Gradient Flow Algorithm for Systems of Nonlinear
Equations

Neculai Andrei!

Abstract. Solving systems of nonlinear equations by means of integration of a first
order ordinary differential equation is considered in this paper. The corresponding gradient
flow algorithm and its variants, based on the approximation of the Hessian matrix asso-
ciated to the functions of the system, are presented. The ordinary differential equation is
integrated by means of a two level implicit time discretization technique, with a splitting
parameter 6 € [0,1]. The Hessian matrices of functions of the system are approximated
using the function values and its gradient in two successive points along the trgjectory of
the differential equation. The convergence of the algorithms is analysed and it is shown
that thisislinear when 0 < 6 < 1 and quadratical when # = 1 and the integration step is
sufficiently large. It is shown that the best algorithm corresponds to the case when the ap-
proximation of the Hessian matrices of the functions of the system is not considered in the
algorithm. The obtained agorithm is quadratically convergent when the integration step is
sufficiently large. Infact, this algorithm, with no second order information about the func-
tions of the system, is a new expression of the Levenberg-Marquardt algorithm in which
the positive parameter is the reciprocal of the time discretization step. Some numerical
examplesillustrate the a gorithms.

Keywords: Systemsof nonlinear equations, gradient flow, Levenberg-Marquardt, Gauss-
Newton, approximation of the Hessian.

1. Introduction

In this paper we consider the system of nonlinear equations:

F(z)=0 1)
where F' = [f1(2), ..., fm(2)] : R — R™ iscontinuoudly differentiable. It is assumed
that the system (1) has a solution x* for which F'(z*) = 0. This problem is very close to
that of minimizing the merit function ® : R™ — R defined by:

o) = 5| F@)]*, @
and it is often very convenient to solve (1) by attempting to minimize ®. Methods for
solving (1) can be found in alot of books, see for example [14,24,25,26] , and there are
plenty of papers dedicated to this subject matter.

When m = n, the system of equations is well-determined, and we can consider the
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Newton method. In this case knowing the current point x, the next approximation of the
solution z* is computed as z;. 1 = =z, + di, Where d;, is the solution of the following
system of linear equations:

VF(.Q?k)d: —F(.Q?k), (3)
where V F(x,) isthe Jacobian of F' at point z;,. Aswe know, the Newton method is quadrat-
ically convergent when theinitial point z issufficiently closeto =*, the Jacobian V F'(«*)
isnonsingular and the linear system (3) has a solution.

When m # n, generally m > n, then to determine the searching direction dj. we can
use the following system of linear equations, known as the normal equations,

VF(x) ' VF(2)d = —VF ()" F(xy) 4
which aways has a solution. Thisis known as the Gauss-Newton method. However, like
the Newton's method, in order to be convergent the Gauss-Newton method must be initial-
ized at a point sufficiently close to a solution of (1). A modification of Gauss-Newton’s
method, designed to overcome thislimitation is the L evenberg-Marquardt method [28,29].
In this method the search direction d;, is computed as a solution to the system of linear
equations:

(VE(xr)'VF(2) + ppl) d = =V F ()" F(xy), (5)
where 1, is a positive parameter. Since the matrix VF (z)! VF(zy) + p, 1 is dways
positive definite, it follows that (5) has a unique solution. More than this, the direction d,
solution of (5), isadescent direction of the function @ at x;.

Itisvery easy to provethat if V& () # 0, then the solution d, of thelinear system (5)
satisfy V@ (x,)7dy, < 0, proving that dj, isindeed a descent direction of ®. Therefore the
Levenberg-Marquardt method with Armijo’s stepsize selection rule is globally convergent
to a stationary point z* of ®. When m = n and VF(z*) is nonsingular at the stationary
point z*, then z* isasolution of (1) because V@ (z*) = 0and V& (z*) = VF (z*)T F(z*).
For many problems the Levenberg-Marquardt algorithm is preferable to damped Gauss-
Newton algorithm. This is because the Levenberg-Marquardt agorithm is well defined
even when VF(xy) at the current point z, doesn’t have full column rank. On the other
hand, when the Gauss-Newton step is much too long, the Levenberg-Marquardt step is
close to the steepest-descent direction —V F(z)? F(xy), which often is superior to the
damped Gauss-Newton step [14, pp.228], [31], [32], [33]. Convergence properties of the
Levenberg-Marquardt algorithm and its inexact variant has been considered in [13,41].

In this paper we shall consider a gradient flow approach for solving (1) by minimizing
the merit function (2). In this respect, section 2 is dedicated to present the general results
on gradient flow approach for solving systems of nonlinear equations. It is shown that
the gradient flow approach leads to an algorithm which contains the second order infor-
mation given by the Hessian of functions f;, (i = 1,...,m). In very mild conditions its
quadratic convergence is proved. The main result of this paper is given in section 3. We
show that a very simple modification of the gradient flow algorithm, consisting of rejec-
tion the second order terms, give the best algorithm of this approach. In this respect we
consider some variants of the gradient flow agorithm in which the Hessian matrices of



functions f; are approximated by scalars, for which different formula are suggested. It is
shown that the convergence of the resulting algorithms is quadratical when the splitting
parameter has a unitar value and the integration step is sufficienly large. Rejecting the sec-
ond order term, the corresponding algorithm is an equivalent algebraic expression of the
Levenberg-Marquardt algorithm for which we prove its quadratic convergence. Thus, the
gradient flow approach for solving systems of nonlinear equations gives a strong theoreti-
cal basisfor the Levenberg-Marquardt algorithm. Section 4 illustrates the running of these
algorithms, aswell asthe conclusions of the theory, on some concrete systems of nonlinear
equations including some from MINPACK-2 collection.

