
Another accelerated conjugate gradient
algorithm with guaranteed descent

and conjugacy conditions for large-scale
unconstrained optimization

Neculai Andrei
Research Institute for Informatics,

Center for Advanced Modeling and Optimization,
8-10, Averescu Avenue, Bucharest 1, Romania,

E-mail: nandrei@ici.ro

Abstract. In this paper we suggest another accelerated conjugate gradient algorithm that
for all both the descent and the conjugacy conditions are guaranteed. The search
direction is selected as

where , The coefficients

0k ≥
1 1 1 1(/) (/)T T T T

k k k k k k k k k k k k k kd g y g y s s t s g y sθ+ + + += − + − ,s

1 1()k kg f x+ += ∇ 1 .k k ks x x+= − kθ and in this linear
combination are selected in such a way that both the descent and the conjugacy condition
are satisfied at every iteration. It is shown that both for uniformly convex functions and for
general nonlinear functions the algorithm with strong Wolfe line search generates
directions bounded away from infinity. The algorithm uses an acceleration scheme
modifying the steplength

kt

kα in such a manner as to improve the reduction of the function
values along the iterations. Numerical comparisons with some conjugate gradient
algorithms using a set of 75 unconstrained optimization problems with different
dimensions, some of them from the CUTE library, show that the computational scheme
outperform the known conjugate gradient algorithms like Hestenes and Stiefel; Polak,
Ribière and Polyak; Dai and Yuan or the hybrid Dai and Yuan; CG_DESCENT with
Wolfe line search by Hager and Zhang, as well as the quasi-Newton L-BFGS by Liu and
Nocedal.

Keywords: Conjugate gradient, Wolfe line search, descent condition, conjugacy condition,
unconstrained optimization.
AMS subject classifications: 49M20, 65K05, 90C30

1. Introduction
For solving the unconstrained optimization problems
 min ()

nx R
f x

∈
, (1.1)

where : nf R → R is a continuously differentiable function, bounded from below, one of the
most elegant and probably the simplest methods are the conjugate gradient methods. For
solving this problem, starting from an initial guess 0

nx R∈ , a nonlinear conjugate gradient

method, generates a sequence { }kx as:

 1k k k kx x dα+ = + , (1.2)
where 0kα > is obtained by line search, and the directions are generated as: kd
 1 1k k k kdd g β+ += − + 0 0g, d = − . (1.3)
In (1.3) kβ is known as the conjugate gradient parameter, 1k ks x x+ k= − and .
The search direction , assumed to be a descent one, plays the main role in these methods.
On the other hand, the stepsize

()k kg f x= ∇

kd

kα guarantees the global convergence in some cases and is

 1

crucial in efficiency. Different conjugate gradient algorithms correspond to different choices
for the scalar parameter .kβ Plenty of conjugate gradient methods are known and an excellent
survey of these methods with a special attention on their global convergence is given by
Hager and Zhang [26]. Line search in the conjugate gradient algorithms often is based on the
standard Wolfe conditions [41, 42]
 () () T

k k k k k k k ,f x d f x g dα ρα+ − ≤ (1.4)

 , (1.5) ()T
k k k k kg x d d g dα σ+ ≥ T

k

1.where is supposed to be a descent direction and 0 1kd / 2ρ σ< ≤ < <
A numerical comparison of conjugate gradient algorithms (1.2) and (1.3) with Wolfe line
search, for different formulae of parameter kβ computation, including the Dolan and Moré
performance profile [19], is given in [6].
If the initial direction is selected as 0d 0 ,d g0= − and the objective function to be minimized
is a convex quadratic function

1()
2

T Tf x x Ax b x c= + + (1.6)

and the exact line searches are used, that is

0
arg min (),k k kf x d

α
α α

>
= + (1.7)

then the conjugacy condition
 0T

i jd Ad = (1.8)
holds for all This relation (1.8) is the original condition used by Hestenes and Stiefel
[27] to derive the conjugate gradient algorithms, mainly for solving symmetric positive-
definite systems of linear equations. Using (1.3) and (1.6)-(1.8) it can be shown that

.i j≠

1kx + is

the minimum of the quadratic function (1.6) in the subspace { }1 2, , ,k kx span g g g+ … and

the gradients are mutually orthogonal unless that 1 2, , , kg g g… 0kg = [20]. It follows that
for convex quadratic functions the solution will be found after at most iterations. Powell
[38] shown that if the initial search direction is not then even for quadratic functions (1.6)
the conjugate gradient algorithms does not terminate within a finitely number of iterations. It
is well known that the conjugate gradient algorithm converges at least linearly [34]. An upper
bound for the rate of convergence of conjugate gradient algorithms was given by Yuan [43].

n
0g

Let us denote For a general nonlinear twice differential function 1 .k ky g g+= − k ,f
by the mean value theorem, there exists some (0,1)ξ ∈ such that
 (1.9) 2

1 1 (T T
k k k k k k k kd y d f x d dα ξα+ += ∇ +) .

Therefore, it seems reasonable to replace (1.8) with the following conjugacy condition
 1 0.T

k kd y+ = (1.10)
In order to accelerate the conjugate gradient algorithm Perry [33] (see also Shanno [39])
extended the conjugacy condition by incorporating the second order information. He used the
secant condition where is a symmetric approximation to the inverse
Hessian. Since for quasi-Newton method the search direction

1 ,k k kH y s+ = kH

1kd + is computed as
 it follows that 1 1 ,k kd H g+ += − 1k+

1 ,T
+

1
T
+

1 1 1 1 1() ()T T T
k k k k k k k k k kd y H g y g H y g s+ + + + += − = − = −

thus obtaining a new conjugacy condition. Recently, Dai and Liao [15] extended this
condition and suggested the following new conjugacy condition
 , (1.11) 1

T
k k k kd y vg s+ = −

where is a scalar. 0v ≥

 2

Conjugate gradient algorithms are based on the conjugacy condition. To minimize a convex
quadratic function in a subspace spanned by a set of mutually conjugate directions is
equivalent to minimize this function along each conjugate direction in turn. This is a very
good idea, but the performance of these algorithms is dependent on the accuracy of the line
search. However, in conjugate gradient algorithms we always use inexact line search. Hence,
when the line search is not exact, the “pure” conjugacy condition (1.10) may have
disadvantages. Therefore, it seems more reasonable to consider in conjugate gradient
algorithms the conjugacy condition (1.11). When the algorithm is convergent observe that

 tends to zero along the iterations, and therefore conjugacy condition (1.11) tends to
the pure conjugacy condition (1.10).

1
T
k kg s+

Conjugate gradient algorithm (1.2) and (1.3) with exact line search always satisfy the
condition

2
1 1 1

T
k k kg d g+ + += − which is in a direct connection with the sufficient descent

condition

2
1 1 1

T
k k kg d w g+ + +≤ − (1.12)

for some positive constant The sufficient descent condition has been used often in the
literature to analyze the global convergence of the conjugate gradient algorithms with inexact
line search based on the strong Wolfe conditions. The sufficient descent condition is not
needed in the convergence analyses of the Newton or quasi-Newton algorithms. However, it
is necessary for the global convergence of conjugate gradient algorithms [18].

