Books

Author(s) Book
A.R., Conn,
Mathematical Science Department,
IBM T.J. Watson Research Center, P.O.Box 218, Yorktown Heights, NY 10598, USA
N.I.M. Gould,
Central Computing Department, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, UK
Ph.L. Toint
Department of Mathematics, Faculte Universitaires ND de la Paix, 61 rue de Bruxelles, B-5000 Namur, Belgium
LANCELOT - A Fortran Package for Large-Scale Nonlinear Optimization (Release A)
Springer Verlag, Berlin, Heidelberg, (pp.xix+330), 1992
ISBN 3-540-55470-X Springer Verlag Berlin
Contents Preface, List of Figures, List of Tables
1. Introduction
2. A SIF/LANCELOT Primer
3. A Description of the LANCELOT Algorithms
4. The LANCELOT Specification File
5. A Description of how LANCELOT Works
6. Installing LANCELOT on your System
7. The SIF Reference Report
8. The Specification of LANCELOT Subroutines
9. Coda
Appendix A. Conditions of Use
Appendix B. Trademarks
Bibliography
Index
More information about the LANCELOT Package
More information about CUTE - Constrained and Unconstrained Testing Environment
Philippe G. Ciarlet
Universite Pierre et Marie Curie,
Ecole Normale Superieure
Introduction a l'analise numerique matricielle et a l'optimisation
Masson, Paris, Milan, Barcelone, (pp.xii+279), 1994
ISBN 2-225-68893-1
Contents Presentation de la collection, Preface
Premiere Partie: Analyse Numerique Matricielle
1. Rappels et complements sur les matrices
2. Generalites sur l'analyse numerique matricielle
3. Origine des problemes de l'analyse numerique matricielle
4. Methodes directes de resolutions de systemes lineaires
5. Methodes iteratives de resolution des systemes lineaires
6. Methodes de calcul des valeurs propres et des vecteurs propres
Deuxieme Partie: Optimisation
7. Rappels et complements de calcul differentiel. Premieres applications
8. Generalites sur l'optimisation. Premiers algorithmes
9. Introduction a la programmation non lineaire
10.Programmation lineaire
Commentaires bibliographiques
References
Principales notations utilisees
Index
W.J. Cook,
W.H. Cunningham,
W.R. Pulleyblank, and
A. Schrijver
Combinatorial Optimization
1998, John Wiley and Sons, New York
355 pages, $49.95
ISBN 0-471-55894-X
Contents Preface v
1. Problems and Algorithms 1
1.1 Two Problems 1
1.2 Measuring Running Times 5
2. Optimal Trees and Paths 9
2.1 Minimum Spanning Trees 9
2.2 Shortest Paths 19
3. Maximum Flow Problems 37
3.1 Network Flow Problems 37
3.2 Maximum Flow Problems 38
3.3 Applications of Maximum Flow and Minimu Cut 47
3.4 Push-Relabel Maximum Flow Algorithms 62
3.5 Minimum Cuts in Undirected Graphs 71
3.5.1 Global Minimum Cuts 71
3.5.2 Cut-Trees 78
3.6 Multicommodity Flows 85
4. Minimum-Cost Flow Problems 91
4.1 Minimum-Cost Flow Problems 91
4.2 Primal Minimum-Cost Flow Algorithms 101
4.3 Dual Minimum-Cost Flow Algorithms 112
4.4 Dual Scaling Algorithms 119
5. Optimal Matchings 127
5.1 Matchings and Alternating Paths 127
5.2 Maximum Matching 134
5.3 Minimum-Weight Perfect Matchings 144
5.4 T-Joins and Postman Problems 166
5.5 General Matching Problems 182
5.6 Geometric Duality and the Goemans-Williamson Algorithm 191
6. Integrality of Polyhedra 199
6.1 Convex hulls 199
6.2 Polytopes 203
6.3 Facets 211
6.4 Integral Polytopes 218
6.5 Total Unimodularity 220
6.6 Total Dual Integrality 225
6.7 Cutting Planes 228
6.8 Separation and Optimization 237
7. The Traveling Salesman Problem 241
7.1 Introduction 241
7.2 Heuristics for the TSP 242
7.3 Lower Bounds 252
7.4 Cutting Planes 261
7.5 Branch and Bound 268
8. Matroids 283
8.1 Matroids and the Greedy Algorithm 273
8.2 Matroids: Properties, Axioms, Constructions 282
8.3 Matroid Intersection 287
8.4 Applications of Matroid Intersection 295
8.5 Weighted Matroid Intersection 297
9. NP and NP -Completeness 309
9.1 Introduction 309
9.2 Words 311
9.3 Problems 312
9.4 Algorithms and Running Time 312
9.5 The Class NP 314
9.6 NP -Completeness 315
9.7 NP -Completeness of the satisfiablility Problem 316
9.8 NP -Completeness of Some Other Problems 318
9.9 Turing Machines 321
APPENDIX A Linear Programming 325