
 
New Accelerated Conjugate Gradient Algorithms as 
modification of Dai-Yuan’s computational scheme  

for Unconstrained Optimization 
 
 

Neculai Andrei 
Research Institute for Informatics,  

Center for Advanced Modeling and Optimization, 
8-10, Averescu Avenue, Bucharest 1, Romania 

E-mail: nandrei@ici.ro 
 

Abstract. New accelerated nonlinear conjugate gradient algorithms which are mainly 
modifications of the Dai and Yuan’s for unconstrained optimization are proposed. Using 
the exact line search, the algorithm reduces to the Dai and Yuan conjugate gradient 
computational scheme. For inexact line search the algorithm satisfies the sufficient 
descent condition. Since the step lengths in conjugate gradient algorithms may differ 
from 1 by two order of magnitude and tend to vary in a very unpredictable manner, the 
algorithms are equipped with an acceleration scheme able to improve the efficiency of 
the algorithms. Computational results for a set consisting of 750 unconstrained 
optimization test problems show that these new conjugate gradient algorithms 
substantially outperform the Dai-Yuan conjugate gradient algorithm and its hybrid 
variants, Hestenes-Stiefel, Polak-Ribière-Polyak, CONMIN conjugate gradient 
algorithms, limited quasi-Newton algorithm LBFGS and compare favourable with 
CG_DESCENT. 

Keywords: Unconstrained optimization; conjugate gradient method; sufficient descent 
condition; conjugacy condition; Newton direction; numerical comparisons. 
AMS 2000 Mathematics Subject Classification: 49M07, 49M10, 90C06, 65K05 
 
 
1. Introduction 
Conjugate gradient methods represent an important class of unconstrained optimization 
algorithms with strong local and global convergence properties and modest memory 
requirements. A survey on their definition including 40 conjugate gradient algorithms for 
unconstrained optimization is given by Andrei [6]. A discussion of development of different 
versions of nonlinear conjugate gradient methods, with special attention to global 
convergence properties is presented by Hager and Zhang [21].  
In this paper we suggest new nonlinear conjugate gradient algorithms which are mainly 
modifications of the Dai and Yuan [16] conjugate gradient computational scheme. In these 
algorithms the direction  is computed as a linear combination between and  i.e. 

 where 
1kd + 1kg +− ,ks

1 1 1 ,N
k k k kd gθ β+ + += − + ks ( )k kg f x= ∇  and 1k ks x x+ k= − . The parameter kθ  is 

computed in such a way that the direction 1kd +  is the Newton direction or it satisfies the 

conjugacy condition. On the other hand, N
kβ  is a proper modification of the Dai and Yuan’s 

computational scheme in such a way that the direction 1kd + at every iteration satisfies the 
sufficient descent condition. For the exact line search the proposed algorithms reduce to the 
Dai and Yuan conjugate gradient computational scheme.  
 The paper has the following structure. In Section 2 we present the development of the 
conjugate gradient algorithms with sufficient descent condition as modifications of the Dai-
Yuan computational scheme, while in section 3 we prove the global convergence of these 
algorithms under strong Wolfe line search conditions. In Section 4 we present the accelerated 

 1



                

algorithms, showing their global convergence and in Section 5 we compare the computational 
performance of the new conjugate gradient schemes against the Dai and Yuan method and its 
hybrid variants [17], Hestenes and Stiefel [22], Polak-Ribière [27] and Polyak [28], 
CG_DESCENT by Hager and Zhang [20], CONMIN by Shanno and Phua [30], as well as 
LBFGS by Liu and Nocedal [23], using 750 unconstrained optimization test problems from 
the CUTE [12] library along with some other large-scale unconstrained optimization problems 
presented in [8]. Using the Dolan and Moré performance profiles [19] we prove these new 
accelerated conjugate gradient algorithms outperform the Dai-Yuan algorithm as well as its 
hybrid variants, Hestenes-Stiefel, Polak-Ribière-Polyak, CONMIN, LBFGS and compare 
favourable with CG_DESCENT by Hager and Zhang. 
 
2. Modifications of the Dai-Yuan conjugate gradient algorithm 
For solving the unconstrained optimization problem 
                                                         { }min f x x R n( ) : ,∈                                                  (2.1) 
where  is continuously differentiable and bounded below we consider a 
nonlinear conjugate gradient algorithm: 

f R Rn: →

                                                           x x dk k k+ k= +1 α ,                                                    (2.2) 
where the stepsize α k is positive and the directions are computed by the rule: dk

                                               1 1 1 ,N
k k k k ksd gθ β+ + += − + d g0 0= − ,                                   (2.3) 

where 

                                                
2 2

1 1
2

( )
,

( )

T
k k k kN

k T T
k k k k

g g s g
y s y s

β + + += − 1                                        (2.4) 

and 1kθ +  is a parameter which follows to be determined. Here  and 1k ky g g+= − k

s x xk k k= −+1 .   
The line search in the conjugate gradient algorithms for kα  computation is often based on the 
standard Wolfe conditions [31, 32]: 
                                                 ( ) ( ) T

k k k k k k k ,f x d f x g dα ρα+ − ≤                                    (2.5) 

                                                 ,                                                                 (2.6) 1
T
k k k kg d g dσ+ ≥ T

.where  is a descent direction and 0 1kd ρ σ< ≤ <  
Observe that if f is a quadratic function and α k  is selected to achieve the exact 

minimum of f  in the direction , then dk s gk
T

k+ =1 0 and the formula (2.4) for N
kβ reduces 

to the Dai and Yuan computational scheme [16]. However, in this paper we refer to general 
nonlinear functions and inexact line search. 
 We were led to this computational scheme by modifying the Dai and Yuan algorithm  

