Software V2

Neculai Andrei

Academy of Romanian Scientists, Center for Advanced Modeling and Optimization, Ilfov Street, No. 3, Bucharest 5, Romania, E-mail: <u>neculaiandrei1948@gmail.com</u>

> Technical Report October 16, 2020

This Technical Report is the **second version** of the list of the software I have written and tested along the years. The software in this version of this paper is an improvement of the software I listed in the Technical Report from December 8, 2011, where I introduced some new software elaborated along the years. The programs and subroutines are organized on directories and subdirectories. In each directory I placed a number of programs I have elaborated in my research activity. Some other information concerning the algorithms or the results of the software is also included. The list of chapters and their contents is as follows:

		Support Programs
1.	ENORM	Program for computing the Euclidian norm of a vector.
2.	PERFORM	 (This is a variant of function enorm from MINPACK1) Program for Profile Performance Analysis. There are three subroutines: PERF2N for analysis of two algorithms (ALG1 versus ALG2) subject to the number of iterations, of function evaluations and CPU time in sense of Dolan and Morè. [See: Dolan, E.D., & Moré, J.J., (2002). Benchmarking optimization software with performance profiles. <i>Mathematical Programming</i>, <i>91</i>, 201-213.]
		PERFNN for analysis of at least 20 algorithms subject to the number of iterations, of function evaluations and CPU time in sense of Dolan and Morè. [See: Dolan, E.D., & Moré, J.J., (2002). Benchmarking optimization software with performance profiles. <i>Mathematical Programming</i> , <i>91</i> , 201-213.]

		PERLOG for performance analysis of two algorithms according to the index
		$r_i = -\frac{\log(a^A)}{\log(a^B)},$
		where a^A and a^B referes to the number of iterations, or the number of functions evaluartions, or the CPU time respectively corresponding to the algorithm A or B.
		A complete description of these algorithms could be find in: N. Andrei, <i>Criticism of the Unconstrained Optimization Algorithms</i> <i>Reasoning,</i> Editura Academiei Române, București, 2009. ISBN: 978-973-27-1669-4 (pp. 89-94)
2		December 30, 2004
3.	GRADIENI	finite difference
		The step length is sqrt of epsilon machine.
		April 1983
4.	JACOBIAN	Program for computation of the sparse Jacobian with minimization of
		the number of function evaluations.
		The algorithm is described in the paper: N. Andrei , <i>RP - a package for efficient calculation of sparse jacobian</i> <i>matrix for nonlinear systems of equations using finite differences.</i> Technical Report, Bucharest, April 15, 1983. (Please see the file: JACOBIAN.DOC)
5	IC	April 15, 1983
5.	LS	 A conection of subjournes for one-dimensional searching used in nonlinear optimization. The following subroutines belong to this collection: L1 Golden search L2 Fibonacci search L3 Quadratic interpolation of Powell technique L4 Dichotomous search April, 1990
6.	LINE-	Line search: Backtracking versus Wolfe versus Moré - Thuente in
	SEARCH	context of Steepest Descent Method. The purpose of this program is to see 3 line search subroutines (backtracking, Wolfe and Strong Wolfe) in some particular Fortran implementation.
		 Subroutine BACK (backtracking) is authored by Andrei. Subroutine WOLFE (standard Wolfe conditions) is coauthored by Shanno and Phua with some additional modifications by Andrei. Subroutine MTLINES (strong Wolfe conditions) is coauthored by Moré and Thuente.
		A description of these algorithms could be find in: N. Andrei, <i>Criticism of the Unconstrained Optimization Algorithms</i> <i>Reasoning,</i> Editura Academiei Române, București, 2009. ISBN: 978-973-27-1669-4 (pp. 122-133)

		August 30, 2006
7.	AORDER	Subroutine for setting the elements of an array in ascending order. The
		elements of the array may be positive or negative.
		This subroutine is accompanied by an main program illustrating the
		11: Color 1 ci
		calling of the subroutine.
		Array to be ordered (increasingly)
		1 0.10000000000E+02 2 0.0000000000E+02
		3 0.8000000000E+01
		4 -0.60000000000E+01
		5 0.6000000000E+01
		6 0.50000000000E+01
		7 0.40000000000E+01
		8 0.30000000000E+01 0 0.2000000000E+01
		10 - 0.100000000000000000000000000000000
		Ordered array
		1 -0.60000000000E+01
		2 0.1000000000E+01
		3 0.20000000000E+01
		4 0.30000000000E+01 5 0.4000000000E+01
		6 0.500000000000000000000000000000000000
		7 0.6000000000E+01
		8 0.80000000000E+01
		9 0.9000000000E+01
		10 0.1000000000E+02
		August, 1995

		Numerical Linear Algebra
1.	SIMEQ	Directory SIMEQSimultaneous linear equations system solvingSIMEQ subroutine for solving linear algebraic systems of equations (the dense case). The matrix and its inverse are stored in (NxN) arrays.SIMEQL subroutine for solving linear algebrais systems of equations (the dense case). In this case the matrix and its inverse are stored in one- dimensional arrays on rows in natural order, i.e. [row1, row2, rowKC]. Both subroutines implements the Gauss method of ellimination with column pivoting to determine the solution vector and the inverse of the matrix. Calling sequence:CALL SIMEQ (A,RHS,KC,AINV,X,IERR) CALL SIMEQL(A,RHS,KC,AINV,X,IERR) where: A = The array of the system's matrix. RHS = The right-hand-side of the system. KC = The order of the system (The number of variables). ADW = The array of the system (The number of variables).
		X = The solution vector of the system. IERR = Return code with the following values: 0 if the matrix is singular,

		1 if the matrix is non-singular.
		January 21, 1995
2.	BT	 Directory BT Program for Block Triangularization of a large-scale sparse matrix. The following subroutines are invokated: RP02A, RP02B, RP02D, RP02C, RP02E. RP02A subroutine, for a given large-scale sparse matrix A, row packed, if it is possible; permute its rows and columns to the lower-block-triangular form. The matrix is permuted to the form PAQ, according to P and Q permutation matrices, so that the non-zero elements in the off-diagonal blocks preceed those in the diagonal blocks, which are in order. If the user introduce his matrix by columns, then RP02A subroutine will produce the upper-block-triangular form and the corresponding permutation matrices. RP02B subroutine, for a given pattern of non-zeros of a sparse matrix, finds a row permutation that makes the matrix have a maximum number of non-zero elements on its diagonal, using a depth first search with look ahead technique. RP02C This subroutine, for a given pattern of non-zeros of a sparse matrix, finds a symmetric permutation that makes the matrix lower block triangular, using the Tarjan's depth first search algorithm. To obtain the best results, the user must first permute the structure of the matrix so that it has a zero-free diagonal. This can be done using RP02B subroutine.
3.	RF	Directory RF Program for solving large-scale linear algebraic systems A*X=B or AT*X=B taking into account the sparsity of the A matrix. (AT is the transpose of the matrix A) This is a package of subroutines dedicated to compute the Product Form of Inverse (PFI) with a preassigned pivot procedure, to solve corresponding large-scale systems of linear equations, exploiting sparsity in all cases. The calling sequence is as follows: MAIN RF02A RF02C MRM03A MBTRAN RM02A MBTRAN is for forward transformation of rows and columns of the matrix to the "bump and spike" MRM03A compress the arrays a and indl in order to create more room for PFI generation. MFTRAN is for forward transformation of the RHS term of the system to compute the solution of A*X = B. X = A**(-1)*B = QP*(Tn*(T1*B)). MBTRAN is for backward transformation of the RHS term of the

		$X = A^{**}(-T)^{*}B = B^{*}(((OP)^{*}Tn)^{*} T1)$
		RM02A is for insitu permutation of a vector according to a permutation
		KWOZA is for insite permutation of a vector according to a permutation
		vector.
		The theory of Product Form of Inverse (PFI) factorization is described in:
		N. Andrei. Criticism of the linear programming algorithms reasoning.
		Romanian Academy Publishing House Bucharest 2011
		ISDN: 079 072 27 2076 0 (magazi 1220 272)
		15DIN: 978-975-27-2070-9 (pages: 1259-275)
		December 4, 1995
4.	LU	<u>Directory LU</u>
		Package for Solving Large-Scale Linear Algebraic Systems with LU
		Factorization and Markowitz Procedure for Pivots Selection
		The canning sequence is as follows:
		LU RF01A
		RM01A,
		RM04A.
		RS01A
		whore
		LU Main program for solving linear algebraic systems of equations
		Ax=b or ATx=b using LU factorization of the matrix with
		Markowitz's pivot selection strategy.
		RE01A Subroutine for LU factorization of the matrix A
		DS01A Subroutine for solving large cools systems of linear equations
		KSOTA Subjourne for solving large-scale systems of finear equations
		computing: $A^{**}(-1)^*b$ or $A^{**}(-1)^*b$, for a given vector b, using the
		LU factorization of the matrix A (given by RF01A subroutine),
		exploiting the sparsity in all cases.
		RM01A Subroutine for sorting the non-zeros of a sparse matrix from
		arbitrary order to column order, but unordered, within each column
		DM04A Subrouting for compressing the solution / row error of U
		RM04A Subroutine for compressing the column / row array of U
		factor (from the LU factorization of a sparse matrix) in order to
		eliminate the spaces between columns / rows.
		◆ The file LU.DOC contains a number of 15 examples of linear algebraic
		systems solved by LU package
		systems served by he puckage.
		The theory of LU factorization is described in:
		N. Andrei, Criticism of the linear programming algorithms reasoning.
		Romanian Academy Publishing House, Bucharest, 2011.
		ISBN: 978-973-27-2076-9 (pages: 287-316)
		May 3, 1995

		Zero of nonlinear functions
1.	ZERO1	In sub-directory ZERO, directory: SOFT-ANDREI-TOTAL: A simple algorithm for computing zero of a nonlinear function of a variable in a given interval [a,b].

		The Fortran program and 5 examples are presented in file zero1.doc (see directory: LUCRARI-MANUSTRISE-ANDREI (total).
		For function: $f(x) = x^2 - 4$, one zero in interval [0,3] is: a= 0.00000000000000 fa=-0.400000000000000000000000000000000000
		March 28, 1975
2.	ZERO2	Fortran program in subdirectory ZERO of the directory SOFT-ANDREI-TOTAL. A simple algorithm for computing all the zeros of a nonlinear function of a variable in a given interval [a,b]. b>a. The program include 14 examples of nonlinear functions for which the zeros (roots) are presented.
		For example, the function: $f'(x) = x^4 - 5x^2 + 4$ in interval $[-3,+3]$, has four zeros: Zero # 1 ZERO: -0.20000000001E+01 Function value: 0.6977529665164E-11 Number of iterations: 52 Number of function evaluations: 53
		Zero # 2 ZERO: -0.10000000003E+01 Function value: -0.1745270594711E-10 Number of iterations: 50 Number of function evaluations: 51
		Zero # 3 ZERO: 0.9999999999994E+00 Function value: 0.3477662602336E-11 Number of iterations: 66 Number of function evaluations: 67
		Zero # 4 ZERO: 0.199999999997E+01 Function value: -0.3488764832582E-10 Number of iterations: 50 Number of function evaluations: 51
		TOTAL # OF iterations: 218 TOTAL # of function evaluations: 222
		The graphical representation of this function is given in Figure 1. Observe it has exactly four zeros (roots).
		40 35 y=x ⁴ -5x ² +4 26 20 15 10 5 0 5
		Fig. 1. Function $f(x) = x^4 - 5x^2 + 4$ April 16, 1975

	So	lving Nonlinear Algebraic Systems $F(x) = 0$
1.	NEWTON	Newton method without line search.
	112112011	The method is described in:
		N. Andrei, Criticism of the Unconstrained Optimization Algorithms
		<i>Reasoning</i> , Academiei Publishing House, Bucharest, 2009, <u>Chapter 6</u> , (pages: 243-255).
		The Newton system is solved by means of the LA05** package by J.K. Read with minor modifications by N. Andrei.
		In directory NEWTON there are the following nonlinear algebraic systems:
		1) CANAL – Flow in a chanel problem,
		2) CAVITATE – Flow in a driven cavity problem,
		3) CIRCUIT – Circuit design problem,
		4) E1 – Calculul temperaturii stationare într-un reactor.
		5) E2 – Calculul fractiei de conversie a unei substante într-un reactor Chimic,
		6) PROPAN - Propan combustion in aer - Reduced Formulation,
		7) REACTOR - Stationar solution of a chemical reactor,
		8) ROBOT - Robot kinematics problem,
		9) SOLID - Solid Fuel Ignition.
		June 1, 2006
2.	GRFLOW	Gradient Flow Algorithm for solving nonlinear algebraic systems $F(x) = 0$, where $F(x) = [f_1(x), \dots, f_m(x)]$.
		The algorithm is as follows:
		$x_{k+1} = x_k + d_k,$
		where d_k is computed as solution of the following system of linear
		algebraic equations:
		$\left[\left[I + h_k \theta \left(\nabla F(x_k)^T \nabla F(x_k) + \sum_{i=1}^m f_i(x_k) \nabla^2 f_i(x_k) \right) \right] d_k = -h_k \nabla F(x_k)^T F(x_k)^T F(x_k) d_k$
		If $f_i(x)$ are convex and positive for all $i = 1,, m$; $rank(\nabla F(x)) = n$;
		$\theta = 1$ and $h_k \rightarrow \infty$, then the algorithm is quadratically convergent to a
		local solution of the system.
		FLOW.FOR is the main program for the Gradient Flow Algorithm for solving $F(x) = 0$. Some variants of this Fortran program can be found in FLOWC.FOR and FLOWZ.FOR.
		In directory ACAD there are the following problems (please see MINPACK-2 collection): GFLOWS1 – Circuit design problem,

		GFLOWS2 – Propan combustion problem
		GELOWS2 – Stationar solution of a chemical reactor
		GELOWS4 – Stational Solution of a chemical reactor,
		CELOWS5 – Robot Killematics problem,
		GFLOWS5 – Solid luel ignition problem,
		GFLOWS6 – Flow in a driven cavity problem,
		GFLOWS7 – Flow in a chanel problem,
		GFLOWS8 – Human heart dipole problem.
		The mathematical description of these problems, as well as their solution
		can be studied in:
		N. Andrei Criticism of the Unconstrained Optimization Algorithms
		Reasoning, Academiei Publishing House, Bucharest, 2009, <u>Chapter 6</u> ,
		(pages: 243-255).
		The theoretical aspects of the gradient flow method are presented in:
		N. Andrei, Criticism of the Unconstrained Optimization Algorithms
		<i>Reasoning</i> , Academiei Publishing House, Bucharest, 2009, <u>Chapter 15</u> .
		The performances of the gradient flow method are shown in chapter 15 of
		this monography (nogos: 675 670)
		uns monography, (pages. 075-079).
		Please, see the paper: Gradient Flow Algorithm for Systems of
		Nonlinear Equations, (ZEROF.PDF) (ZEROS.RTF).
2	IEV	Levenberg Marguardt Algorithm for solving poplinear algebraic systems
5.		E(v) = 0
	MARQ	$F(\lambda) = 0.$
		This directory contains the following problems (please see MINPACK-2
		collection):
		LMS1 – Circuit design problem,
		LMS2 – Propan combustion problem,
		LM3 – Stationar solution of a chemical reactor,
		LMS4 – Robot kinematics problem,
		LMS5 – Solid fuel ignition problem,
		LMS6 – Flow in a driven cavity problem,
		LMS7 – Flow in a chanel problem,
		A description of this algorithm together with the applications are
		presented in: N. Andrei, Criticism of the Unconstrained Optimization
		Algorithms Reasoning, Academiei Publishing House, Bucharest, 2009,
		<u>Chapter 14.3</u> (pages: 636-655)
		November 12, 2004
		January 10, 2007 (modified)

