that Xτ is cut off X by a system of mt linear
inequalities. Further, the function F(·) is polyhedrally representable and mono-
tone, while the models F+

i,t are polyhedrally representable. Consequently, F+
τ (x) is

polyhedrally representable (rule on Superposition in Section 2.1):

t ≥ F+
τ (x) ⇔ ∃u : Ax + pt + Bu− b ≥ 0.

37

Thus, problem (2.15.a) is of the form

f̃τ = min
x∈X,t,u

{t : Qx + qt + Ru− r ≥ 0} . (2.16)

Note that the system of linear constraints in the latter problem is readily given by
the system of linear inequalities from the description of Xτ and the system of linear
inequalities involved in the polyhedral representation of F+

t . The latter inequalities,
in turn, are readily given by the initial polyhedral representation of F and the affine
functions involved into the description of the models F+

i,t. Besides this, the number
of linear inequalities in (2.16) is small, provided that both mt and the total number
nt of “linear pieces” in the description of the models F+

i,t, i = 1, ..., m are small and
F has a simple polyhedral representation. Note that both mt and nt are under our
control (mt can be made as small as 1, and nt as small as m); as a result, the number
of linear inequality constraints in (2.16) can be made as small as π = m + 1 + µ,
where µ is the number of linear inequalities in the original polyhedral representation
of F . Provided (which normally is the case) that π is a moderate number (at most
several tens), a computationally efficient way to solve (2.16) is offered by Lagrange
duality. Specifically, let

L(x, t, u; λ) = t− λT (Qx + qt + Ru− r)

be the Lagrange function of problem (2.16). By the origin of the problem, the set
defined by its linear constraints intersects the relative interior of X and the problem
is below bounded, so that by Lagrange Duality Theorem we have

f̃τ = max
λ≥0

Φ(λ), Φ(λ) = min
x∈X,t,u

L(x, t, u; λ), (2.17)

or, equivalently,

f̃τ = max

min
x∈X

[−λT Qx] + rT λ
︸ ︷︷ ︸

Ψ(λ)

: λ ≥ 0, qT λ = 1, RT λ = 0

. (2.18)

Since we have assumed that X and ω(·) are simple, so that minimizing functions
of the form ω(x) + pT x over X (and thus – minimizing linear functions over X) is
easy, the objective in the convex problem (2.18) can be easily computed at every
point; to this end it suffices to find a minimizer, over X, of the linear function λT Qx
of x. Given this minimizer, we can easily recover the value and a subgradient of
Ψ. Finally, the number π of variables in (2.18) was assumed to be moderate, so
that the problem can be rapidly solved by efficient black-box-oriented techniques
for low-dimensional convex optimization, like bundle algorithms.

38

Problem (2.15.b). Here the situation is completely similar to the one we have
just considered. Indeed, the same arguments as above demonstrate that (2.15.b) can
be rewritten equivalently as

min
x∈X,t,u

{
ω(x) + pT x : Qx + qt + Ru− r ≥ 0

}
, (2.19)

(the data of linear constraints now are different from those in (2.16), but the number
π of these constraints is the same as in (2.16)). Further, we should solve our problem
only when the optimal value in (Lτ) is < `s, and in this case, as it is immediately
seen, the set of solutions to the system of linear inequalities in (2.19) intersects the
relative interior of X. Thus, we again can apply Lagrange duality to reduce the
problem of interest to a low-dimensional problem

f̃τ = max

min
x∈X

[ω(x) + pT x− λT Qx] + rT λ
︸ ︷︷ ︸

Ψ(λ)

: λ ≥ 0, qT λ = 1, RT λ = 0

. (2.20)

Here again it is easy to compute the value and a subgradient of the objective at
a given point, which allows to solve the problem by bundle algorithms. Note that
since ω(x) is strongly convex, a high-accuracy, in terms of the objective, solution to
(2.20) allows to recover a high-accuracy approximation to the optimal solution of
the problem of interest (2.19), which is exactly what we need2)

2.4 Convergence analysis

Theorem 2.1 Let εs = f s−fs be the upper bound on inaccuracy of s-th approximate
solution generated by INERML. Then

(i) The number of steps Ns at phase s of the method is bounded from above as
follows:

Ns ≡ kc8Ω[ω(·)]k2L2(f)

θ2(1− λ)2αε2
s

+ 1b, (2.21)

where Ω[ω(·)] is given by (1.26) and k ≤ m is the maximum number of steps in a
major iteration. As a result of phase, the gap is reduced at least by the factor

γ = max[λ + θ(1− λ), (1− λ) + θλ] < 1,

2)In the case of (2.16), the objective in the problem is linear, so that it could be problematic
to recover a good approximate solution to this problem from a good approximate solution to its
Lagrange dual. Note, however, that in INERML we are not interested in optimal solutions to
problems (Lt) at all, all we are interested in are the optimal values.

39

that is,
εs+1 ≤ γεs. (2.22)

(ii) Consequently, for every ε > 0, the total number of oracle calls before the first
phase s with εs ≤ ε is started (i.e., before an ε-solution to the problem is built) does
not exceed

N(ε) ≤ C(θ, λ)k3 Ω[ω(·)]L2(f)

αε2
, (2.23)

with C(ε, λ) depending solely on ε, λ ∈ (0, 1).