β k
DY k

T
k

k
T

k

g g
y s

= + +1 1 , 

in order to have the sufficient descent condition, as well as some other properties for an 
efficient conjugate gradient algorithm. Using a standard Wolfe line search, the Dai and Yuan 
method always generates descent directions and under Lipschitz assumption it is globally 
convergent. In [13] Dai established a remarkable property relating the descent directions to 
the sufficient descent condition, showing that if there exist constants γ 1  and γ 2  such that 

γ γ1 ≤ ≤gk 2 for all k , then for any p ∈ ( , )0 1 , there exists a constant such that the 

sufficient descent condition 

c > 0

g d c gi
T

i ≤ −
2

i holds for at least ⎣ ⎦pk  indices 
i k∈ [ , ],0 where ⎣ ⎦j  denotes the largest integer ≤ j. In our algorithm the parameter β k is 
selected in  such a manner that the sufficient descent condition is satisfied at every iteration. 
As we know, despite the strong convergence theory that has been developed for the Dai and 

 2



Yuan method, it is susceptible to jamming, that is it begins to take small steps without making 
significant progress to the minimum. When iterates jam,  becomes tiny while ky kg  is 

bounded away from zero. Therefore, N
kβ  is a proper modification of the .DY

kβ  
 
Theorem 2.1. If  1 1/ 4,kθ + ≥  then the direction  ( d1 1 1 ,N

k k k k ksd gθ β+ + += − + g0 0= − ), 

where N
kβ  is given by (2.4) satisfies the sufficient descent condition 

                                                     
2

1 1 1 1
1 .
4

T
k k k kg d gθ+ + + +

⎛ ⎞≤ − −⎜ ⎟
⎝ ⎠

                                     (2.7) 

 
Proof. Since d g0 = 0− , we have g d gT

0 0 0

2
= − ,  which satisfy (2.7). Multiplying (2.3) by 

, we have gk
T
+1

                         
2 2

2 1 11 1 1
1 1 1 1 2

( )( )( ) .
( )

TT T
k k kT k k k k

k k k k T T
k k k k

g s gg g g sg d g
y s y s

θ + ++ + +
+ + + += − + −           (2.8) 

Now, using the inequality 
21 ( )

2
Tu v u v≤ + 2

, where , nu v R∈ , we have: 

1 11 1 1
2

( ) / 2 2( )( )( )
( )

TT TT T
k k k k k kk k k k

T T
k k k k

y s g g s gg g g s
y s y s

+ ++ + + 1+
⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦=  

2 22 2
1 1 1

2

1 1 ( ) 2( )
2 2

( )

T T
k k k k k k

T
k k

y s g g s g

y s

+ + +
⎡ ⎤+⎢ ⎥⎣ ⎦≤  

                                      
22

2 1 1
1 2

( )1 .
4 ( )

T
k k k

k T
k k

g s g
g

y s
+ +

+= +                                                     (2.9) 

Using (2.9) in (2.8) we get (2.7).  
 
To conclude, the sufficient descent condition from (2.7), the quantity 1 1/ 4kθ + −  is required 
to be nonnegative. Supposing that 1 1/ 4 0kθ + − > , then the direction given by (2.3) and (2.4) 
is a descent direction. Dai and Yuan [16, 17] present conjugate gradient schemes with the 
property that g dk

T
k < 0  when  If y sk

T
k > 0. f is strongly convex or the line search satisfies 

the Wolfe conditions, then and the Dai and Yuan scheme yield descent. In our 
algorithm observe that, if for all 

y sk
T

k > 0
k , 1 1/ 4,kθ + >  and the line search satisfies the Wolfe 

conditions (2.5) and (2.6), then for all k  the search direction (2.3) and (2.4) satisfy the 
sufficient descent condition. It is well known that if the Wolfe line search conditions are 
satisfied, then  and the steplength 0T

k ky s > kα  is bounded away from zero [20]. Observe that 

 is crucial in (2.4) for 0T
k ky s > N

kβ  computation. Note that in (2.7) we bound  by g dk
T

k+ +1 1
2

1( 1/ 4)k kgθ +− − 1 ,+ while for the computational scheme of Dai and Yuan only the non-

negativity of  is established.  g dk
T

k+ +1 1

To determine the parameter θ k+1 in (2.3) we suggest the following two procedures.    
 
A) When the initial point 0x  is near the solution of (2.1) and the Hessian of function f  is a 
nonsingular matrix we know that the Newton direction is the best line search direction. 
Therefore, to get a good algorithm for solving (2.1) this is a very good motivation to choose 

 3



                

the parameter kθ  in such a way that for every  the direction 1k ≥ 1kd +  given by (2.3) be the 
Newton direction. Therefore, from the equation 
                                              2 1

1 1 1 1( ) N
k k k k k kf x g gθ β−
+ + + +−∇ = − + s                                (2.10) 

after some algebra we get 

                
2

1 21
1 12

1 1

1 1 ( )
( )

T
k Tk k

k kT T T
k k k k k k k

g s g s f x s s g
s f x g y s y s

θ + +
+ +

+ +
1 .T

k k k k+

⎡ ⎤⎛ ⎞
= − ∇ +⎢ ⎥⎜ ⎟∇ ⎢ ⎥⎝ ⎠⎣ ⎦

     (2.11) 

Observe that the choice (2.11) does not imply that 1kd +  given by (2.3) is the Newton 
direction. This is only a technical operation to get 1kθ +  as in (2.11). The salient point in this 
formula for θ k+1  is the presence of the Hessian. For large-scale problems, choices for the 
update parameter that do not require the evaluation of the Hessian matrix are often preferred 
in practice to the methods that require the Hessian in each iteration. Therefore, in order to 
have an algorithm for solving large-scale problems we assume that in (2.10) we use an 
approximation 1kB +  of the true Hessian 2