Linear programming

1.	AFFINE-	Main program Affine Scaling with Rows Partitioning for solving
	SCALING	Linear Programming Problems: Min $a^T x$ subject to $Ax < b \to 0$
		$\operatorname{Min} c \ x \text{ subject to } Ax \leq b, \ x \geq 0.$
		The program implements an algorithm described into the book: N. Andrei, <i>Programarea Matematică - Metode de punct interior</i> , Editura Tehnică, 1999, chapter 5, section 5.4. (pages: 125-157)
		The program uses two dimensional arrays and doesn't takes the advantage of sparsity of the matrix A. May 21, 1998
2.	SPLIT	Splitting the dense columns of a Linear Programming Problem.
		Please see: Chapter 15 of the book: N. Andrei, " <i>Criticism of the Linear Programming Algorithms Reasoning</i> ". Romanian Academy Publishing - Bucharest, Romania. 2010. (pages: 605-612) June 9, 2010
3.	BCR	Balance Rows Reduction in linear programming.
		The idea of this program is to eliminate the balance constraints, i.e. the constraints with zero RHS term
		The package has two main components. The first one eliminate the
		balance constraints and solve the reduced problem. The second one
		recover the solution from the solution of the reduced problem.
		Please see: Chapter 16, Section 2, pp. 591-605 of the book: N. Andrei , <i>Criticism of the Linear Programming Algorithms Reasoning</i> . Romanian Academy Publishing – Bucharest, 2011. (pages: 591-612) January 21, 1993
4.	ISLO	Interactive System for maintaing Linear Programming Problems.
		This is an interactive package for solving linear programming problems using PFI of the basis having the possibility to establish the
		optrimization conditions at the very beginning of the process.
5.	ASLO	Advanced System for Linear Optimization. The LU factorization of the basis (subroutines LA05AD, LA05BD, LA05CD, LA05ED and MC20AD) is used to implement the primal simplex method. The input of the problem is in MPS format.
6	ASLONEW	December 16, 1992
0.	ASLUNEW	Auvanceu System for Emear Optimization – New Version.
7.	CALP	A collection of Linear Programming Applications in ALLO Language. Se prezintă 10 prototupuri de modele de programare linară în limbajul ALLO, direct utilizate în context industrial.
		See: N. Andrei, <i>O colecție de aplicații de programare liniară în limbajul ALLO</i> . Technical Report No.4/2007, September 3, 2007. (88 pagini cu CD) (see files: FRONT-RT3-2007.DOC & RT3-2007.DOC in directory CALP)
		Please, see the directory CALP in LINEAR-PROGRAMMING. Please,

	see the Technical Report RT3-2007.doc. The mathematical models in ALLO language are placed in the directory MODELS.
	September 3, 2007

		SAMO Technology Advanced System for Linear Optimization
1.	ALLO	 Directory ALLO_LANGUAGE ALLO is a mathematical programming language having the ability to write linear programming models. It is fully algebraic, being notable for its syntax which is very simple but comprehensive, with a small number of reserved keywords. The compiler associated to ALLO language translate the model into the equivalent MPS form, directly admited by any professional linear optimizer. The directory ALLO_LANGUAGE contains the following subdirectories: ALLO-source: Subdirectory ALLO contains three executable programs: ALLOPAS1.EXE and ALLOPAS2.EXE for compiling an ALLO textsource and DSOLVER.EXE for solving the generated linear programming problem. Subdirectories PAS1 and PAS2 contains Fortran and C programs which implement the ALLO compiler. The list of subroutines is described in LIST-OF-SUBROUTINES.DOC file. Subdirectory MODELE contains 11 prototypes of linear programming models in ALLO language. ADC: includes 25 prototypes of linear programming models in ALLO language. DOC: contains some files describing the ALLO language. ALLO language is explained in LANGALLO.RTF file (english version, 16 pages, September 10, 2004) The documents ALLO1.DOC and ALLO2.DOC present a collection of linear programming models including: allocation models, assembling
		 models, desassembling, desassembling-assembling, transportation models, diet models, production modelswith optimal selection of technologies, systems with stocks, combined models of production with stocks, discrete production models. EXE: contains an old version of ALLO compiler (executables), SAMO executable, DSOLVER for solving a linear programming problem and HOPD which is HOPDM package by Gondzio.

		 N. Andrei, Gh. Borcan, ALLO: Algebraic Language for Linear Optimization. Technical Report, LSSO-2-95, Research Institute for Informatics, Bucharest, September 1995. N. Andrei, Gh. Borcan, ALLO – Limbaj algebric pentru optimizare liniară. Revista Română de Informatică și Automatică, vol.8, nr. 3, 1998, pp.55-67. N. Andrei, Pachete de Programe, Modele și Probleme de Test pentru Programarea Matematică, Editura MATRIXROM, București, 2001. N. Andrei, Critica Rațiunii Algoritmilor de Programare Liniară, Editura Academiei Române, București, 2011. (pages: 815-830)
		Martie 8, 2007
2. SAN	мо	 Directory INSTAL SAMO Advanced informatic technology for linear programming modeling and optimization. SAMO – is an advanced informatic technology for linear programming modeling and optimization at an industrial level. SAMO permits conceptualization, elaboration, maintainance, modification and solving large-scale linear programming models. The system SAMO is based of the language ALLO which is a dialect of the natural language used by the user to conceptualize, to build up, to modify linear programming models in algebraic format, as well as on the ALLO compiler which translate the algebraic format of the model in MPS format. SAMO uses a professional optimizer able to solve large-scale linear programming problems. SAMO allows generation and solving of linear programming prototypes. SAMO allows generation and solving of linear programming prototypes. SAMO is described in: TR18,DOC file: SAMO - tehnologie informatică avansată pentru modelare și optimizare. (Advanced informatioc technology for modeling and optimization.) Description of SAMO. Illustration of an ecran capture of this technology. (Martie 8, 2007) SAMO.MSI is windows installer package. To install SAMO, the serial number is: CB48T H668K C9W64 A description of SAMO, as well as some prototypes of industrial models in ALLO language, working under SAMO technology are presented in: N. Andrei, Critica Rațiunii Algoritmilor de Programare Liniară, Editura Academie Române, București, 2011. (pages: 642-752) N. Andrei, Pachete de Programe, Modele și Probleme de Test pentru Programarea Matematică, Editura MATRIXROM, București, 2001. (Lucrarea conține 13 prototipuri de modele de programare liniară exprimate în limbajul ALLO.)

	Unconstrained optimization					
		Direct Search Methods				
1.	UNO	Directory UNO UNCONSTRAINT OPTIMIZATION METHODS using DIRECT SEARCHING TECHNIQUES The following techniques are implemented: - Hook-Jeeves - form searching, (HOOKJ.FOR - Rosenbrook - rotation of coordinates, (ROSE.FOR) - Powell - conjugate directions, (POWEL.FOR) - Nelder-Mead - Simplex, (NELMED.FOR) - Parallel with Axes Searching. (CPA.FOR) These methods are implemented with different onedimensional optimization methods like: L1 - golden section, L2 - Fibonacci search, L3 - Quadratic fitting of Powell, L4 - Simple lambda =1.0.				
2	FIDO	Reasoning, Academy Publishing House, Bucharest, 2009, Chapter 16. New version: August 8, 2007				
2.	FIBO	O subrutină de calcul a minimului unei funcții neliniare de o variabilă, pe un interval dat, bazată pe metoda de căutare directă Fibonacci. The Fibonacci search method is presented in: fibonacci.doc file. Februarie 4, 1980				
3.	MAXFUN	Directory MAXFUN O subrutină de calcul a maximului unei funcții neliniare de o variabilă, bazată pe metoda de interpolare pătratică Powell. The maxfun search method is described in: maxfun.doc file. Septembrie 23, 1980				
4.	PSO-UO	Directory PSO-UOParticle Swarm Optimization for unconstrained optimizationIn this directory I included three Fortran programs for minimizing the Rosenbrock function (extended and generalized) and the Wood function using the particle swarm optimization method.May 21, 2014				
5.	DEEPS	Directory DEEPS-TOTAL This directory contains a number of 13 sub-directories as follows: DEEPS1				

A simple deep random search method for unconstrained
optimization. Preliminary computational results
This sub-directory includes:
a) Inecontical Report No. 1/2020: R202011.DOC describing the method,
c) The file FUNCNAME TXT with the name of the minimizing functions
DEEPS implements an algorithm based on direct search without using
derivatives. The numerical experiments include 115 unconstrained
optimization problems.
See: N. Andrei, A simple deep random search method for unconstrained optimization. Preliminary computational results. Technical Report No. 1/2020, February 29, 2020, Bucharest.
DEEPS2Comparison of DEEPS algorithm using a simple deep random search method versus Steepest Descent for solving an unconstrained optimization problem with a narrow positive cone. This sub-directory includes the Technical Report No. 2/2020:
R2020T2.DOC describing the method.
DFFPS3
<u>DEELSS</u> Influence of local bounds "lobudc" and "unbudc" defining the
size of the local domains on performances of the DEEPS
algorithm.
This sub-directory includes:
a) Technical Report No.3/2020: R2020T3.DOC describing the influence of
bounds b) The Fortran package DEEPS2.FOR which implements the algorithm and c) The file FUNC115.TXT with the name of the minimizing functions.
<u>DEEPS4</u> Parformances of DEEPS algorithm for solving large-scale
unconstrained ontimization problems.
The sub-directory includes:
a) Technical Report No.4/2020: R2020T4.DOC describing the performances
of DEEPS for solving large-scale problems
b) The Fortran package DEEPS4.FOR which implements the algorithm and c) The file FUNC115.TXT with the name of the minimizing functions.
The package DEEPS4.FOR can solve large-scale minimization problems up to 500 variables. For example for solving the problem DIXMAANA (CUTE) with 500 variables, DEEPS4 gives a local optimal solution in 1685 iterations, 94162 evaluations of the minimizing function and 27.32 seconds.
DEEPS5
Performances of DEEPS for solving 16 real applications of
unconstrained optimization.
This sub-directory contains:
a) Technical Report No.5/2020: R2020T5.DOC,
b) The Fortran package DEEPSS.FOR which implements the algorithm and
included in this numerical experiments.
*
DEEPS6

 A new simple deep random search method for unconstrained optimization This subdirectory contains: a) Technical Report No.6/2020: R2020T6.DOC b) The Fortran package DEEPS6.FOR which implements the algorithm and c) The file FUNCNAME.TXT with the name of the minimizing functions included in this numerical experiments.
DEEPS7Solution of Human Heart Dipole unconstrained optimization problem by means of DEESP6 and Nelder-Mead methodsThis subdirectory contains:a) Technical Report No.7/2020: R2020T7.DOCb) The Fortran package DEEPS7.FOR which implements the algorithm and c) The file FUNCNAME.TXT with the name of the minimizing functions included in this numerical experiments.
DEEPS8A simple deep random search method for unconstrainedoptimizationThis subdirectory contains:a) Technical Report No.8/2020: R2020T8.DOCb) The Fortran packages DEEPS2.FOR (for distance among the trial points),DEEPS4.FOR (for large-scale optimization), DEEPS5.FOR (with 16applications) which implements the algorithm andc) The file FUNC116.TXT and FUNC16.TXT with the name of theminimizing functions included in these numerical experiments.
DEEPS9A two level random search method for unconstrainedoptimizationThis subdirectory contains:a) Subdirectory APRIL:- PAS (steepest descent method)- REZ (rezults for solving 16 applications)- DEEP8L.FOR (for solving large-scale problems – Final)- DEEP88A.FOR (for solving 16 applications – Final)- DEEP88Z.FOR (for computing the maximum distance – Final)- FUNC16.TXT (with name of the applications - Final)- FUNC115.TXT (with name of the 115 problems - Final)- FUNC115.TXT (with name of the functions)- NELMEAD (Nelder – Mead method) with:- FUNCNEL.TXT (with name of the functions)- NELMEAD.FOR (Fortran code for Nelder-Mead method in implementation of R, Oneill and modified by John Burkardt)c) Technical Report No. 9/2020: R2020T9 (April 19, 2020)
 DEEP8L.FOR is taylored for solving large-scale unconstarined optimization problems up to 500 variables. The numerical experiments include solving the problems: VARDIM, EG3, DIXMAANA, Broyden Tridiagonal, Broyden Pentadiagonal and DESSCHNF. DEEPS8A.FOR is designed for solving 16 applications of unconstrained optimization: Weber(1), Weber(2) Weber(3) Enzyme reaction. Solution of
a chemical reactor, Robot kinematics problem, Solar Spectroscopy, Estimation of parameters, Propan combustion in air, Gear train with

imum i								
iniuni I	nertia,	Huma	in Hea	rt Dipol	e, Ne	urophysiolo	ogy, Combustion	ı
lication	Circu	it desig	n Terr	nistor an	d Onti	mal design	of a Gear Train	
ficturion,	Chea					T.1.1. 5 1.1	of a Ocar Train	•
perform	nances	of DEI	2PS8A	is presen	ted in	I able 5 belo	ow.	
ble 5. Perf	ormanc	es of DF	EPS for	solving 16	uncons	trained ontim	ization applications	
Nr n	17	14	iter	nfunc	cnu			
<i>n n</i>	Ν	М	uer	njunc	cpu	$f(x^*)$	$f(x_0)$	
1. 2	2	5	118	1473	0.01	-264.453135	-37.473137	
2. 2	3	5	67	1318	0.0	9.56074405	78.594324	
3. 2	5	10	167	9160	0.0	8.74984910	78.602864	
4. 4	30	50	28	42903	0.02	0.308765E-03	0.531317E-02	
5. 6	50	100	1375	6989983	2.76	0.747292E-04	0.196173E+08	
6. 8	5	10	43	2459	0.0	0.182801E-07	5.334258	
7. 4	5	10	4	233	0.0	8.3163822	9.958700	
8. 4	100	500	54	2705727	1.73	0.3185759-01	2.905300	
9. 5	9900	100	10	10013014	4.83	0.2467602E-04	4 0.331226E+08	
10. 2	5	3	15	342	0.0	1.7441520	2563.3250	
11. 8	50	300	2404	36265585	26.67	0. 996608E-04	0.190569	
12. 6	1000	6	1044	7999853	3.87	0.854501E-04	23.917600	
13. 10	3	10	25	856	0.0	0.406198E-08	121.998899	
14. 9	50	50	3731	9654682	23.62	0.103618E-03	2964.578187	
15. 3	100	500	15	752179	4.73	175.565438	0.233591E+10	
16. 4	10	50	6	3090	0.0	0.3886716E-13	3 0.737081E-03	
	Total		9106	74442856	68.24			
NELMEAD.FOR is designed to solve the above 16 applications by Nelder- Mead method in implementation of R. Oneill and modified by John Burkard and Neculai Andrei. Table 16 below shows the performances of Nelder-								
	Т	able 6. Per	formances of	of Nelder-Mea	d for solvi	ng 16 applications	3	
	T (FOR	able 6. Perl TRAN77 v	formances of ersion by R	of Nelder-Mea . ONeill [73], 1	d for solvi nodificatio	ng 16 applications ons by John Burks	s ardt)	
Nr.	(FOR	able 6. Peri TRAN77 v iter	formances o ersion by R nfunc	of Nelder-Mea . ONeill [73], 1 cpt	d for solvi nodificatio	ng 16 applications ons by John Burka $f(x^*)$	$f(x_0)$	
Nr.	(FOR n 2	able 6. Per TRAN77 v <i>iter</i> 42611	formances of ersion by R <i>nfunc</i> 141379	of Nelder-Mea . ONeill [73], 1 cpt 0 0.0	d for solvi nodificatio	ng 16 applications ons by John Burka $f(x^*)$ -264.45314	$f(x_0)$ -37.473137	
Nr.	T (FOR n 2 2	Yable 6. Perform TRAN77 v iter 42611 5749	formances of ersion by R nfunc 141379 17111	of Nelder-Mea . ONeill [73], 1 cpi 0 0.00 0.0	d for solvi nodificatio t 3 1	ng 16 applications ns by John Burka $f(x^*)$ -264.45314 9.560739	$f(x_0)$ -37.473137 78.594324	
Nr.	T (FOR	TRAN77 v iter 42611 5749 485	Cormances of ersion by R nfunc 141379 17111 1515	of Nelder-Mea . ONeill [73], 1 <i>cpi</i> 0 0.0 0.0 0.0	d for solvi nodificatio	ng 16 applications ns by John Burks $f(x^*)$ -264.45314 9.560739 8.749843	$\frac{f(x_0)}{\frac{-37.473137}{78.594324}}$	
Nr. 1. 2. 3. 4.	T (FOR	able 6. Per TRAN77 v. iter 42611 5749 485 50589	Cormances of ersion by R nfunc 141375 17111 1515 257705	of Nelder-Mea . ONeill [73], 1 cpt 0 0 0 0 0 0 0 0 0 0 0	d for solvi nodificatio	ng 16 applications ons by John Burks $f(x^*)$ -264.45314 9.560739 8.749843 0.307599E-03	$\frac{f(x_0)}{\frac{-37.473137}{78.594324}}$	
Nr. 1. 2. 3. 4. 5.	T (FOR	Yable 6. Perf TRAN77 v iter 42611 5749 485 50589 4853773	Cormances of ersion by R nfunc 141375 17111 1515 257705 4028596	of Nelder-Mea . ONeill [73], 1 . cpu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	d for solvi nodificatio	ng 16 applications ons by John Burka $f(x^*)$ -264.45314 9.560739 8.749843 3.307599E-03 0.472465E-05	$\frac{f(x_0)}{f(x_0)}$ $\frac{-37.473137}{78.594324}$ $\frac{78.602864}{0.531317E-02}$ $0.196173E+08$	
Nr. 1. 2. 3. 4. 5. 6.	T (FOR n 2 2 2 2 4 6 4 8	Yable 6. Perf TRAN77 v iter 42611 5749 485 50589 4853773 18824	formances of ersion by R nfunc 141375 17111 1515 257709 4028590 131208	of Nelder-Mea . ONeill [73], 1 cpu 0 0.0.0 0.0.0 0.0.0 0.0.1 54 9.3	d for solvi nodificatio	ng 16 applications ns by John Burks $f(x^*)$ -264.45314 9.560739 8.749843 0.307599E-03 0.472465E-05 0.682946E-08	$\frac{f(x_0)}{f(x_0)}$ -37.473137 78.594324 78.602864 0.531317E-02 0.196173E+08 5.334258	
Nr. 1. 2. 3. 4. 5. 6. 7.	T (FOR n 2 2 2 2 4 6 4 8 4	able 6. Pert TRAN77 v iter 42611 5749 485 50589 4853773 18824 3553	formances of ersion by R <i>nfunc</i> 141375 17111 1515 257709 4028596 131208 19323	of Nelder-Mea . ONeill [73], 1 cpt 0 0.0. 0 0.0 0 0.1 54 9.3 8 0.0. 0.0	d for solvi nodificatio	ng 16 applications ns by John Burks $f(x^*)$ -264.45314 9.560739 8.749843).307599E-03).472465E-05 0.682946E-08 6.872370	$\frac{f(x_0)}{f(x_0)}$ -37.473137 -78.594324 -78.602864 -0.531317E-02 -0.196173E+08 -5.334258 -9.958700	
Nr. 1. 2. 3. 4. 5. 6. 7. 8.	T (FOR 2 2 2 4 6 4 8 4 4 1	able 6. Pert TRAN77 v iter 42611 5749 485 50589 1853773 18824 3553 1420090	formances of ersion by R nfunc 141375 17111 1515 257705 4028596 131206 19323 796232	of Nelder-Mea . ONeill [73], 1 cpu 0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 8 3.6	d for solvi modifications 3 1 0 0 7 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ng 16 applications ns by John Burks f (x*) -264.45314 9.560739 8.749843 3.037599E-03 0.472465E-05 1.682246E-08 6.872370 3.18572E-01	$\frac{f(x_0)}{f(x_0)}$ -37.473137 -38.594324 -38.602864 -0.531317E-02 -0.196173E+08 -5.334258 -9.958700 -2.905300 -2.905300	
Nr. 1. 2. 3. 4. 5. 6. 7. 8. 9.	Image: Text (FOR n 2 2 2 2 2 4 4 6 4 4 1 5 1	able 6. Per TRAN77 v <i>iter</i> 42611 5749 485 50589 4853773 18824 3553 420090 218408	formances of ersion by R nfunc 141379 17111 1515 257709 4028599 131208 19323 796232 130441	of Nelder-Mea . ONeill [73], 1 cpri 0 0.0 0.0 0.0 0 0.0 0 0.1 5 0.3	d for solvi modification 3 0 0 1 0 7 0 5 0 5 0 1 0 4 0	ng 16 applications ns by John Burks $f(x^*)$ -264.45314 9.560739 8.749843 0.307599E-03 J.472465E-05 0.682946E-08 6.872370 J.318572E-01 J.33872E-05	$\frac{f(x_0)}{f(x_0)}$ -37.473137 78.594324 78.602864 0.531317E-02 0.196173E-08 5.334258 9.958700 2.905300 0.331226E+08	
Nr. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Image: Total control in the second	able 6. Per TRAN77 v <i>iter</i> 42611 5749 485 50589 4853773 18824 3553 1420090 218408 50	formances (ersion by R nfunc 141379 17111 1515 257709 402859(131206 19323 796232 130441 151	of Nelder-Mea . ONeill [73], 1 cpt 0 0.0.0	d for solvi modification 3 0 0 7 0 5 0 5 0 4 0	ng 16 applications ns by John Burks $f(x^*)$ -264.45314 9.560739 8.749843 0.307599E-03 0.307599E-03 0.472465E-05 0.682946E-08 6.872370 0.318572E-01 0.738972E-05 1.744152	$\frac{f(x_0)}{f(x_0)}$ -37.473137 -37.473137 -378.594324 -78.602864 -0.531317E-02 -0.196173E+08 5.334258 -9.958700 -2.905300 -0.331226E+08 -2563.3250	
Nr. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	Image: Total control in the second	able 6. Peri TRAN77 w <i>iter</i> 42611 5749 485 50589 1853773 18824 3553 18824 3553 18824 3553 18824 3553 18824 50 218408 50 2179330	formances (ersion by R nfunc 141375 17111 1515 257706 4028596 131206 19323 796232 130441 151 1164166	of Nelder-Mea . ONeill [73], 1 cpt 0.0.0	d for solvi modificatio 3 3 1 2 3 3 1 5 5 6 6 6	ng 16 applications ns by John Burks $f(x^*)$ -264.45314 9.560739 8.749843 .307599E-03 0.472465E-05 0.682946E-08 6.872370 .318572E-01 0.738972E-05 1.744152 .109955E-03	$\frac{f(x_0)}{f(x_0)}$ -37.473137 -38.594324 -78.602864 -0.531317E-02 -0.196173E+08 -5.334258 -9.958700 -2.905300 -0.331226E+08 -2.503.3250 -0.190569	

