Author(s) | Book |
---|---|
Tamas Terlaky, (Ed.)
Delft University of Technology | Interior Point Methods of Mathematical Programming
Kluwer Academic Publishers, Applied Optimization, Volume 5 Dordrecht / Boston / London 1996, 528 pp. $249, ISBN 0-7923-4201-1 Contents 1. Benjamin Jansen, Cornelis Roos, Tamas Terlaky, Introduction to the theory of interior point methods 2. Takashi Tsuchiya, Affine scaling algorithm 3. Benjamin Jansen, Cornelis Roos, Tamas Terlaky, Target-following methods for linear programming 4. Kurt M. Anstreicher, Potential reduction algorithms 5. Shinji Mizuno, Infeasible-interior-point algorithms 6. Erling D. Andersen, Jacek Gondzio, Csaba Meszaros, Xiaojie Xu, Implementation of interior-point methods for large scale linear programs Part II Convex Programming 7. Florian Jarre, Interior-point methods for classes of convex programs 8. Akiko Yoshise, Complementarity problems 9. Motakuri V. Rammana, Panos M. Pardalos, Semidefinite Programming 10. David F. Shanno, Mark G. Breitfeld, Evangelia M. Simantiraki, Implementing barrier methods for nonlinear programming Part III Applications, Extensions 11. John E. Mitchell, Interior point methods for combinatorial optimization 12. Panos M. Pardalos, Mauricio G.C. Resende, Interior point methods for global optimization 13. Anthony Vannelli, Andrew Kennings, Paulina Chin, Interior point approaches for the VLSI placement problem |
Hoang Tuy.
Hanoi Institute of Mathematics | Convex Analysis and Global Optimization
Kluwer Academic Publishers, pp. 350, 1998, $136 ISBN 0-7923-4818-4 Contents 1. Convex Sets 2. Convex Functions 3. D.C. Functions and D.C. Sets Part II: Global Optimization 4. Motivation and Overview 5. Successive Partitioning Methods 6. Outer and Inner Approximation 7. Decomposition 8. Nonconvex Quadratic Programming References, Index |