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Abstract. In this paper we suggest another accelerated conjugate gradient algorithm that 
for all  both the descent and the conjugacy conditions are guaranteed. The search 
direction is selected as  

where ,  The coefficients 

0k ≥
1 1 1 1( / ) ( / )T T T T

k k k k k k k k k k k k k kd g y g y s s t s g y sθ+ + + += − + − ,s

1 1( )k kg f x+ += ∇ 1 .k k ks x x+= − kθ  and  in this linear 
combination are selected in such a way that both the descent and the conjugacy condition 
are satisfied at every iteration. It is shown that both for uniformly convex functions and for 
general nonlinear functions the algorithm with strong Wolfe line search generates 
directions bounded away from infinity. The algorithm uses an acceleration scheme 
modifying the steplength 

kt

kα  in such a manner as to improve the reduction of the function 
values along the iterations. Numerical comparisons with some conjugate gradient 
algorithms using a set of 75 unconstrained optimization problems with different 
dimensions, some of them from the CUTE library, show that the computational scheme 
outperform the known conjugate gradient algorithms like Hestenes and Stiefel; Polak, 
Ribière and Polyak; Dai and Yuan or the hybrid Dai and Yuan; CG_DESCENT with 
Wolfe line search by Hager and Zhang, as well as the quasi-Newton L-BFGS by Liu and 
Nocedal. 
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1. Introduction 
For solving the unconstrained optimization problems 
                                                                  min ( )

nx R
f x

∈
,                                                           (1.1) 

where : nf R → R is a continuously differentiable function, bounded from below, one of the 
most elegant and probably the simplest methods are the conjugate gradient methods. For 
solving this problem, starting from an initial guess 0

nx R∈ , a nonlinear conjugate gradient 

method, generates a sequence { }kx  as: 

                                                               1k k k kx x dα+ = + ,                                                   (1.2) 
where 0kα >  is obtained by line search, and the directions  are generated as: kd
                                                    1 1k k k kdd g β+ += − + 0 0g,  d = − .                                     (1.3) 
In (1.3) kβ  is known as the conjugate gradient parameter, 1k ks x x+ k= −  and .  
The search direction , assumed to be a descent one, plays the main role in these methods. 
On the other hand, the stepsize 

( )k kg f x= ∇

kd

kα  guarantees the global convergence in some cases and is 
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crucial in efficiency. Different conjugate gradient algorithms correspond to different choices 
for the scalar parameter .kβ  Plenty of conjugate gradient methods are known and an excellent 
survey of these methods with a special attention on their global convergence is given by 
Hager and Zhang [26]. Line search in the conjugate gradient algorithms often is based on the 
standard Wolfe conditions [41, 42] 
                                                 ( ) ( ) T

k k k k k k k ,f x d f x g dα ρα+ − ≤                                    (1.4) 

                                                 ,                                                (1.5) ( )T
k k k k kg x d d g dα σ+ ≥ T

k

1.where  is supposed to be a descent direction and 0 1kd / 2ρ σ< ≤ < <   
A numerical comparison of conjugate gradient algorithms (1.2) and (1.3) with Wolfe line 
search, for different formulae of parameter kβ  computation, including the Dolan and Moré 
performance profile [19], is given in [6].  
If the initial direction  is selected as 0d 0 ,d g0= −  and the objective function to be minimized 
is a convex quadratic function 

                                                      
1( )
2

T Tf x x Ax b x c= + +                                               (1.6) 

and the exact line searches are used, that is 
                                                     

0
arg min ( ),k k kf x d

α
α α

>
= +                                             (1.7) 

then the conjugacy condition 
                                                                  0T

i jd Ad =                                                          (1.8) 
holds for all  This relation (1.8) is the original condition used by Hestenes and Stiefel 
[27] to derive the conjugate gradient algorithms, mainly for solving symmetric positive-
definite systems of linear equations. Using (1.3) and (1.6)-(1.8) it can be shown that 

.i j≠

1kx +  is 

the minimum of the quadratic function (1.6) in the subspace { }1 2, , ,k kx span g g g+ …  and 

the gradients  are mutually orthogonal unless that 1 2, , , kg g g… 0kg =  [20]. It follows that 
for convex quadratic functions the solution will be found after at most  iterations. Powell 
[38] shown that if the initial search direction is not  then even for quadratic functions (1.6) 
the conjugate gradient algorithms does not terminate within a finitely number of iterations. It 
is well known that the conjugate gradient algorithm converges at least linearly [34]. An upper 
bound for the rate of convergence of conjugate gradient algorithms was given by Yuan [43].  

n
0g

Let us denote  For a general nonlinear twice differential function 1 .k ky g g+= − k ,f  
by the mean value theorem, there exists some (0,1)ξ ∈  such that  
                                                                                (1.9) 2

1 1 (T T
k k k k k k k kd y d f x d dα ξα+ += ∇ + ) .

Therefore, it seems reasonable to replace (1.8) with the following conjugacy condition 
                                                                 1 0.T

k kd y+ =                                                          (1.10) 
In order to accelerate the conjugate gradient algorithm Perry [33] (see also Shanno [39]) 
extended the conjugacy condition by incorporating the second order information. He used the 
secant condition  where  is a symmetric approximation to the inverse 
Hessian. Since for quasi-Newton method the search direction 

1 ,k k kH y s+ = kH

1kd +  is computed as 
 it follows that  1 1 ,k kd H g+ += − 1k+

1 ,T
+

1
T
+

1 1 1 1 1( ) ( )T T T
k k k k k k k k k kd y H g y g H y g s+ + + + += − = − = −  

thus obtaining a new conjugacy condition. Recently, Dai and Liao [15] extended this 
condition and suggested the following new conjugacy condition 
                                                           ,                                                  (1.11) 1

T
k k k kd y vg s+ = −

where  is a scalar.  0v ≥
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Conjugate gradient algorithms are based on the conjugacy condition. To minimize a convex 
quadratic function in a subspace spanned by a set of mutually conjugate directions is 
equivalent to minimize this function along each conjugate direction in turn. This is a very 
good idea, but the performance of these algorithms is dependent on the accuracy of the line 
search. However, in conjugate gradient algorithms we always use inexact line search. Hence, 
when the line search is not exact, the “pure” conjugacy condition (1.10) may have 
disadvantages. Therefore, it seems more reasonable to consider in conjugate gradient 
algorithms the conjugacy condition (1.11). When the algorithm is convergent observe that 

 tends to zero along the iterations, and therefore conjugacy condition (1.11) tends to 
the pure conjugacy condition (1.10). 

1
T
k kg s+

Conjugate gradient algorithm (1.2) and (1.3) with exact line search always satisfy the 
condition 

2
1 1 1

T
k k kg d g+ + += −  which is in a direct connection with the sufficient descent 

condition 
                                                           

2
1 1 1

T
k k kg d w g+ + +≤ −                                               (1.12) 

for some positive constant  The sufficient descent condition has been used often in the 
literature to analyze the global convergence of the conjugate gradient algorithms with inexact 
line search based on the strong Wolfe conditions. The sufficient descent condition is not 
needed in the convergence analyses of the Newton or quasi-Newton algorithms. However, it 
is necessary for the global convergence of conjugate gradient algorithms [18].  