The Technical Report R2020T9.DOC contains an Appendix with the mathematical expression of the applications considered in these numerical experiments.

0.53

18.61

70.68 5.58

149.94

0.606737E-07

0.853510E-03

175.091316 0.751550E-12 121.998899

2964.578187

0.233591E+10 0.737081E-03

1478094

9939092

10945869

36117397

230899090

180224

995980

3063875

8026086

31808985

DEEPS10

13

14

15

16

Total

10

3

4

A two level random search method for solving the Elastic Plastic Torsion from MINPACK2

This directory contains:

A1EPT.FOR – Fortran program for solving the Elastic Plastic Torsion application from MINPACK2 with 2500 variables

 $\label{eq:R2020T10.DOC-Technical Report with results of optimization by DEEPS.$

Figures 1 and 2 show the solution of this application with 2500 variables

	5	10	10013013	369	0 24676020874295-04	9 Propen combustion in sir (A)
	2	15	342	0	0.1744152005590E+01	10. Gear train with minimum inertia (A)
	8	2404	36265585	2527	0.9966084682095E-04	11. Human Heart Dipole. Andrei U84,
	6	1044	7999853	380	0.8545018926146E-04	12. Neurophysiology (A)
	10	25	856	0	0.4061987800161E-08	 Combustion application (A)
	9	3731	9654682	3297	0.1036184837525E-03	14. Circuit design (A)
	3	15	752179	844	0.1742216236340E+03	15. Thermistor (A)
	4	6	3090	0	0.3886716443010E-13	16. Optimal design of a Gear Train (A)
	2	50	5803	0	0.9835611823309E-10	17. Rosenbrock - Valley of Banana
	2	101	101022	2	0.4898425367948E+02	18. Freudenstein-Roth
	10	123	6261804	362	0.8062621526502E-07	19. White & Holst Function
	4	20	10224	1	0.3423435068941E-08	20. Miele & Cantrell Function
	2	10	20123	0	-0 1031628453449E+01	22 Three-hump camelback (1) (F-P pp
	2	13	1448	0	0 9837324056667E-10	23 Three-hump camelback (2) (F-P pp.
	4	71	365146	9	0.3554618463965E-07	24. Wood Function (Andrei U13, pp.42)
	2	66	35282	0	0.110000000002E+02	25. Sum of different power (x1=45,
	2	34	171947	3	-0.1008600148064E+02	26. Shekel function (F-P, pp. 111)
	8	33	1664504	188	0.5587091822711E-08	27. DENSCHNA function
	2	13	112880	1	0.2472169120657E-12	28. DENSCHNB function
	4	124	6211517	374	0.6407636682735E-08	29. DENSCHNC function
	2	5	252020	7	0.3706190909725E-10	30. Griewank function
	2	19	9776	0	0.2392264124841E-10	31. Brent function
	2	4	201408	3	0.9875204934203E-11	32. Booth function
	2	3	151310	2	0.6418934775920E-12	33. Matyas function
	3	21	105187	1.00	0.21444/2045122E-0/	34. Colville function (Andrei, U25)
	2	290	10002	100	-0.9999999999999711E+00	35. Easom function
	4	280	2502036	65	0.2000445/100/9E-04	37 Bowell function (Andrei 1162)
	2	8	4010395	81	-0.1913222954963E+01	38. McCormick function
	2	4	2001074	27	0.3510557725703E-08	39. Himmelblau function (-11,-7)
	2	6	304420	3	0.2409465011726E-09	40. Leon function
	2	4	101964	1	0.1356415499635E-11	41. Price4 function
	2	6	151312	2	-0.3791237203937E-02	42. Zettl function
1	8	63	3210964	141	0.4490426129186E-08	43. Sphere function
	8	21	1069087	46	0.5508803806450E-08	44. Elipsoid function
1	2	4	414840	7	0.5922563192900E+01	45. Himmelblau (Problem 29/428)
	3	3	302066	14	U.2293552829184E-09	46. Himmelblau (Problem 30/428)
	2	4	8204	1	0.3013/14813619E-09	4/. Himmeiblau (Problem 33/430)
1	2	6	3012421	56	-0.3523860/37488E+00	40. Zirilli function
1	2	č r	15519	1	-0.100000000000000000000000000000000000	50 Trid function
	2	28	1404941	46	0 4913822073228E-08	51 Scaled Quadratic function
	3	20	122003		0 6981231133934E-08	52 Schittkowski 241 pp 65
	6	46	933332	104	0.3535955270103E-07	53. Schittkowski 271. pp. 95
	2	2	4070	0	0.7731990565293E+00	54. Schittkowski 308, pp. 131
	5	4	4139	1	0.2541928088954E-08	55. Brown's almost linear system
	4	6	60194	4	0.9175380652822E-09	56. Kelley function. Andrei U72
	4	18	180402	13	0.7034029261395E-08	57. A nonlinear system. Andrei U73
	2	2	10363	1	-0.181999999998E+02	58. Zangwill function. Andrei U14
	3	2	10392	0	-0.3923048452734E+00	59. Circular function. Andrei U19
	2	20	102710	11	0.3424486241119E-06	60. Polexp function. Andrei U21
	2	1	5200	1	-0.500000000000E+00	61. Dulce function. Andrei U20
	4	3	154211	53	0.1291674224865E-13	62. Cragg & Levy. Andrei U41, pp.49
	5	84	6828	1	0.1285216666786E-06	63. Broyden. Andrei U45, pp.50
	8	501	2562184	392	0.9392975075304E+00	64. Broyden (n=10). Andrei 045, pp.50
	10	501	25/1//5	3/9	0.8/89/36953485E+00	65. Broyden (n=20). Andrei 045, pp.50
	0	33	1/0845		0.9648130225310E-12	66. Full rank (n=5). Andrei 047, pp.51
	4	34	170467	7	0.5306897356432E-05	68 Full rank (n=20) Andrei U47, pp.51
	5	34	41333	10	0 2246918386265E-08	69 Trigonometric (n=5) Andrei U48
	9	12	601813	273	0.1026902990869E-07	70. Trigonometric (n=10). Andrei U48.
	10	10	1001508	514	0.1097167273012E-07	71. Trigonometric (n=20). Andrei U48,
	5	9	46626	8	0.7161813414106E-08	72. Brown function. Andrei U75, pp.59
	4	20	203504	243	0.8582220162694E+05	73. Brown & Dennis, Andrei U32, pp.46
	2	2	51661	2	-0.2345811576100E+01	74. Hosaki function
	5	48	5559	1	0.1920078161404E-08	75. Cosmin function
	10	50001	25603049	2209	0.1828116187903E+02	76. BDQRTIC (CUTE)
	10	10001	5121416	385	0.9090909868030E-01	77. DIXON3DQ (CUTE)
	4	56	282842	9	0.2495604369176E+01	78. ENGVAL1 (CUTE)
	5	/5	/6091	3	0.1522038/25998E+01	79. Extended Penalty Function
	2	140	4549	1	0.2421900361697E-06	80. Broyden pentadiagonal
1	2	5	25068		0.7415391589066E-02	82. Coca function
1	2	29	15001	ő	-0.1249999999982E+01	83. Nec function, Andrei, U30, pp.46
	4	1	5214	ĩ	0.3420673059839E-18	84. QuadraticPowerExp. Andrei, U51,
	8	10	51586	2	0.9558267583740E-11	85. NONDQUAR (CUTE)
	40	191	297249	89	0.1515302199717E-05	86. ARWHEAD (CUTE)
1	4	5227	31209850	988	0.9904978234274E-04	87. CUBE (CUTE)
1	5	87	43635706	1832	0.6318587675248E-05	88. NONSCOMP (CUTE)
1	10	148	50672	4	U.1456219360103E-05	89. DENSCHNF (CUTE)
1	12	151	78087	6	0.1201454444921E-06	90. BIGGSBI (CUTE)
	2	21	1926279	13	0.36867571055368±02	92. Three terms all quadratice
	3	18	1650274	24	0.1102124984312E-04	93. Mishra9
1	2	17	1559944	13	0.2785637644975E-08	94. Wayburn1
1	2	11	570063	5	0.1044643130973E-08	95. Wayburn2
1	10	178	920355	70	0.6666667449697E+00	96. Dixon & Price
	15	165	855048	88	0.7426386427905E-06	97. Qing
	2	12	618990	7	-0.3873724182168E+04	98. Quadratic 2 variables
1	2	20	100338	2	-0.6850076846409E+02	99. Rump
1	4	60	311669	23	0.3995735589349E+00	100. Extended Cliff (CUTE)
	10	121	627317	44	U.9898969553451E+00	101. NONDIA (CUTE)
1	4	16	817016	54	-U.349999/429359E+01	102. EGZ (CUTE)
1	4	16	20221	4/	0 12128712870200+00	104 Full Hessisn (m=50)
1	2	20	1954856	143	0.2807057782276E-10	105. A nonlinear algebraic system
	4	14	72067	2	-0.3739004994563E+02	106. ENGVAL8 (CUTE)
	10		22568	11	0.100000011710E+01	107. DIXMAANA (CUTE)
1	10	7	36106	18	0.100000011413E+01	108. DIXMAANB (CUTE)
1	5	6	30831	7	0.100000002733E+01	109. DIXMAANC (CUTE)
	5	113	582712	22	0.8897747881327E-07	110. DIAG-AUP1
	10	52	1710	0	-0.9499999882112E+01	111. EG3 (COS)
1	10	62	63026	5	0.1885210564357E-07	112. VARDIM (CUTE)
1	4	412	1068904	33	-0.9999606442786E+00	113. A narrow positive cone
	10	14	16328	3	-0.2718123003131E+01	114. Ackley
	10	20001	51044836	4250	-U.1942809040946E+02	115. Modified Wolfe
1	2	460	1176773	1	-U.3530815425299E+01	115. Peak function
1	5	79	800719	19	0.2492301853743E+02	118 Function U18 (Andrei, pp. 43)
1	∠ 5	1 7	1025	U 2	-0.140014//16590E-05 0 37637643080128-00	110. Function 025 (Andrei, pp. 44)
1	10	63	64020	6	0.5383942407341E-08	120. VARDIM MODIFIED (**8)