2. Gradient flow algorithm for systems of nonlinear
eguations

In order to solve the problem (1), let us consider the following equivalent unconstrained
optimization problem:

min @ (z) (6)
where ®(x) is given in (2). As we know, a necessary condition for the point * be an
optimal solution for (6) is:

Vo(z*) =0. @)
In order to fulfill this optimality condition the following continuous gradient flow refor-
mulation of the problem is considered: solve the ordinary differential equation:

dz(t)
dt

= —Vo(x(t)) ®
with theinitial condition

x(0) = o. 9
Therefore, the minimization problem (6) has been reduced to theintegration of the differen-
tid equation (8) withinitia condition (9). Methods of thistype, using theideaof following
the trajectory of a system of ordinary differential equations, are not new and a number of
authors have been proposed numerous ordinary differential equations and computational
schemesfor their integration. To have an idea about this subject | et us shortly review them.
Let y(¢) be the displacement from the current point 2. Theinitial condition for all equa
tionsistherefore y(0) = 0. The Courant’s method [12], based on idea of Hadamard [21] is
to solve the differential equation:

y'(t) = =V(xo +y(t)). (10)
Boggs [5] extended this idea of Courant by using a predictor-corrector method for solving
(20) in connection with a quasi-Newton approximation of the Hessian.
Considering the local approximation of (10) along a sequence of points we get:



Yi(t) = —V&(w;) — V2 (w;)yi(t). (1)
When the Hessian is honsingular, Botsaris and Jacobson [9] use (11) for solving (6). Oth-
erwise, in order to bound the solution, they replace the Hessian by a matrix with the same
eigenvectors, but with the absol ute values of the eigenvalues. Via and Zang [39], and Zang
[42], use a quasi-Newton approximation of the Hessian in (11). Botsaris dedicated a num-
ber of paper for integration of (11) [6,7]. He considers an approximation of the Hessian
which is updated at each step by means of the Sherman-Morrison formula

Another equation, known as the continuous Newton equation is

Y (t) = =V2®(zo + y(t)) V(w0 + y(t)). (12)
This equation has been considered by Botsaris [8], where he considers an implicit ordinary
differential equation solver with an approximation of the inverse of the Hessian matrix
which is updated by means of Sherman-Morrison formula
Finally, considering a mechanical interpretation of the problem, by following the tra-
jectory of apoint massin the force field —V® with dissipation, Aluffi-Pentini, Parisi and
Zirilli [1,2], use the second order differential equation:

a(t)y”(t) +b(t)y'(t) + V@(zo + y(t)) = 0, (13)
where a(t) and b(t) are positive, real-valued functions. In fact, their method is for solving
the system of nonlinear equations (1), by minimizing (6). For solving (13) they consider
an implicit ordinary differential equation solver and a quasi-Newton approximation of the
Hessian. Zirilli et al, [43,44] describe different practical procedures for choosing a(t) and
b(t) during the integration of (13), proving that ast — oo, the solution trgjectory is very
closeto that of Newton's method. They show that using the second order differential equa-
tionsgivesalarger domain of convergencethan that corresponding to thefirst order system.
Morethan this, (13) permits agreater control of thetrgjectory sinceat ¢t = 0 we must spec-
ify not only the initial point y(0) but also y’(0). Different choices for y’(0) may lead to
different solution. A similar approach, based on second order differential equations, was
considered by Snyman [37] by solving the differential equation y” (t) = —V®(y(t)).

Brown and Bartholomew-Biggs [10,11] experiment a number of methods based on
al these differential equations (11)-(13) using specialized ordinary differential equations
solvers. Their conclusion isthat the most successful method isthat based on (11) using the
Hessian or a quasi-Newton approxination of it.

Behrman [4] in his Dissertation solves the problem (6) by an agorithm which basically
calculates a curve that is an approximation to theintegral curve of the vector field —V®. A
searching procedure along this curveisinitiated, determining a point that reducesthe value
of the objective function @.

For unconstrained optimization, the gradient flow method is presented by Andrei [3],
wheretheordinary differential equation (8) isintegrated by meansof adiscretization scheme
based on a two level implicit time discretization technique, with a splitting parameter
6 € [0,1]. The convergence of the algorithm is linear when 0 < 6 < 1 and quadratic
when 6 = 1 and the integration step is sufficiently large.

In amore general context refering to the constrained optimization, the gradient flow



methods, known as stable barrier-projection and barrier-Newton methods have been con-
sidered by Evtushenko[16,17], and Evtushenko and Zhadan [18-20]. Convergence of these
methods via Lyapunov functions has been considered by Smirnov [36]. Recently, for solv-
ing constrai ned optimization problems, improvements and some computational experience
with these methods have been considered by Wang, Yang and Teo [40]. Basicaly, in this
approach a constrained optimization problem is reformulated as an ordinary differential
equation in such away that its solution converges to an equillibrium point of the optimiza-
tion problem as parameter ¢ from this equation goesto co. We see that this approach based
on reformulation of the optimization problem as a differential equation was and continue
to be very attractive and promising. See also the book by Helmke and Moore [22].

In the following we shall present the main convergence results and the corresponding
gradient flow algorithm for solving (6) by integration of the system (8) withinitial condition
9) [3].

Theorem 2.1. Consider that z* isa point satisfying (7) and V?®(z*) is positive def-
inite. If xq issufficiently close to «*, then «(¢), the solution of (8) with initial condition
X, tendsto z* as t goesto oc.

Proof. The system (8) can be written as

= (a),

where U(z) = —V®(z). To show that z* isan asymptoticaly stable point for (8) we shall
consider the Poincaré-Lyapunov theory [38]. According to this theory, =* is an asymp-
totically stable point for the nonlinear differential equation system z= ¥(z) if ¥(z) is
continuously differentiable and the linearized system

Y= V¥(z")y,
where y = x — z*, is exponentially stable, i.e. all eigenvalues of V¥ (z*) are strictly
negative. Considering the Taylor's expansion of ¥(x) around «*, and using (7), we get:

dx
dt

1%

U(x™) + VI (z")(x — z*)

= —[Ve(a*) + V?Q(a*)(x — 2*)]
= —V20(z*)(z —a*).

But, V2®(z*) is positive definite by the assumption of the theorem. Therefore, its
eigenvaluessatisfy A\, > 0, foral : = 1, ..., n. By the Poincaré-Lyapunov theory it follows
that tlim y(t) = 0,0r z(t) — z* ast — oco. W

The following theorem shows that ®(x(t)) is strictly decreasing aong the trajectory
solution of (8).