Proof. Part (i): Assume that phase s did not terminate at step t, so that the
search points x1, ..., xt+1 of the phase are well-defined.

10. Let us set
dτ = ‖xτ − xτ+1‖.

Lemma 2.1 One has
t∑

τ=1

α

2
d2

τ ≤ Ω[ω(·)]. (2.24)

Proof. Let 1 ≤ τ ≤ t. By (bτ), the point xτ minimizes ωs(·) over Xτ , and by
construction xτ+1 ∈ Xτ , whence 〈ω′s(xτ), xτ+1 − xτ 〉 ≥ 0. Since ωs is α-strongly
convex w.r.t. ‖ · ‖, we have

ωs(xτ+1) ≥ ωs(xτ) + 〈ω′s(xτ), xτ+1 − xτ 〉︸ ︷︷ ︸
≥0

+
α

2
‖xτ − xτ+1‖2 ≥ ωs(xτ) +

α

2
d2

τ .

Summing up the resulting inequalities over τ = 1, ..., t, we get

t∑
τ=1

α
2
d2

τ ≤ ωs(xt+1)− ωs(x1)

= ω(xt+1)− ω(x1)− 〈ω′(cs), xt+1 − x1〉
= ω(xt+1)− ω(cs)− 〈ω′(cs), xt+1 − cs〉︸ ︷︷ ︸

≤Ω[ω(·)]
− [ω(x1)− ω(cs)− 〈ω′(cs), x1 − cs〉]︸ ︷︷ ︸

≥0

≤ Ω[ω(·)],

as claimed in (2.24).

40

20. Assume that t ≥ k, so that
k⋃

i=1

It−i+1 = I ≡ {1, ...,m}.

Lemma 2.2 Assuming that phase s does not terminate at step t, one has

max
t−k+1≤τ≤t

dτ ≥ ν ≡ θ(f s − `s)

2kL(f)
=

θ(1− λ)(f s − fs)

2kL(f)
. (2.25)

Proof. Assume, on the contrary to what should be proved, that dτ < ν for τ ∈
T = {t− k +1, t− k +2, ..., t}. For i ∈ I, let τi be the last element τ of T such that
i ∈ Iτ . Let also

F̃i(x) =

{
Fi,τi+1(x), τi < t
F+

i,t(x), τi = t
.

Then by construction of the models Fi,τ we have

(a) F+
i,t(x) ≡ F̃i(x), i ∈ I,

(b) F̃i(xτi
) = fi(xτi

), i ∈ I,

(c) F̃i(·) is Lipschitz continuous w.r.t. ‖ · ‖ with constant Li ≡ L‖·‖(fi)

(2.26)

Combining (2.26.b-c) with the fact that ‖xτi
−xt+1‖ ≤ dt−k+1+dt−k+2+ ...+dt ≤ kν,

we arrive at
F̃i(xt+1) ≥ fi(xτi

)− kνLi, i ∈ I,

whence by the monotonicity and Lipschitz continuity of F it follows that

F(F̃1(xt+1), ..., F̃m(xt+1)) ≥ F(f1(xτ1), ..., fm(xτm))−
m∑

i=1

CikνLi

= F(f1(xτ1), ..., fm(xτm))− kνL(f)

(see (2.7)). The left hand side in the resulting inequality, by (2.26.a), is nothing but
F+

t (xt+1) = F(F+
1,t(xt+1), ..., F

+
m,t(xt+1)), and the latter quantity is ≤ `s by definition

of xt+1. We have arrived at the inequality

F(f1(xτ1), ..., fm(xτm)) ≤ `s + kνL(f). (2.27)

Further, ‖xt − xτi
‖ ≤ kν, whence (see Rule 1 in Progress Check)

f t
i ≤ f τi,t

i ≤ fi(xτi
) + Li,t‖xt − xτi

‖ ≤ fi(xτi
) + kνLi (2.28)

(recall that by construction Li,t ≤ Li, see (2.6)). Taking into account once again
that F is monotone and Lipschitz continuous, we conclude from (2.28) and (2.27)
that

F(f t
1, ..., f

t
m) ≤ F(f1(xτ1), ..., fm(xτm)) + kνL(f) ≤ `s + 2kνL(f). (2.29)

41

Since 2kνL(f) ≤ θ(f s− `s), the guess f t = F(f t
1, ..., f

t
m) is ≤ `s + θ(f s− `s), so that

Rule 3(b) in the description of Progress Check was invoked at step t.
We have seen that at step t, Rule 3(b) of Progress Check was invoked. Since

‖xt − xτi
‖ ≤ kν, we have fi(xt) ≤ fi(xτi

) + kνLi, which, by monotonicity and
Lipschitz continuity of F , implies that

F(f1(xt), ..., fm(xt)) ≤ F(f1(xτ1), ..., fm(xτm)) + kνL(f),

and the latter quantity is ≤ `s + 2kνL(f) by (2.27). Thus, F(f1(xt), ..., fm(xt)) ≤
`s + 2kνL(f) ≤ `s + θ(f s − `s), that is, the Progress Check predicts to terminate
phase s at step t, which is not the case (recall that we have assumed that the phase
is not terminated at step t). The resulting contradiction completes the proof of
Lemma.