	Tata	1	of : 4 a.	unting a	00012
	1 ota	1 number	or iter	rations	= 99913
	Tota	l number	of fur	nction evaluation	ns = 295010496
	Tota	1 Elanged	time	(contacconda)	- 21020
	1018	i Elapsed	ume	(centeseconds)	= 21950
	DEEPS12				
	Comparis	on Retwe	en tl	e Performanc	es of DEEPS and Nelder.
	Comparis				es of DEET 5 and Refuer-
	Mead for s	solving 12	20 Un	constrained O	ptimization Problems
	This directo	ry contains	z.		
		EOD (DI		1	
	- DEEPSPK	FOR (DE	EPS a	algorithm)	
	- DEEPS.O	UT			
	- DEEPS RI	F 7			
	- func120.tx	t			
	- f.bmp				
	NMDE EO	P (Noldor	Mood	algorithm)	
	- INIVIET.TO	K (INCIDEI-	-wieau	algorium)	
	- NELMIN.	OUT			
	- NELMIN	REZ			
	DEDEON				
	- FEKF2N.F	UK			
	- R2020T12	.DOC (Tee	chnica	l Report)	
				• /	
	F	100 11		1	1 104 (
	For solving	120 probl	ems ()	16 applications ai	nd 104 test problems) with the
	number of v	variables in	n the 1	ange [2-40] the	following results was obtained
	by Nolder N	heal		8° L 9 1	8
	by Nelder-IV	icau.			
		Т	able 2	. Performances of N	JELMEAD
				<i>c (</i> +)	
	n iter	nfunc	cpu	f (x*)	Name
	2 42611	141379	5	-0.2644531412951E+03	1. Weber Function (1) (Andrei, U71)
	2 5749	1515	0	0.9560739834844E+01 0.8749843722120E+01	 Weber Function (2) (Kelly, pp. 119) Weber Function (3) (Kelly, pp. 119)
	4 50589	257709	26	0.3075992528786E-03	4. Enzyme reaction (Andrei, U79) (A)
	8 18824	131208	1549	0.6829467973914E-08	 Solution of a chemical reactor (A) Robot kinematics problem (A)
	4 3553	19323	4	0.6872370208734E+01	7. Solar Spectroscopy (A)
	4 1420090 5 218408	1304415	281	0.3185723794137E-01 0.7389721566503E-05	 8. Estimation of parameters (A) 9. Propan combustion in air (A)
	2 50	151	0	0.1744152013241E+01	10. Gear train with minimum inertia (A)
	8 12179330 6 749358	116416638 5880897	3181 135	0.1098385128966E-06 0.1666727283741E-06	 Human Heart Dipole. Andrei U84, Neurophysiology (A)
	10 180224	1478094	55	0.6067373743983E-07	13. Combustion application (A)
	9 995980 3 3063875	9939092 10945869	1867 7870	0.8535102372545E-03 0.1750913166362E+03	14. Circuit design (A) 15. Thermistor (A)
	4 8026086	36117397	408	0.7515500076120E-19	16. Optimal design of a Gear Train (A)
	2 127791 2 7772	414317 21242	3	0.2734165291417E-08 0.4898425367977E+02	 Rosenbrock - Valley of Banana Freudenstein-Roth
	10 4695026	36081186	899	0.2997209356058E-09	19. White & Holst Function
	4 28366709 2 549	134400344 1801	16145 0	U.2728619079879E-22 0.2410661272377E-09	20. Miele & Cantrell Function 21. Himmelblau (F-P. pp. 326)
	2 4138	12917	0	-0.1031628453487E+01	22. Three-hump camelback (1) (F-P, pp.
	2 12681 4 9355302	40251 47490787	0 544	U.1791830653421E+01 0.9110670262491E-09	23. Three-hump camelback (2) (F-P, pp. 24. Wood Function (Andrei U13. pp.42)
	2 110941	357658	3	0.110000000000E+02	25. Sum of different power (x1=45,
	2 13395 8 32893597	38020 239932420	0 27981	-U.5065439735221E+01 0.1913163675383E-15	26. Shekel function (F-P, pp. 111) 27. DENSCHNA function
	2 147386	476192	5	0.1325420598527E-13	28. DENSCHNB function
	4 1417159 2 711419	6039693 2298258	489	0.3150644529618E-12 0.3219646771413E-14	29. DENSCHNC function 30. Griewank function
	2 52622	184115	5	0.1293393700200E-14	31. Brent function
	2 52304 2 717578	201225	2	0.4104965908510E-13 0.2799993833942E-14	32. Booth function
	3 8195333	31914397	401	0.8289711921786E-07	34. Colville function (Andrei, U25)
1	2 1649974	5224920 132373529	233	-0.8110381996167E-04	35. Easom function
	4 1559835	6876985	87	0.1285824459516E-08	37. Powell function (Andrei, U62)
	2 4266	12315	0	-0.1913222954978E+01	38. McCormick function
	2 63610	212134	2	0.1174796918677E-05	40. Leon function
	2 1802097	6173224	53	0.1068218485126E-07	41. Price4 function
	2 /62/5 8 133777215	240644 999990013	2 25833	0.1025689019328E+00	43. Sphere function
	8 26546059	200996384	5589	0.3701062404756E-13	44. Elipsoid function
1	2 95 3 1439	4699	0	0.7544044265105E-06	46. Himmelblau (Problem 29/428)
	2 17452184	52356544	3420	0.1596984695221-312	47. Himmelblau (Problem 33/430)
	∠ 18886 2 285	63700 769	1	-0.1526394417735E+00 -0.7833233140632E+02	 40. ZITIII TUNCTION 49. Styblinski function
	2 755782	2507508	50	-0.2000000000000E+01	50. Trid function
	2 110285272 3 7510	441135983 29043	2857 1	0.1892243360928E-12 0.1143027552724E-03	51. scaled Quadratic function 52. Schittkowski 241, pp. 65
	6 966	4340	0	0.2273917223761E-08	53. Schittkowski 271, pp. 95
	2 1029 5 34744	3374 190100	0 3	0.7731990567225E+00 0.2297883703351E-06	54. Schittkowski 308, pp. 131 55. Brown's almost linear system
	4 81407052	368163139	6071	0.1422943777975E-13	56. Kelley function. Andrei U72
	4 831618 2 8908	3641092 24481	48 0	U.1050959372381E-11 -0.1820000000000E+02	57. A nonlinear system. Andrei U73 58. Zangwill function. Andrei U14
1	3 3969	14757	ŏ	-0.3923048452658E+00	59. Circular function. Andrei U19
	2 333330006 2 18157983	999990001 63360019	51593 1366	u.3252892765785E-15 -0.500000000000E+00	bU. Polexp function. Andrei U21 61. Dulce function. Andrei U20

	4 95011309	435691620	52987	0.7500494352983E-17	62. Cragg & Levy. Andrei U41, pp.49
	5 732002	4006517	74 1125	0.3752106106972E-14 0.2027502384709E-12	63. Broyden. Andrei U45, pp.50 64. Broyden (n=10) Andrei U45, pp.50
	10 5354896	45896404	2071	0.1657738109364E-13	65. Broyden (n=20). Andrei U45, pp.50
	5 32105835	172990716	5657	0.5600659081408E-15	66. Full rank (n=5). Andrei U47, pp.51
	8 48480940 4 10669233	345462434 51885942	24336 1207	0.1455367377274E-12 0.3021412301497E-13	67. Full rank (n=10). Andrei U47, pp.51 68. Full rank (n=20). Andrei U47, pp.51
	5 26934031	142029901	33429	0.2760740072636E-14	69. Trigonometric (n=5). Andrei U48, p
	8 45798374	344886928	135910	0.1356472192863E-03	70. Trigonometric (n=10). Andrei U48,
	10 4250369 5 203955743	37671143	19528 170652	0.2795056123570E-04 0.1945484835526E-03	71. Trigonometric (n=20). Andrei U48, 72. Brown function, Andrei U75, pp.59
	4 250	448	1	0.8582220220393E+05	73. Brown & Dennis, Andrei U32, pp.46
	2 7205	21445	0	-0.1127794026972E+01	74. Hosaki function
	10 201534	1833324	2 58	0.1828116175371E+02	76. BDORTIC (CUTE)
	10 3233930	28345714	652	0.9090909101913E-01	77. DIXON3DQ (CUTE)
	4 67202284	307509056	6519	0.2495604366214E+01	78. ENGVAL1 (CUTE)
	5 18287 10 516284	4324701	157	0.1522244423034E+01 0.2616410786262E-11	 Extended Penalty Function Broyden pentadiagonal
	2 114222	324189	13	0.900000000000E+00	81. Teo function
	2 15239	44506	0	0.3603393492868E-11	82. Coca function
	4 249997502	999990008	38652	0.6498415264253E-22	84. QuadraticPowerExp. Andrei, US1,
	8 157576603	999990001	32857	0.1061987603079E+00	85. NONDQUAR (CUTE)
	10 129703558	999990012	38047	0.2568702260532E+00	86. ARWHEAD (CUTE)
	5 164045317	883130211	16416	0.9253097139544E-09	88. NONSCOMP (CUTE)
	10 1255946	11901044	483	0.2432712919620E-11	89. DENSCHNF (CUTE)
	12 45543080	371730317	15144	0.2014644810372E-11 0.1683728521419E+02	90. BIGGSB1 (CUTE) 91 Borsoch
	2 2424	7088	0	0.1273426289635E+03	92. Three terms all quadratics (-10,-7
	3 148	300	0	0.5510270894397E-03	93. Mishra9
	∠ 1856/784 2 50268833	5/590805 142015420	657 1619	0.0434358509586E-14 0.7079093388257E-15	94. wayburni 95. Wayburn2
	10 136976950	999990005	37149	0.1005563480381E+04	96. Dixon & Price
	15 3688046	45451698	1895	0.2261032544726E-09	97. Qing
	2 253	3885	0	-0.1640345171681E+02	99. Rump
	4 212439967	854777872	52900	0.3995732273681E+00	100. Extended Cliff (CUTE)
	10 642708 4 3424718	4988085	164 876	U.5455027073350E-12 -0.3447779105873E+01	101. NONDIA (CUTE) 102. EG2 (CUTE)
	8 59110575	410824970	13094	0.1517431852535E-11	103. LIARWHD (CUTE)
	4 12770	57246	18	0.1212871287129E+02	104. Full Hessian (m=50)
	2 1875451 4 104963	5018254 474395	334	0.1833800208498E-15 -0.3739004995170E+02	105. A nonlinear algebraic system (App. 106. ENGVAL8 (CUTE)
	10 79384557	699911844	312619	0.100000000000E+01	107. DIXMAANA (CUTE)
	10 115678296	999990003	476546	0.1001251911045E+01	108. DIXMAANB (CUTE)
	5 207132	1046318	424	0.3533704907427E-12	110. DIAG-AUP1
	10 685883	5148183	471	-0.8184677637534E+01	111. EG3 (COS)
	10 35829692 4 7261027	279603425	10377	0.4467510264809E-10 -0.9999999949881E+00	112. VARDIM (CUTE) 113. A narrow positive cone
	10 281032	2414390	398	0.3841368041779E+01	114. Ackley
	10 7664639	69463156	3609	-0.1165685424949E+02	115. Modified Wolfe
	3 117079	492835	/41	-0.4105/66136014E-05 0.2492301853327E+02	116. Peak function 117. Function U18 (Andrei, pp. 43)
	2 13116974	39350868	1855	0.3541982800515-316	118. Function U23 (Andrei, pp. 44)
	5 168469 10 17305874	738431	12 6037	0.6048706368964E-13 0.3070835264168E-10	119. Sum Squares
	Total CP Figure 1 algorithms	'U time (cer shows the	nteseco Dolar	onds) = 17334 n and Moré's p	41 (4.5 hours) performance profiles of these
		1		1 1	
	1				
		_	DEEPS		
		0.9 -	DEEPS		
		0.9	DEEPS		
		0.9 -	DEEPS	DEEPS NELME	D = -
		0.9 -	DEEPS	DEEPS NELME iter 96 0 fo 74 35	D = -
		0.9 - 0.8 0.7 -	DEEPS # #	DEEPS NELME iter 96 0 fg 71 25 Du 66 20	D = - 0 10
		0.9 - 0.8 0.7 -	DEEPS # # c	DEEPS NELME iter 96 0 fg 71 25 pu 66 20	D = - 0 0 10
		0.9 - 0.8 0.7 - 0.6 -	DEEPS # c	DEEPS NELME iter 96 0 fg 71 25 pu 66 20	D =
		0.9 - 0.8 0.7 - 0.6 -	DEEPS # # c	DEEPS NELME iter 96 0 fg 71 25 pu 66 20	D = - 0 10 NELMED
		0.9 - 0.8 0.7 - 0.6 - 0.5 -	DEEPS # c	DEEPS NELME iter 96 0 fg 71 25 pu 66 20	D = - 0 10 NELMED
		0.9 - 0.8 0.7 - 0.6 - 0.5 -	DEEPS # c	DEEPS NELME fg 71 25 pu 66 20	D = - 0 10 NELMED
		0.9 - 0.8 0.7 - 0.6 - 0.5 - 0.4 -	DEEPS # c	DEEPS NELME iter 96 0 fg 71 25 pu 66 20	D = - 0 0 10 NELMED
		0.9 - 0.8 0.7 - 0.6 - 0.5 - 0.4 -	DEEPS # c	DEEPS NELME iter 96 0 fg 71 25 pu 66 20 CPU time metric. 96 pro	D =
		0.9 - 0.8 0.7 - 0.6 - 0.5 - 0.4 -	DEEPS # c	DEEPS NELME iter 96 0 fg 71 25 pu 66 20 CPU time metric, 96 pro	D = 0 0 10 NELMED
		0.9 - 0.8 0.7 - 0.6 - 0.5 - 0.4 - 2	DEEPS # c	DEEPS NELME iter 96 0 fg 71 25 pu 66 20 CPU time metric, 96 pro	D = 0 0 10 NELMED 12 14 16
		0.9 0.8 0.7 0.6 0.5 0.4 2	DEEPS # c	DEEPS NELME fg 71 25 pu 66 20 CPU time metric, 96 pro	D = - 0 10 NELMED 12 14 16
	Fig. 1. Pe	0.9 0.8 0.7 0.6 0.5 0.4 2	DEEPS # c c c c c c c c c c c c c c c c c c	DEEPS NELME iter 96 0 fg 71 25 pu 66 20 CPU time metric, 96 pro- $\frac{1}{6}$ $\frac{1}{8}$ 10 of DEEPS and NEI	D = 0 0 10 NELMED 12 14 $16LMED for solving 120 problems$
	Fig. 1. Pe	0.9 0.8 0.7 0.6 0.5 0.4 2	DEEPS ## c	DEEPS NELME iter 96 0 fg 71 25 pu 66 20 CPU time metric, 96 pro- $\frac{1}{6}$ $\frac{1}{8}$ $\frac{1}{10}$ of DEEPS and NEI	D = 0 0 10 NELMED 12 14 16 LMED for solving 120 problems
	Fig. 1. Pe	0.9 0.8 0.7 0.6 0.5 0.4 2	DEEPS ## c	DEEPS NELME iter 96 0 fg 71 25 pu 66 20 CPU time metric, 96 pro- $\frac{1}{6}$ $\frac{1}{8}$ $\frac{1}{10}$ of DEEPS and NEI	D = 0 0 10 NELMED 12 14 16 .MED for solving 120 problems
	Fig. 1. Pe DEEPS13	0.9 0.8 0.7 0.6 0.5 0.4 2	DEEPS ## c	DEEPS NELME iter 96 0 fg 71 25 pu 66 20 CPU time metric, 96 pro- $\frac{1}{6}$ $\frac{1}{8}$ $\frac{1}{10}$ of DEEPS and NEI	D = 0 0 10 NELMED 12 14 $16LMED for solving 120 problems$
	Fig. 1. Pe DEEPS13 A two	rformance pr	DEEPS # c c c c c c c c c c c c c c c c c c	DEEPS NELME iter 96 0 fg 71 25 pu 66 20 CPU time metric, 96 pro- $\frac{1}{6}$ 8 10 of DEEPS and NEI a search metric	D = 0 0 10 NELMED 12 14 $16LMED for solving 120 problemsthod for unconstrained$
	Fig. 1. Pe DEEPS13 A two optimized	non	DEEPS # c c c c c c c c c c c c c c c c c c	DEEPS NELME fg 71 25 pu 66 20 CPU time metric, 96 pro- $\frac{1}{6}$ $\frac{1}{8}$ $\frac{1}{10}$ of DEEPS and NEI a search metric	$D = 0 \\ 0 \\ 10 \\ NELMED$ NELMED $\frac{1}{12} 14 \\ 16 \\ MED for solving 120 problems$ thod for unconstrained
	Fig. 1. Pe DEEPS13 A two optimizat	rformance pr	DEEPS # c c c c c d c c d c c d c d c d c d c	DEEPS NELME fg 71 25 pu 66 20 CPU time metric, 96 pro- $\frac{1}{6}$ $\frac{1}{8}$ $\frac{1}{10}$ of DEEPS and NEI a search metric	D = 0 0 10 NELMED $\frac{12}{12}$ 14 16 LMED for solving 120 problems thod for unconstrained
	Fig. 1. Pe <u>DEEPS13</u> A two optimizat This directo	rformance pr level ration.	DEEPS # c c c c c c c c c c c c c c c c c c	DEEPS NELME iter 96 0 fg 71 25 pu 66 20 CPU time metric, 96 pro- $\frac{1}{6}$ $\frac{1}{8}$ $\frac{1}{10}$ of DEEPS and NEI a search metric	D = 0 0 10 NELMED 1 12 14 $16LMED for solving 120 problemsthod for unconstrained$
	Fig. 1. Pe DEEPS13 A two optimizat This directo DEEPSPR	rformance pr level ration.	DEEPS # c c c c c c c c c c c c c c c c c c	DEEPS NELME iter 96 0 fg 71 25 pu 66 20 CPU time metric, 96 pro- $\frac{1}{6}$ $\frac{1}{8}$ $\frac{1}{10}$ of DEEPS and NEI a search metric hge.)	D = 0 0 10 NELMED 12 14 1612 14 1612 14 1612 14 16120 problems Sthod for unconstrained
	Fig. 1. Pe DEEPS13 A two optimizat This directed DEEPSPR.	rformance pr level ration. bry contains for (Fortran	DEEPS # c c c c c c c c c c c c c c c c c c	DEEPS NELME $fg ext{fg} ext{71} ext{25}$ $pu ext{66} ext{20}$ CPU time metric, 96 pro- $f ext{DEEPS}$ and NEI of DEEPS and NEI $f ext{search} ext{met}$ $f ext{search} ext{met}$ $f ext{age}$	D = 0 0 10 NELMED 12 14 $16LMED for solving 120 problemsethod for unconstrained$
	Fig. 1. Pe DEEPS13 A two optimizat This directo DEEPSPR. FUNC120. ⁷	rformance pr level ration. Dry contains for (Fortran TXT	DEEPS # # c c c c c c c c c c c c c c c c c	DEEPS NELME fg 71 25 pu 66 20 CPU time metric, 96 pro- $\frac{1}{6}$ $\frac{1}{8}$ $\frac{1}{10}$ of DEEPS and NEI a search metric age)	D = 0 0 10 NELMED 12 14 16 LMED for solving 120 problems thod for unconstrained
	Fig. 1. Pe DEEPS13 A two optimizat This directo DEEPSPR. FUNC120. NMPF.FOI	rformance pr level ration. bry contains for (Fortran TXT { (Fortran pr	DEEPS # * c c c c c c c c c c c c c c c c c c	DEEPS NELME fg 71 25 pu 66 20 CPU time metric, 96 pro- $\frac{1}{6} \frac{1}{8} \frac{1}{10}$ of DEEPS and NEI asearch metric age) e of Nelder-Mea	D = $0 \\ 0 \\ 10 \\ NELMED$ blems $12 $ 14 16 LMED for solving 120 problems ethod for unconstrained d)

