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Abstract. Solving systems of nonlinear equations by means of integration of a first
order ordinary differential equation is considered in this paper. The corresponding gradient
flow algorithm and its variants, based on the approximation of the Hessian matrix asso-
ciated to the functions of the system, are presented. The ordinary differential equation is
integrated by means of a two level implicit time discretization technique, with a splitting
parameter � 5 ^3> 4`. The Hessian matrices of functions of the system are approximated
using the function values and its gradient in two successive points along the trajectory of
the differential equation. The convergence of the algorithms is analysed and it is shown
that this is linear when 3 � � ? 4 and quadratical when � @ 4 and the integration step is
sufficiently large. It is shown that the best algorithm corresponds to the case when the ap-
proximation of the Hessian matrices of the functions of the system is not considered in the
algorithm. The obtained algorithm is quadratically convergent when the integration step is
sufficiently large. In fact, this algorithm, with no second order information about the func-
tions of the system, is a new expression of the Levenberg-Marquardt algorithm in which
the positive parameter is the reciprocal of the time discretization step. Some numerical
examples illustrate the algorithms.

Key words: Systems of nonlinear equations, gradient flow, Levenberg-Marquardt, Gauss-
Newton, approximation of the Hessian.

1. Introduction

In this paper we consider the system of nonlinear equations:

I +{, @ 3 (1)
where I @ ^i4+{,> ===> ip+{,` = Uq $ Up is continuously differentiable. It is assumed
that the system (1) has a solution x� for which I +{�, @ 3= This problem is very close to
that of minimizing the merit function � = Uq $ U defined by:

�+{, @
4

5
nI +{,n5 > (2)

and it is often very convenient to solve (1) by attempting to minimize �= Methods for
solving (1) can be found in a lot of books, see for example [14,24,25,26] , and there are
plenty of papers dedicated to this subject matter.

When p @ q, the system of equations is well-determined, and we can consider the
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Newton method. In this case knowing the current point {n, the next approximation of the
solution {

� is computed as {n.4 @ {n . gn> where gn is the solution of the following
system of linear equations:

uI +{n,g @ �I +{n,> (3)
whereuI +{n, is the Jacobian ofI at point{n=As we know, the Newton method is quadrat-
ically convergent when the initial point {3 is sufficiently close to {�> the JacobianuI +{�,
is nonsingular and the linear system (3) has a solution.

When p 9@ q, generally p A q> then to determine the searching direction gn we can
use the following system of linear equations, known as the normal equations,

uI +{n,
WuI +{n,g @ �uI +{n,

W
I +{n, (4)

which always has a solution. This is known as the Gauss-Newton method. However, like
the Newton’s method, in order to be convergent the Gauss-Newton method must be initial-
ized at a point sufficiently close to a solution of (1). A modification of Gauss-Newton’s
method, designed to overcome this limitation is the Levenberg-Marquardt method [28,29].
In this method the search direction gn is computed as a solution to the system of linear
equations:

�
uI +{n,

WuI +{n, . �nL
�
g @ �uI +{n,

W
I +{n,> (5)

where �
n

is a positive parameter. Since the matrix uI +{n,WuI +{n, . �
n
L is always

positive definite, it follows that (5) has a unique solution. More than this, the direction g>

solution of (5), is a descent direction of the function � at {n.
It is very easy to prove that ifu�+{n, 9@ 3> then the solution gn of the linear system (5)

satisfyu�+{n,Wgn ? 3> proving that gn is indeed a descent direction of �= Therefore the
Levenberg-Marquardt method with Armijo’s stepsize selection rule is globally convergent
to a stationary point {� of �= When p @ q and uI +{�, is nonsingular at the stationary
point {�, then {� is a solution of (1) becauseu�+{�, @ 3 andu�+{�, @ uI +{�,WI +{�,=
For many problems the Levenberg-Marquardt algorithm is preferable to damped Gauss-
Newton algorithm. This is because the Levenberg-Marquardt algorithm is well defined
even when uI +{n, at the current point {n doesn’t have full column rank. On the other
hand, when the Gauss-Newton step is much too long, the Levenberg-Marquardt step is
close to the steepest-descent direction �uI +{n,WI +{n,> which often is superior to the
damped Gauss-Newton step [14, pp.228], [31], [32], [33]. Convergence properties of the
Levenberg-Marquardt algorithm and its inexact variant has been considered in [13,41].

In this paper we shall consider a gradient flow approach for solving (1) by minimizing
the merit function (2). In this respect, section 2 is dedicated to present the general results
on gradient flow approach for solving systems of nonlinear equations. It is shown that
the gradient flow approach leads to an algorithm which contains the second order infor-
mation given by the Hessian of functions il> (l @ 4> ===>p,= In very mild conditions its
quadratic convergence is proved. The main result of this paper is given in section 3. We
show that a very simple modification of the gradient flow algorithm, consisting of rejec-
tion the second order terms, give the best algorithm of this approach. In this respect we
consider some variants of the gradient flow algorithm in which the Hessian matrices of

2



functions il are approximated by scalars, for which different formula are suggested. It is
shown that the convergence of the resulting algorithms is quadratical when the splitting
parameter has a unitar value and the integration step is sufficienly large. Rejecting the sec-
ond order term, the corresponding algorithm is an equivalent algebraic expression of the
Levenberg-Marquardt algorithm for which we prove its quadratic convergence. Thus, the
gradient flow approach for solving systems of nonlinear equations gives a strong theoreti-
cal basis for the Levenberg-Marquardt algorithm. Section 4 illustrates the running of these
algorithms, as well as the conclusions of the theory, on some concrete systems of nonlinear
equations including some from MINPACK-2 collection.

2. Gradient flow algorithm for systems of nonlinear
equations

In order to solve the problem (1), let us consider the following equivalent unconstrained
optimization problem:

plq�+{, (6)
where �+{, is given in (2). As we know, a necessary condition for the point {� be an
optimal solution for (6) is:

u�+{�, @ 3= (7)
In order to fulfill this optimality condition the following continuous gradient flow refor-
mulation of the problem is considered: solve the ordinary differential equation :

g{+w,

gw
@ �u�+{+w,, (8)

with the initial condition

{+3, @ {3= (9)
Therefore, the minimization problem (6) has been reduced to the integration of the differen-
tial equation (8) with initial condition (9). Methods of this type, using the idea of following
the trajectory of a system of ordinary differential equations, are not new and a number of
authors have been proposed numerous ordinary differential equations and computational
schemes for their integration. To have an idea about this subject let us shortly review them.

