Gradient Flow Algorithm for Systems of Nonlinear Equations

Neculai Andrei ${ }^{1}$

Abstract

Solving systems of nonlinear equations by means of integration of a first order ordinary differential equation is considered in this paper. The corresponding gradient flow algorithm and its variants, based on the approximation of the Hessian matrix associated to the functions of the system, are presented. The ordinary differential equation is integrated by means of a two level implicit time discretization technique, with a splitting parameter $\theta \in[0,1]$. The Hessian matrices of functions of the system are approximated using the function values and its gradient in two successive points along the trajectory of the differential equation. The convergence of the algorithms is analysed and it is shown that this is linear when $0 \leq \theta<1$ and quadratical when $\theta=1$ and the integration step is sufficiently large. It is shown that the best algorithm corresponds to the case when the approximation of the Hessian matrices of the functions of the system is not considered in the algorithm. The obtained algorithm is quadratically convergent when the integration step is sufficiently large. In fact, this algorithm, with no second order information about the functions of the system, is a new expression of the Levenberg-Marquardt algorithm in which the positive parameter is the reciprocal of the time discretization step. Some numerical examples illustrate the algorithms.

Key words: Systems of nonlinear equations, gradient flow, Levenberg-Marquardt, GaussNewton, approximation of the Hessian.

1. Introduction

In this paper we consider the system of nonlinear equations:

$$
\begin{equation*}
F(x)=0 \tag{1}
\end{equation*}
$$

where $F=\left[f_{1}(x), \ldots, f_{m}(x)\right]: R^{n} \rightarrow R^{m}$ is continuously differentiable. It is assumed that the system (1) has a solution x^{*} for which $F\left(x^{*}\right)=0$. This problem is very close to that of minimizing the merit function $\Phi: R^{n} \rightarrow R$ defined by:

$$
\begin{equation*}
\Phi(x)=\frac{1}{2}\|F(x)\|^{2}, \tag{2}
\end{equation*}
$$

and it is often very convenient to solve (1) by attempting to minimize Φ. Methods for solving (1) can be found in a lot of books, see for example [14,24,25,26] , and there are plenty of papers dedicated to this subject matter.

When $m=n$, the system of equations is well-determined, and we can consider the

[^0]Newton method. In this case knowing the current point x_{k}, the next approximation of the solution x^{*} is computed as $x_{k+1}=x_{k}+d_{k}$, where d_{k} is the solution of the following system of linear equations:

$$
\begin{equation*}
\nabla F\left(x_{k}\right) d=-F\left(x_{k}\right), \tag{3}
\end{equation*}
$$

where $\nabla F\left(x_{k}\right)$ is the Jacobian of F at point x_{k}. As we know, the Newton method is quadratically convergent when the initial point x_{0} is sufficiently close to x^{*}, the Jacobian $\nabla F\left(x^{*}\right)$ is nonsingular and the linear system (3) has a solution.

When $m \neq n$, generally $m>n$, then to determine the searching direction d_{k} we can use the following system of linear equations, known as the normal equations,

$$
\begin{equation*}
\nabla F\left(x_{k}\right)^{T} \nabla F\left(x_{k}\right) d=-\nabla F\left(x_{k}\right)^{T} F\left(x_{k}\right) \tag{4}
\end{equation*}
$$

which always has a solution. This is known as the Gauss-Newton method. However, like the Newton's method, in order to be convergent the Gauss-Newton method must be initialized at a point sufficiently close to a solution of (1). A modification of Gauss-Newton's method, designed to overcome this limitation is the Levenberg-Marquardt method [28,29]. In this method the search direction d_{k} is computed as a solution to the system of linear equations:

$$
\begin{equation*}
\left(\nabla F\left(x_{k}\right)^{T} \nabla F\left(x_{k}\right)+\mu_{k} I\right) d=-\nabla F\left(x_{k}\right)^{T} F\left(x_{k}\right), \tag{5}
\end{equation*}
$$

where μ_{k} is a positive parameter. Since the matrix $\nabla F\left(x_{k}\right)^{T} \nabla F\left(x_{k}\right)+\mu_{k} I$ is always positive definite, it follows that (5) has a unique solution. More than this, the direction d, solution of (5), is a descent direction of the function Φ at x_{k}.

It is very easy to prove that if $\nabla \Phi\left(x_{k}\right) \neq 0$, then the solution d_{k} of the linear system (5) satisfy $\nabla \Phi\left(x_{k}\right)^{T} d_{k}<0$, proving that d_{k} is indeed a descent direction of Φ. Therefore the Levenberg-Marquardt method with Armijo's stepsize selection rule is globally convergent to a stationary point x^{*} of Φ. When $m=n$ and $\nabla F\left(x^{*}\right)$ is nonsingular at the stationary point x^{*}, then x^{*} is a solution of (1) because $\nabla \Phi\left(x^{*}\right)=0$ and $\nabla \Phi\left(x^{*}\right)=\nabla F\left(x^{*}\right)^{T} F\left(x^{*}\right)$. For many problems the Levenberg-Marquardt algorithm is preferable to damped GaussNewton algorithm. This is because the Levenberg-Marquardt algorithm is well defined even when $\nabla F\left(x_{k}\right)$ at the current point x_{k} doesn't have full column rank. On the other hand, when the Gauss-Newton step is much too long, the Levenberg-Marquardt step is close to the steepest-descent direction $-\nabla F\left(x_{k}\right)^{T} F\left(x_{k}\right)$, which often is superior to the damped Gauss-Newton step [14, pp.228], [31], [32], [33]. Convergence properties of the Levenberg-Marquardt algorithm and its inexact variant has been considered in [13,41].

In this paper we shall consider a gradient flow approach for solving (1) by minimizing the merit function (2). In this respect, section 2 is dedicated to present the general results on gradient flow approach for solving systems of nonlinear equations. It is shown that the gradient flow approach leads to an algorithm which contains the second order information given by the Hessian of functions $f_{i},(i=1, \ldots, m)$. In very mild conditions its quadratic convergence is proved. The main result of this paper is given in section 3. We show that a very simple modification of the gradient flow algorithm, consisting of rejection the second order terms, give the best algorithm of this approach. In this respect we consider some variants of the gradient flow algorithm in which the Hessian matrices of
functions f_{i} are approximated by scalars, for which different formula are suggested. It is shown that the convergence of the resulting algorithms is quadratical when the splitting parameter has a unitar value and the integration step is sufficienly large. Rejecting the second order term, the corresponding algorithm is an equivalent algebraic expression of the Levenberg-Marquardt algorithm for which we prove its quadratic convergence. Thus, the gradient flow approach for solving systems of nonlinear equations gives a strong theoretical basis for the Levenberg-Marquardt algorithm. Section 4 illustrates the running of these algorithms, as well as the conclusions of the theory, on some concrete systems of nonlinear equations including some from MINPACK-2 collection.

2. Gradient flow algorithm for systems of nonlinear equations

In order to solve the problem (1), let us consider the following equivalent unconstrained optimization problem:

$$
\begin{equation*}
\min \Phi(x) \tag{6}
\end{equation*}
$$

where $\Phi(x)$ is given in (2). As we know, a necessary condition for the point x^{*} be an optimal solution for (6) is:

$$
\begin{equation*}
\nabla \Phi\left(x^{*}\right)=0 \tag{7}
\end{equation*}
$$

In order to fulfill this optimality condition the following continuous gradient flow reformulation of the problem is considered: solve the ordinary differential equation:

$$
\begin{equation*}
\frac{d x(t)}{d t}=-\nabla \Phi(x(t)) \tag{8}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
x(0)=x_{0} . \tag{9}
\end{equation*}
$$

Therefore, the minimization problem (6) has been reduced to the integration of the differential equation (8) with initial condition (9). Methods of this type, using the idea of following the trajectory of a system of ordinary differential equations, are not new and a number of authors have been proposed numerous ordinary differential equations and computational schemes for their integration. To have an idea about this subject let us shortly review them.

Let $y(t)$ be the displacement from the current point x. The initial condition for all equations is therefore $y(0)=0$. The Courant's method [12], based on idea of Hadamard [21] is to solve the differential equation:

$$
\begin{equation*}
y^{\prime}(t)=-\nabla \Phi\left(x_{0}+y(t)\right) \tag{10}
\end{equation*}
$$

Boggs [5] extended this idea of Courant by using a predictor-corrector method for solving (10) in connection with a quasi-Newton approximation of the Hessian.

Considering the local approximation of (10) along a sequence of points we get:

$$
\begin{equation*}
y_{i}^{\prime}(t)=-\nabla \Phi\left(x_{i}\right)-\nabla^{2} \Phi\left(x_{i}\right) y_{i}(t) . \tag{11}
\end{equation*}
$$

When the Hessian is nonsingular, Botsaris and Jacobson [9] use (11) for solving (6). Otherwise, in order to bound the solution, they replace the Hessian by a matrix with the same eigenvectors, but with the absolute values of the eigenvalues. Vial and Zang [39], and Zang [42], use a quasi-Newton approximation of the Hessian in (11). Botsaris dedicated a number of paper for integration of (11) [6,7]. He considers an approximation of the Hessian which is updated at each step by means of the Sherman-Morrison formula.

Another equation, known as the continuous Newton equation is

$$
\begin{equation*}
y^{\prime}(t)=-\nabla^{2} \Phi\left(x_{0}+y(t)\right)^{-1} \nabla \Phi\left(x_{0}+y(t)\right) \tag{12}
\end{equation*}
$$

This equation has been considered by Botsaris [8], where he considers an implicit ordinary differential equation solver with an approximation of the inverse of the Hessian matrix which is updated by means of Sherman-Morrison formula.

