Books

Author(s)  Book
A. Schrijver
Department of Econometrics, 
Tilburg University 
Theory of Linear and Integer Programming
John Wiley & Sons, Inc., Chichester, pp.xi+471, 1986 
Wiley-Interscience Series in Discrete Mathematics 
ISBN 0-471-90854-1 
Contents  Preface 
1. Introduction and Preliminaries 
2. Problems, Algorithms, and Complexity 
Part I: Linear Algebra 
3. Linear Algebra and Complexity 
Part II: Lattices and Linear Diophantine Equations 
4. Theory of Lattices and Linear Diophantine Equations 
5. Algorithms for Linear Diophantine Equations 
6. Diophantine Approximation and Basis Reduction 
Part III: Polyhedra, Linear Inequalities, and Linear 
Programming 
7. Fundamental Concepts and Results on Polyhedra, Linear Inequalities, and Linear Programming 
8. The Structure of Polyhedra 
9. Polarity, and Blocking and Anti-Blocking Polyhedra 
10. Sizes and Theoretical Complexity of Linear Inequalities and Linear Programming 
11. The Simplex Method 
12. Primal-Dual, Elimination, and Relaxation Methods 
13. Khachiyan’s Method for Linear Programming 
14. The Ellipsoid Method for Polyhedra more Generally 
15. Further Polynomiality Results in Linear Programminh 
Part IV: Integer Linear Programming 
16. Introduction to Integer Linear Programming 
17. Estimates in Integer Linear Programming 
18. The Complexity of Integer Linear Programming 
19. Totally Unimodular Matrices: Fundamental Properties and Examples 
20. Recognizing Total Unimodularity 
21. Further Theory Related to Total Unimodularity 
22. Integral Polyhedra and Total Dual Integrality 
23. Cutting Planes 
24. Further Methods in Integer Programming 
References 
Notation index 
Author Index 
Subject Index 
Naum Z. Shor
Ukrainian National Academy of Sciences 
E-mail: nzshor@d120.icyb.kiev.ua 
Nondiferentiable Optimization and Polynomial Problems
Kluwer Academic Publishers 
Boston / London / Dordrecht, 1998, 412 pp. 
$179.00, ISBN 0-7923-4997-0 
Contents:  1. Elements of Convex Analysis, Linear Algebra and Graph Theory 
2. Subgradient and e-Subgradient Methods 
3. Subgradient-Type Methods with Space Dilation 
4. Elements of Information and Numerical Complexity of Polynomial Extremal Problems 
5. Decomposition Methods Based on Nonsmooth Optimization 
6. Algorithms for Constructing Optimal on Volume Ellipsoids and 
Semidefinite Programming 
7. The Role of Ellipsoid Method for Complexity Analysis of 
Combinatorial Problems 
8. Semidefinite Programming Bounds for Extremal Graph Problems 
9. Global Minimization of Polynomial Functions and 17-th Hilbert 
Problem 
References 
Ralph E. Steuer
Management Sciences, Brooks Hall,
University of Georgia,
Athens, Georgia USA 30602-6255
rsteuer@uga.cc.uga.edu
 Multiple Criterie Optimization: Theory,Computation and Application
John Wiley & Sons, Inc.,
New York / 1986, xx + 546 pp.
ISBN 0-471-88846-X

Contents:
      Preface
      1. Introduction
      2. Mathematical Background
      3. Single Objective Linear Programming
      4. Determining all Alternative Optima
      5. Comments about Objective Row Parametric 
          Programming
       6. Utility Functions, Nondominated Criterion 
           Vectors, and Efficient Points
       7. Point Estimate Weighted-Sums Approach
       8. Optimal Weighting Vectors, Scaling, and 
          Reduced Feasible Region Methods
       9. Vector-Maximum Algorithms
     10. Goal Programming
     11. Filtering and Set Discretization
     12. Multiple Objective Linear Fractional 
           Programming
     13. Interactive Procedures
     14. Interactive Weighted Tchebycheff Procedure
     15. Tchebycheff / Weighted-Sums Implementation
     16. Application
     17. Future Directions
     Index
 

Yousef Saad
University of Minesota
Department of Computer Science and
Engineering
200 Union Street S.E. 
Minneapolis, MN 55455, USA
(saad@cs.umn.edu)
Iterative Methods for Sparse Linear Systems
PWS Publishing Company
An International Thomson Publishing Company
Boston, 1996, xvi +447 pp.
ISBN 0-534-9477b-X (hardcover)
Contents:

        Preface
        Acknowledgments
        Suggestions for Teaching
    1. Background in Linear Algebra
    2. Discretization of PDES
    3.  Sparse Matrices
    4. Basic Iterative Methods
    5. Projection Methods
    6. Krylov Subspace Methods - Part I
    7. Krylov Subspace Methods - Part II
    8. Methods Related to the Normal Equations
    9. Preconditioned Iterations
  10. Preconditioning Techniques
  11. Parallel Implementatins
  12. Parallel Preconditioners
  13. Domain Decomposition Methods
       References
       Index

Review by N. Andrei for Studies in Informatics and Control, vol.6, no.4, December 1997, pp.375-378.