Theorem 2.2. Let z(t) be the solution of (8) with initial condition (9). For a fixed
to > 0if VO(xz(t)) £ 0for all ¢ > tq, then ®(x(t)) isstrictly decreasing with respect to

t, for all ¢ > .
Proof. We have:
92 ) _ Gty T — () V(1) = — |V((H)]2.
dt dt



Since VO(x(t)) # 0 whent > ¢, it followsthat d®(z(t))/dt < 0, i.e. ®(x(t)) isstrictly
decreasing with respecttot > t;. B

Observethat theordinary differential equation (8), associated to (6), isagradient system
[27, pp.199]. Gradient systems have special properties that make their flows very simple.
For gradient system (8) at regular points x, characterized by the fact that V& (x) # 0,
the trajectories cross level surfaces of the function ®(z) orthogonally. Nonregular points
are equillibria of the system, and if «* is an isolated minimum of ®(z), then z* is an
asymptotically stable equilibrium of the gradient system (8).

Therefore, solving the unconstrained optimization problem (6) has been reduced to that
of integration of the ordinary differential equation (8) with initial condition (9). Now, as
in [40], we shall consider a discretization of this equation as well as the corresponding
integration scheme.

LetO =tg <ty < --- < t; < --- beasequence of time points for thetimet > ¢;.
Consider h, = tr11 — tx the sequence of time distances between two successive time
points. With these, let us consider the following time-steeping discretization of (8):

mk%,jmk = —[(L=0)Ve(xk) + OVO(xpi1)] 4

where 6 € [0, 1] isaparar;leter. From this we get:

Lh41 = Tk — hk [(1 - Q)V(I)(Sl,‘k) + GV(I)(SL‘;H_l)] .
When 6 = 0 the above discretization is the explicit forward Euler's scheme. On the other
hand, when § = 1 we have the implicit backward Euler's scheme. But,

V&(z)11) = VO(xi) + VZO(ay) oz, + T(62y,),

where sy, = w41 —ap and T(8z;,) isthe remainder satisfying | T(8x1,) || = O (Haka) .
Therefore

g1 = xp — hy, [T+ 7k0V2D(2,)] " [V(xy) + 6T (5a4)]
Omitting the higher order term I'(6xy,) we get:

i1 = xp — by, [T+ 1p0V2D(2y,)] ' VB(ay), (15)
forany 6 € [0, 1] . Considering zq astheinitia guess, then (15) definesaseries{z;} . The
convergence of (15) isgiven by

Theorem 2.3. Let {x } be the sequence defined by (15) and =* a solution of (6), such
that V2®(z*) is positive definite. If the initial point z is sufficiently closeto =*, then:

(i) If 6 €[0,1] and Ay > 0 issufficiently small, then z;, convergeslinearly to z*.

@i If 6 =1and hy — oo, then x; converges quadratically to x*.

Proof. (i) From (15) we have:

[I+ hk@VQ(I)(.CCk)] (.I'k+1 - .I'k) = —th@(xk)
hence:

Tpi1 = T — hy [V(I)(.lek) + 9V2<I>(a:k)(xk+1 - .I'k)] . (16)



Subtracting «* from both sides of (16) and having inview that e;, = z — 2™, 411 — 2% =
epr1 — e and Vf(z*) =0, we get:

ep+1 = er — hy [V(I)(:ck) —Vo(z™) + 9V2¢(wk)(ek+1 — ek)] .
Now using the mean value theorem we have:
€ki1 = € — hy, [VQ(I)(fk)ek + 9V2<I)(:ck)(ek+1 — ek)] ,
where§,, € [z, 2*]. Solving for ey 1, we have:

€1 = {1 — hy [T+ hi8V20 ()] V2<I>(§k)} er. (17)
Considering the norm of both sides of this equality we obtain:
lerx+1ll < e(@k, k. 0, i) el (18)
where
h €00, h0) = 1= b [T+ hioV ()] ™" V2o(sy)|. (19

From (17) we see that if ¢ (x4, &, 0, hy) < 1, then e, convergesto zero linearly. Using
continuity and the fact that z( is closeto 2* we can write:

(20, &4, 0,h) < [ 1 i i <1 (20)
L, y Uy = T Nk )

where \*. and \* _ represent the minimum and the maximum eigenvalues of V2 (),

respectively. Therefore, from (17) it follows that klim er = 0linearly, ie. zp — a*
linearly.
(ii) Consider = 1in (15), we get:

Tetl =Tk (G (ay) + VD ()6 |
Iy

where 6z, = 441 — x. When hy, — oo the above relation is reduced to
VO (z1) + V2O(y) 621, = 0

which is the Newton method applied to V®(z) = 0. When z;, is sufficiently close to a*,
as we know the Newton method is quadratically convergent, proving the theorem. i
Remark 2.1. From (18) and (20), with ¢ = 1, we have:

llexr1ll < prylleol|

: |
RNy

pen 11 (1 I ) |
0 1+ hA

where

But, V2®(x;) is positive definite, thereforefor al i = 0, .. . k,

0<1—#¥1<1.
1+hi)\z

max



So, pg, for al k, is a decreasing sequence, from (0, 1), i.e. it is convergent. If h; — oo,
thenfordli =0,...k,
hi}\i 3 2
_—— 1-1 Ved(z;)) .
1 + hi/\inax - /K: ( (w ))
Clearly, if thereis an i for which (V2<I>(:ci)) is close to 1, then the convergence of the
algorithmisvery rapid. B
As the theorem 2.3 recommends, the algorithm based on (15) is quadratically conver-
gentif 6 = 1 and hy — oo. The problem is how to choose the sequence h;. The most

direct ideaisto choose Ay, in such away that the matrix
I+ hpOV2®(zy,)
to be positive definite. Thefollowing theorem suggests how to choose the value i, of time
distances between two successive time points.
Theorem 2.4. If h;, > max{—%,i = 1,...,n} ,where \¥ i = 1,... n, arethe
egenvalues of V*®(xy,), then [I + h;v%(a:k)] is positive definite.