Finally, considering a mechanical interpretation of the problem, by following the trajectory of a point mass in the force field $-\nabla \Phi$ with dissipation, Aluffi-Pentini, Parisi and Zirilli [1,2], use the second order differential equation:

$$
\begin{equation*}
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+\nabla \Phi\left(x_{0}+y(t)\right)=0 \tag{13}
\end{equation*}
$$

where $a(t)$ and $b(t)$ are positive, real-valued functions. In fact, their method is for solving the system of nonlinear equations (1), by minimizing (6). For solving (13) they consider an implicit ordinary differential equation solver and a quasi-Newton approximation of the Hessian. Zirilli et al, $[43,44]$ describe different practical procedures for choosing $a(t)$ and $b(t)$ during the integration of (13), proving that as $t \rightarrow \infty$, the solution trajectory is very close to that of Newton's method. They show that using the second order differential equations gives a larger domain of convergence than that corresponding to the first order system. More than this, (13) permits a greater control of the trajectory since at $t=0$ we must specify not only the initial point $y(0)$ but also $y^{\prime}(0)$. Different choices for $y^{\prime}(0)$ may lead to different solution. A similar approach, based on second order differential equations, was considered by Snyman [37] by solving the differential equation $y^{\prime \prime}(t)=-\nabla \Phi(y(t))$.

Brown and Bartholomew-Biggs [10,11] experiment a number of methods based on all these differential equations (11)-(13) using specialized ordinary differential equations solvers. Their conclusion is that the most successful method is that based on (11) using the Hessian or a quasi-Newton approxination of it.

Behrman [4] in his Dissertation solves the problem (6) by an algorithm which basically calculates a curve that is an approximation to the integral curve of the vector field $-\nabla \Phi$. A searching procedure along this curve is initiated, determining a point that reduces the value of the objective function Φ.

For unconstrained optimization, the gradient flow method is presented by Andrei [3], where the ordinary differential equation (8) is integrated by means of a discretization scheme based on a two level implicit time discretization technique, with a splitting parameter $\theta \in[0,1]$. The convergence of the algorithm is linear when $0 \leq \theta<1$ and quadratic when $\theta=1$ and the integration step is sufficiently large.

In a more general context refering to the constrained optimization, the gradient flow
methods, known as stable barrier-projection and barrier-Newton methods have been considered by Evtushenko [16,17], and Evtushenko and Zhadan [18-20]. Convergence of these methods via Lyapunov functions has been considered by Smirnov [36]. Recently, for solving constrained optimization problems, improvements and some computational experience with these methods have been considered by Wang, Yang and Teo [40]. Basically, in this approach a constrained optimization problem is reformulated as an ordinary differential equation in such a way that its solution converges to an equillibrium point of the optimization problem as parameter t from this equation goes to ∞. We see that this approach based on reformulation of the optimization problem as a differential equation was and continue to be very attractive and promising. See also the book by Helmke and Moore [22].

In the following we shall present the main convergence results and the corresponding gradient flow algorithm for solving (6) by integration of the system (8) with initial condition (9) $[3]$.

Theorem 2.1. Consider that x^{*} is a point satisfying (7) and $\nabla^{2} \Phi\left(x^{*}\right)$ is positive definite. If x_{0} is sufficiently close to x^{*}, then $x(t)$, the solution of (8) with initial condition x_{0}, tends to x^{*} as t goes to ∞.

Proof. The system (8) can be written as

$$
\dot{x}=\Psi(x),
$$

where $\Psi(x)=-\nabla \Phi(x)$. To show that x^{*} is an asymptotically stable point for (8) we shall consider the Poincaré-Lyapunov theory [38]. According to this theory, x^{*} is an asymptotically stable point for the nonlinear differential equation system $\dot{x}=\Psi(x)$ if $\Psi(x)$ is continuously differentiable and the linearized system

$$
\dot{y}=\nabla \Psi\left(x^{*}\right) y
$$

where $y=x-x^{*}$, is exponentially stable, i.e. all eigenvalues of $\nabla \Psi\left(x^{*}\right)$ are strictly negative. Considering the Taylor's expansion of $\Psi(x)$ around x^{*}, and using (7), we get:

$$
\begin{aligned}
\frac{d x}{d t} & \cong \Psi\left(x^{*}\right)+\nabla \Psi\left(x^{*}\right)\left(x-x^{*}\right) \\
& =-\left[\nabla \Phi\left(x^{*}\right)+\nabla^{2} \Phi\left(x^{*}\right)\left(x-x^{*}\right)\right] \\
& =-\nabla^{2} \Phi\left(x^{*}\right)\left(x-x^{*}\right)
\end{aligned}
$$

But, $\nabla^{2} \Phi\left(x^{*}\right)$ is positive definite by the assumption of the theorem. Therefore, its eigenvalues satisfy $\lambda_{i}>0$, for all $i=1, \ldots, n$. By the Poincaré-Lyapunov theory it follows that $\lim _{t \rightarrow \infty} y(t)=0$,or $x(t) \rightarrow x^{*}$ as $t \rightarrow \infty$.

The following theorem shows that $\Phi(x(t))$ is strictly decreasing along the trajectory solution of (8).

Theorem 2.2. Let $x(t)$ be the solution of (8) with initial condition (9). For a fixed $t_{0} \geq 0$ if $\nabla \Phi(x(t)) \neq 0$ for all $t>t_{0}$, then $\Phi(x(t))$ is strictly decreasing with respect to t, for all $t>t_{0}$.

Proof. We have:

$$
\frac{d \Phi(x(t))}{d t}=\nabla \Phi(x(t))^{T} \frac{d x(t)}{d t}=-\nabla \Phi(x(t))^{T} \nabla \Phi(x(t))=-\|\nabla \Phi(x(t))\|_{2}^{2}
$$

Since $\nabla \Phi(x(t)) \neq 0$ when $t>t_{0}$, it follows that $d \Phi(x(t)) / d t<0$, i.e. $\Phi(x(t))$ is strictly decreasing with respect to $t>t_{0}$.

Observe that the ordinary differential equation (8), associated to (6), is a gradient system [27, pp.199]. Gradient systems have special properties that make their flows very simple. For gradient system (8) at regular points x, characterized by the fact that $\nabla \Phi(x) \neq 0$, the trajectories cross level surfaces of the function $\Phi(x)$ orthogonally. Nonregular points are equillibria of the system, and if x^{*} is an isolated minimum of $\Phi(x)$, then x^{*} is an asymptotically stable equilibrium of the gradient system (8).

Therefore, solving the unconstrained optimization problem (6) has been reduced to that of integration of the ordinary differential equation (8) with initial condition (9). Now, as in [40], we shall consider a discretization of this equation as well as the corresponding integration scheme.

Let $0=t_{0}<t_{1}<\cdots<t_{k}<\cdots$ be a sequence of time points for the time $t \geq t_{0}$. Consider $h_{k}=t_{k+1}-t_{k}$ the sequence of time distances between two successive time points. With these, let us consider the following time-steeping discretization of (8):

$$
\begin{equation*}
\frac{x_{k+1}-x_{k}}{h_{k}}=-\left[(1-\theta) \nabla \Phi\left(x_{k}\right)+\theta \nabla \Phi\left(x_{k+1}\right)\right] \tag{14}
\end{equation*}
$$

where $\theta \in[0,1]$ is a parameter. From this we get:

$$
x_{k+1}=x_{k}-h_{k}\left[(1-\theta) \nabla \Phi\left(x_{k}\right)+\theta \nabla \Phi\left(x_{k+1}\right)\right] .
$$

When $\theta=0$ the above discretization is the explicit forward Euler's scheme. On the other hand, when $\theta=1$ we have the implicit backward Euler's scheme. But,

$$
\nabla \Phi\left(x_{k+1}\right)=\nabla \Phi\left(x_{k}\right)+\nabla^{2} \Phi\left(x_{k}\right) \delta x_{k}+\Gamma\left(\delta x_{k}\right)
$$

where $\delta x_{k}=x_{k+1}-x_{k}$ and $\Gamma\left(\delta x_{k}\right)$ is the remainder satisfying $\left\|\Gamma\left(\delta x_{k}\right)\right\|=O\left(\left\|\delta x_{k}\right\|^{2}\right)$. Therefore

$$
x_{k+1}=x_{k}-h_{k}\left[I+h_{k} \theta \nabla^{2} \Phi\left(x_{k}\right)\right]^{-1}\left[\nabla \Phi\left(x_{k}\right)+\theta \Gamma\left(\delta x_{k}\right)\right] .
$$

Omitting the higher order term $\Gamma\left(\delta x_{k}\right)$ we get:

$$
\begin{equation*}
x_{k+1}=x_{k}-h_{k}\left[I+h_{k} \theta \nabla^{2} \Phi\left(x_{k}\right)\right]^{-1} \nabla \Phi\left(x_{k}\right), \tag{15}
\end{equation*}
$$

for any $\theta \in[0,1]$. Considering x_{0} as the initial guess, then (15) defines a series $\left\{x_{k}\right\}$. The convergence of (15) is given by

Theorem 2.3. Let $\left\{x_{k}\right\}$ be the sequence defined by (15) and x^{*} a solution of (6), such that $\nabla^{2} \Phi\left(x^{*}\right)$ is positive definite. If the initial point x_{0} is sufficiently close to x^{*}, then:
(i) If $\theta \in[0,1]$ and $h_{k}>0$ is sufficiently small, then x_{k} converges linearly to x^{*}.
(ii) If $\theta=1$ and $h_{k} \rightarrow \infty$, then x_{k} converges quadratically to x^{*}.

