Books

Author(s) Book
Tamas Terlaky, (Ed.)
Delft University of Technology
Interior Point Methods of Mathematical Programming
Kluwer Academic Publishers,
Applied Optimization, Volume 5
Dordrecht / Boston / London 1996, 528 pp.
$249, ISBN 0-7923-4201-1
Contents Part I Linear Programming
1. Benjamin Jansen, Cornelis Roos, Tamas Terlaky,
Introduction to the theory of interior point methods
2. Takashi Tsuchiya,
Affine scaling algorithm
3. Benjamin Jansen, Cornelis Roos, Tamas Terlaky,
Target-following methods for linear programming
4. Kurt M. Anstreicher,
Potential reduction algorithms
5. Shinji Mizuno,
Infeasible-interior-point algorithms
6. Erling D. Andersen, Jacek Gondzio, Csaba Meszaros, Xiaojie Xu,
Implementation of interior-point methods for large scale linear programs
Part II Convex Programming
7. Florian Jarre,
Interior-point methods for classes of convex programs
8. Akiko Yoshise,
Complementarity problems
9. Motakuri V. Rammana, Panos M. Pardalos,
Semidefinite Programming
10. David F. Shanno, Mark G. Breitfeld, Evangelia M. Simantiraki,
Implementing barrier methods for nonlinear programming
Part III Applications, Extensions
11. John E. Mitchell,
Interior point methods for combinatorial optimization
12. Panos M. Pardalos, Mauricio G.C. Resende,
Interior point methods for global optimization
13. Anthony Vannelli, Andrew Kennings, Paulina Chin,
Interior point approaches for the VLSI placement problem
Hoang Tuy.
Hanoi Institute of Mathematics
Convex Analysis and Global Optimization
Kluwer Academic Publishers, pp. 350, 1998, $136
ISBN 0-7923-4818-4
Contents Part I: Convex Analysis
1. Convex Sets
2. Convex Functions
3. D.C. Functions and D.C. Sets
Part II: Global Optimization
4. Motivation and Overview
5. Successive Partitioning Methods
6. Outer and Inner Approximation
7. Decomposition
8. Nonconvex Quadratic Programming
References, Index