0.w >

 Using (1.11) Dai and Liao [15] obtained a new conjugate gradient algorithm  

                                                         1( ) .
T

DL k k k
k T

k k

g y vs
y s

β + −
=                                               (1.13) 

For an exact line search we see that 1kg +  is orthogonal to  Therefore, for an exact line 
search, the DL method reduces to the HS method. Observe that due to the Powell’s example, 
the DL method may not converge for an exact line search. To overcome this and to ensure 
convergence Dai and Liao modified their formula as  

.ks

                                             1max ,0 .
T T

DL k k k k
k T

k k k k

g y g sv
y s y s

β + +⎧ ⎫
= −⎨ ⎬

⎩ ⎭
1

T
+                                    (1.14) 

If the level set { }0: ( ) ( )nS x R f x f x= ∈ ≤  is bounded and the gradient ( )f x∇  is Lipschitz 

continuous on and if  satisfies the sufficient descent condition (1.12), it is shown in [15] 
that DL+ implemented with a strong Wolfe line search is globally convergent. Numerical 
results are reported in [15] for  and 

,S kd

0.1v = 1v = . However, for different choices of , the 
numerical results are quite different. 

v

In this paper we suggest a new conjugate gradient algorithm that for all  both 
the descent and the conjugacy conditions are guaranteed. In section 2 we present the search 
direction, as well as the main ingredients for its computation. The search direction is selected 
as a linear combination of  and  where the coefficients in this linear combination are 
selected in such a way that both the descent and the conjugacy condition to be satisfied at 
every iteration. In section 3 we prove the convergence of the algorithm. It is shown that both 
for uniformly convex functions and for general nonlinear functions the corresponding 
algorithm with strong Wolfe line search generates directions bounded away from infinity. 
Section 4 is devoted to present the algorithm in its accelerated version. The idea of this 
computational scheme is to take advantage that the step lengths 

0k >

1kg +− ,ks

kα  in conjugate gradient 
algorithms are very different from 1. Therefore, we suggest we modify kα  in such a manner 
as to improve the reduction of the function values along the iterations. In section 5 some 
numerical experiments and performance profiles of Dolan-Moré corresponding to this new 
conjugate gradient algorithm are given. The performance profiles correspond to a set of 75 
unconstrained optimization problems presented in [1]. Each problem was tested 10 times for a 
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gradually increasing number of variables: 1000,2000, ,10000n = … . It is shown that this 
new conjugate gradient algorithm outperforms the classical Hestenes and Stiefel [27], Dai and 
Yuan [17], Polak, Ribière and Polyak [35, 36], hybrid Dai and Yuan [17] conjugate gradient 
algorithms, the CG_DESCENT conjugate gradient algorithm with Wolfe line search by Hager 
and Zhang [25] and also L-BFGS by Liu and Nocedal [29]. 
 
2. Conjugate gradient algorithm with guaranteed descent  
    and conjugacy conditions 
For solving the minimization problem (1.1) let us consider the following conjugate gradient 
algorithm  
                                                               1k k k kx x dα+ = + ,                                                   (2.1) 
where 0kα >  is obtained by the Wolfe line search, and the directions  are generated as: kd
                                                           1 1 ,k k k kd g ksθ β+ += − +                                               (2.2) 

                                                          1
T T
k k k k k

k T
k k

y g t s g
y s

β 1+ +−
= ,                                            (2.3) 

0d g= − 0 , where kθ  and  are scalar parameters which follows to be determined. Observe 
that in , given by (2.2),  is scaled by parameter 

kt

1kd + 1kg + kθ  and the parameter  is changed 
at every iteration. Algorithms of this form, or variations of them, have been studied by many 
authors. For example, Andrei [3,4,5] considers a preconditioned conjugate gradient algorithm 
where the preconditioner is a scaled memoryless BFGS matrix and the parameter scaling the 
gradient is selected as the spectral gradient. On the other hand Birgin and Martínez [11] 
suggested a spectral conjugate gradient method, where . Yuan and Stoer [44] 
studied the conjugate gradient algorithm on a subspace, where the search direction  at the 

th iteration ( ) is taken from the subspace 

kt

/T T
k k k ks s s yθ = k

1kd +

k − 1k ≥ { }1,k kspan g d+ . Observe that if for every 

1,k ≥ 1kθ =  and kt v= , then (2.2) reduces to the Dai and Liao direction (1.13).  
In our algorithm for all  the scalar parameters 0k ≥ kθ  and  in (2.2) are determined 

in such a way that both the descent and the conjugacy conditions are satisfied. Therefore, 
from the descent condition (1.12) we have 

kt

 

                           
2

2 21 1 1
1 1

( )( ) ( )T T T
k k k k k k

k k k kT T
k k k k

y g s g s gg t
y s y s

θ + + +
+ +− + − = −w g

1),+

                   (2.4) 

and from the conjugacy condition (1.11) 
                                                                    (2.5) 1 1 1 (T T T T

k k k k k k k k k ky g y g t s g v s gθ + + +− + − = −
 
where  and  are known scalar parameters. Observe that in (2.4) we modified the 
classical sufficient descent condition (1.12) with equality. It is worth saying that the main 
condition in any conjugate gradient algorithm is the descent condition  or the 
sufficient descent condition (1.12). In our algorithm we have selected  close to 1. This is 
enough a reasonable value. For example, Hager and Zhang [25] show that in their 
CG_DESCENT algorithm  On the other hand, the conjugacy condition (1.10) or its 
modification (1.11) is not so stringent. In fact very few conjugate gradient algorithms satisfy 
this condition. For example, the Hestenes and Stiefel (HS) algorithm has this property that the 
pure conjugacy condition always holds, independent of the line search.  

0v > 0w >

0T
k kg d <

w

7 / 8.w =

If , then (2.5) is the “pure” conjugacy condition. However, in our algorithm in 
order to accelerate the algorithm and to incorporate the second order information we take 

.  

0v =

0v >
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Now, let us define 
                                           

2
1 1 1( )( ) (T T T

k k k k k k k ky g s g g y s+ + +∆ = − ),                                   (2.6) 

                                           1( )T
k k k ks g +∆ = ∆ ,

1,
                                                                      (2.7) 

                                            1( )T T
k k k k ka v s g y g+ += +                                                          (2.8) 

                                            
2

1 1( ) ( )(T T T
k k k k k k k kb w g y s y g s g+ += + 1).+                                (2.9) 

Supposing that  and 0k∆ ≠ 1 0,T
k ky g + ≠ then from the linear algebraic system given by (2.4) 

and (2.5) we get 

                                              
2

1( ) ( )T T
k k k k k k k

k
k

b y g a y s g
t + −
=

∆
1+ ,                                    (2.10) 

                                              1

1

( ) ,
T

k k k k
k T

k k

a t s g
y g

θ +

+

−
=                                                            (2.11) 

with which the parameter kβ  and the direction 1kd +  can immediately be computed. 
 
Proposition 2.1. If  

                                                        
2

1
2

1 1

1 ,
2

k
T
k k k

g

y g g
σ +

+ +

< ≤
+

                                       (2.12) 

then for all 1,k ≥ 0k∆ < . 
 
Proof. Observe that  
                                                                                            (2.13) 1 .T T T T

k k k k k k k ks g s y s g s y+ = + <
The Wolfe condition (1.5) gives 
                                                                              (2.14) 1 .T T T T

k k k k k k k kg s g s y s g sσ σ σ+ ≥ = − + 1+

Since 1,σ <  we can rearrange (2.14) to obtain 

                                                           1 .
1

T
k k k kg s y sTσ

σ+
−

≥
−

                                                (2.15) 

Now, combining this lower bound for  with the upper bound (2.13) we get 1
T
k kg s+

                                                 1 max 1, .
1

T T
k k k kg s y s σ

σ+
⎧ ⎫≤ ⎨ ⎬−⎩ ⎭

                                       (2.16) 

Since 1/ 2σ > , from (2.16) we can write 

                                                         1 .
1

T
k k k kg s y sTσ

σ+ <
−

                                               (2.17) 

If (2.12) is true, then  
2

1 1 .
1

T
k k ky g gσ

σ + +≤
−

 

Again, observe that the Wolfe condition gives  (if 0T
k ky s > 0kg ≠ ). Therefore,  

                                              
2

11
T T T
k k k k k k ky s g y y s g 1

σ
σ + ≤

− + .                                    (2.18) 

From (2.17) we can write 

                               
2

1 1 1 1 ,
1

T T T T T
k k k k k k k k k k ks g y g y s y g y s gσ

σ+ + + +< ≤
−

                    (2.19) 

i.e. 0k∆ <  for all   ■ 1.k ≥
Some remarks are in order. 
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1) Suppose that 0kg ≠  for all , otherwise a stationary point is obtained. From (2.4) we 
can write  