Proof. (i) From (15) we have:

$$
\left[I+h_{k} \theta \nabla^{2} \Phi\left(x_{k}\right)\right]\left(x_{k+1}-x_{k}\right)=-h_{k} \nabla \Phi\left(x_{k}\right)
$$

hence:

$$
\begin{equation*}
x_{k+1}=x_{k}-h_{k}\left[\nabla \Phi\left(x_{k}\right)+\theta \nabla^{2} \Phi\left(x_{k}\right)\left(x_{k+1}-x_{k}\right)\right] . \tag{16}
\end{equation*}
$$

Subtracting x^{*} from both sides of (16) and having in view that $e_{k}=x_{k}-x^{*}, x_{k+1}-x_{k}=$ $e_{k+1}-e_{k}$ and $\nabla f\left(x^{*}\right)=0$, we get:

$$
e_{k+1}=e_{k}-h_{k}\left[\nabla \Phi\left(x_{k}\right)-\nabla \Phi\left(x^{*}\right)+\theta \nabla^{2} \Phi\left(x_{k}\right)\left(e_{k+1}-e_{k}\right)\right] .
$$

Now using the mean value theorem we have:

$$
e_{k+1}=e_{k}-h_{k}\left[\nabla^{2} \Phi\left(\xi_{k}\right) e_{k}+\theta \nabla^{2} \Phi\left(x_{k}\right)\left(e_{k+1}-e_{k}\right)\right]
$$

where $\xi_{k} \in\left[x_{k}, x^{*}\right]$. Solving for e_{k+1}, we have:

$$
\begin{equation*}
e_{k+1}=\left\{I-h_{k}\left[I+h_{k} \theta \nabla^{2} \Phi\left(x_{k}\right)\right]^{-1} \nabla^{2} \Phi\left(\xi_{k}\right)\right\} e_{k} . \tag{17}
\end{equation*}
$$

Considering the norm of both sides of this equality we obtain:

$$
\begin{equation*}
\left\|e_{k+1}\right\| \leq \varphi\left(x_{k}, \xi_{k}, \theta, h_{k}\right)\left\|e_{k}\right\| \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi\left(x_{k}, \xi_{k}, \theta, h_{k}\right)=\left\|I-h_{k}\left[I+h_{k} \theta \nabla^{2} \Phi\left(x_{k}\right)\right]^{-1} \nabla^{2} \Phi\left(\xi_{k}\right)\right\| . \tag{19}
\end{equation*}
$$

From (17) we see that if $\varphi\left(x_{k}, \xi_{k}, \theta, h_{k}\right)<1$, then e_{k} converges to zero linearly. Using continuity and the fact that x_{0} is close to x^{*} we can write:

$$
\begin{equation*}
\varphi\left(x_{k}, \xi_{k}, \theta, h_{k}\right) \leq\left(1-\frac{h_{k} \lambda_{\min }^{k}}{1+h_{k} \theta \lambda_{\max }^{k}}\right)<1 \tag{20}
\end{equation*}
$$

where $\lambda_{\min }^{k}$ and $\lambda_{\max }^{k}$ represent the minimum and the maximum eigenvalues of $\nabla^{2} \Phi\left(x_{k}\right)$, respectively. Therefore, from (17) it follows that $\lim _{k \rightarrow \infty} e_{k}=0$ linearly, i.e. $x_{k} \rightarrow x^{*}$ linearly.
(ii) $\operatorname{Consider} \theta=1$ in (15), we get:

$$
\frac{x_{k+1}-x_{k}}{h_{k}}=-\left[\nabla \Phi\left(x_{k}\right)+\nabla^{2} \Phi\left(x_{k}\right) \delta x_{k}\right]
$$

where $\delta x_{k}=x_{k+1}-x_{k}$. When $h_{k} \rightarrow \infty$ the above relation is reduced to

$$
\nabla \Phi\left(x_{k}\right)+\nabla^{2} \Phi\left(x_{k}\right) \delta x_{k}=0
$$

which is the Newton method applied to $\nabla \Phi(x)=0$. When x_{k} is sufficiently close to x^{*}, as we know the Newton method is quadratically convergent, proving the theorem.

Remark 2.1. From (18) and (20), with $\theta=1$, we have:

$$
\left\|e_{k+1}\right\| \leq p_{k+1}\left\|e_{0}\right\|
$$

where

$$
p_{k+1}=\prod_{i=0}^{k}\left(1-\frac{h_{i} \lambda_{\min }^{i}}{1+h_{i} \lambda_{\max }^{i}}\right) .
$$

But, $\nabla^{2} \Phi\left(x_{i}\right)$ is positive definite, therefore for all $i=0, \ldots k$,

$$
0<1-\frac{h_{i} \lambda_{\min }^{i}}{1+h_{i} \lambda_{\max }^{i}}<1
$$

So, p_{k}, for all k, is a decreasing sequence, from $(0,1)$, i.e. it is convergent. If $h_{i} \rightarrow \infty$, then for all $i=0, \ldots k$,

$$
1-\frac{h_{i} \lambda_{\min }^{i}}{1+h_{i} \lambda_{\max }^{i}} \rightarrow 1-1 / \kappa\left(\nabla^{2} \Phi\left(x_{i}\right)\right)
$$

Clearly, if there is an i for which $\kappa\left(\nabla^{2} \Phi\left(x_{i}\right)\right)$ is close to 1 , then the convergence of the algorithm is very rapid.

As the theorem 2.3 recommends, the algorithm based on (15) is quadratically convergent if $\theta=1$ and $h_{k} \rightarrow \infty$. The problem is how to choose the sequence h_{k}. The most direct idea is to choose h_{k} in such a way that the matrix

$$
I+h_{k} \theta \nabla^{2} \Phi\left(x_{k}\right)
$$

to be positive definite. The following theorem suggests how to choose the value h_{k} of time distances between two successive time points.

Theorem 2.4. If $h_{k}>\max \left\{-\frac{1}{\lambda_{i}^{k}}, i=1, \ldots, n\right\}$, where $\lambda_{i}^{k}, i=1, \ldots, n$, are the eigenvalues of $\nabla^{2} \Phi\left(x_{k}\right)$, then $\left[I+h_{k} \nabla^{2} \Phi\left(x_{k}\right)\right]$ is positive definite.

Proof. The matrix $\nabla^{2} \Phi\left(x_{k}\right)$ is symmetric, i.e. it has real eigenvalues $\lambda_{i}^{k}, i=1, \ldots, n$. There exists a matrix P such that:

$$
P^{-1} \nabla^{2} \Phi\left(x_{k}\right) P=\operatorname{diag}\left(\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}\right)
$$

Therefore, $P^{-1}\left[I+h_{k} \nabla^{2} \Phi\left(x_{k}\right)\right] P=I+h_{k} \operatorname{diag}\left(\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}\right)$, which is positive definite when $1+h_{k} \lambda_{i}^{k}>0$, for all $i=1, \ldots, n$.

The above presented results are very general and can be applied to any function $\Phi(x)$ satisfying the conditions of the above theorems. Basically, the function Φ must have a positive definite Hessian at solution point. Now, in order to get an algorithm for solving (1), by minimizing the merit function $\Phi(x)$, we shall particularize the above gradient flow algorithm by considering the special structure of function $\Phi(x)$.

It is very easy to see that:

$$
\begin{gather*}
\nabla \Phi(x)=\nabla F(x)^{T} F(x) \tag{21}\\
\nabla^{2} \Phi(x)=\nabla F(x)^{T} \nabla F(x)+\sum_{i=1}^{m} f_{i}(x) \nabla^{2} f_{i}(x) \tag{22}
\end{gather*}
$$

Proposition 2.1. If $f_{i}(x)$ is a convex function for all $i=1, \ldots, m, f_{i}(x) \geq 0$, for all $i=1, \ldots, m$ and $\operatorname{rank}(\nabla F(x))=n$, then $\nabla^{2} \Phi(x)$ is positive definite.

Proof. For every $y \neq 0$, we see that $y^{T}\left(\nabla F(x)^{T} \nabla F(x)\right) y=\|\nabla F(x) y\|^{2}>0$ since $\operatorname{rank}(\nabla F(x))=n$. On the other hand, $f_{i}(x) \geq 0$, therefore $f_{i}(x) \nabla^{2} f_{i}(x)$ is a positive definite matrix, since f_{i} is a convex function.

Therefore, in conditions of Proposition 2.1 all the above theorems remain true showing the convergence of the method when applied to this particular form of function $\Phi(x)$. Considering (22), for solving (1) by integration of the ordinary differential equation (8), the following algorithm can be presented:

Algorithm GFA (Gradient Flow Algorithm)

Step 1. Consider the initial point $x_{0} \in R^{n}$, a parameter $\theta \in[0,1]$, a sequence of time step sizes $\left\{h_{k}\right\}$ and an $\varepsilon>0$ sufficiently small. Set $k=0$.

Step 2. Solve for δx_{k} the system:

$$
\begin{equation*}
\left[I+h_{k} \theta\left(\nabla F\left(x_{k}\right)^{T} \nabla F\left(x_{k}\right)+\sum_{i=1}^{m} f_{i}\left(x_{k}\right) \nabla^{2} f_{i}\left(x_{k}\right)\right)\right] d_{k}=-h_{k} \nabla F\left(x_{k}\right)^{T} F\left(x_{k}\right) \tag{23}
\end{equation*}
$$

Step 3. Update the variables: $x_{k+1}=x_{k}+d_{k}$.
Step 4. Test for continuation of iterations. If $\left\|F\left(x_{k+1}\right)\right\| \leq \varepsilon$, stop; otherwise set $k=k+1$ and continue with step 2 .

Therefore, when $f_{i}(x)$ are convex and positive for all $i=1, \ldots, m ; \operatorname{rank}(\nabla F(x))=$ $n, \theta=1$ and $h_{k} \rightarrow \infty$, then the GFA is quadratically convergent to x^{*}. We see that the algorithm is very simple. The difficulty is in step 2 , when it is necessary to solve a system of linear equations. But, this is a common step also for Newton, Gauss-Newton and Levenberg-Marquardt algorithms. On the other hand, it is necessary to evaluate the Hessians of functions $f_{i}(x), i=1, \ldots, m$, which turns out to be a difficult task. Observe that, rejecting from (23) the second order terms, we get an equivalent algebraic expression of the Levenberg-Marquardt algorithm. In the next section we consider some variants of GF algorithm and prove that the best variant is that which ignore completely the second order information given by the Hessians $\nabla^{2} f_{i}\left(x_{k}\right), i=1, \ldots, m$.