Performances of CUBIC
n iter fgont time(c) fx gnorm Name of Applications 2 1286 5001 1 -0.263730021492+03 0.656593733224-00 1. Weber Function (Andrai, U71) 4 34 1 0.263730021492+03 0.656593733224-00 1. Weber Function (Andrai, U71) 5 333 5017 1 0.462324054507-15 0.417959225729-07 2. Enyme reaction (Andrai, U71) 4 10 31 0.4623240511510+00 0.4924421155982+00 4. Robot kinematics problem (A) 5 555 1670 0.4799133445484+01 0.11045134752276-06 5. Solar Spectroscopy (A) 4 30 96 0 0.31875709330238-01 0.5622052294548-06 6. Estimation of parameters (A) 5 555 1670 0.479913344568-05 0.1710522815198-05 7. Propan combustion in air (A) 2 11 138 0 0.17511923307688+01 0.3469130026398-06 8. Gear train with minimum inertia (A) 8 940 5006 1 0.19916073210460497666 10. Humon Beart T
TOTAL 4339 24323 12.00 Centeseconds
<u>DEEPS16</u> Numerical experiments with CG-DESCENT for solving 14 applications of unconstrained optimization
This directory contains:
cgdescent14.for
descent14.out
descent14.rez
func14.txt
R2020T16.doc (The paper: Numerical experiments with CG-DESCENT for solving 14 applications of unconstrained optimization. 10 pages)
Performances of CG-DESCENT
2 130 526 0 -0.2644531414650E+03 0.4360555021096E+00 1. Weber Function (Andrei, U71)
4 87 183 0 0.3075050207E-03 0.9351232549738E-06 2. Exryme reaction (Andrei, UT9) (A) 6 242 531 0 0.1356034033470E-11 0.83251232549738E-06 3. Solution of a chemical reactor (A) 8 13 79 0 0.04560200991E-04 0.2397120722379E-02 4. Robot kinematics problem (A) 4 34 73 0 0.6072367714571746E-01 0.39343216345755-06 5. Solar Spectroscopy (A) 4 638 1436 0 0.3194075831746E-01 0.99845468773193E-06 6. Estimation of parameters (A) 5 9001 18039 1 0.132993930766207 3.7. Propan combution in air (A) 6 2 14 86 0 0.1745286225412+01 0.68518445169E-01 8. Gene train with minimum inertia (A) 6 3 50 0 0.174981349122+00 0.116255708812E-06 11. Combution application (A) 10 55 110 0 0.174216916413E-09 0.114255708812E-06 11. Combution application (A) 3 2 146 0 0.174216967842646+03 0.29107027924114703 12. Thermintor (A)
Line Search with Appproximate Wolfe conditions
DEEPS17 Comparison of modern conjugate gradient methods: DESCON, CUBIC, CG-DESCENT (4.1) for solving 14 small-scale applications of unconstrained optimization This directory contains: CGDESCENT CUBIC DESCON
R2020T17.doc (The paper: Comparison of modern conjugate gradient methods: DESCON, CUBIC, CG-DESCENT (4.1) for solving 14 small-scale applications of unconstrained optimization. 8pages)
<u>DEEPS18</u> Numerical experiments with L-BFGS for solving 14 applications of
unconstrained optimization
This directory contains:
func14.txt
lbfgs14.for
lbfgs14 out
lhfgs14 rez
DOMONTIS dog (The paper: Numerical experiments with I DECC for
solving 14 applications of unconstrained optimization. 10pages)
Table 5 contains the performances of DESCON, CUBIC, CG-DESCENT

and L-	BEGS for solving 14 applic	ations of ur	constarined	l optimization.				
	Table 5							
	Performances of DESCON, CUBIC, CG-DESCENT and L-BFGS							
		iter	fgcnt	time				
	DESCON	11130	55953	15				
	CUBIC	4339	24323	12				
	CG-DESCENT(w)	17773	37199	14				
	CG-DESCENT(aw)	17773	37199	13				
	L-BFGS	22029	30723	6				
DEE	<u>PS19</u>							
Prope	rties of the DEEPS a	algorithm	for solvi	ng unconstrained				
optim	ization problems							
This d	irectory contains:							
deepsl	PR.for							
func12	func120.txt							
R2020	T19.doc (The paper: Prope	rties of the	DEEPS al	gorithm for solving				
uncons	strained optimization proble	ms. 6 pages	5)					
DEEL	<u>2520</u>		11.001					
Perfo	rmances of DEEPS for	solving so	me difficu	ilt unconstrained				
optim	ization problems							
This d	irectory contains:							
deepsI	PR.for							
func12	20.txt							
R2020	T20.doc (The paper: Perfo	ormances of	of DEEPS	for solving some				
diffici	alt unconstrained optimization	ation prob	lems. 7 pag	ges)				
			April	20 – May 17, 2020				

		Conjugate Gradient Methods					
1.	CGALL	Package implementing 23 Conjugate Gradient Algorithms. The					
	CGLOOP	package implements 80 unconstrained test function examples.					
		The following CG algorithms have been implemented:					
		1) Hestenes – Stiefel,					
		2) Fletcher – Reeves,					
		3) Polak-Ribiere-Polyak,					
		4) Polak-Ribiere-Polyak plus,					
		5) CD - Conjugate Descent (Fletcher),					
		6) Liu – Storey,					
	7) Dai – Yuan,						
	8) Dai - Liao,						
		9) Dai - Liao plus,					
		10) Andrei (SDC), (Please see the paper: N. Andrei, A Dai-Yuan conjugate					
		gradient algorithm with sufficient descent and conjugacy conditions for unconstrained					
		optimization. Applied Mathematics Letters, 21, (2008), pp.165-171.)					
		11) hybrid Dai – Yuan,					

		12) hybrid Dai - Yuan zero,
		13) Gilbert – Nocedal,
		14) Hu and Storey,
		15) Touat-Ahmed and Storey,
		16) Hybrid LS – CD,
		17) Birgin - Martinez (scaled Perry),
		18) Birgin - Martinez plus (scaled Perry),
		19) scaled Polak-Ribiere-Polyak,
		20) scaled Fletcher-Reeves,
		21) New cg from PRP: beta=(ytg+ -yty stg+/gtg)/yts
		(Please, see (8.3.130) in the BOOK. Please, see (5.5.40) in the CG-BOOK.),
		22) New cg from DY: beta = ytg+/yts-ytg+*stg/(yts**2)
		(Please, see (8.3.102) in the BOOK. Please, see (5.5.12) in the CG-BOOK.),
		23) New cg from DY: beta=max(0,ytg/yts)*(1-stg/yts),
		24) New cg: Please see the paper: W07P26.pdf
		Please see the books:
		1) (BOOK) N. Andrei. Critica Ratiunii Algoritmilor de Ontimizare fără
		<i>Restricții</i> . Editura Academiei Române, București, 2009.
		2) (CG-BOOK) N. Andrei, Metode Avansate de Ggradient Conjugat
		pentru Optimizare fără Restricții. Editura Academiei Oamenilor de
		Știință, București, 2009.
		The Fortran program CGLOOP.FOR implements the above 20
		conjugate gradient algorithms using the loop unrolling of depth 5.
		Subdirectory APPLIC contains / applications from MINPACK-2.
		Please see OPISAPL.DOC file.
		Please see OPISAPL.DOC file. February 8, 2007
2.	CG-	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms
2.	CG- ACCELERAT	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in:
2.	CG- ACCELERAT	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in: N. Andrei , <i>Acceleration of conjugate gradient algorithms for</i>
2.	CG- ACCELERAT	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in: N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation,
2.	CG- ACCELERAT	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in: N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation, vol. 213, Issue 2, 2009, pp. 361-369.
2.	CG- ACCELERAT	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in: N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation, vol. 213, Issue 2, 2009, pp. 361-369. DOI information: 10.1016/j.amc.2009.03.020
2.	CG- ACCELERAT	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in: N. Andrei , <i>Acceleration of conjugate gradient algorithms for</i> <i>unconstrained optimization</i> . Applied Mathematics and Computation, vol. 213, Issue 2, 2009, pp. 361-369. DOI information: 10.1016/j.amc.2009.03.020
2.	CG- ACCELERAT	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in: N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation, vol. 213, Issue 2, 2009, pp. 361-369. DOI information: 10.1016/j.amc.2009.03.020 The package implements 80 unconstrained test function examples.
2.	CG- ACCELERAT	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in: N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation, vol. 213, Issue 2, 2009, pp. 361-369. DOI information: 10.1016/j.amc.2009.03.020 The package implements 80 unconstrained test function examples. The following conjugate gradient algorithms have been implemented:
2.	CG- ACCELERAT	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in: N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation, vol. 213, Issue 2, 2009, pp. 361-369. DOI information: 10.1016/j.amc.2009.03.020 The package implements 80 unconstrained test function examples. The following conjugate gradient algorithms have been implemented: 1) Hestenes – Stiefel,
2.	CG- ACCELERAT	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in: N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation, vol. 213, Issue 2, 2009, pp. 361-369. DOI information: 10.1016/j.amc.2009.03.020 The package implements 80 unconstrained test function examples. The following conjugate gradient algorithms have been implemented: 1) Hestenes – Stiefel, 2) Fletcher – Reeves,
2.	CG- ACCELERAT	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in: N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation, vol. 213, Issue 2, 2009, pp. 361-369. DOI information: 10.1016/j.amc.2009.03.020 The package implements 80 unconstrained test function examples. The following conjugate gradient algorithms have been implemented: 1) Hestenes – Stiefel, 2) Fletcher – Reeves, 3) Polak-Ribiere-Polyak,
2.	CG- ACCELERAT	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in: N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation, vol. 213, Issue 2, 2009, pp. 361-369. DOI information: 10.1016/j.amc.2009.03.020 The package implements 80 unconstrained test function examples. The following conjugate gradient algorithms have been implemented: 1) Hestenes – Stiefel, 2) Fletcher – Reeves, 3) Polak-Ribiere-Polyak, 4) Polak-Ribiere-Polyak plus ,
2.	CG- ACCELERAT	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in: N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation, vol. 213, Issue 2, 2009, pp. 361-369. DOI information: 10.1016/j.amc.2009.03.020 The package implements 80 unconstrained test function examples. The following conjugate gradient algorithms have been implemented: 1) Hestenes – Stiefel, 2) Fletcher – Reeves, 3) Polak-Ribiere-Polyak, 4) Polak-Ribiere-Polyak plus , 5) CD - Conjugate Descent (Fletcher),
2.	CG- ACCELERAT	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in: N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation, vol. 213, Issue 2, 2009, pp. 361-369. DOI information: 10.1016/j.amc.2009.03.020 The package implements 80 unconstrained test function examples. The following conjugate gradient algorithms have been implemented: 1) Hestenes – Stiefel, 2) Fletcher – Reeves, 3) Polak-Ribiere-Polyak, 4) Polak-Ribiere-Polyak plus , 5) CD - Conjugate Descent (Fletcher), 6) Liu – Storey,
2.	CG- ACCELERAT	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in: N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation, vol. 213, Issue 2, 2009, pp. 361-369. DOI information: 10.1016/j.amc.2009.03.020 The package implements 80 unconstrained test function examples. The following conjugate gradient algorithms have been implemented: 1) Hestenes – Stiefel, 2) Fletcher – Reeves, 3) Polak-Ribiere-Polyak, 4) Polak-Ribiere-Polyak plus , 5) CD - Conjugate Descent (Fletcher), 6) Liu – Storey, 7) Dai – Yuan,
2.	CG- ACCELERAT	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in: N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation, vol. 213, Issue 2, 2009, pp. 361-369. DOI information: 10.1016/j.amc.2009.03.020 The package implements 80 unconstrained test function examples. The following conjugate gradient algorithms have been implemented: 1) Hestenes – Stiefel, 2) Fletcher – Reeves, 3) Polak-Ribiere-Polyak, 4) Polak-Ribiere-Polyak plus , 5) CD - Conjugate Descent (Fletcher), 6) Liu – Storey, 7) Dai – Yuan, 8) Dai – Liao,
2.	CG- ACCELERAT	 Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in: N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation, vol. 213, Issue 2, 2009, pp. 361-369. DOI information: 10.1016/j.amc.2009.03.020 The package implements 80 unconstrained test function examples. The following conjugate gradient algorithms have been implemented: 1) Hestenes – Stiefel, 2) Fletcher – Reeves, 3) Polak-Ribiere-Polyak, 4) Polak-Ribiere-Polyak plus , 5) CD - Conjugate Descent (Fletcher), 6) Liu – Storey, 7) Dai – Yuan, 8) Dai – Liao, 9) Dai - Liao plus,
2.	CG- ACCELERAT	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in: N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation, vol. 213, Issue 2, 2009, pp. 361-369. DOI information: 10.1016/j.amc.2009.03.020 The package implements 80 unconstrained test function examples. The following conjugate gradient algorithms have been implemented: 1) Hestenes – Stiefel, 2) Fletcher – Reeves, 3) Polak-Ribiere-Polyak, 4 4) Polak-Ribiere-Polyak plus , 5) CD - Conjugate Descent (Fletcher), 6) Liu – Storey, 7) Dai – Yuan, 8) Dai – Liao, 9) Dai - Liao plus, 10) Andrei (ACGSD/2)
2.	CG- ACCELERAT	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in: N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation, vol. 213, Issue 2, 2009, pp. 361-369. DOI information: 10.1016/j.amc.2009.03.020 The package implements 80 unconstrained test function examples. The following conjugate gradient algorithms have been implemented: 1) Hestenes – Stiefel, 2) Fletcher – Reeves, 3) Polak-Ribiere-Polyak, 4 Polyak Plus , 5) CD - Conjugate Descent (Fletcher), 6) Liu – Storey, 7) Dai – Yuan, 8) Dai - Liao plus, 10) Andrei (ACGSD/2) (Please see the paper: Andrei N A Dai-Yuan conjugate gradient algorithm with sufficient descent and
2.	CG- ACCELERAT	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in: N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation, vol. 213, Issue 2, 2009, pp. 361-369. DOI information: 10.1016/j.amc.2009.03.020 The package implements 80 unconstrained test function examples. The following conjugate gradient algorithms have been implemented: 1) Hestenes – Stiefel, 2) Fletcher – Reeves, 3) Polak-Ribiere-Polyak, 4) Polak-Ribiere-Polyak, plus , 5) CD - Conjugate Descent (Fletcher), 6) Liu – Storey, 7) Dai – Yuan, 8) Dai - Liao, 9) Dai - Liao plus, 10) Andrei (ACGSD/2) (Please see the paper: Andrei, N., A Dai-Yuan conjugate gradient algorithm with sufficient descent and conjugacy conditions for unconstrained optimization.
2.	CG- ACCELERAT	Please see OPISAPL.DOC file. February 8, 2007 This package implements a number of 24 conjugate gradient algorithms accelerated by means of a procedure presented in: N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation, vol. 213, Issue 2, 2009, pp. 361-369. DOI information: 10.1016/j.amc.2009.03.020 The package implements 80 unconstrained test function examples. The following conjugate gradient algorithms have been implemented: 1) Hestenes – Stiefel, 2) Fletcher – Reeves, 3) Polak-Ribiere-Polyak, 4) Polak-Ribiere-Polyak, plus , 5) CD - Conjugate Descent (Fletcher), 6) Liu – Storey, 7) Dai – Liao, 9) Dai - Liao plus, 10) Andrei (ACGSD/2) (Please see the paper: Andrei, N., A Dai-Yuan conjugate gradient algorithm with sufficient descent and conjugacy conditions for unconstrained optimization. Applied Mathematics Letters, vol 21, 2008, pp. 165-171.