Let |+w, be the displacement from the current point {= The initial condition for all equa-
tions is therefore |+3, @ 3= The Courant’s method [12], based on idea of Hadamard [21] is
to solve the differential equation:

|3

+w, @ �u�+{3 . |+w,,= (10)
Boggs [5] extended this idea of Courant by using a predictor-corrector method for solving
(10) in connection with a quasi-Newton approximation of the Hessian.

Considering the local approximation of (10) along a sequence of points we get:
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|
3

l
+w, @ �u�+{l,�u

5�+{l,|l+w,= (11)
When the Hessian is nonsingular, Botsaris and Jacobson [9] use (11) for solving (6). Oth-
erwise, in order to bound the solution, they replace the Hessian by a matrix with the same
eigenvectors, but with the absolute values of the eigenvalues. Vial and Zang [39], and Zang
[42], use a quasi-Newton approximation of the Hessian in (11). Botsaris dedicated a num-
ber of paper for integration of (11) [6,7]. He considers an approximation of the Hessian
which is updated at each step by means of the Sherman-Morrison formula.

Another equation, known as the continuous Newton equation is

|
3+w, @ �u5�+{3 . |+w,,�4

u�+{3 . |+w,,= (12)
This equation has been considered by Botsaris [8], where he considers an implicit ordinary
differential equation solver with an approximation of the inverse of the Hessian matrix
which is updated by means of Sherman-Morrison formula.

Finally, considering a mechanical interpretation of the problem, by following the tra-
jectory of a point mass in the force field �u� with dissipation, Aluffi-Pentini, Parisi and
Zirilli [1,2], use the second order differential equation:

d+w,|33+w, . e+w,|3+w, .u�+{3 . |+w,, @ 3> (13)
where d+w, and e+w, are positive, real-valued functions. In fact, their method is for solving
the system of nonlinear equations (1), by minimizing (6). For solving (13) they consider
an implicit ordinary differential equation solver and a quasi-Newton approximation of the
Hessian. Zirilli et al, [43,44] describe different practical procedures for choosing d+w, and
e+w, during the integration of (13), proving that as w $ 4, the solution trajectory is very
close to that of Newton’s method. They show that using the second order differential equa-
tions gives a larger domain of convergence than that corresponding to the first order system.
More than this, (13) permits a greater control of the trajectory since at w @ 3 we must spec-
ify not only the initial point |+3, but also |

3+3,= Different choices for |
3+3, may lead to

different solution. A similar approach, based on second order differential equations, was
considered by Snyman [37] by solving the differential equation |

33+w, @ �u�+|+w,,=
Brown and Bartholomew-Biggs [10,11] experiment a number of methods based on

all these differential equations (11)-(13) using specialized ordinary differential equations
solvers. Their conclusion is that the most successful method is that based on (11) using the
Hessian or a quasi-Newton approxination of it.

Behrman [4] in his Dissertation solves the problem (6) by an algorithm which basically
calculates a curve that is an approximation to the integral curve of the vector field�u�= A
searching procedure along this curve is initiated, determining a point that reduces the value
of the objective function �.

For unconstrained optimization, the gradient flow method is presented by Andrei [3],
where the ordinary differential equation (8) is integrated by means of a discretization scheme
based on a two level implicit time discretization technique, with a splitting parameter
� 5 ^3> 4` = The convergence of the algorithm is linear when 3 � � ? 4 and quadratic
when � @ 4 and the integration step is sufficiently large.

In a more general context refering to the constrained optimization, the gradient flow

4



methods, known as stable barrier-projection and barrier-Newton methods have been con-
sidered by Evtushenko [16,17], and Evtushenko and Zhadan [18-20]. Convergence of these
methods via Lyapunov functions has been considered by Smirnov [36]. Recently, for solv-
ing constrained optimization problems, improvements and some computational experience
with these methods have been considered by Wang, Yang and Teo [40]. Basically, in this
approach a constrained optimization problem is reformulated as an ordinary differential
equation in such a way that its solution converges to an equillibrium point of the optimiza-
tion problem as parameter w from this equation goes to4. We see that this approach based
on reformulation of the optimization problem as a differential equation was and continue
to be very attractive and promising. See also the book by Helmke and Moore [22].

In the following we shall present the main convergence results and the corresponding
gradient flow algorithm for solving (6) by integration of the system (8) with initial condition
(9) [3].

Theorem 2.1. Consider that {� is a point satisfying (7) and u5�+{�, is positive def-
inite. If {3 is sufficiently close to {�, then {+w,, the solution of (8) with initial condition
{3, tends to {� as w goes to 4=

Proof. The system (8) can be written as
=

{@ �+{,>

where �+{, @ �u�+{,= To show that {� is an asymptotically stable point for (8) we shall
consider the Poincaré-Lyapunov theory [38]. According to this theory, {� is an asymp-
totically stable point for the nonlinear differential equation system

=

{@ �+{, if �+{, is
continuously differentiable and the linearized system

=

|@ u�+{�,|>

where | @ { � {�> is exponentially stable, i.e. all eigenvalues of u�+{�, are strictly
negative. Considering the Taylor’s expansion of �+{, around {�, and using (7)> we get:

g{

gw
�@ �+{�, .u�+{�,+{� {�,

@ �
�
u�+{�, .u5�+{�,+{� {�,

�

@ �u
5�+{�,+{� {�,=

But, u5�+{�, is positive definite by the assumption of the theorem. Therefore, its
eigenvalues satisfy �

l

A 3> for all l @ 4> ===> q= By the Poincaré-Lyapunov theory it follows
that olp

w$4

|+w, @ 3>or {+w,$ {� as w$4= �

The following theorem shows that �+{+w,, is strictly decreasing along the trajectory
solution of (8).

Theorem 2.2. Let {+w, be the solution of (8) with initial condition (9). For a fixed
w3 � 3 if u�+{+w,, 9@ 3 for all w A w3> then �+{+w,, is strictly decreasing with respect to
w> for all w A w3=

Proof. We have:
g�+{+w,,

gw
@ u�+{+w,,W

g{+w,

gw
@ �u�+{+w,,Wu�+{+w,, @ �nu�+{+w,,n

5

5
=
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Since u�+{+w,, 9@ 3 when w A w3> it follows that g�+{+w,,@gw ? 3> i.e. �+{+w,, is strictly
decreasing with respect to w A w3= �

Observe that the ordinary differential equation (8), associated to (6), is a gradient system
[27, pp.199]. Gradient systems have special properties that make their flows very simple.
For gradient system (8) at regular points {> characterized by the fact that u�+{, 9@ 3>

the trajectories cross level surfaces of the function �+{, orthogonally. Nonregular points
are equillibria of the system, and if {� is an isolated minimum of �+{,> then {

� is an
asymptotically stable equilibrium of the gradient system (8).