30. Combining (2.24) with (2.25), we conclude that the number of steps at phase
s does not exceed the quantity

Ns ≡ kc 8Ω[ω(·)]k2L2(f)

αθ2(1− λ)2(f s − fs)2
+ 1b,

as required in (2.21). Besides this, there are exactly two reasons for terminating
phase s:

1. “Significant progress in lower bound” (Rule 3): f s+1 = f s, fs+1 ≥ `s−θ(`s−fs).
In this case, εs+1 = f s+1 − fs+1 ≤ (f s − `s) + θ(`s − fs) = (1− λ + θλ)εs (we
have taken into account that `s = fs + λ(f s − fs));

2. “Significant progress in objective” (Rule 3.b.ii in Progress Check): f s+1 ≤
`s+θ(f s−`s), fs+1 ≥ fs. In this case, εs+1 = f s+1−fs+1 ≤ `s+θ(f s−`s)−fs =
(λ + θ(1− λ))(f s − fs) = (λ + θ(1− λ))εs.

In both cases, εs+1 ≤ γεs, as required in (2.22). (i) is proved.

Proof of (ii): Let us first verify that

ε1 ≤ L(f)

√
2Ω[ω(·)]

α
. (2.30)

Indeed, by (2.10) f 1 = F 1(c1), f1 = min
x∈X

F 1(x), where F 1(·) is a Lipschitz continuous,

with constant L(f) w.r.t. the norm ‖ ·‖, function on X. It follows that ε1 ≤ L(f)D,
where D = max

x∈X
‖x− c1‖. At the same time,

∀(x ∈ X) :
α

2
‖x− c1‖2 ≤ ω(x)− ω(c1)− 〈ω′(c1), x− c1〉 ≤ Ω[ω(·)],

42

whence D ≤
√

2Ω[ω(·)]
α

, and we arrive at (2.30).

In view of (2.30) and the fact that εs ≤ ε1 for all s, relation (2.21) can be
rewritten as

Ns ≤ C1k
3 Ω[ω(·)]L2(f)

αε2
s

(from now on, Ci depend solely on θ, λ). Now, in the case of ε ≥ ε1, the quantity
N(ε) in (ii) clearly equals to 0, so that (2.23) is trivially true. Now let ε < ε1. In
view of (2.22) there exists the largest s = s∗ such that εs > ε, and we have

N(ε) =
s∗∑

s=1

Ns ≤ C1k
3Ω[ω(·)]L2(f)α−1

s∗∑
s=1

ε−2
s

≤ C2k
3Ω[ω(·)]L2(f)α−1

s∗−s∑
i=0

γ2iε−2
s∗

[since εs∗−i ≥ γ−iεs∗ by (2.22)]

≤ C3k
3Ω[ω(·)]L2(f)α−1ε−2

s∗

∞∑
i=0

γ2i

≤ C4k
3Ω[ω(·)]L2(f)α−1ε−2

s∗
≤ C4k

3Ω[ω(·)]L2(f)α−1ε−2

[since εs∗ ≥ ε]

and we arrive at (2.23).

43

Chapter 3

Problems with functional
constrains

Another question which emerged in our research was to extend NERML to the case
of convex problem with functional constraints:

min
x
{f0(x) : fj(x) ≤ 0, j = 1, ..., m, x ∈ X}, (3.1)

where X is a “simple” convex compact set and f, f1, ..., fm are “black-box repre-
sented” convex functions which are Lipschitz continuous on X.

In principle, one could rewrite this problem in the form of

min
x
{f0(x) : x ∈ X̃},

where X̃ := {x ∈ X : fj(x) ≤ 0, j = 1, . . . , m}. But in this case the domain of
the problem X̃ may become complicated, while in NERML (and in Mirror Descent
in general) the simplicity of the domain is crucial for the possibility to solve the
auxiliary problems. Thus, (3.1) needed a dedicated investigation.

•We did extended NERML to problems with functional constraints, by adapting
and extending the approach developed in [20] in the context of Bundle methods. So,
in the next subsections we present our algorithm for Constrained NERML and the
corresponding convergence analysis.

3.1 Preliminary remarks and notations

By setting g(x) := maxj fj(x) we can reduce the situation to the case of a single
functional constraint:

min{f(x) : g(x) ≤ 0, x ∈ X}. (3.2)

44

Function g(x) is Lipschitz continuous and convex on X as maximum of such func-
tions. So, we shall concentrate on this latter version of the constrained problem.

We assume that our problem is feasible and that the constraint is meaningful,
i.e. there exists a point x in X such that function g(x) is positive.