0.w >

 Using (1.11) Dai and Liao [15] obtained a new conjugate gradient algorithm

 1() .
T

DL k k k
k T

k k

g y vs
y s

β + −
= (1.13)

For an exact line search we see that 1kg + is orthogonal to Therefore, for an exact line
search, the DL method reduces to the HS method. Observe that due to the Powell’s example,
the DL method may not converge for an exact line search. To overcome this and to ensure
convergence Dai and Liao modified their formula as

.ks

 1max ,0 .
T T

DL k k k k
k T

k k k k

g y g sv
y s y s

β + +⎧ ⎫
= −⎨ ⎬

⎩ ⎭
1

T
+ (1.14)

If the level set { }0: () ()nS x R f x f x= ∈ ≤ is bounded and the gradient ()f x∇ is Lipschitz

continuous on and if satisfies the sufficient descent condition (1.12), it is shown in [15]
that DL+ implemented with a strong Wolfe line search is globally convergent. Numerical
results are reported in [15] for and

,S kd

0.1v = 1v = . However, for different choices of , the
numerical results are quite different.

v

In this paper we suggest a new conjugate gradient algorithm that for all both
the descent and the conjugacy conditions are guaranteed. In section 2 we present the search
direction, as well as the main ingredients for its computation. The search direction is selected
as a linear combination of and where the coefficients in this linear combination are
selected in such a way that both the descent and the conjugacy condition to be satisfied at
every iteration. In section 3 we prove the convergence of the algorithm. It is shown that both
for uniformly convex functions and for general nonlinear functions the corresponding
algorithm with strong Wolfe line search generates directions bounded away from infinity.
Section 4 is devoted to present the algorithm in its accelerated version. The idea of this
computational scheme is to take advantage that the step lengths

0k >

1kg +− ,ks

kα in conjugate gradient
algorithms are very different from 1. Therefore, we suggest we modify kα in such a manner
as to improve the reduction of the function values along the iterations. In section 5 some
numerical experiments and performance profiles of Dolan-Moré corresponding to this new
conjugate gradient algorithm are given. The performance profiles correspond to a set of 75
unconstrained optimization problems presented in [1]. Each problem was tested 10 times for a

 3

gradually increasing number of variables: 1000,2000, ,10000n = … . It is shown that this
new conjugate gradient algorithm outperforms the classical Hestenes and Stiefel [27], Dai and
Yuan [17], Polak, Ribière and Polyak [35, 36], hybrid Dai and Yuan [17] conjugate gradient
algorithms, the CG_DESCENT conjugate gradient algorithm with Wolfe line search by Hager
and Zhang [25] and also L-BFGS by Liu and Nocedal [29].

2. Conjugate gradient algorithm with guaranteed descent
 and conjugacy conditions
For solving the minimization problem (1.1) let us consider the following conjugate gradient
algorithm
 1k k k kx x dα+ = + , (2.1)
where 0kα > is obtained by the Wolfe line search, and the directions are generated as: kd
 1 1 ,k k k kd g ksθ β+ += − + (2.2)

 1
T T
k k k k k

k T
k k

y g t s g
y s

β 1+ +−
= , (2.3)

0d g= − 0 , where kθ and are scalar parameters which follows to be determined. Observe
that in , given by (2.2), is scaled by parameter

kt

1kd + 1kg + kθ and the parameter is changed
at every iteration. Algorithms of this form, or variations of them, have been studied by many
authors. For example, Andrei [3,4,5] considers a preconditioned conjugate gradient algorithm
where the preconditioner is a scaled memoryless BFGS matrix and the parameter scaling the
gradient is selected as the spectral gradient. On the other hand Birgin and Martínez [11]
suggested a spectral conjugate gradient method, where . Yuan and Stoer [44]
studied the conjugate gradient algorithm on a subspace, where the search direction at the

th iteration () is taken from the subspace

kt

/T T
k k k ks s s yθ = k

1kd +

k − 1k ≥ { }1,k kspan g d+ . Observe that if for every

1,k ≥ 1kθ = and kt v= , then (2.2) reduces to the Dai and Liao direction (1.13).
In our algorithm for all the scalar parameters 0k ≥ kθ and in (2.2) are determined

in such a way that both the descent and the conjugacy conditions are satisfied. Therefore,
from the descent condition (1.12) we have

kt

2

2 21 1 1
1 1

()() ()T T T
k k k k k k

k k k kT T
k k k k

y g s g s gg t
y s y s

θ + + +
+ +− + − = −w g

1),+

 (2.4)

and from the conjugacy condition (1.11)
 (2.5) 1 1 1 (T T T T

k k k k k k k k k ky g y g t s g v s gθ + + +− + − = −

where and are known scalar parameters. Observe that in (2.4) we modified the
classical sufficient descent condition (1.12) with equality. It is worth saying that the main
condition in any conjugate gradient algorithm is the descent condition or the
sufficient descent condition (1.12). In our algorithm we have selected close to 1. This is
enough a reasonable value. For example, Hager and Zhang [25] show that in their
CG_DESCENT algorithm On the other hand, the conjugacy condition (1.10) or its
modification (1.11) is not so stringent. In fact very few conjugate gradient algorithms satisfy
this condition. For example, the Hestenes and Stiefel (HS) algorithm has this property that the
pure conjugacy condition always holds, independent of the line search.

0v > 0w >

0T
k kg d <

w

7 / 8.w =

If , then (2.5) is the “pure” conjugacy condition. However, in our algorithm in
order to accelerate the algorithm and to incorporate the second order information we take

.

0v =

0v >

 4

Now, let us define

2
1 1 1()() (T T T

k k k k k k k ky g s g g y s+ + +∆ = −), (2.6)

 1()T
k k k ks g +∆ = ∆ ,

1,
 (2.7)

 1()T T
k k k k ka v s g y g+ += + (2.8)

2

1 1() ()(T T T
k k k k k k k kb w g y s y g s g+ += + 1).+ (2.9)

Supposing that and 0k∆ ≠ 1 0,T
k ky g + ≠ then from the linear algebraic system given by (2.4)

and (2.5) we get

2

1() ()T T
k k k k k k k

k
k

b y g a y s g
t + −
=

∆
1+ , (2.10)

 1

1

() ,
T

k k k k
k T

k k

a t s g
y g

θ +

+

−
= (2.11)

with which the parameter kβ and the direction 1kd + can immediately be computed.

Proposition 2.1. If

2

1
2

1 1

1 ,
2

k
T
k k k

g

y g g
σ +

+ +

< ≤
+

 (2.12)

then for all 1,k ≥ 0k∆ < .

Proof. Observe that
 (2.13) 1 .T T T T

k k k k k k k ks g s y s g s y+ = + <
The Wolfe condition (1.5) gives
 (2.14) 1 .T T T T

k k k k k k k kg s g s y s g sσ σ σ+ ≥ = − + 1+

Since 1,σ < we can rearrange (2.14) to obtain

 1 .
1

T
k k k kg s y sTσ

σ+
−

≥
−

 (2.15)

Now, combining this lower bound for with the upper bound (2.13) we get 1
T
k kg s+

 1 max 1, .
1

T T
k k k kg s y s σ

σ+
⎧ ⎫≤ ⎨ ⎬−⎩ ⎭

 (2.16)

Since 1/ 2σ > , from (2.16) we can write

 1 .
1

T
k k k kg s y sTσ

σ+ <
−

 (2.17)

If (2.12) is true, then
2

1 1 .
1

T
k k ky g gσ

σ + +≤
−

Again, observe that the Wolfe condition gives (if 0T
k ky s > 0kg ≠). Therefore,

2

11
T T T
k k k k k k ky s g y y s g 1

σ
σ + ≤

− + . (2.18)

From (2.17) we can write

2

1 1 1 1 ,
1

T T T T T
k k k k k k k k k k ks g y g y s y g y s gσ

σ+ + + +< ≤
−

 (2.19)

i.e. 0k∆ < for all ■ 1.k ≥
Some remarks are in order.

 5

1) Suppose that 0kg ≠ for all , otherwise a stationary point is obtained. From (2.4) we
can write

1k ≥

2

1() ()T
k k k k ks g w gβ θ+ = − 1+ . (2.20)

Since tends to zero (is a descent direction) it follows that 1
T
k ks g + kd kθ tends to and

hence
0,w >

0.kθ > Therefore, there exists a constant such that 1 0c > 10 .k cθ< <

2) From (2.12) observe that 1σ < . Besides, since for all ,k 0k∆ < then there exists a

positive constant such that 2 0c > 2.k c∆ > Also, in order to have 0k∆ < the parameter σ

in the second Wolfe condition (1.5) is modified as in (2.12). Observe that since
2 0T

k k kg d w g= − < , i.e. is a descent direction, it follows that kd 2
1 1 .T

k k kg y g+ +→

Therefore 1/ 2,σ → i.e. 0 1ρ σ< < < , since usually ρ is selected enough small to ensure
the reduction of function values along the iterations.
3) By the Wolfe conditions we have But from the

descent condition (2.4) it follows that
1() (1)T T

k k k k k k ky s g g s g sσ+= − ≥ − .T

2 .T T
k k k k k k kg s g d w gα α= = − It is easy to prove that

there exist a positive scalar ω such that 0kα ω≥ > (see [25], Lemma 2.1). Hence,
2 2(1) (1) (1) 0T T

k k k k k k ky s g s w g w gσ α σ ω σ≥ − = − − ≥ − > .

Therefore, if , then by Wolfe conditions, for all . On the other hand,

, and since tends to zero, from (2.19) it follows that

0kg ≠ 0,k ≥ 0T
k ky s >

0w > 1
T
k ks g +

2
1 1()T T T

k k k k k k kw g y s y g s g+ +> 1+ .