1k ≥

                                                   
2

1( ) ( )T
k k k k ks g w gβ θ+ = − 1+ .                                        (2.20) 

Since  tends to zero (  is a descent direction) it follows that 1
T
k ks g + kd kθ  tends to  and 

hence 
0,w >

0.kθ >  Therefore, there exists a constant  such that 1 0c > 10 .k cθ< <  

2) From (2.12) observe that 1σ < . Besides, since for all  ,k 0k∆ <  then there exists a 

positive constant  such that 2 0c > 2.k c∆ >  Also, in order to have 0k∆ <  the parameter σ  

in the second Wolfe condition (1.5) is modified as in (2.12). Observe that since 
2 0T

k k kg d w g= − < , i.e.  is a descent direction, it follows that kd 2
1 1 .T

k k kg y g+ +→  

Therefore 1/ 2,σ → i.e. 0 1ρ σ< < < , since usually ρ  is selected enough small to ensure 
the reduction of function values along the iterations.  
3) By the Wolfe conditions we have  But from the 

descent condition (2.4) it follows that 
1( ) ( 1)T T

k k k k k k ky s g g s g sσ+= − ≥ − .T

2 .T T
k k k k k k kg s g d w gα α= = −  It is easy to prove that 

there exist a positive scalar ω  such that 0kα ω≥ >  (see [25], Lemma 2.1). Hence, 
2 2( 1) ( 1) (1 ) 0T T

k k k k k k ky s g s w g w gσ α σ ω σ≥ − = − − ≥ − > .  

Therefore, if , then by Wolfe conditions, for all  . On the other hand, 

, and since tends to zero, from (2.19) it follows that 

0kg ≠ 0,k ≥ 0T
k ky s >

0w > 1
T
k ks g +

2
1 1( )T T T

k k k k k k kw g y s y g s g+ +> 1+ . 

Therefore,  for all  and is bounded away from zero. 0kb > 0k ≥
 
3. Convergence analysis 
In this section we analyze the convergence of the algorithm (2.1) and (2.2), where kθ  and kβ  
are given by (2.11) and (2.3) respectively, and 0d g0= − . In the following we consider that 

 for all , otherwise a stationary point is obtained. Assume that: 0kg ≠ 1k ≥
(i) The level set { }0: ( ) ( )nS x R f x f x= ∈ ≤  is bounded, i.e. there exists a positive 

constant such that for all 0B > ,x S∈  .x B≤  
(ii) In a neighborhood  of , the function N S f is continuously differentiable and its 

gradient is Lipschitz continuous, i.e. there exists a constant  such that 0L >
( ) ( )f x f y L x∇ −∇ ≤ − y , for all , .x y N∈  

Under these assumptions on f  there exists a constant 0Γ ≥  such that ( )f x∇ ≤ Γ  for all 

.x S∈  In order to prove the global convergence, we assume that the step size kα  in (2.1) is 
obtained by the strong Wolfe line search, that is, 
                                             ( ) ( ) T

k k k k k k k ,f x d f x g dα ρα+ − ≤                                        (3.1) 

                                              ( )T T
k k k k k kg x d d g dα σ+ ≤ .                                                  (3.2) 

where ρ  and σ  are positive constants such that 0 1.ρ σ< ≤ <  
For the conjugate gradient algorithm (2.2) where kθ  and kβ  are given by (2.11) and (2.3) 
respectively, with strong Wolfe line search, the following Lemmas can be proved. The first 
two Lemmas were established by Zoutendijk [45] and Wolfe [41, 42], but for completeness 
we present them here (see also [28]). 
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Lemma 3.1. Suppose that the assumptions (i) and (ii) hold. Consider that kα  is obtained by 
the strong Wolfe line search (3.1) and (3.2) and the descent condition hold. Then 

                                                            
0

.T
k k k

k
g dα

∞

=

− < ∞∑                                                      (3.3) 

 
Proof. From (3.1) and the descent condition (2.4) we have that  
                                                      1 0.T

k k k k kf f g dρα+ − ≤ ≤                                               (3.4) 

Therefore,{ }kf  is a decreasing sequence. Since f  is bounded below there exist a constant 
*f  such that  

                                                                 *lim .kk
f f

→∞
=                                                         (3.5) 

From (3.5) it follows that 
*

1 1 0 1
0 0
( ) lim ( ) lim( )

n

k k k k nn nk k
0 .f f f f f f f

∞

+ + +→∞ →∞
= =

− = − = − = −∑ ∑ f

.∞

 

Hence,  From (3.4) it follows (3.3).  ■ 1
0
( )k k

k
f f

∞

+
=

− < +∑
 
Lemma 3.2. Consider the conjugate gradient algorithm (2.2) where kθ  and kβ  are given by 
(2.11) and (2.3) respectively and kα  is obtained by the strong Wolfe line search (3.1) and 
(3.2). Suppose that the assumptions (i) and (ii), as well as the descent condition hold. Then  

                                                            
2

2
0

( ) .
T
k k

k k

g d
d

∞

=

< +∞∑                                                    (3.6) 

 
Proof. From the strong Wolfe line search and the assumptions (i) and (ii), we get 

2
1(1 ) ( ) .T T

k k k k k k kg d g g d L dσ α+− − ≤ − ≤  
Therefore, 

                                                           2

(1 ) .
T
k k

k
k

g d
L d
σα − −

≥                                                  (3.7) 

We know that for all . Hence, using Lemma 3.1 we get ,k 0T
k kg d <

2

2
0 0

( ) ( )
1

T
Tk k

k k k
k kk

g d L g d
d

α
σ

∞ ∞

= =

.≤ − <
−∑ ∑ +∞   ■ 

 
Observe that (3.6), known as the Zoutendijk condition, is obtained under the assumptions that 
the strong Wolfe line search hold and that  is a descent direction, independent by its form. kd
 
Lemma 3.3. Consider the conjugate gradient algorithm (2.2) where kθ  and kβ  are given by 
(2.11) and (2.3) respectively and kα  is obtained by the strong Wolfe line search (3.1) and 
(3.2). Suppose that the assumptions (i) and (ii) hold, and [0,2 ].k wθ ∈  Then either 

                                                               liminf 0kk
g

→∞
=                                                      (3.8) 

or 
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4

2
0

.k

k k

g

d

∞

=

< ∞∑                                                        (3.9) 

 
Proof. Squaring the both terms of 1 1k k k kd g ksθ β+ ++ =  we get 

2 22 2
1 1 1 12 .T

k k k k k k k kd g d gθ θ β+ + + ++ + = 2s  

But, from (2.4) 
2

1 1 1 .T
k k kd g w g+ + += −  Therefore, 

                                          
2 22

1 1( 2 )k k k k kd w gθ θ β+ += − − + 22 .ks                               (3.10) 

Observe that for [0, 2 ],k wθ ∈   and is bounded below by 2 2k k wθ θ− ≤ 0 2w− .  On the other 

hand from (2.2) we have
2

1 1 1 1 .T T
k k k k k k kg d g s gβ θ+ + + +− = −  Using the strong Wolfe line 

search we get 
                                              

2
1 1 1 .T T

k k k k k k kg d g s gσ β θ+ + ++ ≥                                   (3.11) 

Now, considering the following inequality  true for all 2 2 2( ) (1 )(a b a bσ σ+ ≤ + + 2 )
, , 0,a b σ ≥  with 1 1

T
k ka g d+ +=  and T

k k kb gβ= s  after some algebra we get 

                                             
42 2 2

1 1 1( ) ( )T T
k k k k k kg d g s e gβ+ + ++ ≥ ,

2

                                   (3.12) 

where 2 /(1 )ke θ σ= +  is a positive constant.  
Using (3.10) and (3.12) we can write 

22 2
12 21 1

1 12 2 2 2
1 1

( ) ( ) 1 ( ) (
T T

kT Tk k k k
k k k k

k k k k

dg d g s g d g s
d s d s

++ +
+ +

+ +

⎡ ⎤
+ = +⎢ ⎥

⎢ ⎥⎣ ⎦
)  