Proof. The matrix V2®(x;,) issymmetric, i.e. it hasreal eigenvalues\¥ i =1,... 7.
There exists amatrix P such that:

P=IW2®(2) P = diag(\Y, ..., \F).

Therefore, P~1 [T+ h,V2®(xy)] P = T + hydiag <)\’f, Af;) , which is positive

definitewhen 1 + hpA¥ > 0, forali =1,...,n. W

The above presented results are very general and can be applied to any function ®(x)
satisfying the conditions of the above theorems. Basically, the function ® must have a
positive definite Hessian at solution point. Now, in order to get an algorithm for solving
(1), by minimizing the merit function ®(z), we shall particularize the above gradient flow
agorithm by considering the special structure of function ®(x).

It isvery easy to seethat:

V&(x) = VF(2)T F(z), (21)
V?®(z) = VF ()" VF(z)+ Z fix)V? fi(). (22)

Proposition 2.1. If f;(z) isaconvex functionfor all i = 1,...,m, fi(x) > 0, for al
i=1,..,mandrank(VF(z)) = n, then V2®(z) is positive definite.

Proof. For every y # 0,we seethat 47 (VF(z)TVF(z))y = |VF(z)y||”> > 0 since
rank(VF(z)) = n. On the other hand, f;(z) > 0, therefore f;(x)V?fi(z) is a positive
definite matrix, since f; isaconvex function. ll

Therefore, in conditions of Proposition 2.1 all the above theorems remain true show-
ing the convergence of the method when applied to this particular form of function ®(z).
Considering (22), for solving (1) by integration of the ordinary differential equation (8),
the following algorithm can be presented:



Algorithm GFA (Gradient Flow Algorithm)

Step 1. Consider theinitia point zq € R™, aparameter 6 < [0, 1], asequence of time
step sizes{h;} and ane > 0 sufficiently small. Set & = 0.

Sep 2. Solvefor 6z, the system:

I + hy0 <VF($k)TVF($k)+ i fi(ﬂ%)Vin(Svk)>] dp = —hpVF(x) " F ().

(23)
Sep 3. Update the variables: x4 = xy, + dk.
Sep 4. Test for continuation of iterations. If |[F(xp11)|| < e, stop; otherwise set
k = k + 1 and continue with step 2.

Therefore, when f;(x) are convex and positive for al i = 1,...,m; rank(VF(z)) =
n, 8§ = 1and hy — oo, then the GFA is quadratically convergent to z*. We see that
the algorithm is very simple. The difficulty isin step 2, when it is necessary to solve a
system of linear equations. But, thisis a common step also for Newton, Gauss-Newton
and Levenberg-Marquardt algorithms. On the other hand, it is necessary to evaluate the
Hessians of functions f;(x),7 = 1,...,m, which turns out to be a difficult task. Observe
that, rejecting from (23) the second order terms, we get an equivalent algebraic expression
of the Levenberg-Marquardt algorithm. In the next section we consider some variants of
GF algorithm and prove that the best variant is that which ignore completely the second
order information given by the Hessians V2 f; (), i = 1, ..., m.

3. Gradient flow algorithm without second order
information

It is well-known [14] that, when the residuals are very small at the solution, the second-
order terms do not contribute significantly to the efficiency of the Levenberg-Marquardt
or Gauss-Newton algorithms for solving systems of nonlinear equations. In this section
we prove that rejecting from (23) the second order information we get a more efficient
algorithm which is quadraticaly convergent to a solution of (1). With other words, we
prove that any approximation of Hessians V2 f; () does not improve the convergence of
the algorithm (23). To see that, we shall consider a modification of GFA by considering a
scalar approximation of the Hessians V2 f;(z,) of functions f;(z), i = 1,...,m, at point
x. Many approximation schemes could be imagined. Here is one of them. Suppose that
thefunctions f;(x),7 = 1, ..., m, areconvex, and let usconsider the point x:11 = x + d,
where dy, is the searching direction. In this point we can write:

Fil@kin) = filwn) +V fala) dic+ 5df V2 fi(2)de,

where z is on the line segment connecting zx and x1. Having in view the local character
of the searching procedure and that the distance between z;, and .4 issufficiently small,
we can choose z = 1, and consider v¥+1 T as an approximation of V*f;(z), at point



Tgy1, Where yf“ € R. As we can see this is an anticipative viewpoint in which the
approximation of the Hessian of function f; a point z,; iS computed using the local

information from point x. Therefore we can write:

vt = ﬁ [fiwrgr) = filen) — Vfilzr)Tdi] - (24)

Since f;.i = 1, ..., m are convex functions, itfollowsthatyf”rl >0fordli=1,..,m.In
fact the following proposition can be proved.

Proposition 3.1. Assumethat f;(«) iscontinuoudly differentiableand V f;(z) isLip-
schitz continuous, with a positive constant ;. Then at point xz1, yf’“ < 2L;.

Proof. From (24) we have:

e 2 [fi(wr) + Vi) de — filwr) — V fi(wr) T dy
’ | ”

b)

where ¢, € [z, xx11] - Therefore,
b1 _ 2IVil&) = Viilan)]” di
' I
Using the inequality of Cauchy and the Lipschitz continuity it follows that
i < 2[|Vfi(€e) = Vi)l < 2Li €5 — =]l < 2Li et — 2k
T ||| N [l || T |kt — x|

Therefore, in the current point ;. the following approximation of the Hessian V2® ()
can be considered:

=2L;. 1

VF () VF(xp) + 611, (25)
where
5k =Y filwe)vs (26)

=1
Observethat if rankV F(zy) = n and f;(x;) > 0, then (25) represents a positive definite
approximation of V2®(zy,).
Using this approximation of Hessians V2 f;(zy,), i = 1, ...,m, in the current point
and (23) we get the following iterative process:

Tpy1 = Tpp — hy, [I + hi0 (VF(wk)TVF(mk) + 6kI)] -t VF(mk)TF(mk), (27)
where ¢, isgiven by (26).