3. Gradient flow algorithm without second order information

It is well-known [14] that, when the residuals are very small at the solution, the secondorder terms do not contribute significantly to the efficiency of the Levenberg-Marquardt or Gauss-Newton algorithms for solving systems of nonlinear equations. In this section we prove that rejecting from (23) the second order information we get a more efficient algorithm which is quadratically convergent to a solution of (1). With other words, we prove that any approximation of Hessians $\nabla^{2} f_{i}\left(x_{k}\right)$ does not improve the convergence of the algorithm (23). To see that, we shall consider a modification of GFA by considering a scalar approximation of the Hessians $\nabla^{2} f_{i}\left(x_{k}\right)$ of functions $f_{i}(x), i=1, \ldots, m$, at point x_{k}. Many approximation schemes could be imagined. Here is one of them. Suppose that the functions $f_{i}(x), i=1, \ldots, m$, are convex, and let us consider the point $x_{k+1}=x_{k}+d_{k}$, where d_{k} is the searching direction. In this point we can write:

$$
f_{i}\left(x_{k+1}\right)=f_{i}\left(x_{k}\right)+\nabla f_{i}\left(x_{k}\right)^{T} d_{k}+\frac{1}{2} d_{k}^{T} \nabla^{2} f_{i}(z) d_{k}
$$

where z is on the line segment connecting x_{k} and x_{k+1}. Having in view the local character of the searching procedure and that the distance between x_{k} and x_{k+1} is sufficiently small, we can choose $z=x_{k+1}$ and consider $\gamma_{i}^{k+1} I$ as an approximation of $\nabla^{2} f_{i}(x)$, at point
x_{k+1}, where $\gamma_{i}^{k+1} \in R$. As we can see this is an anticipative viewpoint in which the approximation of the Hessian of function f_{i} at point x_{k+1} is computed using the local information from point x_{k}. Therefore we can write:

$$
\begin{equation*}
\gamma_{i}^{k+1}=\frac{2}{d_{k}^{T} d_{k}}\left[f_{i}\left(x_{k+1}\right)-f_{i}\left(x_{k}\right)-\nabla f_{i}\left(x_{k}\right)^{T} d_{k}\right] \tag{24}
\end{equation*}
$$

Since $f_{i}, i=1, \ldots, m$ are convex functions, it follows that $\gamma_{i}^{k+1} \geq 0$ for all $i=1, \ldots, m$. In fact the following proposition can be proved.

Proposition 3.1. Assume that $f_{i}(x)$ is continuously differentiable and $\nabla f_{i}(x)$ is Lipschitz continuous, with a positive constant L_{i}. Then at point $x_{k+1}, \gamma_{i}^{k+1} \leq 2 L_{i}$.

Proof. From (24) we have:

$$
\gamma_{i}^{k+1}=\frac{2\left[f_{i}\left(x_{k}\right)+\nabla f_{i}\left(\xi_{k}\right)^{T} d_{k}-f_{i}\left(x_{k}\right)-\nabla f_{i}\left(x_{k}\right)^{T} d_{k}\right]}{\left\|d_{k}\right\|^{2}},
$$

where $\xi_{k} \in\left[x_{k}, x_{k+1}\right]$. Therefore,

$$
\gamma_{i}^{k+1}=\frac{2\left[\nabla f_{i}\left(\xi_{k}\right)-\nabla f_{i}\left(x_{k}\right)\right]^{T} d_{k}}{\left\|d_{k}\right\|^{2}}
$$

Using the inequality of Cauchy and the Lipschitz continuity it follows that

$$
\gamma_{i}^{k+1} \leq \frac{2\left\|\nabla f_{i}\left(\xi_{k}\right)-\nabla f_{i}\left(x_{k}\right)\right\|}{\left\|d_{k}\right\|} \leq \frac{2 L_{i}\left\|\xi_{k}-x_{k}\right\|}{\left\|d_{k}\right\|} \leq \frac{2 L_{i}\left\|x_{k+1}-x_{k}\right\|}{\left\|x_{k+1}-x_{k}\right\|}=2 L_{i} .
$$

Therefore, in the current point x_{k} the following approximation of the Hessian $\nabla^{2} \Phi\left(x_{k}\right)$ can be considered:

$$
\begin{equation*}
\nabla F\left(x_{k}\right)^{T} \nabla F\left(x_{k}\right)+\delta_{k} I \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta_{k}=\sum_{i=1}^{m} f_{i}\left(x_{k}\right) \gamma_{i}^{k} \tag{26}
\end{equation*}
$$

Observe that if $\operatorname{rank} \nabla F\left(x_{k}\right)=n$ and $f_{i}\left(x_{k}\right) \geq 0$, then (25) represents a positive definite approximation of $\nabla^{2} \Phi\left(x_{k}\right)$.

Using this approximation of Hessians $\nabla^{2} f_{i}\left(x_{k}\right), i=1, \ldots, m$, in the current point x_{k}, and (23) we get the following iterative process:

$$
\begin{equation*}
x_{k+1}=x_{k}-h_{k}\left[I+h_{k} \theta\left(\nabla F\left(x_{k}\right)^{T} \nabla F\left(x_{k}\right)+\delta_{k} I\right)\right]^{-1} \nabla F\left(x_{k}\right)^{T} F\left(x_{k}\right), \tag{27}
\end{equation*}
$$

where δ_{k} is given by (26).
However, even if $f_{i}(x)$ is a convex function, due to finite precision of the numerical computations, especially towards the final part of the iterative process, it is possible that γ_{i}^{k} be negative, but very small. On the other hand, for nonconvex function it is often possible that γ_{i}^{k} be negative. Therefore, in order to have a positive definite approximation of $\nabla^{2} \Phi\left(x_{k}\right)$ we can consider the following formula for δ_{k} computation:

$$
\begin{equation*}
\delta_{k}=\sum_{i=1}^{m} f_{i}\left(x_{k}\right)^{2}\left(\gamma_{i}^{k}\right)^{2} \tag{28}
\end{equation*}
$$

This formula is a little too conservative. Our numerical evidence proved that a large percentage from the number of iterations are characterized by: $f_{i}\left(x_{k}\right) \geq 0$ and $\gamma_{i}^{k}>0$. Therefore, for computation of δ_{k} we can consider the following less conservative procedure, which ensures a nonnegative value for δ_{k} :

Procedure $\delta\left(\delta_{k}\right.$ computation)
Set $\delta_{k}=0$.
For $i=1, \ldots, m, d o$:

$$
\begin{aligned}
& \text { Set } p=f_{i}\left(x_{k}\right), q=\gamma_{i}^{k} \\
& \text { If } p<0 \text {, then } p=f_{i}\left(x_{k}\right)^{2} \\
& \text { If } q<0 \text {, then } q=\left(\gamma_{i}^{k}\right)^{2} \\
& \text { Set } \delta_{k}=\delta_{k}+p q \text {. }
\end{aligned}
$$

End For.

With this the following algorithm can be presented:

Algorithm MGFA (Modified Gradient Flow Algorithm)

Step 1. Consider the initial point $x_{0} \in R^{n}$, a parameter $\theta \in[0,1]$, a sequence of time step sizes $\left\{h_{k}\right\}$ and an $\varepsilon>0$ sufficiently small. Compute: $F\left(x_{0}\right), \nabla F\left(x_{0}\right)$ and $\delta_{0}=\left\|F\left(x_{0}\right)\right\|$. Set $k=0$.

Step 2. Solve the system of linear equations:

$$
\begin{equation*}
\left[I+h_{k} \theta\left(\nabla F\left(x_{k}\right)^{T} \nabla F\left(x_{k}\right)+\delta_{k} I\right)\right] d_{k}=-h_{k} \nabla F\left(x_{k}\right)^{T} F\left(x_{k}\right) \tag{29}
\end{equation*}
$$

Step 3. Update the variables: $x_{k+1}=x_{k}+d_{k}$.
Step 4. Test for continuation of iterations. If $\left\|F\left(x_{k+1}\right)\right\|<\varepsilon$, stop; otherwise set $k=k+1$ and go to step 5 .

Step 5. Compute: $F\left(x_{k}\right), \nabla F\left(x_{k}\right)$ and

$$
\gamma_{i}^{k}=\frac{2}{d_{k-1}^{T} d_{k-1}}\left[f_{i}\left(x_{k}\right)-f_{i}\left(x_{k-1}\right)-\nabla f_{i}\left(x_{k-1}\right)^{T} d_{k-1}\right], i=1, \ldots, m
$$

Step 6. Compute δ_{k} using (28) or by means of Procedure δ, and go to step 2.
The convergence of MGFA is given by
Theorem 3.1. Let $\left\{x_{k}\right\}$ be the sequence defined by (27) and x^{*} a solution of (1) such that: $F\left(x^{*}\right)=0$, where $F(x)$ is twice continuously differentiable, $\nabla F(x)$ is Lipschitz continuous and $\operatorname{rank} \nabla F\left(x^{*}\right)=n$. If the initial point x_{0} is sufficiently close to x^{*}, then:
(i) If $\theta \in[0,1]$ and $h_{k}>0$ is sufficiently small, then x_{k} converges linearly to x^{*}.
(ii) If $\theta=1$ and $h_{k} \rightarrow \infty$, then x_{k} converges quadratically to x^{*}.

Proof. (i) From (27) we have

$$
\left[\left(1+h_{k} \theta \delta_{k}\right) I+h_{k} \theta \nabla F\left(x_{k}\right)^{T} \nabla F\left(x_{k}\right)\right] d_{k}=-h_{k} \nabla F\left(x_{k}\right)^{T} F\left(x_{k}\right)
$$

After some algebra we get:

$$
\begin{equation*}
x_{k+1}=x_{k}-\rho_{k}\left[\nabla F\left(x_{k}\right)^{T} F\left(x_{k}\right)+\theta \nabla F\left(x_{k}\right)^{T} \nabla F\left(x_{k}\right)\left(x_{k+1}-x\right)\right] \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{k}=\frac{h_{k}}{1+h_{k} \theta \delta_{k}} . \tag{31}
\end{equation*}
$$

Subtracting x^{*} from both sides of the above equality and using the mean value theorem, as in the proof of Theorem 2.3, we have:

$$
\begin{equation*}
e_{k+1}=\left\{I-\rho_{k}\left[I+\rho_{k} \theta \nabla F\left(x_{k}\right)^{T} \nabla F\left(x_{k}\right)\right]^{-1} \nabla F\left(x_{k}\right)^{T} \nabla F\left(\xi_{k}\right)\right\} e_{k}, \tag{32}
\end{equation*}
$$

where $e_{k}=x_{k}-x^{*}, \xi_{k} \in\left[x_{k}, x^{*}\right]$. Taking the norm on both sides of this equality we obtain:

$$
\begin{equation*}
\left\|e_{k+1}\right\| \leq \varphi\left(x_{k}, \xi_{k}, \theta, \rho_{k}\right)\left\|e_{k}\right\| \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi\left(x_{k}, \xi_{k}, \theta, \rho_{k}\right)=\left\|I-\rho_{k}\left[I+\rho_{k} \theta \nabla F\left(x_{k}\right)^{T} \nabla F\left(x_{k}\right)\right]^{-1} \nabla F\left(x_{k}\right)^{T} \nabla F\left(\xi_{k}\right)\right\| \tag{34}
\end{equation*}
$$