Therefore, for all and is bounded away from zero. 0kb > 0k ≥

3. Convergence analysis
In this section we analyze the convergence of the algorithm (2.1) and (2.2), where kθ and kβ
are given by (2.11) and (2.3) respectively, and 0d g0= − . In the following we consider that

 for all , otherwise a stationary point is obtained. Assume that: 0kg ≠ 1k ≥
(i) The level set { }0: () ()nS x R f x f x= ∈ ≤ is bounded, i.e. there exists a positive

constant such that for all 0B > ,x S∈ .x B≤
(ii) In a neighborhood of , the function N S f is continuously differentiable and its

gradient is Lipschitz continuous, i.e. there exists a constant such that 0L >
() ()f x f y L x∇ −∇ ≤ − y , for all , .x y N∈

Under these assumptions on f there exists a constant 0Γ ≥ such that ()f x∇ ≤ Γ for all

.x S∈ In order to prove the global convergence, we assume that the step size kα in (2.1) is
obtained by the strong Wolfe line search, that is,
 () () T

k k k k k k k ,f x d f x g dα ρα+ − ≤ (3.1)

 ()T T
k k k k k kg x d d g dα σ+ ≤ . (3.2)

where ρ and σ are positive constants such that 0 1.ρ σ< ≤ <
For the conjugate gradient algorithm (2.2) where kθ and kβ are given by (2.11) and (2.3)
respectively, with strong Wolfe line search, the following Lemmas can be proved. The first
two Lemmas were established by Zoutendijk [45] and Wolfe [41, 42], but for completeness
we present them here (see also [28]).

 6

Lemma 3.1. Suppose that the assumptions (i) and (ii) hold. Consider that kα is obtained by
the strong Wolfe line search (3.1) and (3.2) and the descent condition hold. Then

0

.T
k k k

k
g dα

∞

=

− < ∞∑ (3.3)

Proof. From (3.1) and the descent condition (2.4) we have that
 1 0.T

k k k k kf f g dρα+ − ≤ ≤ (3.4)

Therefore,{ }kf is a decreasing sequence. Since f is bounded below there exist a constant
*f such that

 *lim .kk
f f

→∞
= (3.5)

From (3.5) it follows that
*

1 1 0 1
0 0
() lim () lim()

n

k k k k nn nk k
0 .f f f f f f f

∞

+ + +→∞ →∞
= =

− = − = − = −∑ ∑ f

.∞

Hence, From (3.4) it follows (3.3). ■ 1
0
()k k

k
f f

∞

+
=

− < +∑

Lemma 3.2. Consider the conjugate gradient algorithm (2.2) where kθ and kβ are given by
(2.11) and (2.3) respectively and kα is obtained by the strong Wolfe line search (3.1) and
(3.2). Suppose that the assumptions (i) and (ii), as well as the descent condition hold. Then

2

2
0

() .
T
k k

k k

g d
d

∞

=

< +∞∑ (3.6)

Proof. From the strong Wolfe line search and the assumptions (i) and (ii), we get

2
1(1) () .T T

k k k k k k kg d g g d L dσ α+− − ≤ − ≤
Therefore,

 2

(1) .
T
k k

k
k

g d
L d
σα − −

≥ (3.7)

We know that for all . Hence, using Lemma 3.1 we get ,k 0T
k kg d <

2

2
0 0

() ()
1

T
Tk k

k k k
k kk

g d L g d
d

α
σ

∞ ∞

= =

.≤ − <
−∑ ∑ +∞ ■

Observe that (3.6), known as the Zoutendijk condition, is obtained under the assumptions that
the strong Wolfe line search hold and that is a descent direction, independent by its form. kd

Lemma 3.3. Consider the conjugate gradient algorithm (2.2) where kθ and kβ are given by
(2.11) and (2.3) respectively and kα is obtained by the strong Wolfe line search (3.1) and
(3.2). Suppose that the assumptions (i) and (ii) hold, and [0,2].k wθ ∈ Then either

 liminf 0kk
g

→∞
= (3.8)

or

 7

4

2
0

.k

k k

g

d

∞

=

< ∞∑ (3.9)

Proof. Squaring the both terms of 1 1k k k kd g ksθ β+ ++ = we get

2 22 2
1 1 1 12 .T

k k k k k k k kd g d gθ θ β+ + + ++ + = 2s

But, from (2.4)
2

1 1 1 .T
k k kd g w g+ + += − Therefore,

2 22

1 1(2)k k k k kd w gθ θ β+ += − − + 22 .ks (3.10)

Observe that for [0, 2],k wθ ∈ and is bounded below by 2 2k k wθ θ− ≤ 0 2w− . On the other

hand from (2.2) we have
2

1 1 1 1 .T T
k k k k k k kg d g s gβ θ+ + + +− = − Using the strong Wolfe line

search we get

2
1 1 1 .T T

k k k k k k kg d g s gσ β θ+ + ++ ≥ (3.11)

Now, considering the following inequality true for all 2 2 2() (1)(a b a bσ σ+ ≤ + + 2)
, , 0,a b σ ≥ with 1 1

T
k ka g d+ += and T

k k kb gβ= s after some algebra we get

42 2 2

1 1 1() ()T T
k k k k k kg d g s e gβ+ + ++ ≥ ,

2

 (3.12)

where 2 /(1)ke θ σ= + is a positive constant.
Using (3.10) and (3.12) we can write

22 2
12 21 1

1 12 2 2 2
1 1

() () 1 () (
T T

kT Tk k k k
k k k k

k k k k

dg d g s g d g s
d s d s

++ +
+ +

+ +

⎡ ⎤
+ = +⎢ ⎥

⎢ ⎥⎣ ⎦
)

 ()
2

2 22 2 2
1 1 12 2

1

()1 () (2)
T

T k k
k k k k k k k

k k

g sg d w g s
d s

θ θ β+ + +

+

⎡ ⎤
= + − − +⎢ ⎥

⎢ ⎥⎣ ⎦

2

4 22
1 12 2

1

()1 (2)
T
k k

k k k k
k k

g se g w g
d s

θ θ+ +

+

⎡ ⎤
≥ − −⎢ ⎥

⎢ ⎥⎣ ⎦

4 2

1 2
2 2

1 1

() 1(2)
T

k k k
k k

k k

g g se w
d s

θ θ+

+ +

⎡ ⎤
= − −⎢

⎢ ⎥⎣ ⎦
2 .

kg
⎥ (3.13)

From Lemma 3.2 we know that
2

2

()lim 0.
T
k k

k
k

g s
s→∞

=

On the other hand, for [0, 2]k wθ ∈ , 2 2k k wθ θ− is finite. Therefore, if (3.8) is not true, then
2 2

2 2
1

() (2)lim 0.
T
k k k k

k
k k

g s w
s g

θ θ
→∞

+

−
=

Hence,

42 2

11 1
2 2

1 1

() ()T T
kk k k k

k k

gg d g s e
d s d

++ +

+ +

+ ≥ 2
k

, (3.14)

holds for all sufficiently large Therefore, by Lemma 3.2 it follows that (3.9) is true. ■ .k

 8

Using Lemma 3.3 we can prove the following proposition which has a crucial role in proving
the convergence of our algorithm.

Proposition 3.1. Consider the conjugate gradient algorithm (2.2) where kθ and kβ are given
by (2.11) and (2.3) respectively and kα is obtained by the strong Wolfe line search (3.1) and
(3.2). Suppose that the assumptions (i) and (ii) hold, and [0,2].k wθ ∈ If

 2
1

1
k kd≥

= ∞∑ , (3.15)

then
 liminf 0.k

k
g

→∞
= (3.16)

Proof. Suppose by contradiction that there is a positive constant γ such that kg γ≥ for all

 Therefore, from Lemma 3.3 it follows that 1.k ≥
4

2 24
1 1

1 1 k

k kk k

g

d dγ≥ ≥

≤ < ∞∑ ∑

which is in contradiction with (3.15). ■

Therefore, the iteration can fail, in the sense that 0kg γ≥ > for all only if ,k kd →∞
sufficiently rapidly.

Convergence for uniformly convex functions. For uniformly convex functions we can prove
that the norm of the direction generated by (2.2), where kd kθ and kβ are given by (2.11)
and (2.3) respectively, is bounded. Thus by Proposition 3.1 we can prove the following result.