However, even if f;(x) isaconvex function, due to finite precision of the numerical
computations, especialy towards the final part of the iterative process, it is possible that
7% be negative, but very small. On the other hand, for nonconvex function it is often
possible that /* be negative. Therefore, in order to have a positive definite approximation
of V2<I>(a:k) we can consider the following formulafor 6;, computation:

10



O —Z filen)? (4F) (29)

Thisformulais alittle too conservanve Our numerical evidence proved that a Iarge per-
centage from the number of iterations are characterized by: f;(x;) > 0 and % > 0.
Therefore, for computation of 65 we can consider the following less conservative proce-
dure, which ensures a nonnegative value for 6y, :
Procedure 6 (6, computation)
St 6, = 0.
For i =1,...,m, do:
Set p = fi(xr), ¢ =%
If p<0,then p= f;(x3)2.
If ¢ <0,then g = (72”)2
Sat 6, = 0k + pgq.
End For.
With this the following algorithm can be presented:

Algorithm MGFA (Modified Gradient Flow Algorithm)

Sep 1. Consider the initial point zg € R", a parameter § < [0, 1], a sequence of
time step sizes {hy,} and an ¢ > 0 sufficiently small. Compute: F(x), VF(zo) and
6o = || F(zo)| . Stk = 0.

Sep 2. Solve the system of linear equations:

[1 4 hy6 (VE ()" VF () + 65 1) di = —he VF ()T F(xy,). (29)
Step 3. Update the variables: zp41 = i + di.
Step 4. Test for continuation of iterations. If |F(z+1)|| < €, stop; otherwise set
k =k + 1andgotostep 5.
Sep 5. Compute; F(xy), VF(xy) and

ﬁ [fl(xk) — fi(zr—1) — Vfi(kaﬁTdk,l] ci=1,...,m.

Sep 6. Compute 6, using (28) or by means of Procedure 6, and go to step 2.

v =

The convergence of MGFA is given by

Theorem 3.1. Let {x}} be the sequence defined by (27) and z* a solution of (1) such
that: F(z*) = 0, where F(z) is twice continuously differentiable, V F(z) is Lipschitz
continuous and rankV F(z*) = n. If theinitial point xz is sufficiently closeto «*, then:

(i) If 6 €[0,1] and Ay > 0 issufficiently small, then z;, convergeslinearly to =*.

(i If 6 =1and hy — oo, then x; converges quadratically to a*.

Proof. (i) From (27) we have

[(1 + heb6i) I + hiOV F ()" VF(2)] die = —hi VF ()T F(2x).
After some algebrawe get:

Tpt1 = Tk — Py [VF(a:k)TF(a:k) + OV F(2) ' VF(2r)(2pg1 — )], (30)

n



where

hy,

Pk = T hi06s (31)

Subtracting 2* from both sides of the above equality and using the mean value theorem, as
in the proof of Theorem 2.3, we have:

et = {I — o [T+ P18V F (@) TV F ()] VF(a:k)TVF(fk)} e, (32

where e, = xy — 2%, §;, € [z, 2*]. Taking the norm on both sides of this equality we
obtain:

Hek—&-lu S ¢($k7£k707pk) HekH ) (33)
where

o(xk, &gy 0, 01) = HI —pp [T+ kaVF(:ck)TVF(:ck)]_l VF(wk)TVF(Sk)“ .

From the estimate (33) we see that if (2, &, 0, p,) < 1, then the first order terms in
(33) show that the error e;, convergesto zero linearly. Since rankV F(z*) = n it follows
that VF(z*)T'VF(z*) is podtive definite. Now, when z, is sufficiently close to z*, by
continuity, (34) impliesthat if 6 € [0, 1] :

pk)\mln
20, 60,0,p,) < |1 — —PE min ) 35
(k& 0, o) < 1+Pk9/\max> (35)

where \°., and A" are the minimum and maximum eigenvalues of VF(x;,)TV F(xy,),

min

respectively. Using (31) we see that

k)‘mln -1 k/\mln - < 1. (36)
Therefore, (33) implies that
i, e =0
linearly, proving that x; convergesto z* linearly.
(ii) Considering @ = 1 in (30) we get:
T — Tk
DL 9! [Fee) + V() s — o) (@)
k

But
I h 1
R 1»noo 1+ hyby, 6k
and using (28) we see that Jim 8, = lim Z fil@e)? (v Z) = 0. Therefore Jim . =

oo. Having in view that VF is of full column rank the equation (37) reduces to

12



VF(xk)($k+1 — mk) + F(SL‘k) =0.

This coincides with the Newton method applied to F'(x) = 0, which we know that in con-
ditions of the theorem is quadratically convergent to z* if theinitial point zq is sufficiently
close to z*. This completesthe proof. B

An interesting feature of the theorem 3.1 is that the algorithm allows sufficiently large
values for hj;, when the splitting parameter satisfies 6 = 1. In this case, x;, converges
quadratically to alocal solution of (1). On the other hand, we see that /, is acting on the
both members of (29) as a scaling parameter, this ensuring the numerical stability of the
sysytem (29).

Remark 3.1. From (33) and (35) with (36), for § = 1, we have:

lert1ll < pe+alleoll (38)
where
& ,
Rl
) _ 1— 2 \min i 39
Pht 11( 1+hi(6i+)\fnax)> (39)
But, VF(z;)TVF(x;) isapositive definite matrix, thereforefor all i = 0,1, ..., k,
hi)\rinin

0<1-— - <1
1+ i (6; + Apax)

S0, pg, for al k, isadecreasing sequencein (0, 1), i.e. py isconvergent to zero. B
In order to see the complexity of the MGF agorithm let us denote:

— hi)‘min . (40)
1+ Ri(6i + Anax)
and consider a; = min {a; : 0 < < k}. Then

a;

k
oy =] [ (1 —a;) < (1—ay)**, (41)
=0

llertill < prea lleall < (1 —az)*™ [leqll.