Now, if we could reformulate our problem in an equivalent form of the type

min{h(x) : x ∈ X},
where h(x) is Lipschitz continuous and convex on X, then we could solve it by the
basic NERML algorithm. And we really can reformulate it so by defining function
h(x) as follows:

h(x) := max{f(x)− f∗, g(x)}
where f∗ is the optimal value of the problem (3.2). Indeed, this function is Lipschitz
continuous and convex on X as a maximum of such functions, and the optimal
solution of the problem

min{h(x), x ∈ X}, where h(x) = max{f(x)− f∗, g(x)} (3.3)

is the same as an optimal solution x∗ of (3.2). (To see this, consider subset G of the
set X where function g(·) is not positive: G := {x ∈ X : g(x) ≤ 0}. Then

min{h(x), x ∈ X} = min [min{h(x), x ∈ G}, min{h(x), x ∈ X \G}] .
But on G

f(x)− f∗ ≥ 0 and f(x∗)− f∗ = 0,

while on X \G function g(·) is positive, that leads to h(x) > 0. So

min{h(x), x ∈ X} = 0 and it is achieved at x∗.

)
However this representation posses some difficulty - we do not know the optimal

value of the problem apriori. To overcome this, we can replace this value somehow,
say, by parameter r. Now we can define a function h(x, r) as follows

h(x, r) := max{f(x)− r,g(x)}.
We know that the optimal value of (3.3) is 0. So, our goal is to solve

ε(r) = min{h(x, r) : x ∈ X} = 0. (3.4)

Note that function ε(·) is diminishing for r ≤ f ∗, so if ε(r) ≤ ε for some r (r ≤ f ∗),
then ε(f ∗) ≤ ε too. In the light of foregoing, our plan for solving (3.4) may be as
follows :

45

The solution to the equation (3.4) will be derived in subsequent cycles.
For each cycle i we underestimate f ∗ by ri using an appropriate models
F i(x), Gi(x) of f(x) and g(x) respectively. These models have to be
Lipschitz continuous convex and piecewise linear and to underestimate
the target and the constraint functions in the way that ensure

r1 ≤ r2 ≤ . . . ≤ f ∗.

Then we shall solve
min{h(x, ri) : x ∈ X}. (3.5)

If ε(ri) is greater than 0 significantly, we shall deduce that ri is pretty
rough underestimation for f ∗ and shall update ri to ri+1 using current
approximations Fi(x), Gi(x) of f(x) and g(x).

We will realize this plan with the help of NERML Algorithm.

3.2 Constrained NERML: a description

Setup for Constrained NERML is similar to the general NERML scheme (see
Section 1.3.2).

The information. We assume that we have access to the First Order oracle
which, given on input a point x ∈ X, returns the values f(x), g(x) and subgra-
dients f ′(x), g′(x).

Execution of Constrained NERML as applied to (3.4) is partitioned into subse-
quent cycles.

Cycle i. At the beginning of cycle i(i = 1, 2, . . .) we have in our disposal a
valid lower bound ri on the optimal value f∗ in (3.2), and the prox-center ci.

To initialize the very first cycle we can choose somehow point c ∈ X, compute
f(c), g(c), f ′(c), g′(c) and set

F 1(x) = f(c) + 〈x− c, f ′(c)〉;
G1(x) = g(c) + 〈x− c, g′(c)〉;
r1 = min{F 1(x) : G1(x) ≤ 0, x ∈ X};
H1(x, r1) = max{F 1(x)− r1, G1(x)}.

We start to solve problem (3.5) using regular NERML scheme (see 1.3.2). An
initializing of the very first phase of the NERML as applied to the particular cycle
i can be done as follows:

46

The very first phase. Set.

ci,1 = ci,

δi,1 = max{f(ci,1)− ri, g(ci,1)},
δi
1 = min{H i,1(x, ri), x ∈ X}.

Pase s of cycle i is initialized by

• a valid lower bound δi
s on the quantity

min{h(x, ri) : x ∈ X};

• the best found so far feasible solution δi,s to

min{h(x, ri) : x ∈ X};

• a prox center ci,s ∈ X.

These data define s -th level

ls = (1− λ)δi
s + λδi,s,

where λ is a parameter of the method.
Each phase is comprised of subsequent steps (if possible, we shall skip the phase

index s and cycle index i in the notations).

Step t. At the beginning of step t we have in our disposal

• t -th search point xt of the phase;

• t -th model Ht(x, ri) of the function h(x, ri), which is Lipschitz continuous
piecewise linear convex function satisfying the relation

∀x ∈ X h(x, ri) ≥ Ht(x, ri);

• t -th best found value δs,t of the h(x, ri);

• t -th localizer Xt.

47

These entities satisfy the relations

xt = argmin{ωs(x) : x ∈ Xt}
x ∈ X \Xt ⇒ h(x, ri) > ls.

To initialize the first step of phase s, we can set

x1 = cs,
X1 = X,
F1(x) = f(x1) + 〈x− x1, f

′(x1)〉,
G1(x) = g(x1) + 〈x− x1, g

′(x1)〉,
H1(x, ri) = max{F1(x)− ri, G1(x)},
δs,1 = δs,
δs,1 = min{H1(x), x ∈ X1}.

Our actions at step t are as follows:

1. calling the oracle, updating the upper bound, enriching the model

We compute f(xt), g(xt), f
′(xt), g

′(xt) and, using these data, h(xt, r
i) =

max{f(xt)− ri,g(xt)}.
Then we set

δs,t+1 = min{δs,t,h(xt, r
i)}.