Theorem 3.1. Suppose that the assumptions (i) and (ii) hold. Consider the method (2.1)-(2.3)
and (2.11), where is a descent direction and kd kα is obtained by the strong Wolfe line
search. Suppose that there exists the positive constants and t such that 1c 1k cθ < and

kt < t for all If there exists a constant 1.k ≥ 0µ > such that

2(() ()) ()Tf x f y x y x yµ∇ −∇ − ≥ − (3.17)

for all , ,x y S∈ then
 lim 0.kk

g
→∞

= (3.18)

Proof. From (3.17) it follows that f is a uniformly convex function in and therefore S

2 .T

k k ky s sµ≥ (3.19)

Again, by Lipschitz continuity .ky L s≤ k Now, from (2.3) we have that

1 11 1
2 2

T T
k k k kk k k k

k k kT T
k k k k k k

y g s gy g s gt t
y s y s s s

β
µ µ

+ ++ += − ≤ +

 1 1
2 2 .k k k k

kk k

L s g s g L tt
ss s µµ µ

+ + + Γ
≤ + = (3.20)

Hence,

 9

 1 1 1 .k k
k

L t L td c s c
sµ µ+

⎛ ⎞+ Γ +
≤ Γ + = + Γ⎜

⎝ ⎠
⎟ (3.21)

Which implies that (3.15) is true. Therefore, by Proposition 3.1 we have (3.16), which for
uniformly convex functions is equivalent to (3.18). ■

Observe that in Lemma 3.3 and in Proposition 3.1 kθ is bounded as 0 2k w.θ≤ ≤ We know
that kθ tends to Therefore, in Theorem 3.1 the positive constant is bounded as

.w 1c

1 2 .c w≤

Convergence for general nonlinear functions. Firstly we prove that in very mild conditions
the direction generated by (2.2), where kd kθ and kβ are given by (2.11) and (2.3)
respectively, is bounded. Again, by Proposition 3.1 we can prove the following result.

Theorem 3.2. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient
algorithm (2.1), where the direction 1kd + is given by (2.2) and (2.3), and the step length kα is
obtained by the strong Wolfe line search (3.1) and (3.2). Assume that for all there exist
positive constants and such that

0k ≥
0c > 1 0c > 1 /T

k k ky g c s+ ≤ and 1k cθ < respectively,

then liminf 0.kk
g

→∞
=

Proof. From (2.3) using (2.10) after some algebra we get

2

11 1
T

kk k k
k T

k k k k

gy g b a
y s

β ++ ⎛ ⎞
= − +⎜ ⎟∆ ∆⎝ ⎠

.k (3.22)

Suppose that otherwise a stationary point is obtained. By the Wolfe line search

 Since is a descent direction for all it follows that

0,kg ≠

0.T
k ky s > kd 0,k ≥ ks tends to zero.

Hence, there exists a positive constant such that 3 0c >

 1 3 .
T
k k

T
k k k

y g c
y s s

+ ≤ (3.23)

Now, observe that since for all , and 0k ≥ 0kb > 0,k∆ < it follows that / 0k kb− ∆ > .
Besides, from (2.6) and (2.9) we can write

 1()((1) .
T T

k k k

k k

b y g sw w + +− = + +
∆ −

1)k kg
∆

 (3.24)

Since 0k−∆ > and tends to zero along the iterations, it follows that 1
T
k ks g + /kb− ∆k tends to

 Therefore, there exists a positive constant such that 0.w > 4 0c > 41 1 / .k kb c< − ∆ ≤

Again observe that if from the Wolfe line search Hence, there exists a

positive constant such that

0kg ≠ 0.T
k ky s >

5 0c > 50 /T
k k ky s c s< ≤ for all 0.k ≥

Now, from (2.8) and (2.16) we have
 1 1 1() ()T T T T

k k k k k k k k ka v s g y g v s g y g+ + += + ≤ + 1+

1max 1,
1

T T
k k k kv y s y gσ

σ +
⎧ ⎫≤ +⎨ ⎬−⎩ ⎭

5 max 1,
1k k

c cv
s s

σ
σ

⎧ ⎫≤ +⎨ ⎬−⎩ ⎭

 10

 5
1max 1, .

1 k

vc c
s

σ
σ

⎛ ⎞⎧ ⎫= ⎨ ⎬⎜ −⎩ ⎭⎝ ⎠
+ ⎟ (3.25)

Hence, since 2k c∆ > from (3.25) it follows that

2 2

1
5

2

1max 1, .
1

k
k

kk

g
a vc c

c s
σ
σ

+ ⎛ ⎞ Γ⎧ ⎫≤ +⎨ ⎬⎜ −∆ ⎩ ⎭⎝ ⎠
⎟ (3.26)

With these, from (3.22) we can write

2

11 1
T

kk k k
k kT

k k k k

gy g b a
y s

β ++≤ − +
∆ ∆

2
3

4 5
2

1max 1,
1k k

c c vc c
s c

σ
σ

⎛ ⎞ Γ⎧ ⎫≤ + +⎨ ⎬⎜ ⎟−⎩ ⎭⎝ ⎠ s

2

3 4 5
2

1max 1, .
1 k

c c vc c
c s

σ
σ

⎡ ⎤⎛ ⎞ Γ⎧ ⎫= + +⎨ ⎬⎢ ⎥⎜ ⎟−⎩ ⎭⎝ ⎠⎣ ⎦
 (3.27)

From (2.2) we have
 1 1k k k kd gθ β+ +≤ + ks

2

1 3 4 5
2

1max 1, ,
1 k

k

c c c vc c s
c s

σ
σ

⎡ ⎤⎛ ⎞ Γ⎧ ⎫≤ Γ + + + ≡⎨ ⎬⎢ ⎥⎜ ⎟−⎩ ⎭⎝ ⎠⎣ ⎦
E (3.28)

where is a positive constant. Therefore, for all , E 0k ≥ kd E≤ , which implies (3.15).

Therefore, by Proposition 3.1, since is a descent direction, we have kd liminf 0.kk
g

→∞
= ■

Observe that if for every 1,k ≥ 1kθ = and 0kt = , then (2.2) reduces to the Hestenes and
Stiefel direction. For an exact line search the HS algorithm reduces to that of Polak-Ribière
and Polyak (PRP). Therefore, the convergence properties of the HS method should be similar
to the convergence properties of the PRP method. In particular, for a general nonlinear
function by the Powell’s example, the HS method with an exact line search may not converge.
Hence, our method (2.1)-(2-3) need not converge for general functions. Therefore, like in
Gilbert and Nocedal [22], who proved the global convergence of the PRP method with the
restriction that we replace (2.3) by 0,PRP

kβ ≥

 1max ,0
T T
k k k k

k T
k k k k

y g s gt
y s y s

β 1
k T

+ +⎧ ⎫
= −⎨ ⎬

⎩ ⎭
 (3.29)

and prove the global convergence of this modification of the algorithm for general functions.
Firstly, we prove the following results.

Lemma 3.4. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient
algorithm (2.2), where kθ and kβ are given by (2.11) and (3.29) respectively and kα is
obtained by the strong Wolfe line search. Suppose that there exists the positive constants

and such that
1c

t 1k cθ < and kt < t for all If there exists a positive constant 1.k ≥ 0γ >
such that
 kg γ≥ (3.30)

for all then and 0,k ≥ 0kd ≠

2

1
1

,k k
k

u u+
≥

− < ∞∑ (3.31)

 11

where / .k k ku d d=

Proof. First, we note that , otherwise the descent condition (2.4) is not true. Therefore,

 is well defined. Besides, by (3.30) and the Proposition 3.1 we have
0kd ≠

ku

0

1
k kd≥

< ∞∑ , (3.32)

otherwise (3.16) is true, contradicting (3.30)
Now, as usual (see [15]) we can consider 1 2 ,k k kβ β β= + where

 1 1max ,0
T
k k

k T
k k

y g
y s

β +⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 (3.33)

 2 1 .
T
k k

k k T
k k

s gt
y s

β += − (3.34)

Define
 (3.35) 2

1 1 ,k k k kv gθ β+ += − + ks

 1
1

1

,k
k

k

vr
d

+
+

+

= (3.36)

 1

1

0.k
k k

k

d
d

δ β
+

= ≥ (3.37)

With these we have
 1 1 .k k k ku r ukα δ+ += + (3.38)