Therefore, solving the unconstrained optimization problem (6) has been reduced to that
of integration of the ordinary differential equation (8) with initial condition (9). Now, as
in [40], we shall consider a discretization of this equation as well as the corresponding
integration scheme.

Let 3 @ w3 ? w4 ? � � � ? wn ? � � � be a sequence of time points for the time w � w3=

Consider kn @ wn.4 � wn the sequence of time distances between two successive time
points. With these, let us consider the following time-steeping discretization of (8):

{n.4 � {n

kn
@ � ^+4� �,u�+{n, . �u�+{n.4,` > (14)

where � 5 ^3> 4` is a parameter. From this we get:

{n.4 @ {n � kn ^+4� �,u�+{n, . �u�+{n.4,` =

When � @ 3 the above discretization is the explicit forward Euler’s scheme. On the other
hand, when � @ 4 we have the implicit backward Euler’s scheme. But,

u�+{n.4, @ u�+{n, .u5�+{n,�{n . �+�{n,>

where �{n @ {n.4�{n and�+�{n, is the remainder satisfying n�+�{n,n @ R

�
n�{nn

5
�
=

Therefore

{n.4 @ {n � kn

�
L . kn�u

5�+{n,
�
�4

^u�+{n, . ��+�{n,` =

Omitting the higher order term �+�{n, we get:

{n.4 @ {n � kn

�
L . kn�u

5�+{n,
�
�4
u�+{n,> (15)

for any � 5 ^3> 4` = Considering {3 as the initial guess, then (15) defines a series i{nj = The
convergence of (15) is given by

Theorem 2.3. Let i{nj be the sequence defined by (15) and {
� a solution of (6), such

that u5�+{�, is positive definite. If the initial point {3 is sufficiently close to {
�
> then:

(i) If � 5 ^3> 4` and kn A 3 is sufficiently small, then {n converges linearly to {
�
=

(ii) If � @ 4 and kn $4> then {n converges quadratically to {
�
=

Proof. (i) From (15) we have:
�
L . kn�u

5�+{n,
�
+{n.4 � {n, @ �knu�+{n,

hence:

{n.4 @ {n � kn

�
u�+{n, . �u5�+{n,+{n.4 � {n,

�
= (16)
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Subtracting {
� from both sides of (16) and having in view that hn @ {n�{

�
> {n.4�{n @

hn.4 � hn andui+{
�
, @ 3> we get:

hn.4 @ hn � kn

�
u�+{n,�u�+{

�

, . �u
5
�+{n,+hn.4 � hn,

�
=

Now using the mean value theorem we have:

hn.4 @ hn � kn

�
u
5
�+�n,hn . �u

5
�+{n,+hn.4 � hn,

�
>

where �
n
5 ^{n> {

�
` = Solving for hn.4, we have:

hn.4 @

q
L � kn

�
L . kn�u

5
�+{n,

�
�4
u
5
�+�n,

r
hn= (17)

Considering the norm of both sides of this equality we obtain:

nhn.4n � *+{n> �n> �> kn, nhnn > (18)
where

*+{n> �n> �> kn, @

���L � kn

�
L . kn�u

5
�+{n,

�
�4
u
5
�+�n,

��� = (19)

From (17) we see that if *+{n> �n> �> kn, ? 4> then hn converges to zero linearly. Using
continuity and the fact that {3 is close to {

� we can write:

*+{n> �n> �> kn, �

#
4�

kn�
n

plq

4 . kn��
n

pd{

$
? 4> (20)

where �
n

plq and �
n

pd{ represent the minimum and the maximum eigenvalues ofu5
�+{n,>

respectively. Therefore, from (17) it follows that olp
n$4

hn @ 3 linearly, i.e. {n $ {
�

linearly.
(ii) Consider � @ 4 in (15), we get:

{n.4 � {n

kn

@ �

�
u�+{n, .u

5
�+{n,�{n

�
>

where �{n @ {n.4 � {n= When kn $4 the above relation is reduced to

u�+{n, .u
5
�+{n,�{n @ 3

which is the Newton method applied to u�+{, @ 3= When {n is sufficiently close to {
�,

as we know the Newton method is quadratically convergent, proving the theorem. �
Remark 2.1. From (18) and (20), with � @ 4, we have:

nhn.4n � sn.4 nh3n

where

sn.4 @

n\
l@3

#
4�

kl�
l

plq

4 . kl�
l

pd{

$
=

But, u5
�+{l, is positive definite, therefore for all l @ 3> = = = n>

3 ? 4�
kl�

l

plq

4 . kl�
l

pd{

? 4=
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So, sn> for all n> is a decreasing sequence, from +3> 4,, i.e. it is convergent. If kl $ 4>

then for all l @ 3> = = = n>

4�
kl�

l

plq

4 . kl�
l

pd{

$ 4� 4@�
�
u
5�+{l,

�
=

Clearly, if there is an l for which �
�
u
5�+{l,

�
is close to 1, then the convergence of the

algorithm is very rapid. �
As the theorem 2.3 recommends, the algorithm based on (15) is quadratically conver-

gent if � @ 4 and kn $ 4= The problem is how to choose the sequence kn= The most
direct idea is to choose kn in such a way that the matrix

L . kn�u
5�+{n,

to be positive definite. The following theorem suggests how to choose the value kn of time
distances between two successive time points.

Theorem 2.4. If kn A pd{
q
�

4

�n
l

> l @ 4> = = = > q
r
> where �

n

l
> l @ 4> = = = > q> are the

eigenvalues of u5�+{n,> then
�
L . knu

5�+{n,
�

is positive definite.
Proof. The matrixu5�+{n, is symmetric, i.e. it has real eigenvalues �nl > l @ 4> = = = > q.

There exists a matrix S such that:

S
�4
u
5�+{n,S @ gldj+�n

4
> = = = > �

n

q
,=

Therefore, S�4
�
L . knu

5�+{n,
�
S @ L . kngldj

�
�
n

4
> ===> �

n

q

�
> which is positive

definite when 4 . kn�
n

l A 3> for all l @ 4> ===> q= �
The above presented results are very general and can be applied to any function �+{,

satisfying the conditions of the above theorems. Basically, the function � must have a
positive definite Hessian at solution point. Now, in order to get an algorithm for solving
(1), by minimizing the merit function �+{,> we shall particularize the above gradient flow
algorithm by considering the special structure of function �+{,=

It is very easy to see that:

u�+{, @ uI +{,WI +{,> (21)

u
5�+{, @ uI +{,WuI +{,.

p[
l@4

il+{,u
5

il+{,= (22)

Proposition 2.1. If il+{, is a convex function for all l @ 4> ===>p> il+{, � 3> for all
l @ 4> ===>p and udqn+uI +{,, @ q> then u5�+{, is positive definite.