1( k )f x +∇  and let 1kB +  satisfy the quasi-Newton 
equation 1 .k k kB s y+ =  This leads us to: 

                                  
2

2 1 1
1 1

1

( )1 .
T

k k k T
k k kT T

k k k k

g s g
g

y g y s
θ + +

+ +
+

1ks g +

⎡ ⎤
= − +⎢ ⎥

⎢ ⎥⎣ ⎦
                     (2.12) 

Observe that if 1kθ +  given by (2.12) is greater than or equal to 1/  then according to 
Theorem 2.1 the direction (2.3) satisfies the sufficient descent condition (2.7). On the other 
hand, if in (2.12) 

4,

1 1/ 4,kθ + <  then we take ex abrupto 1 1kθ + =  in (2.3). 
 
B) The second procedure is based on the conjugacy condition. Dai and Liao [14] introduced 
the conjugacy condition  where  is a scalar. This is indeed very 
reasonable since in real computation the inexact line search is generally used. However, this 
condition is very dependent on the nonnegative parameter , for which we do not know any 
formula to choose in an optimal manner. Therefore, even if in our developments we use the 
inexact line search we adopt here a more conservative approach and consider the conjugacy 
condition  This leads us to: 

1 1,
T T
k k k ky d ts g+ += − 0t ≥

t

1 0.T
k ky d + =

                                          
2

2 1 1
1 1

1

( )1 .
T

k k k
k kT T

k k k k

g s g
g

y g y s
θ + +

+ +
+

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
                           (2.13) 

As above, if 1kθ +  given by (2.13) is greater than or equal to 1/  then according to Theorem 
2.1 the direction (2.3) satisfies the sufficient descent condition (2.7). On the other hand, if in 
(2.13) 

4,

1 1/ 4,kθ + <  then we take 1 1kθ + =  in (2.3).  

Observe that since  along the iterations, 1 0T
k ks g + → kθ  given by (2.12) obtained 

from the Newton direction paradigm is very similar to (2.13) based on the conjugacy 
condition. Besides, 1kθ +  from (2.13) can be written as 

2
1 1

1 2
1 1

( )1 .
T

k k k
k TT

k kk k k

g s g
y sg g g

θ + +
+

+ +

⎡ ⎤
= −⎢ ⎥

− ⎣ ⎦
 

Since at every iteration  is a descent direction and kd kα  is computed by the Wolfe line 

search (2.5) and (2.6), it follows that . (This is reminiscence from the steepest 
descent method.) Therefore, along the iterations, 

1 0T
k kg g + →

1kθ → . 

 4



In [17] Dai and Yuan proved the global convergence of a conjugate gradient 
algorithm for which  where ,DY

k k ktβ β= [ ,1]kt c∈ −  with (1 ) /(1 ).c σ σ= − +  Our algorithm 
is a proper modification of the Dai and Yuan’s with the following property.  
Observe that  

                                              
2

1 11
T

kN k k
k T T

k k k k

g s g r
y s y s

β + +⎡ ⎤
= − =⎢ ⎥

⎣ ⎦
,DY

k kβ                                    (2.14) 

where  

                                                              11
T
k k

k T
k k

s gr
y s

.+= −                                                     (2.15) 

From the second Wolfe condition it follows that 1 1,
T T T T
k k k k k k k ks g s g y s s gσ σ σ+ +≥ = − +  i.e.  

1 .
1

T T
k k k ks g y sσ

σ+
−

≥
−

 

Since by the Wolfe condition , it follows that 0T
k ky s > 1 .

1

T
k k

T
k k

s g
y s

σ
σ

+ −
≥

−
 Hence 

1 .
1kr σ

≤
−

 

Therefore,  

                                                             
1 .

1
N DY
k kβ β

σ
≤

−
                                                  (2.16) 

 
3. Convergence analysis 
In this section we analyze the convergence of the algorithm (2.2), (2.3), (2.4) and (2.12) or 
(2.13) where . In the following we consider that 0d = − 0g 0kg ≠  for all , otherwise a 
stationary point is obtained. Assume that: 

1k ≥

(i) The level set { }0: ( ) ( )nS x R f x f x= ∈ ≤  is bounded. 

(ii) In a neighborhood  of , the function N S f is continuously differentiable and its 
gradient is Lipschitz continuous, i.e. there exists a constant  such that 0L >

( ) ( )f x f y L x∇ −∇ ≤ − y , for all , .x y N∈  

Under these assumptions on f  there exists a constant 0Γ ≥  such that ( )f x∇ ≤ Γ  for all 

.x S∈  In order to prove the global convergence, we assume that the step size kα  in (2.2) is 
obtained by the strong Wolfe line search, that is, 
                                             ( ) ( ) T

k k k k k k k ,f x d f x g dα ρα+ − ≤                                        (3.1) 

                                              ( )T T
k k k k k kg x d d g dα σ+ ≤ .                                                  (3.2) 

where ρ  and σ  are positive constants such that 0 1.ρ σ< ≤ <  
For any conjugate gradient algorithm with strong Wolfe line search, we have the following 
results given by lemma 3.1 and lemma 3.2, which were first proved by Zoutendijk [33] and 
Wolfe [31, 32]. For completeness, we present them here without proofs. 
 