If
δs,t+1 ≤ θδs + (1− θ)ls, (3.6)

where θ ∈ (0, 1) is a parameter of the method. We terminate phase s and pass
to phase s + 1, setting

δs+1 = δs,t+1, δs+1 = δs.

Otherwise we enrich the model of h(x, ri) by setting

F+
t (x) = max{Ft(x), f(xt) + 〈x− xt, f

′(xt)〉},
G+

t (x) = max{Gt(x), g(xt) + 〈x− xt, g
′(xt)〉},

H+
t (x, ri) = max{F+

t (x)− ri, G+
t (x)}

2. updating the lower bound

We solve the auxiliary optimization problem

δ̃s,t = min{H+
t (x, ri) : x ∈ Xt}

and set
δs,t+1 = max{min[ls, δ̃s,t], δs,t}.

48

If
δs,t+1 < (1− θ)ls,

we update the search point, the localizer and the model:

3. updating the search point, the localizer and the model

We solve the problem

xt+1 = argmin{ωs(x) : x ∈ X+
t+1 ≡ Xt ∩ {x : H+

t (x) ≤ ls}}

and choose as Xt+1 any set, cut off X by finitely many linear inequalities, which
is in-between the sets X+

t+1 and X−
t+1 = {x ∈ X : 〈x − xt+1, ω

′
s(xt+1) ≥ 0}, so

that
X−

t+1 ⊃ Xt+1 ⊃ X+
t+1.

Then we update the models F+
t (·), G+

t (·) into the models Ft+1(·), Gt+1(·) (thus
defining Ht+1(·)). Step t of the phase s is completed and we loop to step t+1.

If not, i.e
δs,t+1 ≥ (1− θ)ls,

we terminate the phase s and set

δs+1 = δs, δs+1 = δs,t+1.

4. passing to a new problem

We check also whether δs+1 ≥ µδs, where µ is a parameter of the method. If
so, we terminate the cycle i itself, find the model’s optimal value

ri+1 = min{F+
t (x) : G+

t (x) ≤ 0, x ∈ X} (3.7)

and an approximate solution x∗i of cycle i as the best - with the smallest value
of h(x, ri) - of the search points generated when running all the phases of cycle
i.

Then we pass to the new cycle, i.e start to solve

min{h(x, ri+1) : x ∈ X}. (3.8)

The approximate solution x∗ found in course of i cycles is the best, i.e. which
gives minj≤i h(x∗j, ri), of points x∗1, . . . , x∗i.

49

3.3 Constrained NERML: convergence analysis

Lemma 3.1 Let u(x, y) be real valued convex and Lipschitz continuous function
with respect to its, say, second argument with constant L2 on compact set Y and
continuous with respect to its first argument on compact set X, i.e

∀y1, y2 ∈ Y |u(·, y1)− u(·, y2)| ≤ L2‖y1 − y2‖.

Then v(y) = minx u(x, y) is Lipschitz continuous with constant L2.

J For all x ∈ X v(y1) = minx u(x, y1) ≤ u(x, y1) and v(y2) = minx u(x, y2) ≤
u(x, y2). Compactness of X implies there exist x1, x2 ∈ X such that minx u(x, y1) =
u(x1, y1) and minx u(x, y2) = u(x2, y2). In particular, v(y1) ≤ u(x2, y1) and v(y2) ≤
u(x1, y2). So,

v(y1)− v(y2) ≤ u(x2, y1)− u(x2, y2) ≤ L2|y1 − y2|,

and, from the other hand,

v(y1)− v(y2) ≥ u(x1, y1)− u(x1, y2) ≥ −L2|y1 − y2|.

Q.E.D.I

Theorem 3.1 Let X be compact ”simple” set and 0 < θ, λ < 1; 1
2

< µ < 1 be
parameters of the method. Then

(i) The number of cycles to perform before we are reaching an accuracy ε is
bounded from above by

log2
4
√

2LDµ
ε

log22µ
.

(ii) The total number of oracle calls to reach the accuracy epsilon does not exceed

M(ε) = c̃(θ, λ, µ)
ΩL2

αε2
log2

4
√

2LDµ

ε
,

where c̃(θ, λ, µ) depends solely and continuously on the parameters of the method.

Proof:
To simplify the notations we will use the only index i to denote the finest model of
each cycle with the help of which we ”jump” to the new cycle.

10. Function h(x, r) is Lipschitz continuous with respect to x with constant L as
maximum of such functions. Functions F, G are Lipschitz continuous with the

50

same constant too, so all H(x, r) are Lipschitz continuous with respect to x
with constant L.

h,H are also Lipschitz continuous with respect to r(r1 ≤ r ≤ f ∗) with constant
1 (indeed, f(x) − r, F (x) − r are Lipschitz continuous with constant 1 and
g(x), G(x) are constant for all r).

20. As it follows from Lemma 3.1, functions

ε(r) = min
x

h(x, r) and Σ(r) = min
x

H(x, r)

are Lipschitz continuous with respect to r with constant 1.

30. The rules for a choice of r1, r2, . . . are described in Constrained NERML scheme
and satisfy

r1 ≤ r2 ≤ . . . ≤ f ∗.