                       ( )
2

2 22 2 2
1 1 12 2

1

( )1 ( ) ( 2 )
T

T k k
k k k k k k k

k k

g sg d w g s
d s

θ θ β+ + +

+

⎡ ⎤
= + − − +⎢ ⎥

⎢ ⎥⎣ ⎦
 

                       
2

4 22
1 12 2

1

( )1 ( 2 )
T
k k

k k k k
k k

g se g w g
d s

θ θ+ +

+

⎡ ⎤
≥ − −⎢ ⎥

⎢ ⎥⎣ ⎦
 

                       
4 2

1 2
2 2

1 1

( ) 1( 2 )
T

k k k
k k

k k

g g se w
d s

θ θ+

+ +

⎡ ⎤
= − −⎢

⎢ ⎥⎣ ⎦
2 .

kg
⎥                                            (3.13) 

From Lemma 3.2 we know that  
2

2

( )lim 0.
T
k k

k
k

g s
s→∞

=  

On the other hand, for [0, 2 ]k wθ ∈ , 2 2k k wθ θ−  is finite. Therefore, if (3.8) is not true, then 
2 2

2 2
1

( ) ( 2 )lim 0.
T
k k k k

k
k k

g s w
s g

θ θ
→∞

+

−
=  

Hence,  

                                               
42 2

11 1
2 2

1 1

( ) ( )T T
kk k k k

k k

gg d g s e
d s d

++ +

+ +

+ ≥ 2
k

,                                    (3.14) 

holds for all sufficiently large  Therefore, by Lemma 3.2 it follows that (3.9) is true. ■ .k
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Using Lemma 3.3 we can prove the following proposition which has a crucial role in proving 
the convergence of our algorithm. 
 
Proposition 3.1. Consider the conjugate gradient algorithm (2.2) where kθ  and kβ  are given 
by (2.11) and (2.3) respectively and kα  is obtained by the strong Wolfe line search (3.1) and 
(3.2). Suppose that the assumptions (i) and (ii) hold, and [0,2 ].k wθ ∈  If 

                                                               2
1

1
k kd≥

= ∞∑ ,                                                      (3.15) 

then 
                                                             liminf 0.k

k
g

→∞
=                                                     (3.16) 

 
Proof. Suppose by contradiction that there is a positive constant γ  such that kg γ≥  for all 

 Therefore, from Lemma 3.3 it follows that 1.k ≥
4

2 24
1 1

1 1 k

k kk k

g

d dγ≥ ≥

≤ < ∞∑ ∑  

which is in contradiction with (3.15). ■ 
 
Therefore, the iteration can fail, in the sense that 0kg γ≥ >  for all  only if ,k kd →∞  
sufficiently rapidly.  
 
Convergence for uniformly convex functions. For uniformly convex functions we can prove 
that the norm of the direction  generated by (2.2), where kd kθ  and kβ  are given by (2.11) 
and (2.3) respectively, is bounded. Thus by Proposition 3.1 we can prove the following result. 
 
Theorem 3.1. Suppose that the assumptions (i) and (ii) hold. Consider the method (2.1)-(2.3) 
and (2.11), where  is a descent direction and kd kα  is obtained by the strong Wolfe line 
search. Suppose that there exists the positive constants  and t  such that 1c 1k cθ <  and 

kt < t  for all  If there exists a constant 1.k ≥ 0µ >  such that 

                                            
2( ( ) ( )) ( )Tf x f y x y x yµ∇ −∇ − ≥ −                                  (3.17) 

for all , ,x y S∈  then  
                                                                 lim 0.kk

g
→∞

=                                                         (3.18) 

 
Proof. From (3.17) it follows that f  is a uniformly convex function in  and therefore S

                                                              
2 .T

k k ky s sµ≥                                                      (3.19) 

Again, by Lipschitz continuity .ky L s≤ k  Now, from (2.3) we have that 

1 11 1
2 2

T T
k k k kk k k k

k k kT T
k k k k k k

y g s gy g s gt t
y s y s s s

β
µ µ

+ ++ += − ≤ +  

                                     1 1
2 2 .k k k k

kk k

L s g s g L tt
ss s µµ µ

+ + + Γ
≤ + =                                    (3.20) 

Hence, 
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                                      1 1 1 .k k
k

L t L td c s c
sµ µ+

⎛ ⎞+ Γ +
≤ Γ + = + Γ⎜

⎝ ⎠
⎟                             (3.21) 

Which implies that (3.15) is true. Therefore, by Proposition 3.1 we have (3.16), which for 
uniformly convex functions is equivalent to (3.18).  ■ 
 
Observe that in Lemma 3.3 and in Proposition 3.1 kθ  is bounded as 0 2k w.θ≤ ≤  We know 
that kθ  tends to  Therefore, in Theorem 3.1 the positive constant  is bounded as 

  
.w 1c

1 2 .c w≤
 
Convergence for general nonlinear functions. Firstly we prove that in very mild conditions 
the direction  generated by (2.2), where kd kθ  and kβ  are given by (2.11) and (2.3) 
respectively, is bounded. Again, by Proposition 3.1 we can prove the following result. 
 
Theorem 3.2. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient 
algorithm (2.1), where the direction 1kd +  is given by (2.2) and (2.3), and the step length kα  is 
obtained by the strong Wolfe line search (3.1) and (3.2). Assume that for all  there exist 
positive constants  and  such that 

0k ≥
0c > 1 0c > 1 /T

k k ky g c s+ ≤  and 1k cθ < respectively, 

then liminf 0.kk
g

→∞
=  

 
Proof.  From (2.3) using (2.10) after some algebra we get 

                                              
2

11 1
T

kk k k
k T

k k k k

gy g b a
y s

β ++ ⎛ ⎞
= − +⎜ ⎟∆ ∆⎝ ⎠

.k                                     (3.22) 

Suppose that  otherwise a stationary point is obtained. By the Wolfe line search 

 Since  is a descent direction for all  it follows that 

0,kg ≠

0.T
k ky s > kd 0,k ≥ ks  tends to zero. 

Hence, there exists a positive constant  such that 3 0c >

                                                              1 3 .
T
k k

T
k k k

y g c
y s s

+ ≤                                                     (3.23) 

Now, observe that since for all ,  and 0k ≥ 0kb > 0,k∆ <  it follows that / 0k kb− ∆ > .  
Besides, from (2.6) and (2.9) we can write 

                                            1( )((1 ) .
T T

k k k

k k

b y g sw w + +− = + +
∆ −

1)k kg
∆

                                  (3.24) 

Since 0k−∆ >  and  tends to zero along the iterations, it follows that 1
T
k ks g + /kb− ∆k  tends to 

 Therefore, there exists a positive constant  such that 0.w > 4 0c > 41 1 / .k kb c< − ∆ ≤  

Again observe that if  from the Wolfe line search  Hence, there exists a 

positive constant  such that 

0kg ≠ 0.T
k ky s >

5 0c > 50 /T
k k ky s c s< ≤  for all  0.k ≥

Now, from (2.8) and (2.16) we have 
               1 1 1( ) ( )T T T T

k k k k k k k k ka v s g y g v s g y g+ + += + ≤ + 1+  

1max 1,
1

T T
k k k kv y s y gσ

σ +
⎧ ⎫≤ +⎨ ⎬−⎩ ⎭

5 max 1,
1k k

c cv
s s

σ
σ

⎧ ⎫≤ +⎨ ⎬−⎩ ⎭
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                     5
1max 1, .