From the estimate (33) we see that if $\varphi\left(x_{k}, \xi_{k}, \theta, \rho_{k}\right)<1$, then the first order terms in (33) show that the error e_{k} converges to zero linearly. Since $\operatorname{ran} k \nabla F\left(x^{*}\right)=n$ it follows that $\nabla F\left(x^{*}\right)^{T} \nabla F\left(x^{*}\right)$ is positive definite. Now, when x_{k} is sufficiently close to x^{*}, by continuity, (34) implies that if $\theta \in[0,1]$:

$$
\begin{equation*}
\varphi\left(x_{k}, \xi_{k}, \theta, \rho_{k}\right) \leq\left(1-\frac{\rho_{k} \lambda_{\min }^{k}}{1+\rho_{k} \theta \lambda_{\max }^{k}}\right) \tag{35}
\end{equation*}
$$

where $\lambda_{\min }^{k}$ and $\lambda_{\max }^{k}$ are the minimum and maximum eigenvalues of $\nabla F\left(x_{k}\right)^{T} \nabla F\left(x_{k}\right)$, respectively. Using (31) we see that

$$
\begin{equation*}
1-\frac{\rho_{k} \lambda_{\min }^{k}}{1+\rho_{k} \theta \lambda_{\max }^{k}}=1-\frac{h_{k} \lambda_{\min }^{k}}{1+h_{k} \theta\left(\delta_{k}+\lambda_{\max }^{k}\right)}<1 \tag{36}
\end{equation*}
$$

Therefore, (33) implies that

$$
\lim _{k \rightarrow \infty} e_{k}=0
$$

linearly, proving that x_{k} converges to x^{*} linearly.
(ii) Considering $\theta=1$ in (30) we get:

$$
\begin{equation*}
\frac{x_{k+1}-x_{k}}{\rho_{k}}=-\nabla F\left(x_{k}\right)^{T}\left[F\left(x_{k}\right)+\nabla F\left(x_{k}\right)\left(x_{k+1}-x_{k}\right)\right] . \tag{37}
\end{equation*}
$$

But

$$
\lim _{h_{k} \rightarrow \infty} \frac{h_{k}}{1+h_{k} \delta_{k}}=\frac{1}{\delta_{k}}
$$

and using (28) we see that $\lim _{k \rightarrow \infty} \delta_{k}=\lim _{k \rightarrow \infty} \sum_{i=1}^{m} f_{i}\left(x_{k}\right)^{2}\left(\gamma_{i}^{k}\right)^{2}=0$. Therefore $\lim _{k \rightarrow \infty} \rho_{k}=$ ∞. Having in view that ∇F is of full column rank, the equation (37) reduces to

$$
\nabla F\left(x_{k}\right)\left(x_{k+1}-x_{k}\right)+F\left(x_{k}\right)=0 .
$$

This coincides with the Newton method applied to $F(x)=0$, which we know that in conditions of the theorem is quadratically convergent to x^{*} if the initial point x_{0} is sufficiently close to x^{*}. This completes the proof.

An interesting feature of the theorem 3.1 is that the algorithm allows sufficiently large values for h_{k} when the splitting parameter satisfies $\theta=1$. In this case, x_{k} converges quadratically to a local solution of (1). On the other hand, we see that h_{k} is acting on the both members of (29) as a scaling parameter, this ensuring the numerical stability of the sysytem (29).

Remark 3.1. From (33) and (35) with (36), for $\theta=1$, we have:

$$
\begin{equation*}
\left\|e_{k+1}\right\| \leq p_{k+1}\left\|e_{0}\right\|, \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{k+1}=\prod_{i=0}^{k}\left(1-\frac{h_{i} \lambda_{\min }^{i}}{1+h_{i}\left(\delta_{i}+\lambda_{\max }^{i}\right)}\right) \tag{39}
\end{equation*}
$$

But, $\nabla F\left(x_{i}\right)^{T} \nabla F\left(x_{i}\right)$ is a positive definite matrix, therefore for all $i=0,1, \ldots, k$,

$$
0<1-\frac{h_{i} \lambda_{\min }^{i}}{1+h_{i}\left(\delta_{i}+\lambda_{\max }^{i}\right)}<1
$$

So, p_{k}, for all k, is a decreasing sequence in $(0,1)$, i.e. p_{k} is convergent to zero.
In order to see the complexity of the MGF algorithm let us denote:

$$
\begin{equation*}
a_{i}=\frac{h_{i} \lambda_{\min }^{i}}{1+h_{i}\left(\delta_{i}+\lambda_{\max }^{i}\right)} \tag{40}
\end{equation*}
$$

and consider $a_{j}=\min \left\{a_{i}: 0 \leq i \leq k\right\}$. Then

$$
\begin{equation*}
p_{k+1}=\prod_{i=0}^{k}\left(1-a_{i}\right) \leq\left(1-a_{j}\right)^{k+1} \tag{41}
\end{equation*}
$$

i.e.

$$
\left\|e_{k+1}\right\| \leq p_{k+1}\left\|e_{0}\right\| \leq\left(1-a_{j}\right)^{k+1}\left\|e_{0}\right\| .
$$

Thus, the number of iterations required to obtain an accuracy $\left\|e_{k+1}\right\|=\left\|x_{k+1}-x^{*}\right\| \leq \varepsilon$, starting from the initial point x_{0}, is bounded by

$$
\begin{equation*}
\frac{\log (\varepsilon)-\log \left(\left\|e_{0}\right\|\right)}{\log \left(1-a_{j}\right)}-1 \tag{42}
\end{equation*}
$$

We see that this expression depends on the final accuracy, on the initial estimation x_{0} of the solution, as well as on the distribution of the eigenvalues of the Hessians of the functions $f_{i}, i=1, \ldots, m$, along the trajectory of the ordinary differential equation (8). The main result of this section is given by

Remark 3.2. Considering $\delta_{k}=0$ in MGF algorithm we get another algorithm:

$$
\begin{equation*}
x_{k+1}=x_{k}-h_{k}\left[I+h_{k} \theta \nabla F\left(x_{k}\right)^{T} \nabla F\left(x_{k}\right)\right]^{-1} \nabla F\left(x_{k}\right)^{T} F\left(x_{k}\right), \tag{43}
\end{equation*}
$$

for which, like in theorem 3.1, for $\theta=1$, we can prove that $\left\|e_{k+1}\right\| \leq \bar{p}_{k+1}\left\|e_{0}\right\|$, where

$$
\bar{p}_{k+1}=\prod_{i=0}^{k}\left(1-\frac{h_{i} \lambda_{\min }^{i}}{1+h_{i} \lambda_{\max }^{i}}\right)
$$

and, as above, for $i=0, \ldots, k, \lambda_{\text {min }}^{i}$ and $\lambda_{\text {max }}^{i}$ are the minimum and maximum eigenvalues of $\nabla F\left(x_{i}\right)^{T} \nabla F\left(x_{i}\right)$, respectively. Having in view that $\nabla F\left(x_{i}\right)^{T} \nabla F\left(x_{i}\right)$ is a positive definite matrix and $\delta_{i} \geq 0$ in MGFA, it follows that for all $i=0,1, \ldots, k$,

$$
\frac{h_{i} \lambda_{\min }^{i}}{1+h_{i}\left(\delta_{i}+\lambda_{\max }^{i}\right)} \leq \frac{h_{i} \lambda_{\min }^{i}}{1+h_{i} \lambda_{\max }^{i}}
$$

Therefore, using (39) we see that $p_{k+1} \geq \bar{p}_{k+1}$. Hence, for $\delta_{k}=0$, the convergence of MGF algorithm, i.e. the convergence of (43), is more rapid. As we will see, numerical examples illustrate this behaviour.

The best algorithm corresponding to the gradient flow approach for solving systems of nonlinear equations is obtained when the second-order information is ignored. Having in view that $h_{k}>0$, it is very easy to see that (43), with $\theta=1$, can be written as:

$$
\left[\frac{1}{h_{k}} I+\nabla F\left(x_{k}\right)^{T} \nabla F\left(x_{k}\right)\right] d_{k}=-\nabla F\left(x_{k}\right)^{T} F\left(x_{k}\right)
$$

which is the Levenberg-Marquardt algorithm (5), where $\mu_{k}=1 / h_{k}$. Therefore in this interpretation we get the Levenberg-Marquardt algorithm as a simple particularization of MGF algorithm with $\delta_{k}=0$.

4. Numerical examples

In order to see the performances of the MGF algorithm with $\delta_{k}=0$, in the sequel, we present some numerical experiments obtained with a Fortran implementation of the MGFA. In this respect the algorithm MGF has been implemented in the following variants, corresponding to the values of δ_{k} :
a) MGFA-FG : $\delta_{k}=\sum_{i=1}^{m} f_{i}\left(x_{k}\right)^{2}\left(\gamma_{i}^{k}\right)^{2}$,
b) MGFA-P : δ_{k} given by procedure δ,
c) MGFA-F : $\delta_{k}=\sum_{i=1}^{m} f_{i}\left(x_{k}\right)^{2}$,
d) MGFA-Z : $\delta_{k}=0$.

In all numerical experiments we have considered $\theta=1$. The stopping criterion used is $\left\|F\left(x_{k}\right)\right\|_{2} \leqslant \varepsilon$, where $\varepsilon=10^{-7}$. The time step size h_{k} is considered constant, the same for all k. At the same time, we have considered another set of experiments in which $h_{k}=1 /\left\|F\left(x_{k}\right)\right\|^{2}$. In the following we present the numerical results corresponding to these algorithms for 5 real systems of nonlinear equations.