This choice ensures a nested structure of cycles i:

ε(r1) ≥ ε(r2) ≥ . . . ≥ ε(f ∗);
Σ(r1) ≥ Σ(r2) ≥ . . . Σ(f ∗).

40.
Σ1(r1) ≤ LD. (3.9)

Indeed, by the construction,

r1 = min{f(c1) + 〈x− c1, f ′(c1)〉, g(c1) + 〈x− c1, g′(c1)〉 ≤ 0} =

f(c1) + 〈x∗1 − c1, f ′(c1)〉. (3.10)

So,

Σ1(r1) ≤ δ1
1 = max{f(c1)− r1, g(c1)} = max{−〈x∗1 − c1, f ′(c1)〉, g(c1)}.

But from Cauchi-Shvartz inequality and the Lipschitz property of function f

−〈x∗1 − c1, f ′(c1)〉 ≤ L‖x∗1 − c1‖ ≤ LD.

Now, if g(c1) ≤ 0 we get (3.9). If not, we know there exists point x such that
g(x) ≤ 0 and g(c1) ≤ g(c1)− g(x) ≤ L‖c1− x‖ ≤ LD. So, also in this case we
get (3.9).

50. Suppose, we have finished cycle i and rised the lower bound of (3.2) from ri to
ri+1. It means:

51

• Σi(ri) ≥ µδi by the rule for terminating the cycle;

• Σi(ri+1) = 0 by construction of ri+1;

• 0 = Σi(ri+1) ≥ Σi(ri) + Σi′(ri)(ri+1 − ri) as it follows from previous
argumentation and by the property of convex function;

• Σi(ri−1) ≥ Σi(ri) + Σi′(ri)(ri−1− ri) also by the property of convex func-
tion.

60. Let us consider two subsequent cycles. From two last inequolities we get:

−Σi′(ri) ≥ Σi(ri)

ri+1 − ri

and (”switching” index i to i + 1)

−Σi+1′(ri+1) ≤ Σi+1(ri)− Σi+1(ri+1)

ri+1 − ri
.

So,

−Σi+1′(ri+1)

−Σi′(ri)
≤ Σi+1(ri)− Σi+1(ri+1)

ri+1 − ri

/
Σi(ri)

ri+1 − ri
=

Σi+1(ri)− Σi+1(ri+1)

Σi(ri)
.

(3.11)
But, as was said above Σi(ri) ≥ µδi, and δi ≥ ε(ri) by definition of δi. We
know also that all our models underestimate the real functions, which ensures
ε(r) ≥ Σ(r) for all r ≤ f ∗. So,

Σi(ri) ≥ µε(ri) ≥ µΣi+1(ri). (3.12)

Combining this with (3.11) we get

−Σi+1′(ri+1)

−Σi′(ri)
≤ 1

µ
· Σi+1(ri)− Σi+1(ri+1)

Σi+1(ri)
=

1

µ

(
1− Σi+1(ri+1)

Σi+1(ri)

)
.

Denote αi = Σi+1(ri+1)
Σi+1(ri)

. Then we have

−Σi+1′(ri+1)

−Σi′(ri)
≤ 1

µ
(1− αi). (3.13)

70. From the other hand, using (3.12)

Σi+1(ri+1)

Σi(ri)
≤ Σi+1(ri+1)

µΣi+1(ri)
=

1

µ
αi. (3.14)

52

80. Suppose now we have performed m cycles. Then by (3.14)and (3.9)

Σm(rm) =
Σm(rm)

Σm−1(rm−1)
· Σm−1(rm−1)

Σm−2(rm−2)
· . . . · Σ2(r2)

Σ1(r1)
· Σ1(r1) ≤

(
1

µ

)m−1

× αm−1 . . . α1 × LD, (3.15)

while similarly, by (3.13) and remembering that Σ1′(r1) ≤ 1, we get

−Σm′(rm) ≤
(

1

µ

)m−1

(1− αm−1) . . . (1− α1). (3.16)

90. From the third fact mentioned in paragraph 5 implied to cycle m and (3.16)

Σm(rm) ≤ −Σm′(rm)(rm+1 − rm) ≤
(

1

µ

)m−1

(1− αm−1) . . . (1− α1)(rm+1 − rm). (3.17)

But rm+1− rm ≤ 2LD (Indeed, rm+1− rm ≤ f ′− r1 = (f(x∗)−f(c1))−〈x1∗−
c1, f ′(c1)〉 ≤ 2LD), which implies

Σm(rm) ≤
(

1

µ

)m−1

× (1− αm−1) . . . (1− α1)× 2LD. (3.18)

100. Combining (3.15),(3.18) we arrive at

(Σm(rm))2 ≤
(

1

µ

)2(m−1)

×
(

1

4

)m−1

× 2(LD)2

(we used the fact that α(1− α) ≤ 1
4
) getting finally

Σm(rm) ≤
(

1

2µ

)m−1√
2LD (3.19)

110. Suppose, at the end of m cycles

µε ≤ Σm(rm) ≤
(

1

2µ

)m−1√
2LD.

I.e.
1−m ≥ log2µ

µε√
2LD

.