But, 1 1k ku u += = and therefore from (3.38) we obtain

 1 1 1 .k k k k k k k kr u u u uα δ α δ+ + += − = − k (3.39)

Now, using the condition 0,kδ ≥ the triangle inequality and (3.39) we have

 1 1(1) (1)k k k k k k ku u u uα δ α δ+ +− = + − + k

 1 1 2k k k k k k k k ku u u uα δ α δ 1r+ +≤ − + − = + . (3.40)
On the other hand, from the strong Wolfe line search and the descent condition it follows that

 1 max 1, .
1

T
k k

T
k k

s g
y s

σ
σ

+ ⎧ ⎫≤ ⎨ ⎬−⎩ ⎭
 (3.41)

Hence, from the definition of given by (3.35), (3.41) and the assumptions (i) and (ii), i.e. 1kv +

kx B≤ and kg ≤ Γ for all we obtain 0,k ≥

1
1 1

T
k k

k k k k T
k k

s gv g t
y s

θ +
+ +≤ + ks

 1 max 1, 2 .
1

c t Bσ
σ

⎧ ⎫≤ Γ + ⎨ ⎬−⎩ ⎭
 (3.42)

Therefore,
1

1 1 1
1 1

22 2 max 1, 2
1

k
k k k

k k

v
u u r c t B

d d
σ
σ

+
+ +

+ +

⎛ ⎞⎧ ⎫− ≤ = ≤ Γ + ⎨ ⎬⎜ ⎟−⎩ ⎭⎝ ⎠
,

which completes the proof. ■

 12

This lemma shows that asymptotically the search directions generated by the algorithm (2.2),
where kθ and kβ are computed as in (2.11) and (3.29) respectively, change slowly.

Lemma 3.5. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient
algorithm (2.2), where kθ and kβ are given by (2.11) and (3.29) respectively and kα is
obtained by the strong Wolfe line search and for all 0,k ≥ kα ω≥ . Suppose that there exist

the positive constants and t γ such that for all , 1k ≥ kt t< and ,kg γ> respectively.

Then there exist the constants and 1b > 0λ > such that for all 1k ≥
 k bβ ≤ (3.43)
and

 ks λ≤ implies
1 .k b

β ≤ (3.44)

Proof. We have
2 2(1) (1) (1) (1)T T T

k k k k k k k k ky s s g d g w g w .σ σ α σ α σ ω γ≥ − = − = − − ≥ −
Therefore

 1 1
T T
k k k k

k kT T
k k k k

y g s gt
y s y s

β + +≤ + 1 1
2 2(1) (1)

k k k ky g s g
t

w wσ ω γ σ ω γ
+ +≤ +

− −

 2(1)
k kL s t s

wσ ω γ
Γ + Γ

≤
− 2

2() .
(1)

L t B b
wσ ω γ

+ Γ
≤ ≡

−
 (3.45)

Without loss of generality we can define b such that Let us define 1.b >

2(1)

2()
w

L t b
σ ω γλ −

≡
+ Γ

. (3.46)

Obviously, if ,ks λ≤ then from the third inequality in (3.45) we have

 2

() 1 .
(1)k

L t
w b
λβ

σ ω γ
+ Γ

≤ =
−

 (3.47)

Therefore, for b and λ defined in (3.45) and (3.46) respectively, it follows that the relations
(3.43) and (3.44) hold. ■

The property presented in Lemma 3.5, which is similar to but slightly different from Property
(*) in [22], can be used to show that if the gradients are bounded away from zero and (3.43)
and (3.44) hold, then a finite number of steps cannot be too small. Therefore, the
algorithm makes a rapid progress to the optimum. Indeed, for

ks
0λ > and a positive integer

let us define the set of index
J

 { }*
, : 1,k J kK i N k i k J sλ ,λ= ∈ ≤ ≤ + − > (3.48)

where is the set of positive integers. The following Lemma is similar to Lemma 3.5 in
[15] and Lemma 4.2 in [22].

*N

Lemma 3.6. Suppose that all assumptions of Lemma 3.5 are satisfied. Then there exists a

0λ > such that for any and any index there is a greater index such that *J N∈ 0 ,k 0k k≥

, / 2.k JK Jλ >

Using Lemma 3.4 and Lemma 3.6 we can prove the global convergence of the conjugate
gradient algorithm (2.2) where kθ and kβ are given by (2.11) and (3.29) respectively and kα
is obtained by the strong Wolfe line search. The following Theorem is similar to Theorem 3.6

 13

in Dai and Liao [15] or to Theorem 3.2 in Hager and Zhang [25] and the proof is omitted
here.

Theorem 3.3. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient
algorithm (2.2), where kθ and kβ are given by (2.11) and (3.29) respectively and kα is

obtained by the strong Wolfe line search. Then we have liminf 0.kk
g

→∞
=

4. DLDC algorithm
We know that in conjugate gradient algorithms the search directions tend to be poorly scaled
and as a consequence the line search must perform more function evaluations in order to
obtain a suitable steplength .kα Therefore, the research effort was directed to design
procedures for direction computation which takes the second order information. For example,
the algorithms implemented in SCALCG by Andrei [3-5], or CONMIN by Shanno and Phua
[40] use the BFGS preconditioning with remarkable results.
In conjugate gradient methods the step lengths computed by means of the Wolfe line search
(1.4) and (1.5) may differ from 1 in a very unpredictable manner [32]. They can be larger or
smaller than 1 depending on how the problem is scaled. This is in very sharp contrast to the
Newton and quasi-Newton methods, including the limited memory quasi-Newton methods,
which accept the unit steplength most of the time along the iterations, and therefore usually
they require only few function evaluations per search direction. Numerical comparisons
between conjugate gradient method and limited memory quasi Newton method by Liu and
Nocedal [29] showed that the latter is more successful [6]. One partial explanation of the
efficiency of this limited memory quasi-Newton method is given by its ability to accept unity
step lengths along the iterations. In this section we take advantage of this behavior of
conjugate gradient algorithms and consider an acceleration scheme we have presented in [7]
(see also [2]). Basically the acceleration scheme modifies the step length kα in a
multiplicative manner to improve the reduction of the function values along the iterations. In
accelerated algorithm instead of (1.2) the new estimation of the minimum point is computed
as
 1k k k k kx x dξ α+ = + , (4.1)
where

 k
k

k

a
b

ξ = − , (4.2)

,T
k k k ka g dα= () ,kd ()zg fT

k k k zb g gα= − − z= ∇ and k kz x dkα= + . Hence, if 0,kb ≠
then the new estimation of the solution is computed as 1k k k k kx x dξ α+ = + , otherwise

1k k k kx x dα+ = + . Observe that since ρ in (1.4) is enough small (usually 0.0001ρ =), the
Wolfe line search leads to very small reductions in function’s values along the iterations. The
acceleration scheme (4.1) emphasizes the reduction of function’s values, since in conjugate
gradient algorithms often 1kα > along the iterations (see [7]). Therefore, using the
definitions of gk , sk , and the above acceleration scheme (4.1) and (4.2) we can present
the following conjugate gradient algorithm.

yk

DLDC algorithm
Step 1. Select a starting point 0x dom f∈ and compute: 0 ()0f f x= and

Select some positive values for
0 0().g f x= ∇

ρ and σ , and for v and Set and

.w 0d g= − 0

0.k =
Step 2. Test a criterion for stopping the iterations. If the test is satisfied, then stop;

otherwise continue with step 3.

 14

Step 3. Determine the steplength kα by using the Wolfe line search conditions (1.4) - (1.5)

Step 4. Acceleration scheme. Compute: k k kz x dα= + ()zg f z= ∇ z, and .k ky g g= −

Step 5. Compute: T
k k ka gα= kd , and T

k k kb yα= − kd .

Step 6. If 0,kb ≠ then compute /k ka bξ = − k

k

 and update the variables as

1k k k kx x dξ α+ = + , otherwise update the variables as 1k k k kx x dα+ = + . Compute

1kf + and Compute 1.kg + 1k ky g g+ k= − and 1 .k ks x x+ k= −

Step 7. Compute k∆ as in (2.7).

Step 8. If ,k mε∆ ≥ then determine kθ and kβ as in (2.11) and (3.29) respectively. Else,

set 1kθ = and 1 / .T Y
k k k ky g y sβ += k

k ksStep 9. Compute the search direction as: 1 1k k kd gθ β+ += − + .