Lemma 3.1. Let kα  be obtained by the strong Wolfe line search (3.1) and (3.2). Suppose that 
the assumptions (i) and (ii) and  is a descent direction. Then kd

                                                             
0

.T
k k k

k
g dα

∞

=

− < ∞∑  ¦                                                (3.3) 

 

 5



                

Lemma 3.2. Let kα  be obtained by the strong Wolfe line search (3.1) and (3.2). Suppose that 
the assumptions (i) and (ii) and  is a descent direction. Then the so-called Zoutendijk 
condition holds 

kd

                                                             
2

2
0

( ) .
T
k k

k k

g d
d

∞

=

< ∞∑   ¦                                                (3.4) 

 
Based on these results, for conjugate gradient method (2.2) where 
                                                     1 1

N
k k k k k kd g dθ α β 1− − −= − +                                               (3.5) 

and 1/ 4,kθ >  with strong Wolfe line search, we can prove the following lemma and its 
corollary which are essential for the convergence of our algorithms. Lemma 3.3 is a variant of 
the Theorem 2.3 of Dai et al. [18]. 
 
Lemma 3.3. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient 
method (2.2) and (3.5) where 1/ 4,kθ >  with strong Wolfe line search (3.1) and (3.2). Then 
either 
                                                             liminf 0,kk

g
→∞

=                                                       (3.6) 

or 

                                                                
4

2
0

.k

k k

g

d

∞

=

< ∞∑                                                        (3.7) 

Proof. Since for any , 0k ≥ 1/ 4,kθ > it follows that  is a descent direction. From (3.5) 

since for all we have 
kd

0,k ≥ 0T
k kg d <

                                          
2 22 2

1 1 1( )N
k k k k k kd dα β θ− − −≥ − 2 .g                                       (3.8) 

On the other hand, from (3.5) we get 
2

1 1 1 .T N T
k k k k k k k kg d g d gα β θ− − −− = −  

Since  is a descent direction, it follows that kd
2

1 1 1 .N T T
k k k k k k k kg d g d gα β θ− − − + =  

Therefore, 
2

1 1 1 .N T T
k k k k k k k kg d g d gα β θ− − − + ≥  

From the strong Wolfe condition we have that 
                                         

2
1 1 1 1 .N T T

k k k k k k k kg d g d gσα β θ− − − − + ≥                                   (3.9) 

But for any , , 0a b σ ≥  the following inequality  holds. 

Considering 

2 2 2( ) (1 )(a b a bσ σ+ ≤ + + 2 )
T
k ka g d=  and 1 1 1 1

N T
k k k kb gα β d− − − −= , then (3.9) yields to 

                                      42 2 2
1 1 1 1( ) ( ) ( )T N T

k k k k k k kg d g d c gα β− − − −+ ,≥
2

                              (3.10) 

where 2 /(1 )kc θ σ= +  is a positive constant. Therefore, from (3.10) we get 

           
22 2

2 21 1
1 12 2 2 2

1 1

( ) ( ) 1 ( ) ( )
T T

kT Tk k k k
k k k k

k k k k

dg d g d g d g d
d d d d

− −
− −

− −

⎡ ⎤
+ = +⎢ ⎥

⎢ ⎥⎣ ⎦
 

                                                 
2

4 2 2
1 1 1 12 2

1

1 ( ) ( )kT N
k k k k k

k k

d
c g g d

d d
α β− − − −

−

.
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟≥ + −

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

 6



From (3.8) observe that  
2 2

2 2
1 12 2

1 1

( )k kN
k k k

k k

d g

d d
α β θ− −

− −

≥ − .  

Therefore, 

                               
42 2 2

21 1 1 1
2 2 2 2

1 1

( ) ( ) ( ) 1 ,
T T T

kk k k k k k
k

k k k k k

gg d g d g dc
d d d d g

θ− − − −

− −
2

⎡ ⎤
+ ≥ −⎢ ⎥

⎢ ⎥⎣ ⎦
            (3.11) 

where 1/ 4.kθ >  From lemma 3.2 we know that 
2

1 1
2

1

( )lim 0.
T
k k

k
k

g d
d
− −

→∞
−

=  

Therefore, if (3.6) is not true, then 
2

1 1
2 2

1

( ) 1lim 0.
T
k k

k
k k

g d
d g
− −

→∞
−

=  

Therefore, from (3.11) we get that 
42 2

1 1
2 2

1

( ) ( )T T
kk k k k

k k

gg d g d c
d d

− −

−

+ ≥ 2
kd

 

holds for all sufficiently large  Hence, the inequality (3.7) follows from Zoutendijk 
condition (3.4) in lemma 3.2. ¦ 

.k

 
Corollary 3.1. Suppose that the assumptions (i) and (ii) hold and consider any conjugate 
gradient method (2.2) and (3.5), where  is a descent direction, i.e. kd 1/ 4,kθ >  and kα  is 
obtained by the strong Wolfe line search (3.1) and (3.2). If 

                                                               2
1

1
k kd≥

= ∞∑ ,                                                     (3.12) 

then 
                                                          liminf 0.k

k
g

→∞
=                                                        (3.13) 

Proof. Suppose that there is a positive constant γ  such that kg γ≥  for all  Then, 
from lemma 3.3 we have 

0.k ≥

4

2 24
0 0

1 1 .k

k kk k

g

d dγ≥ ≥

≤ < ∞∑ ∑  

However, this contradicts (3.12) from the corollary 3.1, i.e. the corollary 3.1 is true. ¦ 
 
Theorem 3.1. Suppose that the assumptions (i) and (ii) hold and consider the algorithm (2.2), 
(2.3), (2.4) and (2.12) or (2.13), where  1kd +  is a descent direction and kα  is obtained by the 

strong Wolfe line search (3.1) and (3.2). If there exists a constant 0γ ≥  such ( )f xγ ≤ ∇ , 

1/ 4 kθ τ≤ ≤ , where τ  is a positive constant and the angle kϕ  between  and  is 
bounded, i.e. 

kg kd
cos 0kϕ ξ≤ ≤  for all 0,1,k = … , then the algorithm satisfies li  minf 0.kk

g
→∞

=

 
Proof. Observe that  But 1 ( 1)T T T T

k k k k k k k ky s g s g s g sσ+= − ≥ − . cos .T
k k k k kg s g s ϕ=  Since 

 is a descent direction it follows that kd 0T
k k k kg s g s ξ≤ ≤  for all 0,1, ,k = … i.e.  