1 k

vc c
s

σ
σ

⎛ ⎞⎧ ⎫= ⎨ ⎬⎜ −⎩ ⎭⎝ ⎠
+ ⎟                                                                   (3.25) 

Hence, since 2k c∆ >  from (3.25) it follows that 

                                    
2 2

1
5

2

1max 1, .
1

k
k

kk

g
a vc c

c s
σ
σ

+ ⎛ ⎞ Γ⎧ ⎫≤ +⎨ ⎬⎜ −∆ ⎩ ⎭⎝ ⎠
⎟                           (3.26) 

With these, from (3.22) we can write 

                                
2

11 1
T

kk k k
k kT

k k k k

gy g b a
y s

β ++≤ − +
∆ ∆

 

2
3

4 5
2

1max 1,
1k k

c c vc c
s c

σ
σ

⎛ ⎞ Γ⎧ ⎫≤ + +⎨ ⎬⎜ ⎟−⎩ ⎭⎝ ⎠ s
 

                                       
2

3 4 5
2

1max 1, .
1 k

c c vc c
c s

σ
σ

⎡ ⎤⎛ ⎞ Γ⎧ ⎫= + +⎨ ⎬⎢ ⎥⎜ ⎟−⎩ ⎭⎝ ⎠⎣ ⎦
                            (3.27) 

From (2.2) we have 
                 1 1k k k kd gθ β+ +≤ + ks  

                            
2

1 3 4 5
2

1max 1, ,
1 k

k

c c c vc c s
c s

σ
σ

⎡ ⎤⎛ ⎞ Γ⎧ ⎫≤ Γ + + + ≡⎨ ⎬⎢ ⎥⎜ ⎟−⎩ ⎭⎝ ⎠⎣ ⎦
E                 (3.28) 

where  is a positive constant. Therefore, for all , E 0k ≥ kd E≤ , which implies (3.15). 

Therefore, by Proposition 3.1, since  is a descent direction, we have kd liminf 0.kk
g

→∞
=   ■ 

 
Observe that if for every 1,k ≥ 1kθ =  and 0kt = , then (2.2) reduces to the Hestenes and 
Stiefel direction. For an exact line search the HS algorithm reduces to that of Polak-Ribière 
and Polyak (PRP). Therefore, the convergence properties of the HS method should be similar 
to the convergence properties of the PRP method. In particular, for a general nonlinear 
function by the Powell’s example, the HS method with an exact line search may not converge. 
Hence, our method (2.1)-(2-3) need not converge for general functions. Therefore, like in 
Gilbert and Nocedal [22], who proved the global convergence of the PRP method with the 
restriction that  we replace (2.3) by 0,PRP

kβ ≥

                                              1max ,0
T T
k k k k

k T
k k k k

y g s gt
y s y s

β 1
k T

+ +⎧ ⎫
= −⎨ ⎬

⎩ ⎭
                                     (3.29) 

and prove the global convergence of this modification of the algorithm for general functions.  
Firstly, we prove the following results. 
 
Lemma 3.4. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient 
algorithm (2.2), where kθ  and kβ  are given by (2.11) and (3.29) respectively and kα  is 
obtained by the strong Wolfe line search. Suppose that there exists the positive constants  

and  such that 
1c

t 1k cθ <  and kt < t  for all  If there exists a positive constant 1.k ≥ 0γ >  
such that 
                                                                    kg γ≥                                                           (3.30) 

for all  then  and 0,k ≥ 0kd ≠

                                                           
2

1
1

,k k
k

u u+
≥

− < ∞∑                                                  (3.31) 
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where / .k k ku d d=  
 
Proof. First, we note that , otherwise the descent condition (2.4) is not true. Therefore, 

 is well defined. Besides, by (3.30) and the Proposition 3.1 we have 
0kd ≠

ku

                                                                 
0

1
k kd≥

< ∞∑ ,                                                      (3.32) 

otherwise (3.16) is true, contradicting (3.30) 
Now, as usual (see [15]) we can consider 1 2 ,k k kβ β β= +  where 

                                                         1 1max ,0
T
k k

k T
k k

y g
y s

β +⎧ ⎫
= ⎨ ⎬

⎩ ⎭
                                             (3.33) 

                                                         2 1 .
T
k k

k k T
k k

s gt
y s

β += −                                                        (3.34) 

Define 
                                                                                                       (3.35) 2

1 1 ,k k k kv gθ β+ += − + ks

                                                           1
1

1

,k
k

k

vr
d

+
+

+

=                                                            (3.36) 

                                                           1

1

0.k
k k

k

d
d

δ β
+

= ≥                                                   (3.37) 

With these we have 
                                                           1 1 .k k k ku r ukα δ+ += +                                                 (3.38) 

But, 1 1k ku u += =  and therefore from (3.38) we obtain 

                                         1 1 1 .k k k k k k k kr u u u uα δ α δ+ + += − = − k                                (3.39) 

Now, using the condition 0,kδ ≥  the triangle inequality and (3.39) we have 

                                1 1(1 ) (1 )k k k k k k ku u u uα δ α δ+ +− = + − + k  

                                                  1 1 2k k k k k k k k ku u u uα δ α δ 1r+ +≤ − + − = + .                 (3.40) 
On the other hand, from the strong Wolfe line search and the descent condition it follows that 

                                                     1 max 1, .
1

T
k k

T
k k

s g
y s

σ
σ

+ ⎧ ⎫≤ ⎨ ⎬−⎩ ⎭
                                            (3.41) 

Hence, from the definition of  given by (3.35), (3.41) and the assumptions (i) and (ii), i.e. 1kv +

kx B≤  and kg ≤ Γ  for all  we obtain 0,k ≥

1
1 1

T
k k

k k k k T
k k

s gv g t
y s

θ +
+ +≤ + ks  

                                                         1 max 1, 2 .
1

c t Bσ
σ

⎧ ⎫≤ Γ + ⎨ ⎬−⎩ ⎭
                                     (3.42) 

Therefore, 
1

1 1 1
1 1

22 2 max 1, 2
1

k
k k k

k k

v
u u r c t B

d d
σ
σ

+
+ +

+ +

⎛ ⎞⎧ ⎫− ≤ = ≤ Γ + ⎨ ⎬⎜ ⎟−⎩ ⎭⎝ ⎠
,  

which completes the proof. ■ 
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This lemma shows that asymptotically the search directions generated by the algorithm (2.2), 
where kθ  and kβ  are computed as in (2.11) and (3.29) respectively, change slowly. 
 
Lemma 3.5. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient 
algorithm (2.2), where kθ  and kβ  are given by (2.11) and (3.29) respectively and kα  is 
obtained by the strong Wolfe line search and for all  0,k ≥ kα ω≥ . Suppose that there exist 

the positive constants  and t γ  such that for all , 1k ≥ kt t<  and ,kg γ> respectively. 

Then there exist the constants  and 1b > 0λ >  such that for all  1k ≥
                                                                    k bβ ≤                                                            (3.43) 
and 

                                                      ks λ≤  implies 
1 .k b

β ≤                                            (3.44) 

Proof. We have 
2 2( 1) ( 1) ( 1) (1 )T T T

k k k k k k k k ky s s g d g w g w .σ σ α σ α σ ω γ≥ − = − = − − ≥ −  
Therefore 

                         1 1
T T
k k k k

k kT T
k k k k

y g s gt
y s y s

β + +≤ + 1 1
2 2(1 ) (1 )

k k k ky g s g
t

w wσ ω γ σ ω γ
+ +≤ +

− −
 

                                2(1 )
k kL s t s

wσ ω γ
Γ + Γ

≤
− 2

2( ) .
(1 )

L t B b
wσ ω γ

+ Γ
≤ ≡

−
                                          (3.45) 

Without loss of generality we can define b  such that  Let us define 1.b >

                                                            
2(1 )

2( )
w

L t b
σ ω γλ −

≡
+ Γ

.                                                 (3.46) 

Obviously, if ,ks λ≤  then from the third inequality in (3.45) we have 

                                                       2

( ) 1 .
(1 )k

L t
w b
λβ

σ ω γ
+ Γ

≤ =
−

                                            (3.47) 

Therefore, for b  and λ  defined in (3.45) and (3.46) respectively, it follows that the relations 
(3.43) and (3.44) hold. ■ 
 
The property presented in Lemma 3.5, which is similar to but slightly different from Property 
(*) in [22], can be used to show that if the gradients are bounded away from zero and (3.43) 
and (3.44) hold, then a finite number of steps  cannot be too small. Therefore, the 
algorithm makes a rapid progress to the optimum. Indeed, for 

ks
0λ >  and a positive integer  

let us define the set of index 
J

                                       { }*
, : 1,k J kK i N k i k J sλ ,λ= ∈ ≤ ≤ + − >                               (3.48) 

where  is the set of positive integers. The following Lemma is similar to Lemma 3.5 in 
[15] and Lemma 4.2 in [22]. 