Step 10. Compute 2 2
1 1 1/()T

k k k kg y g gσ + + += + ,. If σ ρ< then set 0.8.σ =

Step 11. Restart criterion. If
2

1 10.2T
k k kg g g+ +> then set 1 1k kd g+ += − .

Step 12. Consider and go to step 2. ■ 1k k= +

It is well known that if f is bounded along the direction then there exists a stepsize kd kα
satisfying the Wolfe line search conditions (1.4) and (1.5). In our algorithm when the Powell
restart condition is satisfied, then we restart the algorithm with the negative gradient 1.kg +−
More sophisticated reasons for restarting the algorithms have been proposed in the literature
[16], but we are interested in the performance of a conjugate gradient algorithm that uses this
restart criterion associated to a direction satisfying both the descent and the conjugacy
conditions. Under reasonable assumptions, the Wolfe conditions and the Powell restart
criterion are sufficient to prove the global convergence of the algorithm. The first trial of the
step length crucially affects the practical behavior of the algorithm. At every iteration
the starting guess for the step

1k ≥
kα in the line search is computed as 1 1 /k k kd dα − − . This

selection was used for the first time by Shanno and Phua in CONMIN [40] and in SCALCG
by Andrei [3-5]. Observe that in the line search procedure (step 3) the steplength kα is
computed using the updated value of the parameter σ , computed as in step 10. For uniformly
convex functions, we can prove the linear convergence of the acceleration scheme [7].

5. Numerical results and comparisons
In this section we report some numerical results obtained with an implementation of the
DLDC algorithm. The code is written in Fortran and compiled with f77 (default compiler
settings) on a Workstation Intel Pentium 4 with 1.8 GHz. DLDC uses the loop unrolling to a
depth of 5. We selected a number of 75 large-scale unconstrained optimization test functions
in generalized or extended form [1] (some from CUTE library [12]). For each test function we
have taken ten numerical experiments with the number of variables

 The algorithm implements the Wolfe line search conditions with 1000,2000,...,10000.n =

0.0001,ρ =
2

1 1/(),T
k k k kg y g gσ + + += + 2

1 and the same stopping criterion

gk ∞
−≤ 10 6 , where .

∞
is the maximum absolute component of a vector. If ,σ ρ< then we

set 0.8.σ = If k mε∆ ≥ , where mε is epsilon machine, then kθ and kβ are computed as in

(2.11) and (3.29), respectively. Otherwise, set 1kθ = and , i.e. the
Hestenes-Stiefel conjugate gradient algorithm [27] is considered. In DLDC we set
and . In our numerical experiments

1 /T
k k k ky g y sβ += T

k

7 / 8w =
0.05v = kθ is not restricted in the interval [0 In all , 2].w

 15

the algorithms we considered in this numerical study the maximum number of iterations is
limited to 10000.
 The comparisons of algorithms are given in the following context. Let and

be the optimal value found by ALG1 and ALG2, for problem
respectively. We say that, in the particular problem the performance of ALG1 was better
than the performance of ALG2 if:

f i
ALG1

f i
ALG2 i = 1 750, ,… ,

i,

 f fi
ALG

i
ALG1 2 10− < −3

)
)

 (5.1)
and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or
the CPU time of ALG1 was less than the number of iterations, or the number of function-
gradient evaluations, or the CPU time corresponding to ALG2, respectively.

In the first set of numerical experiments we compare DLDC versus Dai and Liao
 conjugate gradient algorithm (1.13). Figure 1 shows the Dolan and Moré CPU

performance profile of DLDC versus DL
(1v =

(1v = . In a performance profile plot, the top curve
corresponds to the method that solved the most problems in a time that was within a factor τ
of the best time. The percentage of the test problems for which a method is the fastest is given
on the left axis of the plot. The right side of the plot gives the percentage of the test problems
that were successfully solved by these algorithms, respectively. Mainly, the right side is a
measure of the robustness of an algorithm.

Fig. 1. DLDC (7 / 8w = , 0.05v =) versus DL (1)v = .

When comparing DLDC with DL (1v)= conjugate gradient algorithm subject to CPU time
metric we see that DLDC is top performer, i.e. the accelerated Dai and Liao conjugate
gradient algorithm with guaranteed descent and conjugacy conditions is more successful and
more robust than the Dai and Liao conjugate gradient algorithms with Comparing
DLDC with DL ((see Figure 1), subject to the number of iterations, we see that DLDC
was better in 604 problems (i.e. it achieved the minimum number of iterations in 604
problems). DL was better in 55 problems and they achieved the same number of
iterations in 61 problems, etc. Out of 750 problems, only for 720 problems does the criterion
(5.1) hold. Therefore, DLDC appears to generate the best search direction and the best
steplength, on average.

1.v =
1v =)

)(1v =

 16

In the second set of numerical experiments we compare DLDC versus Hestenes and

Stiefel (HS) (1
T

HS k k
k T

k k

y g
y s

β +=) [27], versus Dai and Yuan (DY) (1 1
T

DY k k
k T

k k

g g
y s

β + +=) [17] and

versus Polak-Ribière-Polyak (PRP) (1
T

PRP k k
k T

k k

y g
g g

β +=) [35, 36], conjugate gradient algorithms.

Figures 2-4 present the Dolan and Moré CPU performance profile of DLDC versus HS, DY
and PRP, respectively.

An attractive feature of the Hestenes and Stiefel conjugate gradient algorithm is that
the pure conjugacy condition 1 0T

k ky d + = always is satisfied, independent of the line search.
However, for an exact line search the convergence properties of the HS method are similar to
the convergence properties of the PRP method. Therefore, by Powell’s example [37], the HS
method with exact line search may not converge for a general nonlinear function. Both the HS
and PRP methods possess a built-in restart feature that addresses directly to the jamming
phenomenon. When the step 1k kx x+ − is small, the factor 1k ky g g+ k= − in the numerator of

kβ tends to zero. Therefore, kβ becomes small and the new search direction essentially
becomes the steepest descent direction

1kd +

1.kg +− Hence, both HS and PRP methods
automatically adjust kβ to avoid jamming. The performance of these methods is better than
the performance of DY. On the other hand, the DY method always generates descent
directions, and in [14] Dai established a remarkable property for the DY conjugate gradient
algorithm, relating the descent directions to the sufficient descent condition. It is shown that if
there exist constants γ 1 and γ 2 such that γ 1 ≤ ≤gk γ 2 for all k , then for any p ∈ (,)0 1 ,

there exists a constant c such that the sufficient descent condition > 0 g d c gi
T

i ≤ −
2

i holds

for at least ⎣ ⎦pk indices i k∈ [,],0 where ⎣ ⎦j denotes the largest integer However, the
DY method does not satisfy the conjugacy condition. In contrast, observe that in DLDC the
search directions are always descent directions and the conjugacy condition always is satisfied
independent of the accuracy of the line search.

≤ j.

Fig. 2. DLDC (7 / 8w = , 0.05v =) versus Hestenes-Stiefel.

 17

Fig. 3. DLDC (7 / 8w = , 0.05v =) versus Dai-Yuan.

Fig. 4. DLDC (,7 / 8w = 0.05v =) versus Polak-Ribière-Polyak.

 In the third set of numerical experiments we compare DLDC versus hybrid Dai-Yuan
({ }{ }max ,min ,hDY DY HS DY

k k k kβcβ β β= − (1) /(1), c σ σ= − + , 0.8σ =) [17]. The hDY

method reduces to the Fletcher and Reeves method [21] if f is a strictly convex quadratic

 18

function and the line search is exact. For a standard Wolfe line search, Dai and Yuan [17]
proved that it produces descent directions at every iteration and they established the global
convergence of their hybrid conjugate gradient algorithm when the Lipschitz assumption
holds. However, the hDY conjugate gradient algorithm does not satisfy the conjugacy
condition. Figure 5 presents the Dolan and Moré CPU time performance profile of DLDC
versus hDY. The best performance, relative to the CPU time metric, again was obtained by
DLDC, the top curve in Figure 5.

Fig. 5. DLDC (,7 / 8w = 0.05v =) versus hybrid Dai-Yuan.