Example 1. (Equillibrium Combustion) [30]

$$
\begin{gathered}
x_{1} x_{2}+x_{1}-3 x_{5}=0 \\
2 x_{1} x_{2}+x_{1}+3 r_{10} x_{2}^{2}+x_{2} x_{3}^{2}+r_{7} x_{2} x_{3}+r_{9} x_{2} x_{4}+r_{8} x_{2}-r x_{5}=0 \\
2 x_{2} x_{3}^{2}+r_{7} x_{2} x_{3}+2 r_{5} x_{3}^{2}+r_{6} x_{3}-8 x_{5}=0 \\
r_{9} x_{2} x_{4}+2 x_{4}^{2}-4 r x_{5}=0 \\
x_{1} x_{2}+x_{1}+r_{10} x_{2}^{2}+x_{2} x_{3}^{2}+r_{7} x_{2} x_{3}+r_{9} x_{2} x_{4}+r_{8} x_{2}+r_{5} x_{3}^{2}+r_{6} x_{3}+x_{4}^{2}-1=0,
\end{gathered}
$$

where

$$
\begin{array}{lll}
\hline r=10 & r_{5}=0.193 & r_{6}=4.10622 e-4 \\
r_{7}=5.45177 e-4 & r_{8}=4.4975 e-7 & r_{9}=3.40735 e-5 \\
r_{10}=9.615 e-7 & & \\
\hline
\end{array}
$$

The following initial points have been considered:

x_{0}^{1}	x_{0}^{2}	x_{0}^{3}	x_{0}^{4}
1	1	1	21
0	1	1	1
10.15	10.15	10.15	10.15
5.5	0.5	0.5	1.5
0.05	0.05	10.05	1.05

The following tables give the number of iterations necessary to get a solution corresponding to different selections of δ_{k} and h_{k}, starting the algorithm from different initial points.

Table 1a $\left(\delta_{k}=\sum_{i=1}^{m} f_{i}\left(x_{k}\right)^{2}\left(\gamma_{i}^{k}\right)^{2}\right)$

	$h_{k}=10^{6}$	$h_{k}=10^{7}$	$h_{k}=10^{8}$	$h_{k}=10^{9}$	$h_{k}=10^{10}$	$h_{k}=1 /\left\\|F\left(x_{k}\right)\right\\|^{2}$
x_{0}^{1}	670	115	63	57	57	328
x_{0}^{2}	752	197	144	139	138	403
x_{0}^{3}	702	148	94	89	88	403
x_{0}^{4}	719	164	111	105	105	790

Table 1b (δ_{k} given by procedure δ)

	$h_{k}=10^{6}$	$h_{k}=10^{7}$	$h_{k}=10^{8}$	$h_{k}=10^{9}$	$h_{k}=10^{10}$	$h_{k}=1 /\left\\|F\left(x_{k}\right)\right\\|^{2}$
x_{0}^{1}	653	100	48	43	41	314
x_{0}^{2}	658	105	52	48	47	310
x_{0}^{3}	657	104	51	46	46	362
x_{0}^{4}	809	133	68	62	59	724

Table 1c $\left(\delta_{k}=\sum_{i=1}^{m} f_{i}\left(x_{k}\right)^{2}\right)$

	$h_{k}=10^{6}$	$h_{k}=10^{7}$	$h_{k}=10^{8}$	$h_{k}=10^{9}$	$h_{k}=10^{10}$	$h_{k}=1 /\left\\|F\left(x_{k}\right)\right\\|^{2}$
x_{0}^{1}	927	370	315	310	309	595
x_{0}^{2}	921	364	309	304	303	582
x_{0}^{3}	973	416	361	356	355	684
x_{0}^{4}	1784	809	712	702	701	1373

Table 1d ($\delta_{k}=0$)

	$h_{k}=10^{6}$	$h_{k}=10^{7}$	$h_{k}=10^{8}$	$h_{k}=10^{9}$	$h_{k}=10^{10}$	$h_{k}=1 /\left\\|F\left(x_{k}\right)\right\\|^{2}$
x_{0}^{1}	768	87	19	12	11	309
x_{0}^{2}	632	74	18	14	14	303
x_{0}^{3}	632	74	18	14	14	355
x_{0}^{4}	632	74	18	14	14	701

The following solutions have been obtained:

x^{*}	x^{*}	x^{*}
0.00311411	0.002471	0.0027567
34.592169	43.87876	39.248218
0.0650419	0.0577847	-0.0613849
0.859378	-0.860205	0.859724
0.0369518	0.0369655	0.0369851

Example 2. (Steady-state solution for reaction rate equations) [35]

$$
\begin{gathered}
1-x_{1}-k_{1} x_{1} x_{6}+r_{1} x_{4}=0, \\
1-x_{2}-k_{2} x_{2} x_{6}+r_{2} x_{5}=0, \\
-x_{3}+2 k_{3} x_{4} x_{5}=0, \\
k_{1} x_{1} x_{6}-r_{1} x_{4}-k_{3} x_{4} x_{5}=0, \\
1.5\left(k_{2} x_{2} x_{6}-r_{2} x_{5}\right)-k_{3} x_{4} x_{5}=0, \\
1-x_{4}-x_{5}-x_{6}=0,
\end{gathered}
$$

where

$$
\begin{array}{lll}
\hline k_{1}=31.24 & k_{2}=0.272 & k_{3}=303.03 \\
r_{1}=2.062 & r_{2}=0.02 & \\
\hline
\end{array}
$$

The following initial points have been considered:

x_{0}^{1}	x_{0}^{2}	x_{0}^{3}	x_{0}^{4}
1.09	1.19	2.19	0.05
1.05	1.15	3.15	0.99
0.05	0.05	0.05	0.05
0.99	0.99	0.99	0.99
0.05	0.05	0.05	0.05
0	0.09	1.09	0.09

Table 2a $\left(\delta_{k}=\sum_{i=1}^{m} f_{i}\left(x_{k}\right)^{2}\left(\gamma_{i}^{k}\right)^{2}\right)$

	$h_{k}=10$	$h_{k}=10^{2}$	$h_{k}=10^{3}$	$h_{k}=10^{4}$	$h_{k}=10^{5}$	$h_{k}=1 /\left\\|F\left(x_{k}\right)\right\\|^{2}$
x_{0}^{1}	21	12	10	10	10	10
x_{0}^{2}	21	12	10	9	9	10
x_{0}^{3}	244	234	232	232	232	237
x_{0}^{4}	137	127	125	125	125	126

Table $\mathbf{2 b}$ (δ_{k} given by procedure δ)

	$h_{k}=10$	$h_{k}=10^{2}$	$h_{k}=10^{3}$	$h_{k}=10^{4}$	$h_{k}=10^{5}$	$h_{k}=1 /\left\\|F\left(x_{k}\right)\right\\|^{2}$
x_{0}^{1}	19	10	9	8	8	8
x_{0}^{2}	19	10	8	8	8	8
x_{0}^{3}	154	145	143	143	143	148
x_{0}^{4}	192	181	179	179	179	188

Table 2c $\left(\delta_{k}=\sum_{i=1}^{m} f_{i}\left(x_{k}\right)^{2}\right)$

	$h_{k}=10$	$h_{k}=10^{2}$	$h_{k}=10^{3}$	$h_{k}=10^{4}$	$h_{k}=10^{5}$	$h_{k}=1 /\left\\|F\left(x_{k}\right)\right\\|^{2}$
x_{0}^{1}	16	7	5	5	5	5
x_{0}^{2}	17	7	6	5	5	6
x_{0}^{3}	24	14	12	12	12	16
x_{0}^{4}	21	11	9	9	9	9

Table 2d ($\delta_{k}=0$)

	$h_{k}=10$	$h_{k}=10^{2}$	$h_{k}=10^{3}$	$h_{k}=10^{4}$	$h_{k}=10^{5}$	$h_{k}=1 /\left\\|F\left(x_{k}\right)\right\\|^{2}$
x_{0}^{1}	14	5	3	3	3	5
x_{0}^{2}	15	5	4	4	4	5
x_{0}^{3}	18	6	5	5	5	12
x_{0}^{4}	17	6	5	5	5	9

The following solution has been obtained:

x^{*}
0.974243
0.982829
0.0515124
0.935671
$0.90839 \mathrm{e}-4$
0.06423807

Example 3 (Circuit design problem) [34]

$$
\begin{gathered}
\left(1-x_{1} x_{2}\right) x_{3}\left\{\exp \left[x_{5}\left(g_{1 k}-g_{3 k} x_{7} 10^{-3}-g_{5 k} x_{8} 10^{-3}\right)\right]-1\right\}- \\
g_{5 k}+g_{4 k} x_{2}=0, k=1, \ldots, 4, \\
\left(1-x_{1} x_{2}\right) x_{4}\left\{\exp \left[x_{6}\left(g_{1 k}-g_{2 k}-g_{3 k} x_{7} 10^{-3}-g_{4 k} x_{9} 10^{-3}\right)\right]-1\right\}- \\
g_{5 k} x_{1}+g_{4 k}=0, k=1, \ldots, 4, \\
x_{1} x_{3}-x_{2} x_{4}=0,
\end{gathered}
$$

where

$$
g=\left[\begin{array}{cccc}
0.4850 & 0.7520 & 0.8690 & 0.9820 \\
0.3690 & 1.2540 & 0.7030 & 1.4550 \\
5.2095 & 10.0677 & 22.9274 & 20.2153 \\
23.3037 & 101.7790 & 111.4610 & 191.2670 \\
28.5132 & 111.8467 & 134.3884 & 211.4823
\end{array}\right]
$$

The following initial points have been considered:

x_{0}^{1}	x_{0}^{2}	x_{0}^{3}	x_{0}^{4}
0.7	0.65	0.75	0.75
0.5	0.45	0.45	0.45
0.9	0.8	0.9	0.9
1.9	1.8	1.77	1.77
8.1	8.5	8.5	8.9
8.1	8.5	7.5	7.9
5.9	5.9	5.5	5.5
1	1.1	1.25	1.35
1.9	1.5	1.88	1.88

Table 3a $\left(\delta_{k}=\sum_{i=1}^{m} f_{i}\left(x_{k}\right)^{2}\left(\gamma_{i}^{k}\right)^{2}\right)$

	$h_{k}=10$	$h_{k}=10^{2}$	$h_{k}=10^{3}$	$h_{k}=10^{4}$	$h_{k}=10^{5}$	$h_{k}=1 /\left\\|F\left(x_{k}\right)\right\\|^{2}$
x_{0}^{1}	142	50	40	38	38	27
x_{0}^{2}	173	60	47	45	45	56
x_{0}^{3}	256	146	133	131	131	132
x_{0}^{4}	600	500	489	487	487	488