*N

 
Lemma 3.6. Suppose that all assumptions of Lemma 3.5 are satisfied. Then there exists a 

0λ >  such that for any  and any index  there is a greater index  such that *J N∈ 0 ,k 0k k≥

, / 2.k JK Jλ >  

 
Using Lemma 3.4 and Lemma 3.6 we can prove the global convergence of the conjugate 
gradient algorithm (2.2) where kθ  and kβ  are given by (2.11) and (3.29) respectively and kα  
is obtained by the strong Wolfe line search. The following Theorem is similar to Theorem 3.6 
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in Dai and Liao [15] or to Theorem 3.2 in Hager and Zhang [25] and the proof is omitted 
here. 
 
Theorem 3.3. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient 
algorithm (2.2), where kθ  and kβ  are given by (2.11) and (3.29) respectively and kα  is 

obtained by the strong Wolfe line search. Then we have liminf 0.kk
g

→∞
=  

 
4. DLDC algorithm 
We know that in conjugate gradient algorithms the search directions tend to be poorly scaled 
and as a consequence the line search must perform more function evaluations in order to 
obtain a suitable steplength .kα  Therefore, the research effort was directed to design 
procedures for direction computation which takes the second order information. For example, 
the algorithms implemented in SCALCG by Andrei [3-5], or CONMIN by Shanno and Phua 
[40] use the BFGS preconditioning with remarkable results.  
In conjugate gradient methods the step lengths computed by means of the Wolfe line search 
(1.4) and (1.5) may differ from 1 in a very unpredictable manner [32]. They can be larger or 
smaller than 1 depending on how the problem is scaled. This is in very sharp contrast to the 
Newton and quasi-Newton methods, including the limited memory quasi-Newton methods, 
which accept the unit steplength most of the time along the iterations, and therefore usually 
they require only few function evaluations per search direction. Numerical comparisons 
between conjugate gradient method and limited memory quasi Newton method by Liu and 
Nocedal [29] showed that the latter is more successful [6]. One partial explanation of the 
efficiency of this limited memory quasi-Newton method is given by its ability to accept unity 
step lengths along the iterations. In this section we take advantage of this behavior of 
conjugate gradient algorithms and consider an acceleration scheme we have presented in [7] 
(see also [2]). Basically the acceleration scheme modifies the step length kα  in a 
multiplicative manner to improve the reduction of the function values along the iterations. In 
accelerated algorithm instead of (1.2) the new estimation of the minimum point is computed 
as  
                                                           1k k k k kx x dξ α+ = + ,                                                   (4.1) 
where  

                                                                   k
k

k

a
b

ξ = − ,                                                         (4.2) 

,T
k k k ka g dα=  ( ) ,kd ( )zg fT

k k k zb g gα= − − z= ∇  and k kz x dkα= + . Hence, if 0,kb ≠  
then the new estimation of the solution is computed as 1k k k k kx x dξ α+ = + , otherwise 

1k k k kx x dα+ = + . Observe that since ρ  in (1.4) is enough small (usually 0.0001ρ = ), the 
Wolfe line search leads to very small reductions in function’s values along the iterations. The 
acceleration scheme (4.1) emphasizes the reduction of function’s values, since in conjugate 
gradient algorithms often 1kα >  along the iterations (see [7]). Therefore, using the 
definitions of gk , sk , and the above acceleration scheme (4.1) and (4.2) we can present 
the following conjugate gradient algorithm. 

yk

 
DLDC algorithm
Step 1. Select a starting point 0x dom f∈  and compute: 0 ( )0f f x=  and  

Select some positive values for 
0 0( ).g f x= ∇

ρ  and σ , and for v  and  Set  and 
 

.w 0d g= − 0

0.k =
Step 2. Test a criterion for stopping the iterations. If the test is satisfied, then stop; 

otherwise continue with step 3. 
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Step 3. Determine the steplength kα by using the Wolfe line search conditions (1.4) - (1.5) 

Step 4. Acceleration scheme. Compute: k k kz x dα= + ( )zg f z= ∇ z,  and  .k ky g g= −

Step 5. Compute: T
k k ka gα= kd , and T

k k kb yα= − kd . 

Step 6. If 0,kb ≠  then compute /k ka bξ = − k

k

 and update the variables as 

1k k k kx x dξ α+ = + , otherwise update the variables as 1k k k kx x dα+ = + . Compute 

1kf +  and  Compute 1.kg + 1k ky g g+ k= −  and 1 .k ks x x+ k= −  

Step 7. Compute k∆  as in (2.7). 

Step 8. If ,k mε∆ ≥  then determine kθ  and kβ  as in (2.11) and (3.29) respectively. Else, 

set 1kθ =  and  1 / .T Y
k k k ky g y sβ += k

k ksStep 9. Compute the search direction as: 1 1k k kd gθ β+ += − + . 

Step 10. Compute 2 2
1 1 1/( )T

k k k kg y g gσ + + += + ,. If σ ρ<  then set 0.8.σ =  

Step 11. Restart criterion. If 
2

1 10.2T
k k kg g g+ +>  then set 1 1k kd g+ += − . 

Step 12. Consider  and go to step 2.  ■ 1k k= +
 
It is well known that if f  is bounded along the direction  then there exists a stepsize kd kα  
satisfying the Wolfe line search conditions (1.4) and (1.5). In our algorithm when the Powell 
restart condition is satisfied, then we restart the algorithm with the negative gradient 1.kg +−  
More sophisticated reasons for restarting the algorithms have been proposed in the literature 
[16], but we are interested in the performance of a conjugate gradient algorithm that uses this 
restart criterion associated to a direction satisfying both the descent and the conjugacy 
conditions. Under reasonable assumptions, the Wolfe conditions and the Powell restart 
criterion are sufficient to prove the global convergence of the algorithm. The first trial of the 
step length crucially affects the practical behavior of the algorithm. At every iteration  
the starting guess for the step 

1k ≥
kα  in the line search is computed as 1 1 /k k kd dα − − .  This 

selection was used for the first time by Shanno and Phua in CONMIN [40] and in SCALCG 
by Andrei [3-5]. Observe that in the line search procedure (step 3) the steplength kα  is 
computed using the updated value of the parameter σ , computed as in step 10. For uniformly 
convex functions, we can prove the linear convergence of the acceleration scheme [7].  
 
5. Numerical results and comparisons 
In this section we report some numerical results obtained with an implementation of the 
DLDC algorithm. The code is written in Fortran and compiled with f77 (default compiler 
settings) on a Workstation Intel Pentium 4 with 1.8 GHz. DLDC uses the loop unrolling to a 
depth of 5. We selected a number of 75 large-scale unconstrained optimization test functions 
in generalized or extended form [1] (some from CUTE library [12]). For each test function we 
have taken ten numerical experiments with the number of variables 

 The algorithm implements the Wolfe line search conditions with 1000,2000,...,10000.n =

0.0001,ρ =  
2

1 1/( ),T
k k k kg y g gσ + + += + 2

1 and the same stopping criterion 

gk ∞
−≤ 10 6 , where .