Thus, the number of iterations required to obtain an accuracy |lep+1| = [[zr+1 — 2| <,
starting from the initial point xg, is bounded by

log(<) — log(fleoll) _ @)
log(1 —a;)
We see that this expression depends on the final accuracy, on theinitial estimation x of the
solution, as well as on the distribution of the eigenvalues of the Hessians of the functions
fiy i = 1,...,m, dong the trajectory of the ordinary differential equation (8). The main
result of this section is given by
Remark 3.2. Considering 6, = 0 in MGF agorithm we get another agorithm:

13



-1
for which, like in theorem 3.1, for § = 1, we can prove that ||ej11 || < Pry1 ||eol| , where

" hiAinin
pea=]] <1 - W) ’

=0 max

and, asabove, fori = 0, ..., k, A, and X!, . _are the minimum and maximum eigenvalues
of VF(z;)'VF(x;), respectively. Having in view that VF(z;)TVF(z;) is a positive
definite matrix and 6; > 0in MGFA, it followsthat for all i = 0,1, ..., k,
hiXinin hiMin
<

1+h¢(5¢+)\i T 14 hX

max) max

Therefore, using (39) we see that pr41 > Pry1 - Hence, for 6, = 0, the convergence of
MGF agorithm, i.e. the convergence of (43), is more rapid. As we will see, numerical
examplesillustrate this behaviour. B

The best algorithm corresponding to the gradient flow approach for solving systems of
nonlinear equations is obtained when the second-order information is ignored. Having in
view that i, > 0, it isvery easy to seethat (43), with = 1, can be written as:

1
—I+ VE(xp)'VEF(2)| di = —VF(x)T F(x)
k

which is the Levenberg-Marquardt dgorithm (5), where p;, = 1/hs. Therefore in this
interpretation we get the Levenberg-Marquardt algorithm as a simple particularization of
MGF agorithm with 6, = 0.

4. Numerical examples

In order to see the performances of the MGF agorithm with 6, = 0, in the sequel, we
present some numerical experiments obtai ned with a Fortran implementation of the MGFA.
In this respect the algorithm MGF has been implemented in the following variants, corre-
sponding to the vaues of ¢, :

a) MGFA-FG : 6}, :fj fi(zr)? (7?)2, b) MGFA-P: §;, given by procedure &,

=1

O MGRA-F: 8, =S filn)?, d) MGRA-Z : §; — 0.
=1

In al numerica experiments we have considered § = 1. The stopping criterion used
is||F(zg)|l, < e, wheree = 1077. The time step size iy, is considered constant, the
samefor al k. At the same time, we have considered another set of experiments in which
hi =1/ HF(gck)H2 . In the following we present the numerical results corresponding to
these algorithms for 5 real systems of nonlinear equations.

Example 1. (Equillibrium Combustion) [30]

14



r1x9 + 21 — 325 =0,

2x1x0 + 21 + 37"103:% + 1:21% + rrxoxs + roxory + rgxe — ras =0,

T1r9 + T + 7"101’% + 1‘21‘% + rexoxy + roTox4 + T8T2 + 7"51’:2)) + rgxs + 5”421 —1=0,

where

22903 + rowaxs + 2r5w3 + rew3 — 815 = 0,

T9ToT4 + 2:6?1 —4rzs =0,

r=10
re = 5.45177e — 4
r10 = 9.615e — 7

Ts = 0.193

rg = 4.4975¢ — 7

re = 4.10622¢ — 4
r9 = 3.40735e — 5

Thefollowing initial points have been considered:

wp | ay | 2f | g |
1 1 1 21
0 1 1 1
10.15 | 10.15 | 10.15 | 10.15
5.5 0.5 0.5 15
005 | 005 [ 10.05 | 1.05

The following tables give the number of iterations necessary to get a solution corre-
sponding to different selections of 65 and h, starting the algorithm from different initial
points.

Tablela (6x =3 fi(zx)? (v¥)?)

=1

| hy, = 10° | by, =107 | by = 10% | by = 10°

hie = 107 | hy, = 1/ [[F(z)[* ]

x} 670 115 63 57 57 328
x3 752 197 144 139 138 403
g 702 148 94 89 88 403
z§ 719 164 m 105 105 790

Table 1b (6, given by procedure 6)

| hy =100 | hy =107 | by =103 | Ry, = 10°

hy, = 10" [ by = 1/ F(ap)| ]

x§ 653 100 48 43 41 314
x5 658 105 52 48 47 310
3 657 104 51 46 46 362
z§ 809 133 68 62 59 724

Table 1c (6% :f filzr)?)

=1
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| hie =108 | by =107 | by = 103 | by = 10° | hy = 10" | by = 1/ || F(a)|” |
x} 927 370 315 310 309 595
3 921 364 309 304 303 582
g 973 416 361 356 355 684
zg | 1784 809 712 702 701 1373

Table 1d (85 = 0)

| hiy =108 | by =107 | Ay =10° | g, = 10° | by = 10" | by = 1/ || F(ap)|” |
3 768 87 19 12 1 309
22 632 74 18 14 14 303
3 632 74 18 14 14 355
| 632 74 18 14 14 701

The following solutions have been obtained:

L = | = [ & |
0.00311411 | 0.002471 | 0.0027567
34592169 | 43.87876 | 39.248218
0.0650419 | 0.0577847 | -0.0613849
0.859378 | -0.860205 | 0.859724
0.0369518 | 0.0369655 | 0.0369851

Example 2. (Seady-state solution for reaction rate equations) [35]

1—2y — kizix6 + 1124 = 0,
1— 29 — kowgxg + roxs5 = 0,
—x3 + 2kszgxs = 0,
kixixg — r1xc4 — kszgxs = 0,
1.5(kgwowg — rows) — kawqws = 0,

1—a4—2x5 — 26 =0,

where

k1 =31.24 ko =0272 Fk3=303.03
r1 =2.062 1ro=0.02

Thefollowing initial points have been considered:
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x5 |

7
]

I

T
]