In the fourth set of numerical experiments we compare DLDC versus CG_DESCENT

by Hager and Zhang [25]. Presently CG_DESCENT is the practical conjugate gradient
algorithm with more reputation. CG_DESCENT is a modification of HS and was devised in
order to ensure sufficient descent, independent of the accuracy of the line search. Hager and
Zhang [25] proved that the direction in their algorithm satisfies the sufficient descent

condition
kd

2(7 / 8)T
k k kg d g≤ − . This is the main reason we considered in all our

numerical experiments. CG_DESCENT has a very advanced line search procedure that
utilizes the “approximate Wolfe conditions” which provides a more accurate way to check the
usual Wolfe conditions when the iterates are near a local minimum of the function

7 / 8w =

.f
However, in CG_DESCENT the conjugacy condition (1.11) holds approximately.
CG_DESCENT like DLDC uses the loop unrolling to a depth of 5. Figure 6 presents the
Dolan and Moré CPU time performance profile of DLDC versus CG_DESCENT with Wolfe
line search. Again, the best performance, relative to the CPU time metric, was obtained by
DLDC, the top curve in Figure 6.

Finally we compare DLDC versus L-BFGS (m=3) by Liu and Nocedal [29] as in
Figure 7, where m is the number of pairs used. Observe that DLDC is top performer
again. The differences are significant. The linear algebra in the L-BFGS code to update the
search direction is very different from the linear algebra used in AMDYN. On the other hand
the steplength in L-BFGS is determined at each iteration by means of the line search routine
MCVSRCH, which is a slight modification of the routine CSRCH written by Moré and
Thuente [30].

(,)k ks y

 19

Fig. 6. DLDC (,7 / 8w = 0.05v =) versus CG_DESCENT by Hager and Zhang.

Fig. 7. DLDC (,7 / 8w = 0.05v =) versus L-BFGS (m=3) by Liu and Nocedal.

In the following, in Figure 8, we present the performance profile of DLDC
(,) versus HS, PRP, CG_DESCENT and L-BFGS (m=3), subject to cpu
time metric. We see that among these algorithms DLDC is top performer. Observe that these
algorithms can be classified in three major classes: DLDC and CG_DESCENT, HS and PRP,
and finally the limited memory quasi-Newton L-BFGS.

7 / 8w = 0.05v =

 20

Fig. 8. DLDC (,) versus HS, PRP, CG_DESCENT and L-BFGS (m=3). 7 / 8w = 0.05v =

In order to see the performances of the algorithm we present a sensitivity study of DLDC
subject to the variation of and parameters. Both these parameters emphasize the
importance of the conjugacy condition and the sufficient descent condition, respectively.
From (2.2), (2.3) and (2.6)-(2.11) we have

v w

2

11
1

()
,

T T
k k kk

k T
k k

y s gd yg
w y

++
+

⎛ ⎞∂
= −⎜∂ ∆ ⎝ ⎠

1k k
k

k

g s
s
+ ⎟ (5.2)

 (21 1
1 1 1

() ()
T

Tk k k
k k k k k

k

d s g s g g g s
v
+ +

+ + +

∂
= − −

∂ ∆). (5.3)

Observe that if the line search is exact (1 0T

k ks g + =) then from (5.3) we see that the algorithm
is not sensitive to the variation of However, in our algorithm the line search is not exact. .v

Table 1 presents the total number of iterations (#itert), the total number of function
and its gradient evaluations (#fgt) and the total CPU time (cput) for solving the above set of
750 unconstrained optimization test problems for 7 / 8w = and for different values of For
example, for solving the set of 750 problems with

.v
7 / 8w = and 0v = , the total number of

iteration is 260792, the total number of function and its gradient evaluations is 654859 and the
total CPU time is 308.14 seconds, etc.

In Table 1 we have a computational evidence of the sensitivity of DLDC
corresponding to a set of 12 numerical experiments subject to variation of parameter. The
best results corresponding to this set of 12 numerical experiments are obtained for
Subject to the CPU time metric the average of the total CPU time corresponding to these 12
numerical experiments, for solving 750 problems in each experiment, is 3742.13/12=311.84
seconds. The largest deviation is of 76.07 seconds and corresponds to the numerical
experiment in which Therefore, in all these 12 numerical experiments the maximum
deviation is of 76.07/750=0.1 seconds per problem.

v
0.05.v =

0.2v =

 21

Table 1. Sensitivity of the DLDC subject to .v 7 / 8w = .

v #itert #fgt cput
0 260792 654859 308.14

0.001 259291 641597 301.19
0.005 266787 663287 335.99
0.01 268870 691054 376.59
0.02 266274 623824 279.81
0.05 258153 608602 277.44
0.07 260234 641310 298.78
0.1 260116 649701 299.42
0.2 278611 679622 387.91
0.5 260216 633033 290.69
0.7 261112 625176 283.76
1 279770 664769 302.41

In the following we present the sensitivity of DLDC subject to the variation of parameter.
Table 2 presents the total number of iterations, the total number of function and its gradient
evaluations and the total CPU time for solving the above set of 750 unconstrained
optimization test problems for and for 6 different values of

w

0.05v = .w

Table 2. Sensitivity of the DLDC subject to .w 0.05v = .
w #itert #fgt cput

0.5 257634 609194 278.85
0.6 261100 628040 288.59
0.7 256887 605325 274.09
0.8 259572 627447 292.52
0.9 257143 612870 281.27
1 258642 613259 278.33

The best results corresponding to this set of 6 numerical experiments are obtained for

 Subject to CPU time metric for solving 750 problems in each of these 6 numerical
experiments the total CPU time difference is of 292.52

0.7.w =
− 274.09 = 18.43 seconds. Therefore,

in all these 6 numerical experiments the maximum deviation is of 18.43/750=0.024 seconds
per problem. Observe that the average of the total CPU time corresponding to these 6
numerical experiments is 1693.65/6=282.27 seconds. The largest deviation is of 292.52 −
282.27 = 10.25 seconds. Therefore, in all these 6 numerical experiments the maximum
deviation is of 10.25/750=0.013 seconds per problem. Practically, DLDC is very little
sensitive to the variation of .w
 We now present comparisons between DLDC and CG_DESCENT conjugate gradient
algorithms for solving some applications from MINPACK-2 test problem collection [9]. In
Table 3 we present these applications, as well as the values of their parameters. The infinite-
dimensional version of these problems is transformed into a finite element approximation by
triangulation. Thus a finite-dimensional minimization problem is obtained whose variables
are the values of the picewise linear function at the vertices of the triangulation. The
discretization steps are and 1000nx = 1000,ny = thus obtaining minimization problems
with 1,000,000 variables.

Table 3. Applications from MINPACK-2 collection.
A1 Elastic-Plastic Torsion [23, pp. 41-55], 5.c =
A2 Pressure Distribution in a Journal Bearing [13], 10,b = 0.1.ε =

A3 Optimal Design with Composite Materials [24], 0.008.λ =
A4 Steady-State Combustion [8, pp. 292-299], [10], 5.λ =
A5 Minimal Surfaces with Enneper conditions [31, pp. 80-85].

 22

A comparison between DLDC (0.05,v = 0.6,w = Powell restart criterion,

6() 10kf x −
∞

∇ ≤ ,) and CG_DESCENT (Wolfe line search, default settings, 410ρ −=
6() 10kf x −

∞
∇ ≤) for solving these applications is given in Table 4.

Table 4. Performance of DLDC and CG_DESCENT.

1,000,000 variables. cpu seconds.
DLDC CG_DESCENT

#iter #fg cpu #iter #fg cpu
A1 1111 2253 787.09 1145 2291 1087.83
A2 2833 5694 2151.86 3368 6737 3369.77
A3 4777 9595 5695.39 4841 9684 8058.66
A4 1413 2864 2340.41 1806 3613 4213.00
A5 1279 2580 1360.88 1226 2453 1773.95

TOTAL 11413 22986 12335.63 12386 24778 18503.21

Form Table 4 we see that subject to the CPU time metric the DLDC algorithm is top
performer again, and the difference is significant, about 6167.58 seconds for solving all these
5 applications.

The DLDC and CG_DESCENT algorithms (and codes) are different in many
respects. Since both of them use the Wolfe line search (however, implemented in different
manners), these codes mainly differ in their choice of the search direction. DLDC appears to
generate a better search direction, on average. The direction 1kd + used in DLDC is more
elaborate, it satisfies both the sufficient descent condition and the conjugacy condition in a
restart environment. Although the update formulae (2.2), (2.3) and (2.7)-(2.11) are more
complicated, this computational scheme proved to be more efficient and more robust in
numerical experiments and applications. However, since each of these codes are different in
the number of parameters which can be modified by the user to establish a context of
optimization (CG_DESCENT has 26 parameters while DLDC has only 9 parameters) and in
the amount of linear algebra required in each iteration, it is quite clear that different codes will
be superior in different problem sets.