Proof. For every | 9@ 3>we see that |W +uI +{,WuI +{,,| @ nuI +{,|n5 A 3 since
udqn+uI +{,, @ q= On the other hand, il+{, � 3> therefore il+{,u

5

il+{, is a positive
definite matrix, since il is a convex function. �

Therefore, in conditions of Proposition 2.1 all the above theorems remain true show-
ing the convergence of the method when applied to this particular form of function �+{,.
Considering (22), for solving (1) by integration of the ordinary differential equation (8),
the following algorithm can be presented:

8



Algorithm GFA (Gradient Flow Algorithm )
Step 1. Consider the initial point {3 5 U

q
> a parameter � 5 ^3> 4` > a sequence of time

step sizes ik
nj and an % A 3 sufficiently small. Set n @ 3=

Step 2. Solve for �{n the system:

%
L . k

n
�

#
uI +{

n
,WuI +{

n
,.

p[
l@4

i
l
+{
n
,u5

i
l
+{
n
,

$&
g
n
@ �knuI +{

n
,WI +{

n
,=

(23)
Step 3. Update the variables: {n.4 @ {n . gn=

Step 4. Test for continuation of iterations. If nI +{n.4,n � %> stop; otherwise set
n @ n . 4 and continue with step 2.

Therefore, when il+{, are convex and positive for all l @ 4> ===>p> udqn+uI +{,, @
q> � @ 4 and k

n $ 4> then the GFA is quadratically convergent to {
�
= We see that

the algorithm is very simple. The difficulty is in step 2, when it is necessary to solve a
system of linear equations. But, this is a common step also for Newton, Gauss-Newton
and Levenberg-Marquardt algorithms. On the other hand, it is necessary to evaluate the
Hessians of functions il+{,> l @ 4> ===>p> which turns out to be a difficult task. Observe
that, rejecting from (23) the second order terms, we get an equivalent algebraic expression
of the Levenberg-Marquardt algorithm. In the next section we consider some variants of
GF algorithm and prove that the best variant is that which ignore completely the second
order information given by the Hessiansu5

i
l
+{
n
,, l @ 4> ===>p=

3. Gradient flow algorithm without second order
information

It is well-known [14] that, when the residuals are very small at the solution, the second-
order terms do not contribute significantly to the efficiency of the Levenberg-Marquardt
or Gauss-Newton algorithms for solving systems of nonlinear equations. In this section
we prove that rejecting from (23) the second order information we get a more efficient
algorithm which is quadratically convergent to a solution of (1). With other words, we
prove that any approximation of Hessians u5

il+{n, does not improve the convergence of
the algorithm (23). To see that, we shall consider a modification of GFA by considering a
scalar approximation of the Hessians u5

il+{n, of functions il+{,> l @ 4> ===>p> at point
{
n
= Many approximation schemes could be imagined. Here is one of them. Suppose that

the functions il+{,> l @ 4> ===>p, are convex, and let us consider the point {n.4 @ {n.gn>

where gn is the searching direction. In this point we can write:

il+{n.4, @ il+{n, .uil+{n,
W

gn .
4

5
g
W

n
u
5
il+},gn>

where } is on the line segment connecting {n and {n.4= Having in view the local character
of the searching procedure and that the distance between {

n
and {

n.4 is sufficiently small,
we can choose } @ {n.4 and consider �n.4

l
L as an approximation of u5

il+{,> at point
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{n.4> where �
n.4

l
5 U= As we can see this is an anticipative viewpoint in which the

approximation of the Hessian of function il at point {n.4 is computed using the local
information from point {n= Therefore we can write:

�
n.4

l
@

5

g
W

n
gn

�
il+{n.4,� il+{n,�uil+{n,

W
gn

�
= (24)

Since il>l @ 4> ===>p are convex functions, it follows that �n.4
l

� 3 for all l @ 4> ===>p= In
fact the following proposition can be proved.

Proposition 3.1. Assume that il+{, is continuously differentiable and uil+{, is Lip-
schitz continuous, with a positive constant Ol= Then at point {n.4> �

n.4

l
� 5Ol=

Proof. From (24) we have:

�
n.4

l
@

5

�
il+{n, .uil+�n,

W
gn � il+{n,�uil+{n,

W
gn

�

ngnn
5

>

where �
n
5 ^{n> {n.4` = Therefore,

�
n.4

l
@

5 ^uil+�n,�uil+{n,`
W
gn

ngnn
5

=

Using the inequality of Cauchy and the Lipschitz continuity it follows that

�
n.4

l
�

5 nuil+�n,�uil+{n,n

ngnn
�

5Ol n�n � {nn

ngnn
�

5Ol n{n.4 � {nn

n{n.4 � {nn
@ 5Ol= �

Therefore, in the current point {n the following approximation of the Hessianu5
�+{n,

can be considered:

uI +{n,
W
uI +{n, . �nL> (25)

where

�n @

p[

l@4

il+{n,�
n

l
= (26)

Observe that if udqnuI +{n, @ q and il+{n, � 3> then (25) represents a positive definite
approximation ofu5

�+{n,=

Using this approximation of Hessians u5
il+{n,> l @ 4> ===>p> in the current point {n,

and (23) we get the following iterative process:

{n.4 @ {n � kn

�
L . kn�

�
uI +{n,

W
uI +{n, . �nL

��
�4
uI +{n,

W
I +{n,> (27)

where �n is given by (26).
However, even if il+{, is a convex function, due to finite precision of the numerical

computations, especially towards the final part of the iterative process, it is possible that
�
n

l
be negative, but very small. On the other hand, for nonconvex function it is often

possible that �n
l

be negative. Therefore, in order to have a positive definite approximation
ofu5

�+{n, we can consider the following formula for �n computation:

10



�n @

p[

l@4

il+{n,
5
�
�n
l

�5
= (28)

This formula is a little too conservative. Our numerical evidence proved that a large per-
centage from the number of iterations are characterized by: il+{n, � 3 and �n

l
A 3=

Therefore, for computation of �n we can consider the following less conservative proce-
dure, which ensures a nonnegative value for �n =