(1 ) .T
k k k ky s g sσ ξ≥ − −  

 7



                

With these, from (2.16) we have 
2 2 2

1 1
2 2

1 ,
1 (1 ) (1 )

k kN
k T

k k k k k k

g g
y s g s s s

ηβ
σ σ ξ σ ξγ

+ + Γ
≤ ≤ ≤ =

− − − − −
 

where 
2

2 .
(1 )

η
σ ξγ
Γ

=
− −

 

Therefore 

1 1 1 .N
k k k k k k

k

d g s s
s
ηθ β τ τ+ + +≤ + ≤ Γ + = Γ η+  

This relation shows that 

                                                  2 2
1 1

1 1 1
( )k kkd τ η≥ ≥

≥
Γ +∑ .= ∞∑                                        (3.14) 

Hence, from corollary 3.1 it follows that liminf 0k
k

g
→∞

= .  ¦ 

 
4. AMDYN and AMDYC Algorithms 
Nocedal [25] pointed out that in conjugate gradient methods the step lengths may differ from 
1 in a very unpredictable manner. They can be larger or smaller than 1 depending on how the 
problem is scaled. This is in very sharp contrast to the Newton and quasi-Newton methods, 
including the limited memory quasi-Newton methods, which accept the unit steplength most 
of the time along the iterations, and therefore usually they require only few function 
evaluations per search direction. Numerical comparisons between conjugate gradient methods 
and the limited memory quasi Newton method by Liu and Nocedal [23] show that the latter is 
more successful [7]. One explanation of efficiency of this limited memory quasi-Newton 
method is given by its ability to accept unity step lengths along the iterations. In this section 
we take advantage of this behavior of conjugate gradient algorithms and consider an 
acceleration scheme of the above conjugate gradient algorithms. Basically the acceleration 
scheme modifies the step length kα  in a multiplicative manner to improve the reduction of 
the function values along the iterations (see [5, 9] and [10]). In accelerated algorithm instead 
of (2.2) the new estimation of the minimum point is computed as  
                                                           1k k k k kx x dγ α+ = + ,  
where  

k
m

k

a
b

γ = − , 

,T
k k k ka g dα=  ( ) ,kd k kz x dT

k k k zb g gα= − − kα= +  and ( )zg f z= ∇ . Hence, if  
then 

0,kb ≠

1k k k k kx x dγ α+ = + , otherwise 1k k k kx x dα+ = + . Therefore, using the definitions of 
gk , sk , and the above acceleration scheme we present the following conjugate gradient 
algorithms which are accelerated, modified versions of the Dai and Yuan algorithm with 
Newton direction (AMDYN) or with conjugacy condition (AMDYC). 

yk

 
AMDYN and AMDYC Algorithms 
Step 1. Initialization. Select and the parameters x R n

0 ∈ 0 1.ρ σ< < <  Compute f x( )0  

and g0 .  Consider d g0 0= − and α 0 01= / g .  Set k = 0.  

Step 2. Test for continuation of iterations. If  gk ∞
−≤ 10 6 , then stop, else set k k= +1.  

Step 3. Line search. Compute α k satisfying the Wolfe line search conditions (2.5) and (2.6). 
Step 4. Compute: k k kz x dα= + ( )zg f z= ∇ z and .k ky g g= −  , 

 8



Step 5. Compute: , and . T
k k ka gα= kd kd

k

T
k k kb yα= −

Step 6. Acceleration. If  then compute 0,kb ≠ /k ka bγ = −  and update the variables as 

1k k k k kx x dγ α+ = + , otherwise update the variables as 1k k k kx x dα+ = + . Compute 1kf +  and 
 Compute 1.kg + 1k ky g g+ k= −  and 1 .k ks x x+ k= −  

Step 7. 1kθ + computation. For the algorithm AMDYN, 1kθ +  is computed as in (2.12). For the 
algorithm AMDYC, 1kθ +  is computed as in (2.13). If 1 1/ 4,kθ + <  then we set 1 1kθ + = . 

Step 8. Direction computation. Compute , where 1 1
N

k k k kd gθ β+ += − + s N
kβ is computed as 

in (2.4). If  
                                                      g d d gk

T
k+

−
+≤ −1

3
2 1 2

10 ,                                           (4.1) 
then define dk+ d=1 ,  otherwise set d gk+ k+= −1 .1  Compute the initial guess 

α αk k k kd d= − −1 1 / ,  set k k= +1 and continue with step 2.  
 
 It is well known that if f is bounded along the direction  then there exists a 
stepsize 

dk

α k  satisfying the Wolfe line search conditions (2.5) and (2.6). In our algorithm 
when the angle between  and d − +gk 1 is not acute enough, then we restart the algorithm with 
the negative gradient [11]. More sophisticated reasons for restarting the algorithms 
have been proposed in the literature [29], but we are interested in the performance of a 
conjugate gradient algorithm that uses this restart criterion, associated to a direction satisfying 
the sufficient descent condition. Under reasonable assumptions, conditions (2.5), (2.6) and 
(4.1) are sufficient to prove the global convergence of the algorithm.  