∞
is the maximum absolute component of a vector. If ,σ ρ<  then we 

set 0.8.σ =  If k mε∆ ≥ , where mε  is epsilon machine, then kθ  and kβ  are computed as in 

(2.11) and (3.29), respectively. Otherwise, set 1kθ =  and , i.e. the 
Hestenes-Stiefel conjugate gradient algorithm [27] is considered. In DLDC we set  
and . In our numerical experiments 

1 /T
k k k ky g y sβ += T

k

7 / 8w =
0.05v = kθ  is not restricted in the interval [0  In all , 2 ].w
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the algorithms we considered in this numerical study the maximum number of iterations is 
limited to 10000. 
 The comparisons of algorithms are given in the following context. Let and 

be the optimal value found by ALG1 and ALG2, for problem  
respectively. We say that, in the particular problem  the performance of ALG1 was better 
than the performance of ALG2 if:  

f i
ALG1

f i
ALG2 i = 1 750, ,… ,

i,

                                                          f fi
ALG

i
ALG1 2 10− < −3

)
)

                                             (5.1) 
and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or 
the CPU time of ALG1 was less than the number of iterations, or the number of function-
gradient evaluations, or the CPU time corresponding to ALG2, respectively. 

In the first set of numerical experiments we compare DLDC versus Dai and Liao 
 conjugate gradient algorithm (1.13). Figure 1 shows the Dolan and Moré CPU 

performance profile of DLDC versus DL
( 1v =

( 1v = . In a performance profile plot, the top curve 
corresponds to the method that solved the most problems in a time that was within a factor τ  
of the best time. The percentage of the test problems for which a method is the fastest is given 
on the left axis of the plot. The right side of the plot gives the percentage of the test problems 
that were successfully solved by these algorithms, respectively. Mainly, the right side is a 
measure of the robustness of an algorithm. 

 
Fig. 1. DLDC ( 7 / 8w = , 0.05v = ) versus DL ( 1)v = . 

 
When comparing DLDC with DL ( 1v )=  conjugate gradient algorithm subject to CPU time 
metric we see that DLDC is top performer, i.e. the accelerated Dai and Liao conjugate 
gradient algorithm with guaranteed descent and conjugacy conditions is more successful and 
more robust than the Dai and Liao conjugate gradient algorithms with  Comparing 
DLDC with DL (  (see Figure 1), subject to the number of iterations, we see that DLDC 
was better in 604 problems (i.e. it achieved the minimum number of iterations in 604 
problems). DL  was better in 55 problems and they achieved the same number of 
iterations in 61 problems, etc. Out of 750 problems, only for 720 problems does the criterion 
(5.1) hold. Therefore, DLDC appears to generate the best search direction and the best 
steplength, on average. 

1.v =
1v = )

)( 1v =
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In the second set of numerical experiments we compare DLDC versus Hestenes and 

Stiefel (HS) ( 1
T

HS k k
k T

k k

y g
y s

β += ) [27], versus Dai and Yuan (DY) ( 1 1
T

DY k k
k T

k k

g g
y s

β + += ) [17] and 

versus Polak-Ribière-Polyak (PRP) ( 1
T

PRP k k
k T

k k

y g
g g

β += ) [35, 36], conjugate gradient algorithms. 

Figures 2-4 present the Dolan and Moré CPU performance profile of DLDC versus HS, DY 
and PRP, respectively. 

An attractive feature of the Hestenes and Stiefel conjugate gradient algorithm is that 
the pure conjugacy condition 1 0T

k ky d + =  always is satisfied, independent of the line search. 
However, for an exact line search the convergence properties of the HS method are similar to 
the convergence properties of the PRP method. Therefore, by Powell’s example [37], the HS 
method with exact line search may not converge for a general nonlinear function. Both the HS 
and PRP methods possess a built-in restart feature that addresses directly to the jamming 
phenomenon. When the step 1k kx x+ −  is small, the factor 1k ky g g+ k= −  in the numerator of 

kβ  tends to zero. Therefore, kβ  becomes small and the new search direction  essentially 
becomes the steepest descent direction 

1kd +

1.kg +−  Hence, both HS and PRP methods 
automatically adjust kβ  to avoid jamming. The performance of these methods is better than 
the performance of DY. On the other hand, the DY method always generates descent 
directions, and in [14] Dai established a remarkable property for the DY conjugate gradient 
algorithm, relating the descent directions to the sufficient descent condition. It is shown that if 
there exist constants γ 1  and γ 2  such that γ 1 ≤ ≤gk γ 2 for all k , then for any p ∈ ( , )0 1 , 

there exists a constant c such that the sufficient descent condition > 0 g d c gi
T

i ≤ −
2

i holds 

for at least ⎣ ⎦pk  indices i k∈ [ , ],0 where ⎣ ⎦j  denotes the largest integer  However, the 
DY method does not satisfy the conjugacy condition. In contrast, observe that in DLDC the 
search directions are always descent directions and the conjugacy condition always is satisfied 
independent of the accuracy of the line search.  

≤ j.

 
Fig. 2. DLDC ( 7 / 8w = , 0.05v = ) versus Hestenes-Stiefel. 
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Fig. 3. DLDC ( 7 / 8w = , 0.05v = ) versus Dai-Yuan. 

 
Fig. 4. DLDC ( ,7 / 8w = 0.05v = ) versus Polak-Ribière-Polyak. 

 
 In the third set of numerical experiments we compare DLDC versus hybrid Dai-Yuan 
( { }{ }max ,min ,hDY DY HS DY

k k k kβcβ β β= − (1 ) /(1 ), c σ σ= − + , 0.8σ = ) [17]. The hDY 

method reduces to the Fletcher and Reeves method [21] if f  is a strictly convex quadratic 
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function and the line search is exact. For a standard Wolfe line search, Dai and Yuan [17] 
proved that it produces descent directions at every iteration and they established the global 
convergence of their hybrid conjugate gradient algorithm when the Lipschitz assumption 
holds. However, the hDY conjugate gradient algorithm does not satisfy the conjugacy 
condition. Figure 5 presents the Dolan and Moré CPU time performance profile of DLDC 
versus hDY. The best performance, relative to the CPU time metric, again was obtained by 
DLDC, the top curve in Figure 5.  

 
Fig. 5. DLDC ( ,7 / 8w = 0.05v = ) versus hybrid Dai-Yuan. 

 
In the fourth set of numerical experiments we compare DLDC versus CG_DESCENT 

by Hager and Zhang [25]. Presently CG_DESCENT is the practical conjugate gradient 
algorithm with more reputation. CG_DESCENT is a modification of HS and was devised in 
order to ensure sufficient descent, independent of the accuracy of the line search. Hager and 
Zhang [25] proved that the direction  in their algorithm satisfies the sufficient descent 

condition 
kd

2(7 / 8)T
k k kg d g≤ − . This is the main reason we considered  in all our 

numerical experiments. CG_DESCENT has a very advanced line search procedure that 
utilizes the “approximate Wolfe conditions” which provides a more accurate way to check the 
usual Wolfe conditions when the iterates are near a local minimum of the function 

7 / 8w =

.f  
However, in CG_DESCENT the conjugacy condition (1.11) holds approximately. 
CG_DESCENT like DLDC uses the loop unrolling to a depth of 5. Figure 6 presents the 
Dolan and Moré CPU time performance profile of DLDC versus CG_DESCENT with Wolfe 
line search. Again, the best performance, relative to the CPU time metric, was obtained by 
DLDC, the top curve in Figure 6.  

Finally we compare DLDC versus L-BFGS (m=3) by Liu and Nocedal [29] as in 
Figure 7, where m is the number of pairs  used. Observe that DLDC is top performer 
again. The differences are significant. The linear algebra in the L-BFGS code to update the 
search direction is very different from the linear algebra used in AMDYN. On the other hand 
the steplength in L-BFGS is determined at each iteration by means of the line search routine 
MCVSRCH, which is a slight modification of the routine CSRCH written by Moré and 
Thuente [30]. 

( , )k ks y
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Fig. 6. DLDC ( ,7 / 8w = 0.05v = ) versus CG_DESCENT by Hager and Zhang. 

 
Fig. 7. DLDC ( ,7 / 8w = 0.05v = ) versus L-BFGS (m=3) by Liu and Nocedal. 

