Books

Author(s)  Book
Stephen Nash
School of Information Technology and Engineering
Science & Technology II, Room 160
George Mason University
Fairfax, VA 22030-4444
phone: 703-993-1678, fax: 703-993-1521
(snash@gmu.edu)
Ariela Sofer
Department of Operations Research and Engineering MS4A6
George Mason University
4400 University Drive
Fairfax, VA 22030-4444
Phone: 703-993-1692, Fax: 703-993-1521
(asofer@gmu.edu)
Linear and Nonlinear Programming
McGraw-Hill, (McGraw-Hill Series in Industrial Engineering and Management Science) 1996 
ISBN-07-046005-5 
692 pages, Price: $78.12 
Table of Contents  Part I: Basics (Chapters 1-3) 
Part II: Linear Programming (Chapters 4-9) 
Part III: Unconstrained Optimization (Chapters 10-13) 
Part IV: Nonlinear Programming (Chapters 14-17) 
Appendix A. Topics from Linear Algebra 
Appendix B. Other Fundamentals 
Appendix C. Software 
Appendix D. Bibliography 
Appendix E. Index
Nazareth, J.L.,
Washington State University, Pullman, WA 99164-3113, 
E-mail: nazareth@amath.washington.edu 
Computer Solution of Linear Programs
Oxford University Press, New York and Oxford, 1987
Nazareth, J.L.,
Washington State University, Pullman, WA 99164-3113, 
E-mail: nazareth@amath.washington.edu 
The DLP Optimization Model and Decision Support System.
CDSS - Computational Decision Support Systems, 1997. 
CDSS, P.O. Box 10509, Bainbridge Island (Seattle), 
WA 98110, USA. 
ISBN 0-9657375-0-0
Nemhauser, G.L.
Georgia Institute of Technology 
Rinnooy Kan, A.H.G.
Erasmus University Rotterdam 
Todd, M.J.
Cornell University 
Optimization
Handbooks in Operations Research and Management 
Science, Vol.1. 
Elsevier Science Publishers B.V. 
North-Holland, Amsterdam, pp.(ix+709), 1989 
ISBN 0-444-87284-1 
Contents  I. J.E. Dennis Jr, R.B. Schnabel, 
A View of Unconstrained Optimization 
II. D. Goldfarb, M.J. Todd, 
Linear Programming 
III. P.E. Gill, W. Murray, M.A. Saunders, M.H. Wright, 
Constrained Nonlinear Programming 
IV. R.K. Ahuja, T.L. Magnanti, J.B. Orlin, 
Network Flows 
V. W.R. Pulleyblank, 
Polyhedral Combinatorics 
VI. G.L. Nemhauser, L.A. Wolsey, 
Integer Programming 
VII. C. Lemarechal, 
Nondifferentiable Optimization 
VIII. R.J.-B. Wets, 
Stochastic Programming 
IX. A.H.G. Rinnooy Kan, G.T. Timmer, 
Global Optimization 
X. P.L. Yu, 
Multiple Criteria Decision Making: Five Basic Concepts 
Subject Index 
Nering, E.D., 
Tucker, A.W.
Linear Programs and Related Problems
Academic Press, 1993
Yurii Nesterov
Central Economic and Mathematical Institute, Moscow.
Arkadii Nemirovskii
Central Economic and Mathematical Institute, Moscow.
Interior Point Polynomial Methods in Convex Programming
SIAM - Studies in Applied Mathematics 13, 1994
SIAM / ix + 405 pages
ISBN 0-89871-319-61994
Price $77.50 (SIAM Member Price $62.00)
Contents
Chapter 1: Self-Concordant Functions and Newton Method;
Chapter 2: Path-Following Interior-Point Methods;
Chapter 3: Potential Reduction Interior-Point Methods;
Chapter 4: How to Construct Self- Concordant Barriers;
Chapter 5: Applications in Convex Optimization;
Chapter 6: Variational Inequalities with Monotone Operators;
Chapter 7: Acceleration for Linear and Linearly Constrained Quadratic Problems;
Bibliography;
Appendix 1;
Appendix 2.
Jorge Nocedal
Stephen J. Wright
Numerical Optimization.
Springer Series in Operations Research
Hardcover - 600 pages (August 27, 1999)
Springer Verlag;
ISBN: 0387987932 ;
Dimensions (in inches): 1.46 x 9.48 x 7.31
Price (Amazon.com) : $64.95
Contents
1 Introduction
2 Fundamentals of Unconstrained Optimization
3 Line Search Methods
4 Trust-Region Methods
5 Conjugate Gradient Methods
6 Practical Newton Methods
7 Calculating Derivatives
8 Quasi-Newton Methods
9 Large Scale Quasi-Newton Methods
10 Nonlinear Least-Squares Problems
11 Nonlinear Equations
12 Theory of Constrained Optimization
13 Linear Programming: The Simplex Method
14 Linear Programming: Interior-Point Methods