1.09

1.19

2.19

0.05

1.05

1.15

3.15

0.99

0.05

0.05

0.05

0.05

0.99

0.99

0.99

0.99

0.05

0.05

0.05

0.05

0

0.09

1.09

0.09

Table 2a (6, :i fil@n)? (%))

| e =10 | hy, =10 | by = 10% | hy = 10*

hie = 10° [ hy, = 1/ [[F (i) ]

| 2 12 10 10 10 10
2| 2 2 10 9 9 10
23| 244 234 232 232 232 237
2 137 127 125 125 125 126

Table 2b (6 given by procedure 6)

| e =10 | hy, =10 [ by = 10% | hy = 10*

hie = 10° [ hy, = 1/ [[F (i) ]

) 19 10 9 8 8 8
72 19 10 8 8 8 8
g 154 145 143 143 143 148
73 192 181 179 179 179 188
Table 2¢ ((5k :Z fz(lk)Q)
=1
| hiy =10 | Ay, =10% | hy = 10% | hy = 10* | by =105 | by = 1/ || F(ap)]” |
7y 16 7 5 5 5 5
3 17 7 6 5 5 6
73 24 14 12 12 12 16
g 21 1 9 9 9 9
Table 2d (6, = 0)
| hiy =10 | Ay, =10% | hy = 10% | hy = 10* | by =105 | by = 1/ || F(ap)]” |
g 14 5 3 3 3 5
3 15 5 4 4 4 5
w3 18 6 5 5 5 12
g 17 6 5 5 5 9

The following solution has been obtained:
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x*

0.974243
0.982829
0.0515124
0.935671
0.9083%-4
0.06423807

Example 3 (Circuit design problem) [34]

(1 — z1m9)as {exp [x5 (g1x — g3rr7107 — gspagl03)] — 1} —
g5k + gakT2 = 0; k= 1, "'747
(1 — zyao)zy {exp [26 (916 — 921 — g3k271073 — gapag1073)] — 1} —
g5x%1 + G4k = 0; k= 1, "'747
T1T3 — TT4 — 0,

where

0.4850 0.7520 0.8690 0.9820
0.3690 1.2540 0.7030 1.4550
g=| 52095 10.0677 229274  20.2153
233037 101.7790 1114610 191.2670
285132 111.8467 134.3884 211.4823

Thefollowing initial points have been considered:

Lo | @ | o8 [ 0 |
0.7 065] 0.75] 0.5
05 | 045 | 045 | 045
09| 08 | 09 | 09
19| 18 | 1.7 | 177
81| 85 | 85 | 89 |
81| 85 | 75 | 79
59| 59 | 55 | 55
T |11 [125]1%
19| 15 | 1.88 | 168

Table 3a (5, :i Filzi)? (75)%)

| hiy =10 | Ay, =10% | hy = 10% | hy = 10* | by =105 | by = 1/ || F(ap)]” |

) 142 50 40 38 38 27
2 173 60 47 45 45 56
S 256 146 133 131 131 132
o 600 500 489 487 487 488

Table 3b (6% given by procedure 6)
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| [ he=10] hy =10% | hy =103 | he =10 [ by = 10° | by = 1/ | F(ar)||” |

z) 123 32 22 20 20 21
x5 151 39 26 24 24 26
] 218 108 96 94 94 94
g 497 397 386 384 384 385

Table 3c (65, :f: filar)?)

i=1

[ T/ =10 he =10% [ by = 10° [y = 10" [ hye = 10° [ e = 1/ [ F(an)|” ]

) 113 22 12 10 10 n
3 140 27 15 12 12 14
3 135 25 13 n n 12
z§ 124 24 14 12 1n 13

Table 3d (5, = 0)

| [ he=10] R, =10% | hy =103 | by =10 [ by, = 10° | By, = 1/ | F ()] |

25 | 108 10 6 4 4 10
22| 132 16 7 5 ] 12
23| 129 19 6 5 5 1
21 46 15 6 5 5 il

The following solution has been obtained:

/l:,*

0.8999999
0.4499875
1.000006
2.00006
7.99997
7.99969
5.00003
0.99998
2.00005

Example 4 (Robot kinematics problem) [23]

0.004731x125 — 0.3578xx5 — 0.1238x1 4 z7 — 0.001637z2 — 0.9338z4 — 0.3571 = 0,
0.2238z1 23 + 0.7623x5x3 + 0.2638z1 — z7 — 0.07745z2 — 0.6734z4 — 0.6022 = 0,
rgrg + 0.3578z; 4 0.004731z5 = 0,

—0.7623z1 + 0.2238z9 + 0.3461 = 0,
23+ 23—-1=0,
3+a25-1=0,
22+ -1=0,
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224+ 22 -1=0.

Thefollowing initial points have been considered:

1

2

3

L9 | Lo | g L9 |

0164 [ 014 [ -015 [ -1

-098 [ 098 [ 098 | 1

-094 [ 094 [ -094 | -1

032 | 032 [ 032 | 1

-099 [ 099 | -097 | -1

-0.056 | 0.056 | 0.056 | 1

041 | 041 | 044 | -1

-091 [ 091 099 | 1

Tableda (5, =3 fi(xx)? (v5)°)
| hiy =10 | by, = 10% | hy, = 103 | hy = 10* | hy =105 | by = 1/ || F(xp)]” |

ad 9 4 3 3 3 3
23| 10 6 5 5 5 5
ag | 13 8 7 7 6 7
x| 15 11 10 10 9 12

Table 4b (6 given by procedure 6)

| e =10 | hyy =107 [ by =103 | hy = 10*

hie = 10° [ hy, = 1/ [[F ()| ]

) 9 5 4 3 3 4
22 i} 7 6 6 6 6
< 13 9 8 8 8 8
73 16 i) 10 10 10 14
Table4c (6, =Y fi(x1)?)
i=1
| hiy =10 | Ay, =10% | hy = 10% | hy = 10* | by =105 | by = 1/ || F(ap)]” |
g 9 4 3 3 3 3
3 n 6 5 5 5 6
w3 13 8 7 7 7 8
<3 18 13 12 12 12 16

Table 4d (5, = 0)
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| [ he=10] hy =10% | hy =103 | he =10 [ by = 10° | by = 1/ | F(ar)||” |
) 9 4 3 3 3 3
22| 10 6 5 5 5 5
| 1 7 6 6 6 7
3 14 9 9 9 9 12
The following solutions have been obtained:
0.164431 | 0.671554 | 0.671563 | 0.671554
-0.986388 | 0.740955 | 0.741005 | 0.740955
-0.947063 | 0.951893 | -0.651582 | -0.651590
-0.321045 | -0.306431 | -0.758578 | -0.758578 |.
-0.998233 | 0.963810 | -0.962545 | 0.962793
0.059418 | 0.266587 | -0.271124 | 0.271124
0.411033 | 0.404641 | -0.437592 | -0.437592
-0.911620 | -0.914475 | 0.899181 | -0.899181
Example 5. (A quadratic system)
23 —1=0,

(i1 + )2 —i=0,i=2,..,n.