Procedure � (�n computation)
Set �n @ 3=

For l @ 4> ===>p> do :
Set s @ il+{n,> t @ �n

l
=

If s ? 3> then s @ il+{n,
5=

If t ? 3> then t @

�
�n
l

�
5

=

Set �n @ �n . st=

End For.
With this the following algorithm can be presented:

Algorithm MGFA (Modified Gradient Flow Algorithm)
Step 1. Consider the initial point {3 5 Uq> a parameter � 5 ^3> 4`> a sequence of

time step sizes iknj and an % A 3 sufficiently small. Compute: I +{3,> uI +{3, and
�3 @ nI +{3,n = Set n @ 3=

Step 2. Solve the system of linear equations:

�
L . kn�

�
uI +{n,

WuI +{n, . �nL
��
gn @ �knuI +{n,

WI +{n,= (29)
Step 3. Update the variables: {n.4 @ {n . gn=

Step 4. Test for continuation of iterations. If nI +{n.4,n ? %> stop; otherwise set
n @ n . 4 and go to step 5.

Step 5. Compute: I +{n,> uI +{n, and

�nl @
5

gW
n�4

gn�4

�
il+{n,� il+{n�4,�uil+{n�4,

Wgn�4
�
> l @ 4> ===>p=

Step 6. Compute �n using (28) or by means of Procedure �> and go to step 2.

The convergence of MGFA is given by
Theorem 3.1. Let i{nj be the sequence defined by (27) and {� a solution of (1) such

that: I +{�, @ 3> where I +{, is twice continuously differentiable, uI +{, is Lipschitz
continuous and udqnuI +{�, @ q= If the initial point {3 is sufficiently close to {�> then:

(i) If � 5 ^3> 4` and kn A 3 is sufficiently small, then {n converges linearly to {�=

(ii) If � @ 4 and kn $4> then {n converges quadratically to {�=

Proof. (i) From (27) we have
�
+4 . kn��n, L . kn�uI +{n,

WuI +{n,
�
gn @ �knuI +{n,

WI +{n,=

After some algebra we get:

{n.4 @ {n � �n
�
uI +{n,

WI +{n, . �uI +{n,
WuI +{n,+{n.4 � {,

�
> (30)

11



where

�n @
kn

4 . kn��n

= (31)

Subtracting {
� from both sides of the above equality and using the mean value theorem, as

in the proof of Theorem 2.3, we have:

hn.4 @

q
L � �n

�
L . �n�uI +{n,

W
uI +{n,

��4
uI +{n,

W
uI +�n,

r
hn> (32)

where hn @ {n � {
�
> �n 5 ^{n> {

�
` = Taking the norm on both sides of this equality we

obtain:

nhn.4n � *+{n> �n> �> �n, nhnn > (33)
where

*+{n> �n> �> �n, @

���L � �n

�
L . �n�uI +{n,

W
uI +{n,

�
�4
uI +{n,

W
uI +�n,

��� = (34)

From the estimate (33) we see that if *+{n> �n> �> �n, ? 4> then the first order terms in
(33) show that the error hn converges to zero linearly. Since udqnuI +{

�
, @ q it follows

that uI +{
�
,
W
uI +{

�
, is positive definite. Now, when {n is sufficiently close to {

�
> by

continuity, (34) implies that if � 5 ^3> 4` =

*+{n> �n> �> �n, �

#
4�

�
n
�
n

plq

4 . �n��
n

pd{

$
> (35)

where �
n

plq and �
n

pd{ are the minimum and maximum eigenvalues ofuI +{n,
W
uI +{n,>

respectively. Using (31) we see that

4�
�n�

n

plq

4 . �n��
n

pd{

@ 4�
kn�

n

plq

4 . kn�+�n . �
n

pd{,

? 4= (36)

Therefore, (33) implies that

olp
n$4

hn @ 3

linearly, proving that {n converges to {
� linearly.

(ii) Considering � @ 4 in (30) we get:

{n.4 � {n

�
n

@ �uI +{n,
W
^I +{n, .uI +{n,+{n.4 � {n,` = (37)

But

olp
kn$4

kn

4 . kn�n

@
4

�n

and using (28) we see that olp
n$4

�n @ olp
n$4

pS
l@4

il+{n,
5
�
�
n

l

�5
@ 3= Therefore olp

n$4

�n @

4= Having in view thatuI is of full column rank, the equation (37) reduces to

12



uI +{n,+{n.4 � {n, . I +{n, @ 3=

This coincides with the Newton method applied to I +{, @ 3> which we know that in con-
ditions of the theorem is quadratically convergent to {� if the initial point {3 is sufficiently
close to {�= This completes the proof. �

An interesting feature of the theorem 3.1 is that the algorithm allows sufficiently large
values for kn when the splitting parameter satisfies � @ 4= In this case, {n converges
quadratically to a local solution of (1). On the other hand, we see that kn is acting on the
both members of (29) as a scaling parameter, this ensuring the numerical stability of the
sysytem (29).

Remark 3.1. From (33) and (35) with (36), for � @ 4> we have:

nhn.4n � sn.4 nh3n > (38)
where

sn.4 @
n\

l@3

#
4�

kl�
l
plq

4 . kl+�l . �
l
pd{,

$
(39)

But, uI +{l,
WuI +{l, is a positive definite matrix, therefore for all l @ 3> 4> ===> n,

3 ? 4�
kl�

l
plq

4 . kl+�l . �
l
pd{,

? 4=

So, sn> for all n> is a decreasing sequence in +3> 4,> i.e. sn is convergent to zero. �
In order to see the complexity of the MGF algorithm let us denote:

dl @
kl�

l
plq

4 . kl+�l . �
l
pd{,

(40)

and consider dm @ plq idl = 3 � l � nj = Then

sn.4 @
n\

l@3

+4� dl, � +4� dm,
n.4> (41)

i.e.

nhn.4n � sn.4 nh3n � +4� dm,
n.4 nh3n =

Thus, the number of iterations required to obtain an accuracy nhn.4n @ n{n.4 � {�n � %>

starting from the initial point {3> is bounded by

orj+%,� orj+nh3n,

orj+4� dm,
� 4= (42)

We see that this expression depends on the final accuracy, on the initial estimation {3 of the
solution, as well as on the distribution of the eigenvalues of the Hessians of the functions
il> l @ 4> ===>p> along the trajectory of the ordinary differential equation (8). The main
result of this section is given by

Remark 3.2. Considering �n @ 3 in MGF algorithm we get another algorithm:
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{n.4 @ {n � kn