1kg +−

 The initial selection of the step length crucially affects the practical behaviour of the 
algorithm. At every iteration k ≥ 1 the starting guess for the step α k in the line search is 

computed as α k k kd d− −1 1 2
/

2
.  This selection, was considered for the first time by Shanno 

and Phua in CONMIN [30]. It is also considered in the packages: SCG by Birgin and 
Martínez [11] and in SCALCG by Andrei [1-4, 7]. 
 For uniformly convex functions, like in [10], we can prove that the sequence 
generated by AMDYN or AMDYC converges linearly to the solution of the problem (2.1). 
 
Proposition 4.1. Suppose that f  is a uniformly convex function on the level set 

{ }0: ( ) ( )S x f x f x= ≤ , and  satisfies the sufficient descent condition kd 2
1 ,T

k k kg d c g< −  

where , and 1 0c > 2 2
2kd c g≤ k , where  Then the sequence generated by AMDYN 

or AMDYC converges linearly to 
2 0.c >

*,x  solution to the problem (2.1). ¦ 
 
5. Numerical results and comparisons 
In this section we present the computational performance of a Fortran implementation of the 
AMDYN and AMDYC algorithms on a set of 750 unconstrained optimization test problems. 
We selected 75 large-scale unconstrained optimization problems in extended or generalized 
form [8]. For each function we have considered ten numerical experiments with the increasing 
number of variables  All algorithms implement the Wolfe line 
search conditions with 

n = 1000 2000 10000, , ,… .
0.0001ρ =  and 0.9σ = , and the same stopping criterion 

gk ∞
−≤ 10 6 , where .

∞
is the maximum absolute component of a vector. The comparisons 

of algorithms are given in the following context. Let and be the optimal value 
found by ALG1 and ALG2, for problem 

f i
ALG1 f i

ALG2

i = 1 750, ,… ,  respectively. We say that, in the 
particular problem  the performance of ALG1 was better than the performance of ALG2 if  i,

 9



                

                                                        f fi
ALG

i
ALG1 2 10− < −3                                                (5.1) 

and the number of iterations, or the number of function-gradient evaluations, or the CPU time 
of ALG1 was less than the number of iterations, or the number of function-gradient 
evaluations, or the CPU time corresponding to ALG2, respectively. 
All codes are written in double precision Fortran and compiled with f77 (default compiler 
settings) on an Intel Pentium 4, 1.8GHz workstation. All these codes are authored by Andrei. 
 In the first set of numerical experiments we compare AMDYN versus AMDYC. In 
Table 1 we present the number of problems solved by these two algorithms with a minimum 
number of iterations (#iter), a minimum number of function and its gradient evaluations (#fg) 
and the minimum cpu time. 
 

Table 1. Performance of AMDYN versus AMDYC. 750 problems. 
 AMDYN AMDYC = 

# iter 83 105 562 
# fg 152 147 451 
CPU 143 119 488 

 
Both algorithms have similar performances. However, subject to cpu time metric, AMDYN 
proves to be slightly better. In the following we shall compare AMDYN versus some known 
conjugate gradient algorithms. 

In the second set of numerical experiments we compare AMDYN algorithm with the 
Dai and Yuan (DY) algorithm. Figure 1 presents the Dolan-Moré performance profile for 
these algorithms subject to the cpu time metric. We see that AMDYN is top performer, being 
more successful and more robust than the Dai and Yuan algorithm. When comparing 
AMDYN with the Dai and Yuan algorithm (Figure 1), subject to the number of iterations, we 
see that AMDYN was better in 619 problems (i.e. it achieved the minimum number of 
iterations in 619 problems). DY was better in 27 problems and they achieved the same 
number of iterations in 60 problems, etc. Out of 750 problems, only for 706 of them does the 
criterion (5.1) hold.  

Dai and Yuan [17] studied the hybrid conjugate gradient algorithms and proposed the 
following two hybrid methods: 

                                     {1max ,min , ,
1

hDY DY HS DY
k k k

σβ β β
σ

− }kβ
⎧ ⎫= −⎨ ⎬+⎩ ⎭

                            (5.2) 

                                               { }{ }max 0,min ,hDYz HS DY
k kβ β= kβ

,k

,                                     (5.3) 

where showing their global convergence when the Lipschitz assumption 
holds and the standard Wolfe line search is used. The numerical experiments of Dai and Ni 
[15] proved that the second hybrid method (hDYz) is the better, outperforming the Polak-
Ribière [27] and Polyak [28] method. In the third set of numerical experiments we compare 
the Dolan-Moré performance profile of AMDYN versus Dai-Yuan hybrid conjugate gradient 

 subject to the cpu time metric, as in Figure 2. Observe that the differences are 
substantial. Again AMDYN is top performer. 

1 /HS T T
k k k ky g y sβ +=

hDY
kβ

 

 10



 
Fig. 1. Performance profile of AMDYN versus DY. 

 

 
Fig. 2. Performance profile of AMDYN versus hDY. 

 
In the fourth set of numerical experiments, in Figure 3, we compare the Dolan-Moré 

performance profile of AMDYN versus Dai-Yuan hybrid conjugate gradient  subject to 
the cpu time metric. Again observe that AMDYN is top performer. 

hDYz
kβ

In the fifth set of numerical experiments we compare AMDYN versus Hestenes-
Stiefel conjugate gradient algorithm ( ). Figure 4 presents the 
performance profiles of these algorithms. The HS method has the property that the conjugacy 
condition  always holds, independent of the line search. On the other hand, 

AMDYN algorithm satisfies the Dai-Liao conjugacy condition 

1 /HS T T
k k k ky g y sβ += k

1

1 0T
k ky d + =

1
T T
k k k ky d s g+ += −  which is a 

little more relaxed than the pure conjugate condition 1 0T
k ky d + = .   