53

So, if

m ≥ 2− log2µ

µε√
2LD

=
log2

4
√

2LDµ
ε

log22µ
,

then
Σm(rm) ≤ µε.

But by construction µδm ≤ Σm(rm) ⇒ δm ≤ ε, which means we have arrived
at desired accuracy ε.

120. Inside each cycle i our algorithm acts exactly as the regular NERML, and we
terminate a cycle for sure when (1−µ)δi,s < ε. So the number of steps to end
the cycle i is bounded from above by

Nθ,λ(ε, µ) = c(θ, λ)
(1− µ)2ΩL2

αε2
,

so the total number of steps (= Oracle calls) to solve the problem (3.4) to the
accuracy ε is bounded from above by

M(ε) = Nθ,λ(ε, µ)
log2

4
√

2LDµ
ε

log22µ
= c̃(θ, λ, µ)

ΩL2

αε2
log2

4
√

2LDµ

ε
.

3.4 Constrained NERML: incremental version

In the previous section we have described an incremental version of NERML - IN-
ERML, where we solved the minimization problem of the Lipschitz continuous poly-
hedrally representable monotone function. But our constrained version of NERML
is built as sequence of cycles, in each of them we solve the problem of the type:

minF(x), where F(x) = max{f(x)− r, g(x)}.
As we have already seen in calculus of polyhedrally representable functions, max(·, ·)
is polyhedrally representable. g(x) = max{g1(x), . . . , gm(x)}, where g1(x), . . . , gm(x)
are our functional constraints - so, g is also polyhedrally representable. Function
f can have some structure too, and if this structure is polyhedrally representable
function, then the whole F is polyhedrally representable as a composition of such
functions (see ”Calculus of polyhedrally representable functions” in the previous
section). As a result, we can use our INERML algorithm for the constrained case as
well. But we have to pay an attention that to carry out a constrained INERML, we
have to remember what data corresponds to the objective and what to the constraint,
as we have to build their models properly.

54

Chapter 4

Conclusions

In this work we developed two accelerations of NERML: INERML and Constrained
NERML. Within the framework of extremely large-scale convex optimization, incre-
mental implementations proved to be very useful and result in better performance
as compared to corresponding ”regular” algorithms. Nowadays, the main use of this
technique is for medical imaging reconstruction problems. Moreover, incremental
technique originated from this field and is known as Ordered Subsets in medical lit-
erature. In medical imaging one of the classical approaches for building an objective
function for iterative reconstruction is Maximum-Likelihood principle. As a result
one gets objective presented as a sum of several million simple convex functions. This
historical reasons along with the methods used for reconstruction caused to develop
Ordered Subsets algorithms only for functions with simple additive structure.

In our research we show that Incremental techniques can be applied for more
general classes of problems. Even if full, no subset, mode is used, INERML can lead
to better performance than NERML, as INERML builds models for each ”inner”
function independently and then uses the structure of ”outer” function to build a
model for the whole objective. In contrast to this, general NERML is completely
blind - as a member of simple, ”black-box” oriented, algorithms, it is not capable
to utilize an apriori information about the function at all.

Proceeding from this, we suggest to use this techniques in other industrial fields,
where suitable type of objective is present. For instance, in Structural Design.

We also suggest to try INERML in the native field for Ordered Subsets methods
- in Medical Imaging. The reason is, that INERML, based on NERML, allows to
utilize an information about the function gathered so far, and the depth of this
memory is in our full control. This feature is very attractive because the use of
memory can lead to better performance as compared to memoryless algorithms,
while our full control on the memory depth allows to use this method for problems
of huge dimensions.

55

For adjusting INERML for the particular problem, one has to fit several param-
eters carefully:

• θ, λ, µ

• number of subsets

• memory depth

Techniques for solving auxiliary problems are very important as well - we have
to solve this auxiliary problems to high accuracy. Otherwize convergence properties
of our algorithm may not be valid.

Constrained version of NERML broads the class of problems which can be pro-
cessed by NERML. The construction of this method suits well to the construction
of INERML, so that they can accomplish each other.

56

Bibliography

[1] Beck, A., Teboulle, M., Mirror Descent and nonlinear projection subgradient
methods for convex optimization, Operations Research Letters (to appear).

[2] Bendsoe, M.P., Guedes, J.M., Haber, R.B., Pedersen, P., and Taylor, J.E., An
analytical model to predict optimal material properties in the context of Optimal
Structural Design, Journal of Applied Mechanics 61, 1994.

[3] Bendsoe, M.P., Optimization of structural topology shape and material,
Springer-Verlag, 1995.

[4] Ben-Tal, A., Kočvara, M., Nemirovski, A., and Zowe, J., Free Material Design
via Semidefinite Programming. The Multiload Case with Contact Conditions,
SIAM J. of Optimization 9 (1999), 813-832.

[5] Ben-Tal, A., Nemirovski, A., Structural Design via Semidefinite Programming,
In: R. Saigal, H. Wolkowitcz, L. Vandenberghe, Eds. Handbook on Semidefinite
Programming, Kluwer Academic Publishers, 2000, 443-468.