�
L . kn�uI +{n,

W
uI +{n,

�
�4
uI +{n,

W
I +{n,> (43)

for which, like in theorem 3.1, for � @ 4> we can prove that nhn.4n �
�

s
n.4 nh3n > where

�

s
n.4@

n\
l@3

#
4�

kl�
l

plq

4 . kl�
l

pd{

$
>

and, as above, for l @ 3> ===> n> �
l

plq and �
l

pd{ are the minimum and maximum eigenvalues
of uI +{l,

W
uI +{l,> respectively. Having in view that uI +{l,

W
uI +{l, is a positive

definite matrix and �l � 3 in MGFA, it follows that for all l @ 3> 4> ===> n>

kl�
l

plq

4 . kl+�l . �
l

pd{,

�

kl�
l

plq

4 . kl�
l

pd{

=

Therefore, using (39) we see that sn.4 �
�

s
n.4 = Hence, for �n @ 3> the convergence of

MGF algorithm, i.e. the convergence of (43), is more rapid. As we will see, numerical
examples illustrate this behaviour. �

The best algorithm corresponding to the gradient flow approach for solving systems of
nonlinear equations is obtained when the second-order information is ignored. Having in
view that kn A 3, it is very easy to see that (43), with � @ 4> can be written as:�

4

kn
L .uI +{n,

W
uI +{n,

�
gn @ �uI +{n,

W
I +{n,

which is the Levenberg-Marquardt algorithm (5), where �n @ 4@kn= Therefore in this
interpretation we get the Levenberg-Marquardt algorithm as a simple particularization of
MGF algorithm with �n @ 3=

4. Numerical examples

In order to see the performances of the MGF algorithm with �n @ 3, in the sequel, we
present some numerical experiments obtained with a Fortran implementation of the MGFA.
In this respect the algorithm MGF has been implemented in the following variants, corre-
sponding to the values of �n =

a) MGFA-FG : �n @
pS
l@4

il+{n,
5
�
�
n

l

�5
> b) MGFA-P : �n given by procedure �>

c) MGFA-F : �n @
pS
l@4

il+{n,
5
> d) MGFA-Z : �n @ 3=

In all numerical experiments we have considered � @ 4= The stopping criterion used
is nI +{n,n5 � %> where % @ 43

�:
= The time step size kn is considered constant, the

same for all n= At the same time, we have considered another set of experiments in which
kn @ 4@ nI +{n,n

5
= In the following we present the numerical results corresponding to

these algorithms for 5 real systems of nonlinear equations.
Example 1. (Equillibrium Combustion ) [30]
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{4{5 . {4 � 6{8 @ 3>

5{4{5 . {4 . 6u43{
5

5
. {5{

5

6
. u:{5{6 . u<{5{7 . u;{5 � u{8 @ 3>

5{5{
5

6
. u:{5{6 . 5u8{

5

6
. u9{6 � ;{8 @ 3>

u<{5{7 . 5{5
7
� 7u{8 @ 3>

{4{5 . {4 . u43{
5

5
. {5{

5

6
. u:{5{6 . u<{5{7 . u;{5 . u8{

5

6
. u9{6 . {

5

7
� 4 @ 3>

where

u @ 43 u8 @ 3=4<6 u9 @ 7=43955h� 7

u: @ 8=784::h� 7 u; @ 7=7<:8h� : u< @ 6=73:68h� 8

u43 @ <=948h� :

The following initial points have been considered:

{
4

3
{
5

3
{
6

3
{
7

3

1 1 1 21
0 1 1 1

10.15 10.15 10.15 10.15
5.5 0.5 0.5 1.5
0.05 0.05 10.05 1.05

.

The following tables give the number of iterations necessary to get a solution corre-
sponding to different selections of �n and kn> starting the algorithm from different initial
points.

Table 1a (�n @
pS

l@4

il+{n,
5
�
�
n
l

�5
,

kn @ 439 kn @ 43: kn @ 43; kn @ 43< kn @ 4343 kn @ 4@ nI +{n,n
5

{
4

3
670 115 63 57 57 328

{
5

3
752 197 144 139 138 403

{
6

3
702 148 94 89 88 403

{
7

3
719 164 111 105 105 790

Table 1b (�n given by procedure �)

kn @ 439 kn @ 43: kn @ 43; kn @ 43< kn @ 4343 kn @ 4@ nI +{n,n
5

{
4

3
653 100 48 43 41 314

{
5

3
658 105 52 48 47 310

{
6

3
657 104 51 46 46 362

{
7

3
809 133 68 62 59 724

Table 1c (�n @
pS

l@4

il+{n,
5)
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kn @ 43
9 kn @ 43

: kn @ 43
; kn @ 43

< kn @ 43
43 kn @ 4@ nI +{n,n

5

{4
3

927 370 315 310 309 595
{5
3

921 364 309 304 303 582
{6
3

973 416 361 356 355 684
{7
3

1784 809 712 702 701 1373

Table 1d (�n @ 3)

kn @ 43
9 kn @ 43

: kn @ 43
; kn @ 43

< kn @ 43
43 kn @ 4@ nI +{n,n

5

{4
3

768 87 19 12 11 309
{5
3

632 74 18 14 14 303
{6
3

632 74 18 14 14 355
{7
3

632 74 18 14 14 701

The following solutions have been obtained:

{� {� {�

0.00311411 0.002471 0.0027567
34.592169 43.87876 39.248218
0.0650419 0.0577847 -0.0613849
0.859378 -0.860205 0.859724
0.0369518 0.0369655 0.0369851

.

Example 2. (Steady-state solution for reaction rate equations ) [35]

4� {4 � n4{4{9 . u4{7 @ 3>

4� {5 � n5{5{9 . u5{8 @ 3>

�{6 . 5n6{7{8 @ 3>

n4{4{9 � u4{7 � n6{7{8 @ 3>

4=8+n5{5{9 � u5{8,� n6{7{8 @ 3>

4� {7 � {8 � {9 @ 3>

where

n4 @ 64=57 n5 @ 3=5:5 n6 @ 636=36

u4 @ 5=395 u5 @ 3=35

The following initial points have been considered:
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{
4

3
{
5

3
{
6

3
{
7

3

1.09 1.19 2.19 0.05
1.05 1.15 3.15 0.99
0.05 0.05 0.05 0.05
0.99 0.99 0.99 0.99
0.05 0.05 0.05 0.05

0 0.09 1.09 0.09

.