Considering theinitial point =g = [1, ..., 1]7, the following results are obtained.
Table5a (6, =Y fi(zx)? (+4)°)
=1

| n | hy=10] hy =102 | hy =10° | by, =101

hi =10° | hi =1/[|F(an)]” |

100 176 43 28 25 25 613
150 274 57 34 30 28 1600
200 378 71 38 34 32 3152

Table 5b (6, given by procedure 6)

| n | hiy=10] hy =102 | hy =10° | by, =10*

hie = 10° | hy = 1/ [F(zi)[” ]

100 246 114 99 96 95 681
150 409 192 169 165 164 1732
200 586 279 247 242 241 3357

Table 5¢ (65, :f fi(zr)?)

=1
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[ n [ he=10] hy =102 | hy = 103 | he =10* | by = 10° | Dy = 1/ || F(as)

|

100 746 614 599 597 596 1179
150 1824 1607 1584 1581 1580 3145
200 | 3473 3166 3134 3130 3129 6242

Table5d (5, = 0)

n | he=10 | hy =102 | hy =103 | hy, = 10* | by =105 | hy = 1/ || F(a)]?

100 155 23 8 6 6 596
150 249 32 9 7 7 1580
200 350 42 n 7 7 3129

In order to see the performance profiles of these algorithms in table 6 we present the
number of iterations needed to solve some systems of nonlinear equations. Some of these
systems are taken from MINPACK-2 [45] or ZIB [46] collections. In al these experiments

m =n.

09r B
MGFA-Z
0gf B

07t .
oel MGFA-P _
o 05 MGFAFG i
D4t .
03t _

02r B

01 52 experiments

Figure 1: Performance profiles

Relative to the best number of iterations, the performance of the MGFA-FG, MGFA-P
and MGFA-Z adgorithms on 52 test problems, considered in this section, was as follows:

4 MGFA-FG achieved the minimum number of iterationsin 7 problems,

4 MGFA-P achieved the minimum number of iterationsin 4 problems,

4 MGFA-Z achieved the minimum number of iterationsin 52 problems.

Figure 1 showsthe performance profiles, proposed by Dolan and Moré [15] for thealgo-
rithms MGFA-FG, MGFA-P and MGFA-Z, on this set of 52 problems. For each algorithm,
the fraction P of problems for which the algorithm is within a factor ¢ of the best number
of iterationsis plotted.
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Table 6. Number of iterations of MGFA-FG, MGFA-P and MGFA-Z algorithms.

Problem m hr MGFA-FG MGFA-P MGFA-Z
Quadratic 100 10° 25 95 6
200 10° 32 241 7
300 10° 37 411 7
Extended Rosenbrock 100 10* 6 6 4
500 10* 6 6 4
Extended White-Holst 100 10° 8 9 4
500 10° 6 7 4
Extended Penalty 100 10° 31 24 15
200 10° 37 27 17
300 10° 40 29 19
Brown Almost Linear 200 10° 6 6 5
Diagonal (e®" —ixz? =0) 100 10° 1n u 7
500 10° 13 13 8
Broyden Tridiagonal 200 10° 5 5 4
DELHFJ 7 10° 12 18 7
DESTFJ 9 107 86 129 23
9 108 75 87 23
DFDCFJ 100 10° 6 6 5
400 10 1 13 10
DGUPFJ 12 10° 6 6 5
DHHDFJ (prob=1) 8 107 23 56 20
DHHDFJ (prob=2) g8 100 5 5 3
DHHDFJ (prob=3) 8 100 18 17 9
DHHDFJ (prob=4) g8 100 13 15 7
DHHDFJ (prob=5) 8 107 i 517 7
DiscreteBoundary 100 10° 10 10 10
200 10 85 85 85
Discretelntegral 100 10° 3 3 3
DISOFJ 16 10° 636 639 635
16 106 71 76 69
DSULFJ 3 10° 15 23 10
3 10° 55 80 54
DSFIFJ 100 10° 4 4 3
400 10° 4 4 3
DMETFJ 7 10° 179 197 124
Trigonometric 100 10° 10 10 9
TOTAL 3089 3970 1346

The top curve is the algorithm that solved the most problemsin a number of iterations
that was within afactor ¢ of the best number of iterations. Since the top curvein Figure 1.
corresponds to MGFA-Z, this algorithm is clearly the best for this set of 52 test problems.
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5. Conclusion

In this paper we proposed a gradient flow approach for solving systems of nonlinear al-
gebraic equations. This is based on the integration of an ordinary differential equation
for which a discretization thechique with a splitting parameter has been considered. For
Hessian matrices of the functions of the system a number of scalar approximations are
suggested. It has been shown that the solution of the discretized problem converges to a
local solution of the system either linearly or quadratically as a function of the choice of
the spliting parameter and the size of the discretization step. When the size of the dis-
cretization step tends to infinit, then the convergence is quadratic. When the second or-
der information, given by the Hessian of the functions of the systyem, is not considered
into the algorithm, then the algorithm reduce to an equivaent algebraic expression of the
Levenberg-Marquardt algorithm for which we prove its quadratic convergence. Numeri-
cal experiments with different strategies for scalar approximation of the Hessian matrices
of the functions of the system show that the most efficient variant of the algorithm is that
correspondig to the case when the second order information is not considered into the al-
gorithm.
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