[6] Ben-Tal A., Margalit T. and Nemirovski A., The Ordered Subsets Mirror De-
scent Optimization Method with Applications to Tomography, SIAM Journal on
Optimization 12 (2001), 79-108.

[7] Ben-Tal A., Nemirovski A., Lectures on Modern Convex Optimization: Analy-
sis, Algorithms and Engineering Applications, MPS-SIAM Serries on Optimiza-
tion, 2001.

[8] Ben-Tal A., Nemirovski A., Non-Euclidean Restricted Memory Level Method for
Large-Scale Convex Optimization, Springer-Verlag GmbH ISSN 102(3) (2005),
407-456

[9] Bertsekas, D.P. (1995), Nonlinear Programming, Athena Scientific, Belmont,
Massachusetts.

57

[10] Bertsekas, D.P., Incremental least squares methods and the extended Kalman
filter, SIAM J. on Optimization 6 (1996), 807-822.

[11] Bertsekas, D.P., A new class of incremental gradient methods for least squares
problems, SIAM J. on Optimization 7 (1997), 913-926.

[12] Defrise M., Kinahan P.E., Townsend D.W., Michel C., Sibomana M., New-
port D.F., Exact and approximate rebinning algorithms for 3D PET data, IEEE
Trans. on Medical Imaging, 16(2) (1997), 145-158.

[13] Hudson H. M., Larkin R. S., Accelerated Image Reconstruction using Ordered
Subsets of Projection Data, IEEE Trans. Med. Imag., 13, No. 4 (1994), 601-609.

[14] Kinahan P.E., Rogers J.P., Analytic 3D image reconstruction using all detected
event, IEEE Trans. Nucl. Sci., 36 (1988), 964-968.

[15] Kiwiel K., An aggregate subgradient method for non-smooth convex minimiza-
tion, Mathematical Programming 27 (1983), 320-341.

[16] Kiwiel K., Proximal level bundle method for convex nondifferentable optimiza-
tion, saddle point problems and variational inequallities, Mathematical pro-
gramming Series B 69 (1995), 89-109.

[17] Kiwiel, K.C., Larson, T., and Lindberg, P.O., The efficiency of ballstep sub-
gradient level methods for convex optimization, Mathematics of Operations Re-
search 24 (1999), 237-254.

[18] Lemaréchal C., Nonsmooth optimization and descent methods, Research Report
78-4, IIASA, Laxenburg, Austria (1978)

[19] Lemaréchal C., Strodiot J.J., Bihain A., On a bundle algorithm for nonsmooth
optimization, in: O.L. Magasarian, R.R. Meyer, S.M. Robinson Eds., Nonlinear
Programmin 4 (Academic Press, NY, 1981), 245-282.

[20] Lemaréchal C., Nemirovski A., Nesterov Yu., New variants of bundle methods,
Mathematical Programming Series B 69 (1995), 111-148.

[21] Mifflin R., A modification and an extension of Lemaréchal’s algorithm for non-
smooth minimization, Mathematical Programming Study 17 (1982), 77-90.

[22] Modern mathematical Methods of Optimization, edited by Karl-Heinz Elster,
Akademie Verlag, 1993.

[23] Nemirovski A. and Yudin D., Problem Complexity and Method Efficiency in
Optimization, J. Wiley & Sons, 1983.

58

[24] Nesterov Yu., Cutting plane algorithms from analytic centers: complexity esti-
mate, mathematical Programming 65 (1995), 149-176.

[25] Polyak B.T, A general method for solving extremal problems, Soviet
Math.Doklady 174 (1967), 33-36.

[26] Renegar J., A Mathematical Wiew of Interior-Point Methods in Convex Opti-
mization, MPS-SIAM Series on Optimization 3, SIAM, Philadelphia, PA, 2001.

[27] Ringertz, U., On finding the optimal distribution of material properties, Struc-
tural Optimization 5, 1993.

[28] Rosenfeld A., Kak A.C., Digital picture processing, Computer Science and Ap-
plied Mathematics, 1, 1982.

[29] Schramm H., Zowe J., A version of bundle idea for minimizing a non-smooth
function: conceptual idea, convergence analysis, numerical results, SIAM Jour-
nal on Optimization 2 (1992), 121-152.

[30] Shepp L.A, Vardi Y., Maximum-Likelihood reconstruction for emission tomog-
raphy, IEEE Trans. Med. Image., MI-1 (1982), 113-122

[31] Shor N.Z, Generalized gradient descent with application to block programming,
Kibernetika 3 (1967) (in Russian).

[32] R. Tyrrell Rockafellar, Convex Analysis, Princeton, New Jersey, Princeton Uni-
versity Press, 1972.

[33] R. Tyrrell Rockafellar and Roger J-B. Wets, Variational Analysis, Springer 317,
1998.

[34] Roos C., Terlaky T., and Vial J.-P. Theory and Algorithms for Linear Opti-
mization: An Interior Point Approach, J. Wiley & Sons, 1997.

[35] Wright S.J., Primal-Dual Interior-Point Methods, SIAM, Philadelphia, PA,
1997.

[36] Ye Y. Interior Point Algorithms: Theory and Analysis, J. Wiley & Sons, 1997.

59