 
In the following, in Figure 8, we present the performance profile of DLDC 
( , ) versus HS, PRP, CG_DESCENT and L-BFGS (m=3), subject to cpu 
time metric. We see that among these algorithms DLDC is top performer. Observe that these 
algorithms can be classified in three major classes: DLDC and CG_DESCENT, HS and PRP, 
and finally the limited memory quasi-Newton L-BFGS. 

7 / 8w = 0.05v =
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Fig. 8. DLDC ( , ) versus HS, PRP, CG_DESCENT and L-BFGS (m=3).  7 / 8w = 0.05v =

 
In order to see the performances of the algorithm we present a sensitivity study of DLDC 
subject to the variation of  and  parameters. Both these parameters emphasize the 
importance of the conjugacy condition and the sufficient descent condition, respectively. 
From (2.2), (2.3) and (2.6)-(2.11) we have 

v w
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∂
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∂ ∆ ).                                    (5.3) 

 
Observe that if the line search is exact ( 1 0T

k ks g + = ) then from (5.3) we see that the algorithm 
is not sensitive to the variation of  However, in our algorithm the line search is not exact.   .v

Table 1 presents the total number of iterations (#itert), the total number of function 
and its gradient evaluations (#fgt) and the total CPU time (cput) for solving the above set of 
750 unconstrained optimization test problems for 7 / 8w =  and for different values of  For 
example, for solving the set of 750 problems with 

.v
7 / 8w =  and 0v = , the total number of 

iteration is 260792, the total number of function and its gradient evaluations is 654859 and the 
total CPU time is 308.14 seconds, etc.  

In Table 1 we have a computational evidence of the sensitivity of DLDC 
corresponding to a set of 12 numerical experiments subject to variation of  parameter. The 
best results corresponding to this set of 12 numerical experiments are obtained for  
Subject to the CPU time metric the average of the total CPU time corresponding to these 12 
numerical experiments, for solving 750 problems in each experiment, is 3742.13/12=311.84 
seconds. The largest deviation is of 76.07 seconds and corresponds to the numerical 
experiment in which  Therefore, in all these 12 numerical experiments the maximum 
deviation is of 76.07/750=0.1 seconds per problem. 

v
0.05.v =

0.2v =
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Table 1. Sensitivity of the DLDC subject to  .v 7 / 8w = . 

v #itert #fgt cput 
0 260792 654859 308.14 

0.001 259291 641597 301.19 
0.005 266787 663287 335.99 
0.01 268870 691054 376.59 
0.02 266274 623824 279.81 
0.05 258153 608602 277.44 
0.07 260234 641310 298.78 
0.1 260116 649701 299.42 
0.2 278611 679622 387.91 
0.5 260216 633033 290.69 
0.7 261112 625176 283.76 
1 279770 664769 302.41 

 
In the following we present the sensitivity of DLDC subject to the variation of  parameter. 
Table 2 presents the total number of iterations, the total number of function and its gradient 
evaluations and the total CPU time for solving the above set of 750 unconstrained 
optimization test problems for  and for 6 different values of  

w

0.05v = .w
 

Table 2. Sensitivity of the DLDC subject to  .w 0.05v = . 
w #itert #fgt cput 

0.5 257634 609194 278.85 
0.6 261100 628040 288.59 
0.7 256887 605325 274.09 
0.8 259572 627447 292.52 
0.9 257143 612870 281.27 
1 258642 613259 278.33 

 
The best results corresponding to this set of 6 numerical experiments are obtained for 

 Subject to CPU time metric for solving 750 problems in each of these 6 numerical 
experiments the total CPU time difference is of 292.52 

0.7.w =
−  274.09 = 18.43 seconds. Therefore, 

in all these 6 numerical experiments the maximum deviation is of 18.43/750=0.024 seconds 
per problem. Observe that the average of the total CPU time corresponding to these 6 
numerical experiments is 1693.65/6=282.27 seconds. The largest deviation is of 292.52 −  
282.27 = 10.25 seconds. Therefore, in all these 6 numerical experiments the maximum 
deviation is of 10.25/750=0.013 seconds per problem. Practically, DLDC is very little 
sensitive to the variation of  .w
 We now present comparisons between DLDC and CG_DESCENT conjugate gradient 
algorithms for solving some applications from MINPACK-2 test problem collection [9]. In 
Table 3 we present these applications, as well as the values of their parameters. The infinite-
dimensional version of these problems is transformed into a finite element approximation by 
triangulation. Thus a finite-dimensional minimization problem is obtained whose variables 
are the values of the picewise linear function at the vertices of the triangulation. The 
discretization steps are  and 1000nx = 1000,ny =  thus obtaining minimization problems 
with 1,000,000 variables. 
 

Table 3. Applications from MINPACK-2 collection. 
A1 Elastic-Plastic Torsion [23, pp. 41-55], 5.c =  
A2 Pressure Distribution in a Journal Bearing [13], 10,b = 0.1.ε =  

A3 Optimal Design with Composite Materials [24], 0.008.λ =  
A4 Steady-State Combustion [8, pp. 292-299], [10], 5.λ =  
A5 Minimal Surfaces with Enneper conditions [31, pp. 80-85]. 
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A comparison between DLDC ( 0.05,v = 0.6,w =  Powell restart criterion, 

6( ) 10kf x −
∞

∇ ≤ , ) and CG_DESCENT (Wolfe line search, default settings, 410ρ −=
6( ) 10kf x −

∞
∇ ≤ ) for solving these applications is given in Table 4. 

 
Table 4. Performance of DLDC and CG_DESCENT. 

1,000,000 variables. cpu seconds. 
DLDC CG_DESCENT  

#iter #fg cpu  #iter #fg cpu  
A1 1111 2253 787.09 1145 2291 1087.83 
A2 2833 5694 2151.86 3368 6737 3369.77 
A3 4777 9595 5695.39 4841 9684 8058.66 
A4 1413 2864 2340.41 1806 3613 4213.00 
A5 1279 2580 1360.88 1226 2453 1773.95 

TOTAL 11413 22986 12335.63 12386 24778 18503.21 
 

Form Table 4 we see that subject to the CPU time metric the DLDC algorithm is top 
performer again, and the difference is significant, about 6167.58 seconds for solving all these 
5 applications. 

The DLDC and CG_DESCENT algorithms (and codes) are different in many 
respects. Since both of them use the Wolfe line search (however, implemented in different 
manners), these codes mainly differ in their choice of the search direction. DLDC appears to 
generate a better search direction, on average. The direction 1kd +  used in DLDC is more 
elaborate, it satisfies both the sufficient descent condition and the conjugacy condition in a 
restart environment. Although the update formulae (2.2), (2.3) and (2.7)-(2.11) are more 
complicated, this computational scheme proved to be more efficient and more robust in 
numerical experiments and applications. However, since each of these codes are different in 
the number of parameters which can be modified by the user to establish a context of 
optimization (CG_DESCENT has 26 parameters while DLDC has only 9 parameters) and in 
the amount of linear algebra required in each iteration, it is quite clear that different codes will 
be superior in different problem sets.  
 
6. Conclusions 
For solving large scale unconstrained optimization problems we have presented an 
accelerated conjugate gradient algorithm that for all  both the descent and the conjugacy 
conditions are guaranteed. In our algorithm the search direction is selected as a linear 
combination of 

0k ≥

1kg +−  and  where the coefficients in this linear combination are selected 
in such a way that both the descent and the conjugacy condition are satisfied at every 
iteration. The step length is modified by an acceleration scheme which proved to be very 
efficient in reducing the values of the minimizing function along the iterations. For a test set 
consisting of 750 problems with dimensions ranging between 1000 and 10,000, the CPU time 
performance profiles of DLDC was higher than those of HS, PRP, DY, hDY, CG_DESCENT 
with Wolfe line search and limited memory quasi-Newton method L-BFGS. A number of 5 
applications from MINPACK2 test problem collection illustrate the performances of DLDC 
versus CG_DESCENT. At present, for the above test problems and applications it follows 
that DLDC is the fastest and the most robust conjugate gradient algorithm. 

,ks
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