6. Conclusions
For solving large scale unconstrained optimization problems we have presented an
accelerated conjugate gradient algorithm that for all both the descent and the conjugacy
conditions are guaranteed. In our algorithm the search direction is selected as a linear
combination of

0k ≥

1kg +− and where the coefficients in this linear combination are selected
in such a way that both the descent and the conjugacy condition are satisfied at every
iteration. The step length is modified by an acceleration scheme which proved to be very
efficient in reducing the values of the minimizing function along the iterations. For a test set
consisting of 750 problems with dimensions ranging between 1000 and 10,000, the CPU time
performance profiles of DLDC was higher than those of HS, PRP, DY, hDY, CG_DESCENT
with Wolfe line search and limited memory quasi-Newton method L-BFGS. A number of 5
applications from MINPACK2 test problem collection illustrate the performances of DLDC
versus CG_DESCENT. At present, for the above test problems and applications it follows
that DLDC is the fastest and the most robust conjugate gradient algorithm.

,ks

References
[1] N. Andrei, An unconstrained optimization test functions collection. Advanced Modeling

and Optimization, 10 (2008), pp. 147-161.
[2] N. Andrei, An acceleration of gradient descent algorithm with backtracking for

unconstrained optimization, Numerical Algorithms, 42 (2006), pp. 63-73.

 23

[3] N. Andrei, Scaled conjugate gradient algorithms for unconstrained optimization.
Computational Optimization and Applications, 38 (2007), pp. 401-416.

[4] N. Andrei, Scaled memoryless BFGS preconditioned conjugate gradient algorithm for
unconstrained optimization. Optimization Methods and Software, 22 (2007), 561-571.

[5] N. Andrei, A scaled BFGS preconditioned conjugate gradient algorithm for unconstrained
optimization. Applied Mathematics Letters, 20 (2007), 645-650.

[6] N. Andrei, Numerical comparison of conjugate gradient algorithms for unconstrained
optimization. Studies in Informatics and Control, 16 (2007), pp.333-352.

[7] N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization.
Applied Mathematics and Computation, 213 (2009), 361-369.

[8] R. Aris, The mathematical theory of diffusion and reaction in permeable catalysts.
Oxford, 1975.

[9] B.M., Averick, R.G., Carter, J.J., Moré, Xue, G.L. The MINPACK-2 test problem
collection. Mathematics and Computer Science Division, Argonne National
Laboratory, Preprint MCS-P153-0692, June 1992.

[10] J. Bebernes, D. Eberly, Mathematical problems from combustion theory. Applied
Mathematical Sciences 83, Springer-Verlag, 1989.

[11] E. Birgin, J.M. Martínez, A spectral conjugate gradient method for unconstrained
optimization, Applied Math. and Optimization, 43, pp.117-128, 2001.

[12] I. Bongartz, A.R. Conn, N.I.M. Gould, P.L. Toint, CUTE: constrained and
unconstrained testing environments, ACM Trans. Math. Software, 21, pp.123-160,
1995.

[13] G., Cimatti, On a problem of the theory of lubrication governed by a variational
inequality. Appl. Math. Potim., 3 (1977) 227-242.

[14] Y.H. Dai, New properties of a nonlinear conjugate gradient method. Numer. Math., 89
(2001), pp.83-98.

[15] Y.H. Dai, L.Z. Liao, New conjugacy conditions and related nonlinear conjugate gradient
methods. Applied Mathematical Optimization, 43 (2001), pp. 87-101.

[16] Y.H. Dai, L.Z. Liao, Li Duan, On restart procedures for the conjugate gradient method.
Numerical Algorithms 35 (2004), pp. 249-260.

[17] Y.H. Dai, Y. Yuan, An efficient hybrid conjugate gradient method for unconstrained
optimization, Ann. Oper. Res., 103 (2001) 33-47.

[18] Y.H. Dai, Han, J.Y., Liu, G.H., Sun, D.F., Yin, .X., Yuan, Y., Convergence properties of
nonlinear conjugate gradient methods. SIAM Journal on Optimization 10 (1999), 348-
358.

[19] E.D., Dolan, J.J. Moré, Benchmarking optimization software with performance profiles,
Math. Programming 91, 201-213 (2002)

[20] R. Fletcher, Practical Optimization:Vol. 1: Unconstrained optimization. John Wiley and
Sons, Chichester, 1980.

[21] R., Fletcher, Reeves, C., Function minimization by conjugate gradients, Comput. J., 7
(1964), pp.149-154.

[22] J.C. Gilbert, J. Nocedal, Global convergence properties of conjugate gradient methods
for optimization, SIAM J. Optim., 2 (1992), pp. 21-42.

[23] R., Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer-
Verlag, Berlin, 1984.

[24] J., Goodman, R., Kohn, L., Reyna, Numerical study of a relaxed variational problem
from optimal design. Comput. Methods Appl. Mech. Engrg., 57, 1986, pp.107-127.

[25] W.W. Hager, H. Zhang, “A new conjugate gradient method with guaranteed descent and
an efficient line search”, SIAM Journal on Optimization, 16 (2005) 170-192.

[26] W.W. Hager, H. Zhang, A survey of nonlinear conjugate gradient methods. Pacific
journal of Optimization, 2 (2006) 35-58.

[27] M.R. Hestenes, E.L. Stiefel, Methods of conjugate gradients for solving linear systems, J.
Research Nat. Bur. Standards, 49 (1952) 409-436.

 24

[28] G. Li, C. Tang, Z. Wei, New conjugacy condition and related new conjugate gradient
methods for unconstrained optimization. Journal of Computational and Applied
Mathematics, 202 (2007) 523-539.

[29] D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization
methods. Mathematical Programming, 45 (1989), pp. 503-528.

[30] J.J. Moré, D.J. Thuente, Line search algorithms with guaranteed sufficient decrease.
ACM Transactions on Mathematical Software, 20 (1994) 286-307.

[31] J.C.C. Nitsche, Lectures on minimal surfaces. Vol.1, Cambridge University Press, 1989.
[32] J. Nocedal, Conjugate gradient methods and nonlinear optimization. In Linear and

nonlinear Conjugate Gradient related methods, L. Adams and J.L. Nazareth (eds.),
SIAM, 1996, pp.9-23.

[33] A. Perry, A modified conjugate gradient algorithm. Operations Research 26 (1978), pp.
1073-1078.

[34] E. Polak, Computational methods in optimization: A unified approach. Academic Press,
New York, 1971.

[35] E. Polak, G. Ribière, Note sur la convergence de directions conjuguée, Rev. Francaise
Informat Recherche Operationelle, 3e Année 16 (1969) 35-43.

[36] B.T. Polyak, The conjugate gradient method in extreme problems. USSR Comp. Math.
Math. Phys., 9 (1969) 94-112.

[37] M.J.D. Powell, Nonconvex minimization calculations and the conjugate gradient method.
Numerical Analysis (Dundee, 1983), Lecture Notes in Mathematics, vol. 1066,
Springer-Verlag, Berlin, 1984, pp. 122-141.

[38] M.J.D. Powell, Some convergence properties of the conjugate gradient method.
Mathematical Programming, 11 (1976), pp.42-49.

[39] D.F. Shanno, Conjugate gradient methods with inexact searches. Mathematics of
Operations Research 3 (1978), pp. 244-256.

[40] D.F. Shanno, K.H. Phua, Algorithm 500. Minimization of unconstrained multivariate
functions, ACM Trans. on Math. Soft., 2 (1976) 87-94.

[41] P. Wolfe, Convergence conditions for ascent methods, SIAM Rev. 11 (1969) 226-235.
[42] P. Wolfe, Convergence conditions for ascent methods II: some corrections, SIAM Rev.

13 (1971) 185-188.
[43] Y. Yuan, Analysis on the conjugate gradient method. Technical Report, Computing

Center, Academia Sinica, China, 1990.
[44] Y. Yuan, J. Stoer, A subspace study on conjugate gradient algorithms. Z. Angew. Math.

Mech., 75 (1995), pp. 69-77.
[45] G. Zoutendijk, Nonlinear programming computational methods. In: J. Abadie (Ed.)

Integer and Nonlinear Programming, North-Holland, Amsterdam, 1970, pp. 37-86.

January 29, 2010

 25