Table 3b (δ_{k} given by procedure δ)

	$h_{k}=10$	$h_{k}=10^{2}$	$h_{k}=10^{3}$	$h_{k}=10^{4}$	$h_{k}=10^{5}$	$h_{k}=1 /\left\\|F\left(x_{k}\right)\right\\|^{2}$
x_{0}^{1}	123	32	22	20	20	21
x_{0}^{2}	151	39	26	24	24	26
x_{0}^{3}	218	108	96	94	94	94
x_{0}^{4}	497	397	386	384	384	385

Table 3c $\left(\delta_{k}=\sum_{i=1}^{m} f_{i}\left(x_{k}\right)^{2}\right)$

	$h_{k}=10$	$h_{k}=10^{2}$	$h_{k}=10^{3}$	$h_{k}=10^{4}$	$h_{k}=10^{5}$	$h_{k}=1 /\left\\|F\left(x_{k}\right)\right\\|^{2}$
x_{0}^{1}	113	22	12	10	10	11
x_{0}^{2}	140	27	15	12	12	14
x_{0}^{3}	135	25	13	11	11	12
x_{0}^{4}	124	24	14	12	11	13

Table 3d ($\delta_{k}=0$)

	$h_{k}=10$	$h_{k}=10^{2}$	$h_{k}=10^{3}$	$h_{k}=10^{4}$	$h_{k}=10^{5}$	$h_{k}=1 /\left\\|F\left(x_{k}\right)\right\\|^{2}$
x_{0}^{1}	108	10	6	4	4	10
x_{0}^{2}	132	16	7	5	4	12
x_{0}^{3}	129	19	6	5	5	11
x_{0}^{4}	46	15	6	5	5	11

The following solution has been obtained:

x^{*}
0.8999999
0.4499875
1.000006
2.00006
7.99997
7.99969
5.00003
0.99998
2.00005

Example 4 (Robot kinematics problem) [23]
$0.004731 x_{1} x_{3}-0.3578 x_{2} x_{3}-0.1238 x_{1}+x_{7}-0.001637 x_{2}-0.9338 x_{4}-0.3571=0$,
$0.2238 x_{1} x_{3}+0.7623 x_{2} x_{3}+0.2638 x_{1}-x_{7}-0.07745 x_{2}-0.6734 x_{4}-0.6022=0$,

$$
\begin{gathered}
x_{6} x_{8}+0.3578 x_{1}+0.004731 x_{2}=0 \\
-0.7623 x_{1}+0.2238 x_{2}+0.3461=0 \\
x_{1}^{2}+x_{2}^{2}-1=0 \\
x_{3}^{2}+x_{4}^{2}-1=0 \\
x_{5}^{2}+x_{6}^{2}-1=0
\end{gathered}
$$

$$
x_{7}^{2}+x_{8}^{2}-1=0
$$

The following initial points have been considered:

x_{0}^{1}	x_{0}^{2}	x_{0}^{3}	x_{0}^{4}
0.164	0.14	-0.15	-1
-0.98	0.98	0.98	1
-0.94	0.94	-0.94	-1
-0.32	0.32	0.32	1
-0.99	0.99	-0.97	-1
-0.056	0.056	0.056	1
0.41	0.41	-0.44	-1
-0.91	-0.91	0.99	1

Table 4a $\left(\delta_{k}=\sum_{i=1}^{m} f_{i}\left(x_{k}\right)^{2}\left(\gamma_{i}^{k}\right)^{2}\right)$

	$h_{k}=10$	$h_{k}=10^{2}$	$h_{k}=10^{3}$	$h_{k}=10^{4}$	$h_{k}=10^{5}$	$h_{k}=1 /\left\\|F\left(x_{k}\right)\right\\|^{2}$
x_{0}^{1}	9	4	3	3	3	3
x_{0}^{2}	10	6	5	5	5	5
x_{0}^{3}	13	8	7	7	6	7
x_{0}^{4}	15	11	10	10	9	12

Table $\mathbf{4 b}$ (δ_{k} given by procedure δ)

	$h_{k}=10$	$h_{k}=10^{2}$	$h_{k}=10^{3}$	$h_{k}=10^{4}$	$h_{k}=10^{5}$	$h_{k}=1 /\left\\|F\left(x_{k}\right)\right\\|^{2}$
x_{0}^{1}	9	5	4	3	3	4
x_{0}^{2}	11	7	6	6	6	6
x_{0}^{3}	13	9	8	8	8	8
x_{0}^{4}	16	11	10	10	10	14

Table 4c $\left(\delta_{k}=\sum_{i=1}^{m} f_{i}\left(x_{k}\right)^{2}\right)$

	$h_{k}=10$	$h_{k}=10^{2}$	$h_{k}=10^{3}$	$h_{k}=10^{4}$	$h_{k}=10^{5}$	$h_{k}=1 /\left\\|F\left(x_{k}\right)\right\\|^{2}$
x_{0}^{1}	9	4	3	3	3	3
x_{0}^{2}	11	6	5	5	5	6
x_{0}^{3}	13	8	7	7	7	8
x_{0}^{4}	18	13	12	12	12	16

Table 4d $\left(\delta_{k}=0\right)$

	$h_{k}=10$	$h_{k}=10^{2}$	$h_{k}=10^{3}$	$h_{k}=10^{4}$	$h_{k}=10^{5}$	$h_{k}=1 /\left\\|F\left(x_{k}\right)\right\\|^{2}$
x_{0}^{1}	9	4	3	3	3	3
x_{0}^{2}	10	6	5	5	5	5
x_{0}^{3}	11	7	6	6	6	7
x_{0}^{4}	14	9	9	9	9	12

The following solutions have been obtained:

x^{*}	x^{*}	x^{*}	x^{*}
0.164431	0.671554	0.671563	0.671554
-0.986388	0.740955	0.741005	0.740955
-0.947063	0.951893	-0.651582	-0.651590
-0.321045	-0.306431	-0.758578	-0.758578
-0.998233	0.963810	-0.962545	0.962793
0.059418	0.266587	-0.271124	0.271124
0.411033	0.404641	-0.437592	-0.437592
-0.911620	-0.914475	0.899181	-0.899181

Example 5. (A quadratic system)

$$
\begin{gathered}
x_{1}^{2}-1=0 \\
\left(x_{i-1}+x_{i}\right)^{2}-i=0, i=2, \ldots, n
\end{gathered}
$$

Considering the initial point $x_{0}=[1, \ldots, 1]^{T}$, the following results are obtained.
Table 5a $\left(\delta_{k}=\sum_{i=1}^{m} f_{i}\left(x_{k}\right)^{2}\left(\gamma_{i}^{k}\right)^{2}\right)$

n	$h_{k}=10$	$h_{k}=10^{2}$	$h_{k}=10^{3}$	$h_{k}=10^{4}$	$h_{k}=10^{5}$	$h_{k}=1 /\left\\|F\left(x_{k}\right)\right\\|^{2}$
100	176	43	28	25	25	613
150	274	57	34	30	28	1600
200	378	71	38	34	32	3152

Table 5b (δ_{k} given by procedure δ)

n	$h_{k}=10$	$h_{k}=10^{2}$	$h_{k}=10^{3}$	$h_{k}=10^{4}$	$h_{k}=10^{5}$	$h_{k}=1 /\left\\|F\left(x_{k}\right)\right\\|^{2}$
100	246	114	99	96	95	681
150	409	192	169	165	164	1732
200	586	279	247	242	241	3357

Table 5c $\left(\delta_{k}=\sum_{i=1}^{m} f_{i}\left(x_{k}\right)^{2}\right)$

n	$h_{k}=10$	$h_{k}=10^{2}$	$h_{k}=10^{3}$	$h_{k}=10^{4}$	$h_{k}=10^{5}$	$h_{k}=1 /\left\\|F\left(x_{k}\right)\right\\|^{2}$
100	746	614	599	597	596	1179
150	1824	1607	1584	1581	1580	3145
200	3473	3166	3134	3130	3129	6242

Table 5d ($\delta_{k}=0$)

n	$h_{k}=10$	$h_{k}=10^{2}$	$h_{k}=10^{3}$	$h_{k}=10^{4}$	$h_{k}=10^{5}$	$h_{k}=1 /\left\\|F\left(x_{k}\right)\right\\|^{2}$
100	155	23	8	6	6	596
150	249	32	9	7	7	1580
200	350	42	11	7	7	3129

In order to see the performance profiles of these algorithms in table 6 we present the number of iterations needed to solve some systems of nonlinear equations. Some of these systems are taken from MINPACK-2 [45] or ZIB [46] collections. In all these experiments $m=n$.

Figure 1: Performance profiles

Relative to the best number of iterations, the performance of the MGFA-FG, MGFA-P and MGFA-Z algorithms on 52 test problems, considered in this section, was as follows:

MGFA-FG achieved the minimum number of iterations in 7 problems,

- MGFA-P achieved the minimum number of iterations in 4 problems,
\checkmark MGFA-Z achieved the minimum number of iterations in 52 problems.
Figure 1 shows the performance profiles, proposed by Dolan and Moré [15] for the algorithms MGFA-FG, MGFA-P and MGFA-Z, on this set of 52 problems. For each algorithm, the fraction P of problems for which the algorithm is within a factor t of the best number of iterations is plotted.

Table 6. Number of iterations of MGFA-FG, MGFA-P and MGFA-Z algorithms.