Table 2a (�n @

pS

l@4

il+{n,
5
�
�
n

l

�5
,

kn @ 43 kn @ 43
5

kn @ 43
6

kn @ 43
7

kn @ 43
8

kn @ 4@ nI +{n,n
5

{
4

3
21 12 10 10 10 10

{
5

3
21 12 10 9 9 10

{
6

3
244 234 232 232 232 237

{
7

3
137 127 125 125 125 126

Table 2b (�n given by procedure �)

kn @ 43 kn @ 43
5

kn @ 43
6

kn @ 43
7

kn @ 43
8

kn @ 4@ nI +{n,n
5

{
4

3
19 10 9 8 8 8

{
5

3
19 10 8 8 8 8

{
6

3
154 145 143 143 143 148

{
7

3
192 181 179 179 179 188

Table 2c (�n @

pS

l@4

il+{n,
5)

kn @ 43 kn @ 43
5

kn @ 43
6

kn @ 43
7

kn @ 43
8

kn @ 4@ nI +{n,n
5

{
4

3
16 7 5 5 5 5

{
5

3
17 7 6 5 5 6

{
6

3
24 14 12 12 12 16

{
7

3
21 11 9 9 9 9

Table 2d (�n @ 3)

kn @ 43 kn @ 43
5

kn @ 43
6

kn @ 43
7

kn @ 43
8

kn @ 4@ nI +{n,n
5

{
4

3
14 5 3 3 3 5

{
5

3
15 5 4 4 4 5

{
6

3
18 6 5 5 5 12

{
7

3
17 6 5 5 5 9

The following solution has been obtained:
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{
�

0.974243
0.982829
0.0515124
0.935671

0.90839e-4
0.06423807

.

Example 3 (Circuit design problem ) [34]

+4� {4{5,{6
�
h{s

�
{8

�
j4n � j6n{:43

�6
� j8n{;43

�6
��
� 4

�
�

j8n . j7n{5 @ 3> n @ 4> ===> 7>
+4� {4{5,{7

�
h{s

�
{9

�
j4n � j5n � j6n{:43

�6
� j7n{<43

�6
��
� 4

�
�

j8n{4 . j7n @ 3> n @ 4> ===> 7>
{4{6 � {5{7 @ 3>

where

j @

5
99997

0.4850 0.7520 0.8690 0.9820
0.3690 1.2540 0.7030 1.4550
5.2095 10.0677 22.9274 20.2153

23.3037 101.7790 111.4610 191.2670
28.5132 111.8467 134.3884 211.4823

6
::::8
=

The following initial points have been considered:

{
4

3
{
5

3
{
6

3
{
7

3

0.7 0.65 0.75 0.75
0.5 0.45 0.45 0.45
0.9 0.8 0.9 0.9
1.9 1.8 1.77 1.77
8.1 8.5 8.5 8.9
8.1 8.5 7.5 7.9
5.9 5.9 5.5 5.5
1 1.1 1.25 1.35

1.9 1.5 1.88 1.88

.

Table 3a (�n @
pS
l@4

il+{n,
5
�
�
n

l

�5
,

kn @ 43 kn @ 435 kn @ 436 kn @ 437 kn @ 438 kn @ 4@ nI +{n,n
5

{
4

3
142 50 40 38 38 27

{
5

3
173 60 47 45 45 56

{
6

3
256 146 133 131 131 132

{
7

3
600 500 489 487 487 488

Table 3b (�n given by procedure �)
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kn @ 43 kn @ 43
5 kn @ 43

6 kn @ 43
7 kn @ 43

8 kn @ 4@ nI +{n,n
5

{4
3

123 32 22 20 20 21
{5
3

151 39 26 24 24 26
{6
3

218 108 96 94 94 94
{7
3

497 397 386 384 384 385

Table 3c (�n @

pS

l@4

il+{n,
5)

kn @ 43 kn @ 43
5 kn @ 43

6 kn @ 43
7 kn @ 43

8 kn @ 4@ nI +{n,n
5

{4
3

113 22 12 10 10 11
{5
3

140 27 15 12 12 14
{6
3

135 25 13 11 11 12
{7
3

124 24 14 12 11 13

Table 3d (�n @ 3)

kn @ 43 kn @ 43
5 kn @ 43

6 kn @ 43
7 kn @ 43

8 kn @ 4@ nI +{n,n
5

{4
3

108 10 6 4 4 10
{5
3

132 16 7 5 4 12
{6
3

129 19 6 5 5 11
{7
3

46 15 6 5 5 11

The following solution has been obtained:

{�

0.8999999
0.4499875
1.000006
2.00006
7.99997
7.99969
5.00003
0.99998
2.00005

.

Example 4 (Robot kinematics problem ) [23]

3=337:64{4{6 � 3=68:;{5{6� 3=456;{4 . {: � 3=33496:{5 � 3=<66;{7� 3=68:4 @ 3>

3=556;{4{6 . 3=:956{5{6 . 3=596;{4 � {: � 3=3::78{5 � 3=9:67{7 � 3=9355 @ 3>

{9{; . 3=68:;{4 . 3=337:64{5 @ 3>

�3=:956{4 . 3=556;{5 . 3=6794 @ 3>

{54 . {55 � 4 @ 3>

{5
6
. {5

7
� 4 @ 3>

{5
8
. {5

9
� 4 @ 3>
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{
5
: . {

5
; � 4 @ 3=

The following initial points have been considered:

{
4
3

{
5
3

{
6
3

{
7
3

0.164 0.14 -0.15 -1
-0.98 0.98 0.98 1
-0.94 0.94 -0.94 -1
-0.32 0.32 0.32 1
-0.99 0.99 -0.97 -1
-0.056 0.056 0.056 1
0.41 0.41 -0.44 -1
-0.91 -0.91 0.99 1

.