 11



                

 
Fig. 3. Performance profile of AMDYN versus hDYz. 

 

 
Fig. 4. Performance profile of AMDYN versus HS. 

 
In the sixth set of numerical comparisons we consider AMDYN versus the Polak-

Ribière-Polyak conjugate gradient algorithm ( ). Figure 5 presents the 
performance profiles of these algorithms subject to cpu time metric. The PRP method, like 
HS, posses a very important built-in restart feature that addresses directly to jamming. The 
idea is that PRP (and HS) method automatically adjust the value of the parameter 

1 /PRP T T
k k k ky g g gβ += k

PRP
kβ  to 

avoid jamming. In general, the performance of these methods (PRP and HS) is better than the 
performance of some other conjugate gradient methods (for example DY) [21]. However, 
from Figure 5 observe that AMDYN is top performer again among these algorithms. 
AMDYN inherits some convergence properties from the Newton method (see (2.10)). 

 12



 
Fig. 5. Performance profile of AMDYN versus PRP. 

 
In the next set of numerical experiments we compare AMDYN versus 

CG_DESCENT by Hager and Zhang [20]. Figure 6 presents the Dolan and Moré cpu time 
performance profile of AMDYN versus CG_DESCENT with Wolfe line search. Presently 
CG_DESCENT is the practical conjugate gradient algorithm with more reputation. 
CG_DESCENT is a modification of HS and was devised in order to ensure sufficient descent, 
independent of the accuracy of the line search. Hager and Zhang [20] proved that the direction 

 in their algorithm satisfies the sufficient descent condition kd 2(7 / 8)T
k k kg d g≤ − .  

 
Fig. 6. Performance profile of AMDYN versus CG_DESCENT. 

 
 

 13



                

At every iteration, the AMDYN algorithm satisfies the sufficient descent condition (2.7), 
where 1kθ → . Therefore, at least in the last part of the iterations AMDYN satisfies the 

sufficient descent condition 
2(3 / 4) .T

k k kg d g≤ −  CG_DESCENT has a very advanced line 
search procedure that utilizes the “approximate Wolfe conditions” which provides a more 
accurate way to check the usual Wolfe conditions when the iterates are near a local minimum 
of the function .f  On the other hand, AMDYN uses an acceleration scheme which modify 
the step length given by the classical Wolfe condition (2.5) and (2.6) in order to improve the 
reduction of the function values along the iterations.  
In the following, we compare AMDYN versus COMNIN by Shanno and Phua [30]. Figure 7 
presents the performance profiles of these algorithms. 

 
Fig. 7. Performance profile of AMDYN versus CONMIN. 

 
COMNIN by Shanno and Phua [30] is a conjugate gradient algorithm which may be 
interpreted as a memoryless BFGS quasi-Newton algorithm optimally scaled in the sense of 
Oren and Spedicato [26]. In CONMIN the scaling is combined with the Powell’s restart 
criterion. The direction  in CONMIN is computed as  1kd +

                                                                                        (5.4) 1 1 1 ,k k k k k kd H g A y B+ + += − + − ks
where  is the BFGS approximation of the inverse Hessian which at every iteration is 
initialized with identity matrix and  and 

1kH +

kA kB  are specific matrices. The main drawback  of 
this method is that if  contains useful information about the Hessian of the function 1kH + ,f  
then we are better off using the search direction 1 1k kd H g 1k+ + += −  since the addition of the 
last terms in (5.4) may prevent  from being a descent direction unless the line search is 
sufficiently accurate. The same is the case for the AMDYN algorithm. The parameter 

1kd +

1kθ + in 
(2.3) given by (2.12) is computed to get as much as possible information from the inverse 
Hessian by the secant condition. However, the approximation of the inverse Hessian used in 
AMDYN is scantier that that used in CONMIN. In Figure 7 we have the computational 
evidence that subject to the cpu time metric, AMDYN is top performer and outperforms 
COMNIN.  

 14



Finally we compare AMDYN versus LBFGS (m=3) by Liu and Nocedal [23] as in 
Figure 8, where m is the number of pairs ( ,  used. Observe that AMDYN is top 
performer again. 

)k ks y

 
Fig. 8. Performance profile of AMDYN versus LBFGS (m=3). 

 
One explanation is that the linear algebra in the LBFGS code to update the search direction is 
more time consuming than the linear algebra in AMDYN. On the other hand the steplength in 
LBFGS is determined at each iteration by means of the line search routine MCVSRCH, which 
is a slight modification of the routine CSRCH written by Moré and Thuente [24]. 
 
6. Conclusion 
We have presented a new conjugate gradient algorithm for solving large-scale unconstrained 
optimization problems. The parameter β k  is a modification of the Dai and Yuan 
computational scheme in such a manner that the direction generated by the algorithm 
satisfies the sufficient descent condition, independent of the line search. Under strong Wolfe 
line search conditions we proved the global convergence of the algorithm. We present 
computational evidence that the performance of our algorithms AMDYN and AMDYC was 
higher than that of the Dai and Yuan conjugate gradient algorithm and its hybrid variants, 
Hestenes-Stiefel, Polak-Ribière-Polyak, CONMIN, LBFGS (m=3) and compare favourable 
with CG_DESCENT, for a set consisting of 750 unconstrained optimization problems. 

dk

 
References 
[1] Andrei, N., Scaled conjugate gradient algorithms for unconstrained optimization.  

Computational Optimization and Applications, 38 (2007), pp. 401-416. 
[2] Andrei, N., Scaled memoryless BFGS preconditioned conjugate gradient algorithm for 

unconstrained optimization. Optimization Methods and Software 22 (2007), pp. 561-
571. 