Problem	m	h_{k}	MGFA-FG	MGFA-P	MGFA-Z
Quadratic	100	10^{5}	25	95	6
	200	10^{5}	32	241	7
	300	10^{5}	37	411	7
Extended Rosenbrock	100	10^{4}	6	6	4
	500	10^{4}	6	6	4
Extended White-Holst	100	10^{5}	8	9	4
	500	10^{5}	6	7	4
Extended Penalty	100	10^{5}	31	24	15
	200	10^{5}	37	27	17
	300	10^{5}	40	29	19
Brown Almost Linear	200	10^{5}	6	6	5
Diagonal ($e^{x_{i}}-i x_{i}^{2}=0$)	100	10^{5}	11	11	7
	500	10^{5}	13	13	8
Broyden Tridiagonal	200	10^{5}	5	5	4
DELHFJ	7	10^{5}	12	18	7
DESTFJ	9	10^{7}	86	129	23
	9	10^{8}	75	87	23
DFDCFJ	100	10^{5}	6	6	5
	400	10^{5}	11	13	10
DGUPFJ	12	10^{5}	6	6	5
DHHDFJ (prob=1)	8	10^{5}	23	56	20
DHHDFJ (prob=2)	8	10^{5}	5	5	3
DHHDFJ (prob=3)	8	10^{5}	18	17	9
DHHDFJ (prob=4)	8	10^{5}	13	15	7
DHHDFJ (prob=5)	8	10^{5}	11	517	7
DiscreteBoundary	100	10^{6}	10	10	10
	200	10^{6}	85	85	85
DiscreteIntegral	100	10^{5}	3	3	3
DISOFJ	16	10^{5}	636	639	635
	16	10^{6}	71	76	69
DSULFJ	3	10^{6}	15	23	10
	3	10^{5}	55	80	54
DSFIFJ	100	10^{5}	4	4	3
	400	10^{5}	4	4	3
DMETFJ	7	10^{5}	179	197	124
Trigonometric	100	10^{5}	10	10	9
TOTAL			3089	3970	1346

The top curve is the algorithm that solved the most problems in a number of iterations that was within a factor t of the best number of iterations. Since the top curve in Figure 1. corresponds to MGFA-Z, this algorithm is clearly the best for this set of 52 test problems.

5. Conclusion

In this paper we proposed a gradient flow approach for solving systems of nonlinear algebraic equations. This is based on the integration of an ordinary differential equation for which a discretization thechique with a splitting parameter has been considered. For Hessian matrices of the functions of the system a number of scalar approximations are suggested. It has been shown that the solution of the discretized problem converges to a local solution of the system either linearly or quadratically as a function of the choice of the spliting parameter and the size of the discretization step. When the size of the discretization step tends to infinit, then the convergence is quadratic. When the second order information, given by the Hessian of the functions of the systyem, is not considered into the algorithm, then the algorithm reduce to an equivalent algebraic expression of the Levenberg-Marquardt algorithm for which we prove its quadratic convergence. Numerical experiments with different strategies for scalar approximation of the Hessian matrices of the functions of the system show that the most efficient variant of the algorithm is that correspondig to the case when the second order information is not considered into the algorithm.

Acknowledgment

The author thanks the anonymous referees for their valuable comments, which helped to improve the manuscript.

References

1. F. Aluffi-Pentini, V. Parisi and F. Zirilli, "A differential equations algorithm for nonlinear equations". ACM Trans. Math. Software, vol.10, pp. 299-316, 1984.
2. F. Aluffi-Pentini, V. Parisi and F. Zirilli, "Algorithm 617, DAFNE: a differentialequations algorithm for nonlinear equations". ACM Trans. Math. Software, vol.10, pp. 317-324, 1984.
3. N. Andrei, "Gradient flow algorithm for unconstrained optimization". ICI Technical Report, April, 2004.
4. W. Behrman, "An efficient gradient flow method for unconstrained optimization". Dissertation, Stanford University, June 1998.
5. PT. Boggs, "An algorithm, based on singular perturbation theory, for illconditioned minimization problems". SIAM J. Numer. Anal., vol.14, pp.830-843, 1977.
6. C.A. Botsaris, "Differential gradient methods". J. Math. Anal. Applics., vol.63, pp.177-198, 1978
7. C.A. Botsaris, "A curvilinear optimisation method based upon iterative estimation of the eigensystem of the Hessian matrix". J. Math. Anal., Applics., vol.63, pp.396-411, 1978.
8. C.A. Botsaris, "A class of methods for unconstrained minimization based on stable numerical integration techniques". J. Math. Anal. Applics., vol.63, pp.729-749, 1978.
9. C.A. Botsaris and D.H. Jacobson, "A Newton-type curvilinear search method for optimization". J. Math. Anal. Applics., vol.54, pp.217-229, 1976.
10. A.A. Brown and M.C. Bartholomew-Biggs, "ODE vs SQP methods for constrained optimization". Technical Report No. 179, The Hatfield Polytechnic, Numercial Optimisation Centre, June 1987.
11. A.A. Brown and M.C. Bartholomew-Biggs, "Some effective methods for unconstrained optimization based on the solution of systems of ordinary differential equations". J. Optim. Theory Appl., vol.62, pp.211-224, 1989.
12. R. Courant, "Variational methods for the solution of problems of equilibrium and vibrations". Bull. Amer. Math. Soc., vol.49, pp.1-23, 1943.
13. H. Dan, N. Yamashita and M. Fukushima, "Convergence properties of the inexact Levenberg-Marquardt method under local error bound conditions". Technical Report, Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto, Japan, January 16, 2001.
14. J.E. Dennis and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, New Jersey, 1983.
15. E.D. Dolan and J.J. Moré, "Benchmarking optimization software with performance profiles". Math. Programming, 91, pp.201-213, 2002.
16. Y.G. Evtushenko, "Two numerical methods of solving nonlinear programming problems". Sov. Math. Dokl., vol.15, pp.420-423, 1974.
17. Y.G. Evtushenko, Numerical Optimization Techniques. Optimization Software, Inc., New York, 1985.
18. Y.G. Evtushenko and V.G. Zhadan, "The space tranformation techniques in mathematical programming". in Lecture Notes in Control and Information Science, 180, System Modeling and Optimization. Proc. of the 15th IFIP Conference, P. Kall (Ed.), Zurich, Springer-Verlag, pp.292-300, 1992.
19. Y.G. Evtushenko and V.G. Zhadan, "Stable barrier-projection and barrier Newton methods in linear programming". Computational Optimization and Applications, vol.3, pp.289-303, 1994.
20. Y.G. Evtushenko and V.G. Zhadan, "Stable barrier-projection and barrier Newton methods in nonlinear programming". Optimization Methods and Software, vol.3, pp.237256, 1994.
21. J. Hadamard, "Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées". Mémoires présenté par divers savants à l'Académie des Sciences de l'Institut National de France, Series 2, vol.33, pp.1-128, 1908.
22. U. Helmke and J.B. Moore, Optimization and Dynamical Systems. Springer Verlag, 1994.
23. R. Kearfott and M. Novoa, "INTBIS, a portable interval Newton bisection package". ACM Trans. Math. Soft., vol.16, pp.152-157, 1990.
24. C.T. Kelley, (1995) Iterative methods for linear and nonlinear equations. SIAM, Number 16 in Frontier in Applied Mathematics, 1995.
25. C.T. Kelley, (1999) Iterative Methods for Optimization. SIAM, 1999.
26. C.T. Kelley, (2003) Solving nonlinear equations with Newtons method. SIAM, Number 1 in Fundamental Algorithms for Numerical Calculations, 2003.
27. M.W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, New York, 1974.
28. K. Levenberg, "A method for the solution of certain problems in least squares". Quart. Appl. Math. vol.2, pp.164-168, 1944.
29. D. Marquardt, "An algorithm for least-squares estimation of nonlinear parameters".

SIAM J. Appl. Math. vol.11, pp.431-441, 1963.
30. K. Meintjes and A.P. Morgan, "Chemical-equilibrium systems as numerical test problems". ACM Trans. Math. Soft., vol.16, pp.143-151, 1990.
31. J.J. Moré, "The Levenberg-Marquardt algorithm: implementation and theory". in Numerical Analysis, G.A. Watson (Ed.) Lecture Notes in Mathematics, vol. 630, pp.105116, Springer Verlag, 1977.
32. M.R. Osborne, "Nonlinear least squares - the Levenberg algorithm revisited". J. Austral. Math. Soc. vol.19, pp.343-357, 1976.
33. M.J.D. Powell, "Convergence properties of a class of minimization algorithms". in Nonlinear Programming 2, O. Mangasarian, O., R. Meyer and S. Robinson, (Eds.) Academic Press, pp.1-27, 1975.
34. H. Ratschek and J. Rokne, "A circuit design problem". J. Global Optimization, vol.3, pp.501, 1993.
35. M. Shacham, "Numerical solution of constrained nonlinear algebraic equations". Int. J. Numer. Meth. in Eng, vol.23, pp.1455-1481, 1986.
36. G.V. Smirnov, "Convergence of barrier-projection methods of optimization via vector Lyapunov functions". Optimization Methods and Software, vol.3, pp.153-162, 1994.
37. J.A. Snyman, "A new and dynamic method for unconstrained optimisation". Appl. Math. Modelling., vol.6, pp.449-462, 1982.
38. F. Verhulst, Nonlinear Differential Equations and Dynamical Systems. Springer Verlag, Berlin, 1990.
39. J-Ph. Vial. and I. Zang. "Unconstrained optimization by approxiamtion of the gradient path". Math. Oper. Res., vol.2, pp. 253-265, 1977.
40. S. Wang, X.Q. Yang and K.L. Teo, "A unified gradient flow approach to constrained nonlinear optimization problems". Computational Optimization and Applications, vol.25, pp.251-268, 2003.
41. N. Yamashita and M. Fukushima, "On the rate of convergence of the LevenbergMarquardt method". Technical Report, Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto, Japan, October 28, 2000.
42. I. Zang, "A new arc algorithm for unconstrained optimization". Math. Programming, vol.15, pp.36-52, 1978.
43. F. Zirilli, S. Incerti and V. Parisi, "A new method for solving nonlinear simultaneous equations". SIAM J. Numer. Anal., vol.16, pp.779-789, 1979.
44. F. Zirilli, S. Incerti and F. Aluffi-Pentini, "Systems of equations and a stable integration of second order ODE's". in Numerical Optimisation and Dynamical systems (Eds. L.C.W. Dixon and G.P. Szego), Elsevier North Hollanmd, pp.289-307, 1987.
45. MINPACK-2 Project: ftp://info.mcs.anl.gov/pub/MINPACK-2/tprobs/
46. Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB): http://www.zib.de/Numerik/numsoft/CodeLib/codes/newton_testset/problems/

[^0]: 1 Research Institute for Informatics, 8-10 Averescu Avenue, Bucharest 1, Romania, E-mail: nandrei @ici.ro