Table 4a (�n @
pS

l@4

il+{n,
5
�
�
n

l

�5
,

kn @ 43 kn @ 435 kn @ 436 kn @ 437 kn @ 438 kn @ 4@ nI +{n,n
5

{
4
3

9 4 3 3 3 3
{
5
3

10 6 5 5 5 5
{
6
3 13 8 7 7 6 7

{
7
3 15 11 10 10 9 12

Table 4b (�n given by procedure �)

kn @ 43 kn @ 435 kn @ 436 kn @ 437 kn @ 438 kn @ 4@ nI +{n,n
5

{
4
3 9 5 4 3 3 4

{
5
3

11 7 6 6 6 6
{
6
3

13 9 8 8 8 8
{
7
3

16 11 10 10 10 14

Table 4c (�n @
pS

l@4

il+{n,
5)

kn @ 43 kn @ 435 kn @ 436 kn @ 437 kn @ 438 kn @ 4@ nI +{n,n
5

{
4
3

9 4 3 3 3 3
{
5
3

11 6 5 5 5 6
{
6
3

13 8 7 7 7 8
{
7
3

18 13 12 12 12 16

Table 4d (�n @ 3)
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kn @ 43 kn @ 43
5 kn @ 43

6 kn @ 43
7 kn @ 43

8 kn @ 4@ nI +{n,n
5

{4
3

9 4 3 3 3 3
{5
3

10 6 5 5 5 5
{6
3

11 7 6 6 6 7
{7
3

14 9 9 9 9 12

The following solutions have been obtained:

{� {� {� {�

0.164431 0.671554 0.671563 0.671554
-0.986388 0.740955 0.741005 0.740955
-0.947063 0.951893 -0.651582 -0.651590
-0.321045 -0.306431 -0.758578 -0.758578
-0.998233 0.963810 -0.962545 0.962793
0.059418 0.266587 -0.271124 0.271124
0.411033 0.404641 -0.437592 -0.437592
-0.911620 -0.914475 0.899181 -0.899181

.

Example 5. (A quadratic system )

{5
4
� 4 @ 3>

+{l�4 . {l,
5 � l @ 3> l @ 5> ===> q=

Considering the initial point {3 @ ^4> ===> 4`W > the following results are obtained.

Table 5a (�n @

pS

l@4

il+{n,
5
�
�n
l

�5
,

q kn @ 43 kn @ 43
5 kn @ 43

6 kn @ 43
7 kn @ 43

8 kn @ 4@ nI +{n,n
5

100 176 43 28 25 25 613
150 274 57 34 30 28 1600
200 378 71 38 34 32 3152

Table 5b (�n given by procedure �)

q kn @ 43 kn @ 43
5 kn @ 43

6 kn @ 43
7 kn @ 43

8 kn @ 4@ nI +{n,n
5

100 246 114 99 96 95 681
150 409 192 169 165 164 1732
200 586 279 247 242 241 3357

Table 5c (�n @

pS

l@4

il+{n,
5)
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q kn @ 43 kn @ 43
5

kn @ 43
6

kn @ 43
7

kn @ 43
8

kn @ 4@ nI +{n,n
5

100 746 614 599 597 596 1179
150 1824 1607 1584 1581 1580 3145
200 3473 3166 3134 3130 3129 6242

Table 5d (�n @ 3)

q kn @ 43 kn @ 43
5

kn @ 43
6

kn @ 43
7

kn @ 43
8

kn @ 4@ nI +{n,n
5

100 155 23 8 6 6 596
150 249 32 9 7 7 1580
200 350 42 11 7 7 3129

In order to see the performance profiles of these algorithms in table 6 we present the
number of iterations needed to solve some systems of nonlinear equations. Some of these
systems are taken from MINPACK-2 [45] or ZIB [46] collections. In all these experiments
p @ q=

Figure 1: Performance profiles

Relative to the best number of iterations, the performance of the MGFA-FG, MGFA-P
and MGFA-Z algorithms on 52 test problems, considered in this section, was as follows:

[ MGFA-FG achieved the minimum number of iterations in 7 problems,
[ MGFA-P achieved the minimum number of iterations in 4 problems,
[ MGFA-Z achieved the minimum number of iterations in 52 problems.
Figure 1 shows the performance profiles, proposed by Dolan and Moré ^48` for the algo-

rithms MGFA-FG, MGFA-P and MGFA-Z, on this set of 52 problems. For each algorithm,
the fraction P of problems for which the algorithm is within a factor w of the best number
of iterations is plotted.
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Table 6. Number of iterations of MGFA-FG, MGFA-P and MGFA-Z algorithms.

Problem p kn MGFA-FG MGFA-P MGFA-Z

Quadratic 100 438 25 95 6
200 438 32 241 7
300 438 37 411 7

Extended Rosenbrock 100 437 6 6 4
500 437 6 6 4

Extended White-Holst 100 438 8 9 4
500 438 6 7 4

Extended Penalty 100 438 31 24 15
200 438 37 27 17
300 438 40 29 19

Brown Almost Linear 200 438 6 6 5
Diagonal (h{l

� l{
5

l
@ 3, 100 438 11 11 7

500 438 13 13 8
Broyden Tridiagonal 200 438 5 5 4

DELHFJ 7 438 12 18 7
DESTFJ 9 43: 86 129 23

9 43; 75 87 23
DFDCFJ 100 438 6 6 5

400 438 11 13 10
DGUPFJ 12 438 6 6 5

DHHDFJ (prob=1) 8 438 23 56 20
DHHDFJ (prob=2) 8 438 5 5 3
DHHDFJ (prob=3) 8 438 18 17 9
DHHDFJ (prob=4) 8 438 13 15 7
DHHDFJ (prob=5) 8 438 11 517 7
DiscreteBoundary 100 439 10 10 10

200 439 85 85 85
DiscreteIntegral 100 438 3 3 3

DISOFJ 16 438 636 639 635
16 439 71 76 69

DSULFJ 3 439 15 23 10
3 438 55 80 54

DSFIFJ 100 438 4 4 3
400 438 4 4 3

DMETFJ 7 438 179 197 124
Trigonometric 100 438 10 10 9

TOTAL 3089 3970 1346

The top curve is the algorithm that solved the most problems in a number of iterations
that was within a factor w of the best number of iterations. Since the top curve in Figure 1.
corresponds to MGFA-Z, this algorithm is clearly the best for this set of 52 test problems.
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5. Conclusion

In this paper we proposed a gradient flow approach for solving systems of nonlinear al-
gebraic equations. This is based on the integration of an ordinary differential equation
for which a discretization thechique with a splitting parameter has been considered. For
Hessian matrices of the functions of the system a number of scalar approximations are
suggested. It has been shown that the solution of the discretized problem converges to a
local solution of the system either linearly or quadratically as a function of the choice of
the spliting parameter and the size of the discretization step. When the size of the dis-
cretization step tends to infinit, then the convergence is quadratic. When the second or-
der information, given by the Hessian of the functions of the systyem, is not considered
into the algorithm, then the algorithm reduce to an equivalent algebraic expression of the
Levenberg-Marquardt algorithm for which we prove its quadratic convergence. Numeri-
cal experiments with different strategies for scalar approximation of the Hessian matrices
of the functions of the system show that the most efficient variant of the algorithm is that
correspondig to the case when the second order information is not considered into the al-
gorithm.
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