[3] Andrei, N., A scaled BFGS preconditioned conjugate gradient algorithm for 
unconstrained optimization. Applied  Mathematics Letters 20 (2007), pp. 645-650. 

[4] Andrei, N., A scaled nonlinear conjugate gradient algorithm for unconstrained 
optimization. Optimization, 57 (2008), pp. 549-570. 

[5] Andrei, N., An acceleration of gradient descent algorithm with backtracking for 
unconstrained optimization. Numerical Algorithms, 42 (2006), pp.63-73. 

 15



                

[6] Andrei, N., 40 conjugate gradient algorithms for unconstrained optimization. A survey on 
their definition. ICI Technical Report No. 13/08, March 14, 2008. 

[7] Andrei, N., Performance profiles of conjugate gradient algorithms for unconstrained 
optimization. Encyclopedia of Optimization, 2nd edition, C.A. Floudas and P.M. 
Pardalos (Eds.), Springer, New York, vol. P (2009), 2938-2953. 

[8] Andrei, N., An unconstrained optimization test functions collection. Advanced Modeling 
and Optimization. An Electronic International Journal, 10 (2008) 147-161. 

[9] Andrei, N., Accelerated conjugate gradient algorithm with finite difference Hessian / 
vector product approximation for unconstrained optimization. Journal of 
Computational and Applied Mathematics, 230 (2009), pp.570-582. 

[10] Andrei, N., Acceleration of conjugate gradient algorithms for unconstrained 
optimization. Applied Mathematics and Computation, 213 (2009), pp.361-369. 

[11] Birgin, E., Martínez, J.M., A spectral conjugate gradient method for unconstrained 
optimization, Applied Math. and Optimization, 43 (2001), pp.117-128. 

[12] Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, Ph.L., CUTE: constrained and 
unconstrained testing environments, ACM Trans. Math. Software, 21 (1995), pp.123-
160. 

[13] Dai, Y.H., New properties of a nonlinear conjugate gradient method. Numer. Math., 89 
(2001), pp.83-98. 

[14] Dai, Y.H., Liao, L.Z., New conjugacy con7 ditions and related nonlinear conjugate 
gradient methods. Appl. Math. Optim., 43 (2001), pp. 87-101. 

[15] Dai, Y.H. Ni, Q., Testing different conjugate gradient methods for large-scale 
unconstrained optimization, J. Comput. Math., 21 (2003), pp.311-320. 

[16] Dai, Y.H., Yuan, Y., A nonlinear conjugate gradient method with a strong global 
convergence property, SIAM J. Optim., 10 (1999), pp.177-182. 

[17] Dai, Y.H. Yuan, Y., An efficient hybrid conjugate gradient method for unconstrained 
optimization. Annals of Operations Research, 103 (2001), pp.33-47. 

[18] Dai, Y.H., Han, J.Y., Liu, G.H., Sun, D.F., Yin, X., Yuan, Y., Convergence properties of 
nonlinear conjugate gradient methods. SIAM Journal on Optimization 10 (1999), 348-
358. 

[19] Dolan, E.D., Moré, J.J., Benchmarking optimization software with performance profiles, 
Math. Programming, 91 (2002), pp. 201-213.  

[20] Hager, W.W., Zhang, H., A new conjugate gradient method with guaranteed descent and 
an efficient line search, SIAM Journal on Optimization, 16 (2005) 170-192. 

[21] Hager, W.W., Zhang, H., A survey of nonlinear conjugate gradient methods. Pacific 
journal of Optimization, 2 (2006), pp.35-58. 

[22] Hestenes, M.R., Stiefel, E.L., Methods of conjugate gradients for solving linear systems, 
J. Research Nat. Bur. Standards, 49 (1952) 409-436. 

[23] Liu, D.C. and Nocedal, J., On the limited memory BFGS method for large scale 
optimization. Mathematical Programming, 45 (1989), pp.503-528. 

[24] Moré, J.J., Thuente, D.J., Line search algorithms with guaranteed sufficient decrease. 
ACM Transactions on Mathematical Software, 20 (1994) 286-307. 

[25] Nocedal, J., Conjugate gradient methods and nonlinear optimization, in L. Adams and 
J.L. Nazareth (Eds.) Linear and Nonlinear Conjugate Gradient – Related Methods, 
SIAM, Philadelphia, 1996, pp.9-23. 

[26] Oren S.S., Spedicato, E., Optimal conditioning of self-scaling variable metric algorithms. 
Math. Programming, 10 (1976), pp.70-90. 

[27] Polak, E., Ribière, G., Note sur la convergence de méthodes de directions conjuguée, 
Revue Francaise Informat. Recherche Opérationnelle, 3e Année 16 (1969), pp.35-43. 

[28] Polyak, B.T., The conjugate gradient method in extreme problems,USSR Comp. Math. 
Math. Phys., 9 (1969), pp.94-112. 

[29] Powell, M.J.D., Restart procedures for the conjugate gradient method. Mathematical 
Programming 12 (1977), pp.241-254. 

 16



[30] Shanno, D.F., Phua, V., Algorithm 500, Minimization of unconstrained multivariate 
functions, ACM Trans. on Math. Soft., 2, pp.87-94, 1976. 

[31] Wolfe, P., Convergence conditions for ascent methods, SIAM Rev., 11 (1969) pp.226-
235. 

[32] Wolfe, P., Convergence conditions for ascent methods II: some corrections.  SIAM Rev., 
13 (1971) pp.185-188. 

[33] Zoutendijk, G., Nonlinear programming computational methods. In J. Abadie (Ed.) 
Integer and Nonlinear Programming, North-Holland, Amsterdam, 1970, pp.37-86. 

 
 

January 27, 2010 
 
 

 

 17