	Please, see the book:
	Advanced Conjugate Gradient Methods for Unconstrained Optimization.
	Chapter 5, section 5, Remark 5.5.1.
	Academy of Romanian Scientists Publishing House, Bucharest, 2009.),
	11) hybrid Dai – Yuan,
	12) hybrid Dai - Yuan zero,
	13) Gilbert – Nocedal,
	14) Hu and Storey,
	15) Touat-Ahmed and Storey,
	16) Hybrid LS – CD,
	17) Birgin - Martinez (scaled Perry),
	18) Birgin - Martinez plus (scaled Perry).
	19) scaled Polak-Ribiere-Polyak
	(Please see the paper:
	Andrei, N., Scaled memoryless BFGS preconditioned conjugate gradient algorithm
	for unconstrained optimization.
	Optimization Methods and Software, vol.22, No.4, 2007, pp.561-571.),
	20) scaled Fletcher-Reeves
	(Please see the paper:
	Andrei, N., Scaled memoryless BFGS preconditioned conjugate gradient algorithm
	for unconstrained optimization.
	Optimization Methods and Software, vol.22, No.4, 2007, pp.561-571.),
	21) New cg from PRP
	Please, see the book. Advanced Conjugate Gradient Methods for Unconstrained Optimization
	Chapter 5 section 5 Remark 5.5.2
	Academy of Romanian Scientists Publishing House, Bucharest, 2009.),
	22) New cg from DY (ACGSD)
	(Please see the paper:
	Andrei, N., Another nonlinear conjugate gradient algorithm for unconstrained
	optimization.
	Optimization Methods and Software, vol.24, No.1, 2009, pp.89-104.),
	23) New CG from DY (ACGSDz)
	(Please see the paper: N Androi Another nonlinear conjugate gradient algorithm for unconstrained
	n. Andrei, Anomer nonunear conjugate graatent algorithm for unconstrained
	Optimization Methods and Software, vol.24, No.1, February 2009, pp. 89-104.).
	24) New cg from PRP and DYc Please see the paper:
	(N. Andrei, New Conjugate Gradient Algorithms for Unconstrained Optimization
	Encyclopedia of Optimization, Second Edition, 2009.
	C.A. Floudas and P.M. Pardalos (Eds.), Volume N, pp. 2560-2571, Springer.)
	The subdirectory APPLICATIONS contains 5 applications from
	MINPACK-II collection, as follows:
	APPL1.FOR - elastic-plastic torsion problem,
	APPL2.FOR - pressure distribution in a journal bearing problem,
	APPL3.FOR - optimal design with composite materials problem,
	APPL5.FOR - steady state combustion problem.
	APPL7 FOR - Minimal Surface Area Problem
	All these applications have been solved using all 25 conjugate gradient
	algorithms. The results are enlisted in * doc files
	argorithms. The results are emisted in ".doc mes.
1	

		The norm of gradient $ g(k) $ is:
		0.8335591087430E+05
		0.1770302860649E+05
		0.1290104898224E+03
		0.2202119533104E+04
		0.1128337396401E+03
		0.2510029662606E+04
		0.3112527173225E+04
		0.4760512089568E+03
		0.6871298669484E+02
		0.1197855311342E+05
		0 1207581561453E+05
		0 3458177452260E+02
		0.1034945886632E+03
		0.5609625857035E+03
		0.1078967162139E+04
		0.6620819548126F+03
		0.102200193101201103 0.1787862322948E+02
		0.1707002322340E102 0.4539204111787F±03
		0.1067589106626E+04
		0.1007309100020E104 0.3678016480927E \pm 03
		0.50707107107027E+05
		0.3594559195106E+03
		0.5554555175100E105 0.4227395335853E+03
		0.1523510891905E+02
		0.15255108515051102
		0.1747037133274E+01 0.1539429121421E+03
		0.15354251214211105
		0.3761432997981E+02
		0.1934700602985E+00
		0.5261841571038E+01
		0.6658363856712E-01
		0 2459542556525F-02
		0.9613587612598E-06
		Observe that out 33 iterations only for the last two the norm of gradient is
		below 10^{-2} and 10^{-6} respectively.
		March 30, 2009
3.	CCOMB	The package includes two hybrid conjugate gradient algorithms as a
	NDOMB	convex combination of PRP and DY.
		CCOMB is a Fortran package implementing a New Hybrid Conjugate
		Gradient Algorithm as a Convex Combination of PRP and DY
		conjugate gradient algorithms for unconstrained optimization in which
		the parameter theta is selected from the conjugacy condition.
		The search direction in CCOMB algorithm is as follows:
		$a_{k+1} = -g_{k+1} + p_k \qquad s_k,$
		$eta_k^{CCOMB} = (1 - heta_k^{CCOMB})eta_k^{PRP} + heta_k^{CCOMB}eta_k^{DY},$
		$(\mathbf{y}_{i}^{T}\boldsymbol{\varphi}_{i-1})(\mathbf{y}_{i}^{T}\boldsymbol{\varphi}_{i-1}) - (\mathbf{y}_{i}^{T}\boldsymbol{\varphi}_{i-1}) \ \boldsymbol{\varphi}_{i}\ ^{2}$
		$\theta_{k}^{CCOMB} = \frac{(\sqrt{k} \otimes k+1)(\sqrt{k} \otimes k+$
		$(y'_k g_{k+1})(y'_k s_k) - g_{k+1} ^{-} g_k ^{-}$
		NDOMB is a Fortran package implementing a New Hybrid Conjugate
		Gradient Algorithm as a Convex Combination of PRP and DY

		conjugate gradient algorithms for unconstrained optimization in which the parameter theta is selected from the Newton direction. The search direction in NDOMB algorithm is as follows: $d_{k+1} = -g_{k+1} + \beta_k^{NDOMB} s_k,$ $\beta_k^{NDOMB} = (1 - \theta_k^{NDOMB}) \beta_k^{PRP} + \theta_k^{NDOMB} \beta_k^{DY},$ $\theta_k^{NDOMB} = \frac{(y_k^T g_{k+1} - s_k^T g_{k+1}) g_k ^2 - (y_k^T g_{k+1})(y_k^T s_k)}{ g_{k+1} ^2 g_k ^2 - (y_k^T g_{k+1})(y_k^T s_k)}.$ In both algorithms if $\theta_k \leq 0$, then set $\theta_k = 0$, if $\theta_k \geq 1$, set $\theta_k = 1$. The CCOMB and NDOMB algorithms are detailed in the papers: N. Andrei , "Hybrid conjugate gradient algorithm for unconstrained optimization". Journal of Optimization Theory and Applications, vol.41, (2009), pp.249-264. N. Andrei , "New hybrid conjugate gradient algorithms for unconstrained optimization". C.A. Floudas and P.M. Pardalos, (Eds.) Encyclopedia of Optimization, second edition, 2009, Springer, pages: 2560-2571. N. Andrei , "Performance profiles of conjugate gradient algorithms for unconstrained optimization". C.A. Floudas and P.M. Pardalos, (Eds.) Encyclopedia of Optimization, second edition, 2009, Springer, pages: 2560-2571.
		June 24, 2009
4.	CGSYS	CGSYS is a package dedicated to compute the minimizer of a differentiable function with a large number of variables. The search direction of this algorithm is a linear combination of $-g_{k+1}$ and s_k , where the coefficients in this linear combination are computed in such a way that both the descent and the conjugacy conditions to be guaranteed at every iteration. The search direction is computed as: $d_{k+1} = -\theta_k g_{k+1} + \beta_k s_k$, $\theta_k = \frac{-(y_k^T s_k) g_{k+1} ^2 t + (s_k^T g_{k+1})^2 u}{\Delta_k}$, $\beta_k = \frac{-(y_k^T g_{k+1}) g_{k+1} ^2 t + (s_k^T g_{k+1}) g_{k+1} ^2 u}{\Delta_k}$, $\Delta_k = (y_k^T g_{k+1}) (s_k^T g_{k+1}) - g_{k+1} ^2 (y_k^T s_k)$. The parameters <i>t</i> and <i>u</i> are set <i>t</i> = 7/8 and <i>u</i> = 0.01. The algorithm is described in: N. Andrei , An accelerated conjugate gradient algorithm with guaranteed descent and conjugacy conditions for unconstrained optimization. Technical Report, March 6, 2009. (Please see the paper: cgsyspap.doc)

		The subdirectory APPLIC contains 7 applications from MINPACK-II
		collection.
		October 24, 2008
5.	CGSECM	Conjugate gradient algorithm based on the equality of the Newton direction with the conjugate gradient direction and modified secant condition. The algorithm depends on the scalar parameter δ . The search direction is as follows: $d_{k+1} = -g_{k+1} + \beta_k s_k$,
		If $\delta = 0$, then:
		$\boldsymbol{\beta}_{k} = \max\left\{\frac{\boldsymbol{y}_{k}^{T}\boldsymbol{g}_{k+1}}{\boldsymbol{y}_{k}^{T}\boldsymbol{s}_{k}}, \boldsymbol{0}\right\} - \frac{\boldsymbol{s}_{k}^{T}\boldsymbol{g}_{k+1}}{\boldsymbol{y}_{k}^{T}\boldsymbol{s}_{k}},$
		If $\delta \neq 0$, then:
		$\beta_{k} = \max\left\{\frac{y_{k}^{T}g_{k+1}}{y_{k}^{T}s_{k} + \delta\eta}, 0\right\} - \left(1 - \frac{\delta\eta}{\left\ s_{k}\right\ ^{2}}\right)\frac{s_{k}^{T}g_{k+1}}{y_{k}^{T}s_{k} + \delta\eta},$
		$\eta = 6(f_k - f_{k+1}) + 3(g_k + g_{k+1})^T s_k.$
		February 12, 2008
6.	CGHSDY	A hybrid conjugate gradient algorithm with convex combination of HS
	(HSDY9,	and DY and Newton direction.
	HSDYNG,	There are three variants of hybrid conjugate gradient algorithms:
	HSD (PLUS)	1) HSDY9 algorithm:
		The search direction is computed as follows:
		$d_{k+1} = -g_{k+1} + \beta_k s_k,$
		$\theta = -\frac{s_k^T g_{k+1} + y_k^T g_{k+1}}{2}$
		${\mathcal S}_k = {\mathcal S}_k^T {\mathcal S}_{k+1},$
		If $0 < \theta_k < 1$, then $\beta_k = -\frac{s_k^T g_{k+1}}{y_k^T s_k}$,
		If $\theta_k \ge 1$, then $\beta_k = \frac{\ g_{k+1}\ ^2}{y_k^T s_k}$, (DY)
		If $\theta_k \leq 0$, then $\beta_k = \frac{y_k^T g_{k+1}}{y_k^T s_k}$. (HS)
		2) HSDYNG algorithm
		In this algorithm the parameter θ_k is computed in 6 different ways:
		a) Hybrid CG with Newton and secant equation:
		$\theta_k = -\frac{s_k^T g_{k+1}}{s_k^T s_k},$
		$g_k g_{k+1}$
		b) Hydrid CG with Newton and spectral gradient:

$$\begin{aligned} \theta_{k} &= \frac{(s_{k}^{T}g_{k+1})(y_{k}^{T}s_{k}^{T})/||s_{k}||^{2} - s_{k}^{T}g_{k+1} - y_{k}^{T}g_{k+1}}{g_{k}^{T}g_{k+1}},\\ \text{c) Hybrid CG with Newton a modification of the above formula:} \\ \theta_{k} &= -\frac{s_{k}^{T}g_{k+1} + y_{k}^{T}g_{k+1}}{g_{k}^{T}g_{k+1}},\\ \text{d) Hybrid CG with Newton and Zhang et all approximation of sHs:} \\ \theta_{k} &= -\frac{s_{k}^{T}g_{k+1} + (y_{k}^{T}g_{k+1})^{*}\eta/(y_{k}^{T}s_{k})}{g_{k}^{T}g_{k+1}(1+\eta/(y_{k}^{T}s_{k}))},\\ \eta &= 6(f_{k} - f_{k+1}) + 3(g_{k} + g_{k+1})^{T}s_{k},\\ \text{e) Hybrid CG with Newton and Zhang et all approximation of Hs and sHs:} \\ \theta_{k} &= \frac{\left(\frac{\delta\eta}{\|s_{k}\|^{2}} - 1\right)(s_{k}^{T}g_{k+1}) - \delta\eta}{g_{k}^{T}g_{k+1}},\\ \eta &= 6(f_{k} - f_{k+1}) + 3(g_{k} + g_{k+1})^{T}s_{k},\\ \text{e) Hybrid CG with Newton and Zhang et all approximation of Hs and sHs:} \\ \theta_{k} &= \frac{\left(\frac{\delta\eta}{\|s_{k}\|^{2}} - 1\right)(s_{k}^{T}g_{k+1}) - \delta\eta}{g_{k}^{T}g_{k+1}},\\ \eta &= 6(f_{k} - f_{k+1}) + 3(g_{k} + g_{k+1})^{T}s_{k},\\ \text{With this value of } \theta_{k} \text{ the value of } \beta_{k} \text{ is computed as:} \\ \theta_{k} &= -\frac{g_{k}^{T}g_{k+1}}{(1+\eta/y_{k}^{T}s_{k})},\\ \text{If } \theta_{k} \geq 1, \text{ then set } \beta_{k} = \beta_{k}^{DY},\\ \text{If } \theta_{k} \leq 0, \text{ then set } \beta_{k} = \beta_{k}^{DY},\\ \text{If } \theta_{k} \leq 0, \text{ then set } \beta_{k} = \beta_{k}^{DY},\\ \eta &= 6(f_{k} - f_{k+1}) - \delta\eta}\frac{y_{k}^{T}g_{k+1}}{y_{k}^{T}s_{k}},\\ \eta &= 6(f_{k} - f_{k+1}) + 3(g_{k} + g_{k+1})^{T}s_{k},\\ \theta_{k} &= \frac{\left(\frac{\delta\eta}{\|s_{k}\|^{2}} - 1\right)(s_{k}^{T}g_{k+1}) - \delta\eta}{g_{k}^{T}g_{k+1}}},\\ \eta &= 6(f_{k} - f_{k+1}) + 3(g_{k} + g_{k+1})^{T}s_{k},\\ \beta_{k} &= \max\left\{\frac{y_{k}^{T}g_{k+1}}{y_{k}^{T}s_{k} + \delta\eta}, 0\right\} + \frac{(1 - \delta\eta/\|s_{k}\|^{2})(s_{k}^{T}g_{k+1})}{y_{k}^{T}s_{k} + \delta\eta}.\\ \text{The theoretical developments of HYBRID algorithm are described into the developments of HYBRID algorit$$

the papers: **N. Andrei**, Another hybrid conjugate gradient algorithm for

		Unconstrained Optimization, Numerical Algorithms, vol.47, no.2, February 2008, pp.143-156. N. Andrei . Accelerated hybrid conjugate gradient algorithm with modified secant condition for unconstrained optimization. Numerical Algorithms, vol. 54 (2010), pp.23-46. April 2, 2007
7.	CONGRAD (AML5382, PCONMIN, MCONMIN)	Package for unconstrained minimization using the conjugate gradient algorithm of Shanno with Beale's restart procedure. Prof. Shanno sent me a copy of the package on October 17, 1983. I modified it in some respects, including the possibility to work on a train of numerical experiments.
		The algorithm is described in: Shanno, D.F., (1978) <i>Conjugate gradient methods with exact searches</i> . Mathematics of Operations Research, vol.3, no.3, August 1978, pp.244-256.
		The subdirectory MINPACK includes 7 applications from MINPACK-II collection.
		The package aml5382.for implements the conjugate gradient algorithm BFGS preconditioned, in variant given by Shanno, with a train of 80 unconstarined optimization test functions. This is a variant of the Shanno's package which I modified in some respects. The line search procedure is incorporated into the package. Another variant of this package is given by PCONMIN .
		The package MCONGRAD , wich includes the subroutine CONGRAD uses the numerical derivatives facilities. The subroutine NUMGRAD is designed for numerical derivatives computation.
		November 26, 2001
8.	CONMINEX	Another variant of the package for unconstrained minimization using
		the conjugate gradient algorithm by Shanno and Phua with Beale's
		restart procedure. Mainly, this package is the same as CONGRAD
		March: 27, 2007
9.	CONMIN	Another variant of the package implementing the conjugate gradient by Shanno and Phua.
		Subroutine CONMIN is described in the papers:
		1) Shanno, D.F., Conjugate gradient methods with inexact searches.
		Mathematics of Operations Research, vol. 3, No. 3, August 1978, pp. 244256
		2) Shanno, D.F., On the convergence of a new conjugate gradient
		algorithm.
		SIAWI J. Numer. Anal., vol.15, No.6, December 1978, pp.1247-1257.
		3) Shanno, D.F., Phua, K.H., Algorithm 500. Minimization of
		unconstrained multivariate functions.
		ACM TOMS, vol.2, No.1, March 1976, pp.87-94.
		4) Andrei, N., Criticism of the unconstrained optimization

		algorithms reasoning. Academy Publishing House, Bucharest 2009. ISBN 978-973-27-1669-4
		(Chapter 8, pp.317-448.)
		Remark: Professor Shanno sent me the Fortran subrutine CONMIN in October 17, 1983. I modified it in some respects.
		October 15, 2004
10.	DLDC	DLDC is a subroutine dedicated to compute the minimizer of a differentiable function with a large number of variables. Mainly, this is a modification of the Dai-Liao conjugate gradient algorithm with guaranteed descent and conjugacy conditions. The search direction is computed as: $d_{k+1} = -\theta_k g_{k+1} + \max\left\{\frac{y_k^T g_{k+1}}{y_k^T s_k}, 0\right\} s_k - t_k \frac{s_k^T g_{k+1}}{y_k^T s_k} s_k,$
		The parameters θ_k and t_k are computed as solution of the following
		linear algebraic system:
		$\theta_{k}(y_{k}'g_{k+1}) + t_{k}(s_{k}'g_{k+1}) = a_{k},$
		$\theta_k(y_k^T s_k) \ g_{k+1}\ ^2 + t_k(s_k^T g_{k+1})^2 = b_k,$
		where
		$a_k = v(s_k^T g_{k+1}) + (y_k^T g_{k+1}),$
		$b_{k} = w(s_{k}^{T} y_{k}) \ g_{k+1}\ ^{2} + (y_{k}^{T} g_{k+1})(s_{k}^{T} g_{k+1}).$
		The scalar parameters w and v are introduced in such a way that the algorithm to satisfies the sufficient descent condition and the conjugacy condition respectively. These parameters are assigned to the values: $w = (1 + \ s_k^T g_{k+1}\), v = 0.1.$
		The algorithm is described in:
		 N. Andrei, (2009) An accelerated modified Dai-Liao conjugate gradient algorithm with guaranteed descent and conjugacy conditions for unconstrained optimization. Technical Report, July 16, 2009. (Please see the Technical Report: n41a09.doc)
		N. Andrei, Another accelerated conjugate gradient algorithm with guaranteed descent and conjugacy conditions for large-scale unconstrained optimization. Technical Report, January 29, 2010. (Please see the paper in DLDCNEW.DOC file)
		The directory MINPACK includes 5 applications from MINPACK-II collection.
11	DIDN	May 8, 2009
11.	DLDN	DLDN is a subroutine dedicated to compute the minimizer of a differentiable function with a large number of variables. Mainly, this is a variant of a modification of the Dai-Liao conjugate gradient algorithm with guaranteed descent and conjugacy conditions. The search direction is computed as:

		$d_{k+1} = -\theta_k g_{k+1} + \max\left\{\frac{y_k' g_{k+1}}{y_k^T s_k}, 0\right\} s_k - t_k \frac{s_k' g_{k+1}}{y_k^T s_k} s_k,$
		The parameters θ_k and t_k are computed as solution of the following
		linear algebraic system:
		$\theta_k(y_k^T g_{k+1}) + t_k(s_k^T g_{k+1}) = a_k,$
		$\theta_{k}(y_{k}^{T}s_{k})\ g_{k+1}\ ^{2}+t_{k}(s_{k}^{T}g_{k+1})^{2}=b_{k},$
		where
		$a_k = v(s_k^T g_{k+1}) + (y_k^T g_{k+1}),$
		$b_{k} = w(s_{k}^{T} y_{k}) \ g_{k+1}\ ^{2} + (y_{k}^{T} g_{k+1})(s_{k}^{T} g_{k+1}).$
		The scalar parameters w and v are introduced in such a way that the algorithm to satisfies the sufficient descent condition and the conjugacy condition respectively. These parameters are assigned to the values: w = 7/8, $v = 0.1$.
		The algorithm is not too much sensitive to the values of these parameters.
		January 29, 2010
12.	DESCON	DESCON is a subroutine dedicated to compute the minimizer of a
		differentiable function with a large number of variables.
		The search direction is computed as: $d = -\frac{\beta}{\alpha} \alpha + \frac{\beta}{\alpha} s$
		$u_{k+1} v_k g_{k+1} + p_k s_k,$
		$\beta_{k} = \frac{y_{k}^{T} g_{k+1} - t_{k} s_{k}^{T} g_{k+1}}{y_{k}^{T} g_{k}},$
		$y_k s_k$ where θ and t are scalar parameters which are computed as:
		where O_k and v_k are scalar parameters when are computed as:
		$t_{k} = \frac{b_{k}(y_{k}'g_{k+1}) - a_{k}(y_{k}'s_{k}) g_{k+1} }{\Lambda_{k}},$
		$a + (s^T a)$
		$\theta_k = \frac{a_k - i_k (S_k g_{k+1})}{y_k^T g_{k+1}},$
		$\overline{\Delta}_{k} = (y_{k}^{T} g_{k+1})(s_{k}^{T} g_{k+1}) - \left\ g_{k+1}\right\ ^{2} (y_{k}^{T} s_{k}),$
		$\Delta_k = (s_k^T g_{k+1}) \overline{\Delta}_k,$
		$a_k = v(s_k^T g_{k+1}) + y_k^T g_{k+1},$
		$b_{k} = w \left\ g_{k+1} \right\ ^{2} (y_{k}^{T} s_{k}) + (y_{k}^{T} g_{k+1})(s_{k}^{T} g_{k+1}).$
		v > 0 and $w > 0$ are <i>known</i> scalar parameters.
		The algorithm is described in:
		- N. Andrei, An accelerated conjugate gradient algorithm with
		guaranteed descent and conjugacy conditions for large-scale
		ICI Technical Report November 29, 2010
		Please see the Technical Report: R5A11.DOC file.
		- N. Andrei, Another conjugate gradient algorithm with guaranteed

		$d_{k+1} = -g_{k+1} + \beta_k s_k,$
		$\beta_{k} = \max\left\{-c\frac{\ g_{k+1}\ ^{2}}{y_{k}^{T} s_{k}}, \min\left\{\alpha_{k}\frac{y_{k}^{T} g_{k+1}}{y_{k}^{T} s_{k}}, \frac{\ g_{k+1}\ ^{2}}{y_{k}^{T} s_{k}}\right\}\right\},\$
		where $c = 0.05263157$ and α_k is the step length computed by the
		Wolfe line search conditions.
		March 29, 2013
15.	HYBRID,	A hybrid conjugate gradient algorithm with Convex combination of HS
	HYBRIDM, AHYBRIDM	and DY and Newton direction with secant condition. This subdirectory contains three packages: HYBRID , HYBRIDM , AHYBRIDM .
		In HYBRID it is assumed that the pair (s_k, y_k) satisfies the secant
		condition.
		$d_{k+1} = -g_{k+1} + \beta_k^C s_k.$
		A parameter θ_{i} is computed as:
		$S_{I}^{T} g_{I,I}$
		$\theta_k = \frac{\frac{1}{K} \frac{1}{K} \frac{1}{K}}{\frac{1}{K} \frac{1}{K} \frac{1}{K} \frac{1}{K}}.$
		If $0 < \theta_k < 1$, then
		$\beta_{k}^{C} = (1 - \theta_{k}) \frac{g_{k+1}^{T} y_{k}}{y_{k}^{T} s_{k}} + \theta_{k} \frac{\ g_{k+1}\ ^{2}}{y_{k}^{T} s_{k}}.$
		If $\theta_k \ge 1$, then $\beta_k^C = \beta_k^{DY} = \frac{\ g_{k+1}\ ^2}{y_k^T s_k}$.
		If $\theta_k \leq 0$, then $\beta_k^C = \beta_k^{HS} = \frac{g_{k+1}^T y_k}{y_k^T s_k}$.
		The theoretical developments of HYBRID algorithm are described into the paper:
		N. Andrei , (2008) Another hybrid conjugate gradient algorithm for Unconstrained Optimization, Numerical Algorithms, vol.47, no.2, February 2008, pp.143-156.
		HYBRIDM is an extension of the HYBRID package authored by N. Andrei. In HYBRIDM it is assumed that the pair (s_k, y_k) satisfies the
		modified secant condition given by Zhang, Deng and Chen into the paper: J.Z. Zhang, N.Y. Deng and L.H. Chen, "New quasi-Newton equation and related methods for unconstrained optimization", JOTA, 102 (1999), p. 147-167.
		AHYBRIDM is an acceleration of the HYBRIDM package.
		The directory APPLIC contains 7 applications from MINPACK-II

		collection.
		 AHYBR1.FOR - Elastic-Plastic Torsion Problem, AHYBR2.FOR - Pressure Distribution in a Journal Bearing Problem, AHYBR3.FOR - Optimal Design with Composite Materials Problem, AHYBR4.FOR - Inhomogeneous Superconductors. Ginzburg-Landau (1-dimensional) problem, AHYBR5.FOR - Steady State Combustion Problem, AHYBR6.FOR - Jones Clusters (Molecular Conformation) Problem, AHYBR7.for - Minimal Surface Area Problem.
		April 8, 2008
16.	ACGA	A nonlinear conjugate gradient algorithm which is a modification of the Dai and Yuan [A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim. 10 (1999), pp. 177–182] conjugate gradient algorithm satisfying a parameterized sufficient descent condition with a parameter δ_k is proposed. The parameter δ_k is computed by means of the conjugacy condition, thus an algorithm which is a positive multiplicative modification of the Hestenes and Stiefel [<i>Methods of conjugate gradients for solving linear</i> systems, J. Res. Nat. Bur. Standards Sec. B 48 (1952), pp. 409–436] algorithm is obtained. The algorithm can be viewed as an adaptive version of the Dai and Liao [<i>New conjugacy conditions and related</i> nonlinear conjugate gradient methods, Appl. Math. Optim. 43 (2001), pp. 87–101] conjugate gradient algorithm. The search direction is computed as:
		$d_{k+1} = -g_{k+1} + \beta_k^A s_k,$ $\beta_k^A = \frac{1}{y_k^T s_k} \left(y_k - \frac{g_{k+1}^T y_k}{y_k^T s_k} s_k \right)^T g_{k+1}.$
		The algorithm is described in the paper: N. Andrei , <i>Another nonlinear conjugate gradient algorithm for unconstrained</i> <i>optimization</i> . Optimization Methods & Software, Vol. 24, No. 1, February 2009, 89–104.
17.	CGSECM	Conjugate gradient algorithm based on the equality of the Newton direction with the conjugate gradient direction and modified secant condition. The search direction is computed as:
		$d_{k+1} = -g_{k+1} + \beta_k s_k,$ $\beta_k = \max\left\{\frac{y_k^T g_{k+1}}{y_k^T s_k + \delta\eta}, 0\right\} - \left(1 - \frac{\delta\eta}{s_k^T s_k}\right) \frac{s_k^T g_{k+1}}{y_k^T s_k + \delta\eta},$ $\eta = 6(f_k - f_{k+1}) + 3(g_k + g_{k+1})^T s_k,$
		$\delta = \begin{cases} 0, \text{ a parameter.} \end{cases}$
		February 12, 2008
18.	HYBRID7	Accelerated conjugate gradient algorithm based on the equality of the
Newton direction with the conjugate gradient direction and 7 BFGS approximations of the Hessian used in modified secant condition.		
--		
The algorithm is described in: Andrei, N., Another hybrid conjugate gradient algorithm for unconstrained optimization. Numerical Algorithms, vol. 47, (2008), pp.143-156. Andrei, N., Accelerated hybrid conjugate gradient algorithm with modified secant condition for unconstrained optimization. Numerical Algorithms (2010) vol 54 pp.22.46		
(Please see the Technical Report: n14a09.pdf)		
Methods for BFGS updating: 1) Secant condition. The pair (s_k, y_k) satisfies the secant condition B(k+1)s(k) = y(k)		
Please see HYBRID algorithm described in: Andrei, N., Another hybrid conjugate gradient algorithm for unconstrained optimization, Numerical Algorithms, vol. 47, (2008), pp.143-156.		
2) The pair (s_k, y_k) satisfies the modified secant condition		
$B_{k+1}s_k=\overline{y}_k.$		
$\overline{y}_{k} = y_{k} + \frac{\rho_{k} s_{k}}{\left\ s_{k} \right\ ^{2}},$		
$\rho_k = 2(f_k - f_{k+1}) + (g_k + g_{k+1})^T s_k.$		
3) The pair (s_k, y_k) satisfies the modified secant condition		
$B_{k+1}s_k = \widetilde{y}_k.$		
$\widetilde{y}_k = y_k + c \ g_k\ s_k,$		
where c is a positive constant, suggested by Li and Fukushima [2001].		
4) The pair (s_k, y_k) satisfies the modified secant condition		
$B_{k+1}s_k = y_k^*.$		
$y_{k}^{*} = y_{k} + \max\{\rho_{k}, 0\} \frac{s_{k}}{\ s_{k}\ ^{2}},$		
$\rho_k = 2(f_k - f_{k+1}) + (g_k + g_{k+1})^T s_k.$ suggested by Yuan and Wei [2010].		
5) B_{k+1} is approximated by Yuan's formula [1991].		
$\boldsymbol{B}_{k+1} = \boldsymbol{B}_k - \frac{\boldsymbol{B}_k \boldsymbol{s}_k \boldsymbol{s}_k^T \boldsymbol{B}_k}{\boldsymbol{s}_k^T \boldsymbol{B}_k \boldsymbol{s}_k} + \boldsymbol{t}_k \frac{\boldsymbol{y}_k \boldsymbol{y}_k^T}{\boldsymbol{y}_k^T \boldsymbol{s}_k}$		
where		

		$t_{k} = \frac{2}{s_{k}^{T} v_{k}} (f_{k} - f_{k+1} + s_{k}^{T} g_{k+1})$
		and t_k belongs to the interval [0.01,100].
		6) $s_k^T B_{k+1} s_k$ is from the interpolation condition by Yuan.
		$s_k^T B_{k+1} s_k = 2(f_k - f_{k+1}) + s_k^T g_{k+1}$
		7) $s_k^T B_{k+1} s_k$ is from the Hermite interpolation condition. If the function f is cubic along the line between x_{k-1} and x_k then by considering the Hermite interpolation we get: $s_k^T B_{k+1} s_k = 4 s_k^T g_{k+1} + 2 s_k^T g_k - 6(f_{k+1} - f_k)$
		October 6, 2010 New version September 23, 2013
19.	PRP	Polak-Ribière-Polyak conjugate gradient algorithm. The search direction is computed like:
		$d_{k+1} = -g_{k+1} + \beta_k s_k,$
		$\beta_k = \frac{y_k^T g_{k+1}}{\sigma^T \sigma}.$
		$g_k g_k$ January 15, 2013
20.	PRP-DC	Three-term Conjugate Gradient Algorithms in three variants:
		 1) PRP Modified Method (Andrei) (PRPDC) 2) Zhang, Zhou and Li (ZZL) 3) Zhang, Xiao and Wei (ZXW)
		The search direction in version PRPDC:
		$d_{k+1} = \frac{1}{\ g_k\ ^2} \Big[-(y_k^T g_k) g_{k+1} + (y_k^T g_{k+1}) g_k - (g_k^T g_{k+1}) y_k \Big]$
		The search direction in version ZZL: T
		$d_{k+1} = -g_{k+1} + \frac{y_k^2 g_{k+1}}{\alpha_k \ g_k\ ^2} s_k - \frac{s_k^2 g_{k+1}}{\alpha_k \ g_k\ ^2} y_k.$
		The search direction in version ZXW:
		$d_{k+1} = -g_{k+1} + \frac{1}{y_k^T s_k} \Big[(y_k^T g_{k+1}) s_k - (s_k^T g_{k+1}) y_k \Big]$
		The algorithm PRP modified (PRP-DC) is described in the paper: N. Andrei . A modified Polak–Ribie`re–Polvak conjugate gradient
		algorithm for unconstrained optimization.
		(Please se the paper: optimiz11.pdf)
21		August 25, 2009
21.	AUUA	Optimization.
		The search direction in ACGA is computed as:

		$d_{k+1} = -g_{k+1} + \beta_k^A s_k,$
		$\beta_{k}^{A} = \frac{1}{y_{k}^{T} s_{k}} \left(y_{k} - \frac{g_{k+1}^{T} y_{k}}{y_{k}^{T} s_{k}} s_{k} \right)^{T} g_{k+1}.$
22.	ACGHES	Please see the paper: Andrei, N., (2009), Another Nonlinear Conjugate Gradient Algorithm for Unconstrained Optimization, Optimization Methods and Software, vol.24, No.1, February 2009, pp. 89-104. July 31, 2008 Accelerated conjugate gradient algorithm based on the equality of the Newton direction with the conjugate gradient direction and using the Hessian / vector product. The search direction in this algorithm is computed as: $d_{k+1} = -g_{k+1} + \frac{s_k^T \nabla^2 f(x_{k+1})g_{k+1} - s_k^T g_{k+1}}{s_k^T \nabla^2 f(x_{k+1})s_k},$ where the Hessian / vector product is computed using the finite difference:
		$\nabla^2 f(x_{k+1}) s_k = \frac{\nabla f(x_{k+1} + \delta s_k) - \nabla f(x_{k+1})}{\delta},$ $\delta = \frac{2\sqrt{\varepsilon_m} (1 + x_{k+1} \sqrt{n})}{ s_k },$
		The algorithm is described in: Andrei., N., (2009) Accelerated conjugate gradient algorithm with finite difference Hessian/vector product approximation for unconstrained optimization. Journal of Computational and Applied Mathematics, vol. 230, 2009, pp. 570-582. Please see the paper jcam2009.pdf.
		The directory MINPACK contains 7 applications from MINPACK-II collection: ACGHES1.FOR - elastic-plastic torsion, ACGHES2.FOR – pressure distribution in a journal bearing problem, ACGBES3.FOR - optimal design with composite materials problem, ACGHES4.FOR - Inhomogeneous Superconductors. Ginzburg- Landau (1-dimensional) problem, ACGHES5.FOR - steady state combustion problem, ACGHES6.FOR - Jones Clusters (Molecular Conformation) Problem,
		ACGHES7.FOR - minimal surface area problem.
22		February 12, 2008
23.	ACGHESM	Accelerated conjugate gradient algorithm based on the equality of the Newton direction with the conjugate gradient direction and using the Hessian / Vector product
		The Hessian / vector product is computed by finite difference using 5

		different increments. The neckage is testing the numerical
		performances of this conjugate gradient algorithm subject to the values
		of increments for Hessian / vector product approximations.
		The search direction in this algorithm is computed as:
		$s_{1}^{T} \nabla^{2} f(x_{1}) g_{1} - s_{1}^{T} g_{1}$
		$d_{k+1} = -g_{k+1} + \frac{s_k - f(x_{k+1}) \cdot g_{k+1} - s_k \cdot g_{k+1}}{s_k^T \nabla^2 f(x_{k+1}) \cdot s_k},$
		where the Hessian / vector product is computed using the finite difference:
		$\nabla^2 f(x_{k+1}) s_k = \frac{\nabla f(x_{k+1} + \delta s_k) - \nabla f(x_{k+1})}{\delta},$
		where ε_m is epsilon machine and δ is estimated by the following
		methods:
		1) Schlick-Fogelson (TNPACK) (SF)
		$\delta = \frac{2\sqrt{\varepsilon_m}(1 + \ x_{k+1}\ \sqrt{n})}{\ s_k\ },$
		2) Schlick-Fogelson (variant) (SFV)
		$2\sqrt{\varepsilon}(1+ x_{t+1})$
		$\delta = \frac{-\sqrt{s_m} (1 + s_{k+1})}{\ s_k\ },$
		3) Nash (Truncated-Newton) (NASH)
		$\delta = \sqrt{\varepsilon_m (1 + \ x_{k+1}\)},$
		4) Dembo-Steihaug (DS)
		$\delta = \frac{\sqrt{\varepsilon_m}}{1 + \frac{1}{2}},$
		$\ S_k\ $
		5) O'Leary (LEARY)
		$\delta = \frac{2\sqrt{\varepsilon_m \left(1 + \ x_{k+1}\ \right)}}{\ \mathbf{x}\ ^2}.$
		The algorithm is described in: N. Andrei, Accelerated conjugate gradient algorithm with finite difference Hessian/vector product approximation for unconstrained optimization. Journal of Computational and Applied Mathematics, 230 (2009) 570-582
24	ACCEPC	February 23, 2010
24.	ACGSEC	This algorithm uses a hybrid approach by considering a convex combination of Hestenes and Stiefel (HS) and Dai and Yuan (DY) conjugate gradient algorithms.
		ACGSEC is an accelerated conjugate gradient algorithm based on the
		equality of the Newton direction with the conjugate gradient direction
		The search direction is computed as:
		$d_{k+1} = -g_{k+1} + \beta_k s_k,$
	1	$\kappa + 1$ $\sim \kappa + 1$ $\ell - \kappa - \kappa$

		$\boldsymbol{\beta}_{k} = \max\left\{\frac{\boldsymbol{y}_{k}^{T}\boldsymbol{g}_{k+1}}{\boldsymbol{y}_{k}^{T}\boldsymbol{s}_{k}}, \boldsymbol{0}\right\} - \frac{\boldsymbol{s}_{k}^{T}\boldsymbol{g}_{k+1}}{\boldsymbol{y}_{k}^{T}\boldsymbol{s}_{k}}.$
		The algorithm is described in: Andrei, N., (2010) Accelerated hybrid conjugate gradient algorithm with modified secant condition for unconstrained optimization. Numerical Algorithms (2010) vol.54, pp.23-46.
		(Please see the Technical Report n14a09.doc: "Accelerated hybrid conjugate gradient algorithm with modified secant condition for unconstrained optimization", February 23, 2009.) February 22, 2008
25.	ACGMSEC	This algorithm uses a hybrid approach by considering a convex combination of Hestenes and Stiefel (HS) and Dai and Yuan (DY) conjugate gradient algorithms.
		ACGMSEC is an accelerated conjugate gradient algorithm based on the equality of the Newton direction with the conjugate gradient direction and modified secant condition. The search direction is computed as:
		$d_{k+1} = -g_{k+1} + \beta_k s_k,$
		$\boldsymbol{\beta}_{k} = \max\left\{\frac{\boldsymbol{y}_{k}^{T}\boldsymbol{g}_{k+1}}{\boldsymbol{y}_{k}^{T}\boldsymbol{s}_{k} + \delta\boldsymbol{\eta}}, \boldsymbol{0}\right\} - \left(1 - \frac{\delta\boldsymbol{\eta}}{\left\ \boldsymbol{s}_{k}\right\ ^{2}}\right)\frac{\boldsymbol{s}_{k}^{T}\boldsymbol{g}_{k+1}}{\boldsymbol{y}_{k}^{T}\boldsymbol{s}_{k} + \delta\boldsymbol{\eta}},$
		$\eta = 6(f_k - f_{k+1}) + 3(g_k + g_{k+1})^T s_k.$
		δ is a parameter. If $\delta = 0$ we get the ACGSEC algorithm.
		The algorithm is described in:
		Andrei, N., (2010) Accelerated hybrid conjugate gradient algorithm with modified secant condition for unconstrained optimization. Numerical Algorithms (2010) vol.54, pp.23-46.
		(Please see the Technical Report n14a09.doc: "Accelerated hybrid conjugate gradient algorithm with modified secant condition for unconstrained optimization", February 23, 2009.)
		The directory MINPACK2 contains 7 applications from MINPACK-II collection.
26	SCALCG	February 11, 2008 Scaled Conjugate Gradient Algorithm BEGS Preconditioned
20.	ASCALCG	with Powell restart. The package implements 80 unconstrained test function examples.
		The search direction in this algorithm is computed as: $a^{T}a$
		$d_{k+1} = -\theta_{k+1}g_{k+1} + \theta_{k+1}\frac{s_k g_{k+1}}{y_k^T s_k}y_k - $
		$\left[\left(1 + \theta_{k+1} \frac{\ y_k\ ^2}{y_k^T s_k}\right) \frac{s_k^T g_{k+1}}{y_k^T s_k} - \theta_{k+1} \frac{y_k^T g_{k+1}}{y_k^T s_k} \right] s_k.$

А	At step r when $ g_r^T g_{r+1} \ge 0.2 g_{r+1} ^2$ the algorithm is restarted using
th di	he above search direction. Otherwise, for any $k \ge r+1$ the search irection d_{k+1} is computed using a double upddate scheme as:
	$v = \theta_{r+1} g_{k+1} - \theta_{r+1} \frac{s_r^T g_{k+1}}{y_r^T s_r} y_r +$
	$\left[\left(1 + \theta_{r+1} \frac{\ y_r\ ^2}{y_r^T s_r} \right) \frac{s_r^T g_{k+1}}{y_r^T s_r} - \theta_{r+1} \frac{y_r^T g_{k+1}}{y_r^T s_r} \right] s_r,$
	$w = \theta_{r+1} y_r - \theta_{r+1} \frac{s_r^T y_k}{y_r^T s_r} y_r +$
	$\left[\left(1+\theta_{r+1}\frac{\left\ \boldsymbol{y}_{r}\right\ ^{2}}{\boldsymbol{y}_{r}^{T}\boldsymbol{s}_{r}}\right)\frac{\boldsymbol{s}_{r}^{T}\boldsymbol{y}_{k}}{\boldsymbol{y}_{r}^{T}\boldsymbol{s}_{r}}-\theta_{r+1}\frac{\boldsymbol{y}_{k}^{T}\boldsymbol{y}_{r}}{\boldsymbol{y}_{r}^{T}\boldsymbol{s}_{r}}\right]\boldsymbol{s}_{r},$
W	with wich the search direction is computed as follows:
	$d_{k+1} = -v + \frac{(g_{k+1}^T s_k)w + (g_{k+1}^T w)s_k}{y_k^T s_k} - \left(1 + \frac{y_k^T w}{y_k^T s_k}\right) \frac{g_{k+1}^T s_k}{y_k^T s_k} s_k.$
T au L - c c C O P P P - u U A L L - C U A In au C C C C C C C C C C C C C C C C C C	 The algorithm is presented in: Andrei, N., (2007) A scaled BFGS preconditioned conjugate gradient lgorithm for unconstrained optimization. Applied Mathematics etters, 20 (2007), p.645-650. Andrei, N., (2006) Scaled memoryless BFGS preconditioned onjugate gradient algorithm for unconstrained optimization. Optimization Methods and Software, vol.22, Number 4, August 2007, p.561-571. Andrei, N., (2007) Scaled conjugate gradient algorithms for nconstrained optimization. Computational Optimization and Applications, vol.38, Number 3, December 2007, p.401-416. Andrei, N., Nonlinear Conjugate Gradient Methods for Inconstrained Optimization, vol. 158 Springer Optimization and Its applications, Springer, 2020, (Chapter 8, pp.261-277) Ante SCALCG subroutine there is the logical argument parameter ccelerat. If accelerat is false, then SCALCG algorithm is used. Otherwise, if accelerat is true, then the ASCALCG algorithm is onsidered.

A B A A S S	SCALCG is Accelerated Scaled Conjugate Gradient Algorithm FGS Preconditioned with Powell restart. SCALCG is an acceleration of the SCALCG algorithm. SCALCG is used when the logical parameter accelerat in SCALCG ubroutine is set to true .

		The algorit	hm is pr	resented in	:			
		Andrei,	N., (2	.010) Ac	celerated	scaled	memoryle	ess BFGS
		preconditio	oned co	onjugate	gradient	algorithm	for un	constrained
		2010 pp 41	<i>n</i> . Euro 10-420	pean Jour	mai of Op	erational	Research,	, VOI. 204,
		The packag	ge imple	ments 80 u	unconstrain	ed test fur	nction exa	mples.
		In SCALO	CG sub	directory	there are	three f	iles with	numerical
		comparison	ns, as	follows:	comp-1.d	oc conta	ains com	parison of
		SCALCG	versus	ASCALC	G, comp-	2.doc inc	clude con	nparison of
		ASCALCG	e versu	s DESCO	N, comp	-3.doc gi	ves comp	parisons of
		ASCALCG	i versus	CG-DESC	ENT.		Тля	no 15 2005
			Imp	lementatio	n of the acc	eleration s	scheme, M	arch 5, 2003
27.	THREECG	A three-ter	m conj	ugate gra	dient algor	ithm whi	ch satisfie	es both the
		descent con	ndition a	and the cor	jugacy con	dition.		
		The direction	on is co	mputed as:				
			d_{j}	$k_{k+1} = -g_{k+1}$	$-\delta_k s_k - \delta_k s_k - \delta_k$	$\eta_k y_k$,		
					$\mathbf{v} \parallel^2 \mathbf{s}^T \mathbf{a}$	$v^T q$		
			č	$S_k = 1 + \frac{\parallel}{2}$	$\frac{ S_k \otimes k }{ T_n } = \frac{ S_k \otimes k }{ T_n }$	$\frac{y_k g_k}{y_k g_k}$	<u>k+1</u> ,	
					$y_k s_k + y_k s_k$	$y_k y_k s$	k	
				$s_k^T g_{k+1}$	-1			
			1	$\gamma_k = \frac{1}{v_k^T S_k}$	<u> </u> .			
				<i>✓ K</i> [™] K				
			1 -				_	
			0.95 -			. K	_	
					PEECC	CG-DESCEN	г	
			0.9 -		REECG		-	
			0.85 -				_	
					THREECG #iter 527	CG-DESCEN 98	T = 105	
			0.8 -		#fg 303 cpu 242	404 211	23 - 277	
			0.75				-	
			0.7	CPL	time metric, 730	problems	_	
			0.05	2 4	6 8	10 12	14 16	
			Fig	g. 1. THRE	ECG versus	CG_DESC	ENT.	
		Tal	hle 1 Þa	rformance	of THREEC	G versus (G DESCE	'NT
		f	for solvin	ng 5 applica	tions from N	/INPACK	-2 collectio	n.
				1,000,000) variables. c	pu seconds	8.	
			Hiton	THREEC	G	C #itor	G_DESCEI	NT
		A1	#ner 1111	#1g	306.04	#iter 1145	#1g	436.05
		A2	2837	5702	979.27	3368	6737	1571.53
		A3	4507	9104	1904.79	4841	9684	2904.12
		A4	1413	2864	1128.70	1806	3613	2093.79

Г

		A5	1333	2689	546.20	1226	2453	713.89
		ТОТА	L 11201	22612	4865.00	12386	24778	7719.38
					1		1	
		The algo	orithm is de	escribed in	:			• • •
		N. And	rei, A sin	nple three	<i>term</i> con	jugate gr	adient alg	<i>sorithm</i> for
		Mothom	rained opt	mization.	Journal o	f Compu	tational a	nd Applied
		(Please)	accs, voi.	· threeco_r	pp. 19-29. 2 doc)			
		(I lease	see the me	. uneeeg 1	2.000)		Septem	ber 28, 2012
28.	TTS	An acce	elerated su	bspace mi	nimization	three-ter	m conjuga	ate gradient
		algorith	n for unco	nstrained of	optimization	n. alaomithma	for which	a tha anamah
		direction	i in comput	n conjugat ted as:	e gradient	argoritinn	TOT WHICH	i the search
			$a = -g_{i}$	$+a_1s_1+b_2$	$v_i v_i$.			
		<i>K</i> -	1 Г	K K	к <i>-</i> к [,]	2	_ 1	
		a_k	$=\frac{1}{\Delta_k}\left[\eta_k\right]$	$y_k^T g_{k+1} - s_k$	$\int_{k}^{T} g_{k+1} (x) - \ y$	$v_k \ ^2 (\omega_k - \omega_k)$	$y_k^T g_{k+1}$)	
		b	$_{k} = \frac{1}{\Lambda_{k}} \left[\left(y_{k}^{T} \right) \right]$	$(\omega_k - s_k)(\omega_k - s_k)$	$y_k^T g_{k+1}) - \Big $	$\left\ y_{k}\right\ ^{2}\left(y_{k}^{T}g\right)$	$g_{k+1} - s_k^T g_k$	$_{k+1})],$
		Δ	$\overline{y}_{k} \equiv (y_{k}^{T} y_{k})$	2,				
		$\eta_{\scriptscriptstyle k}$	$=2\frac{(y_k^T y_k)}{y_k^T s_k}$	$\frac{)^{2}}{2}$,				
			т. Т	$(\boldsymbol{g}_{1}^{T}, \boldsymbol{v}_{1})$	$(\mathbf{v}_{i}^{T}\mathbf{v}_{i})$	$(\boldsymbol{g}_{1}^{T},\boldsymbol{s}_{2})(\boldsymbol{s})$	(T, \mathbf{v})	
		ω_k	$=g_{k+1}^{T}y_{k}$	$+\frac{\langle o_{k+1}y_{k}\rangle}{y_{k}^{T}}$	$\frac{(j_k j_k)}{s_k}$	$\frac{(S_{k+1}S_k)(S_k)}{S_k^TS_k}$	<u>k J k /</u> .	
		0.95 -			- 0.9	5		
		0.9 - 0.85 -	Hestenes-Stiefel	TTS (HS)	- 0.	9-		TTS -
		0.8 -		TTS HS =	O.	8-	TTS	DI (1=1) =
		0.75 -		#iter 587 40 8 #fg 306 381 2 cpu 276 138 29	5 - 0.7 18	5-	#iter 593 #fg 305 cpu 282	45 74 - 384 23 144 286
		0.7 -	00111	740	- 0.6	5-	.,	_
		0.6	2 4 6	c, 712 problems	4 16 0.	6 CPU t	ime metric, 712 problem	. 12 14 16
						1		
		0.95		~~~	0.9	6-		
		0.9 -		πs	_ 0.	9-		πѕ
		0.85 -	Dai-Y	'uan (DY)	_ 0.8	⁶ Polak-I	Ribiere-Polyak (PRP)	
		0.8 -		TTS DY #iter 591 49 #fg 325 362	= 0.7 73 0.7	5-	TTS #iter 584	> PRP =
		0.7 -		cpu 283 141 2	289 _ 0.	7-	#fg 325 cpu 284	350 27 , 124 294 _
		0.65	CPU time met	ric, 713 problems	- 0.6	CPU t	ime metric, 702 proble	•ms
		0.6	2 4 6	8 10 12	14 16	$\overline{0}$ $\overline{2}$ $\overline{4}$	6 8 10	12 14 16
			Fig. 1	I. TTS vers	us HS, DL (t=1), DY a	nd PRP.	
		The algo	orithm is de	escribed in	:			
		N. An	drei, An	accelera	ted subsp	ace min	imization	three-term
		conjuga	te gradie	nt algor	ithm for	unconst	rained o _l	ptimization.
		Numerio	al Algorith	1ms, vol.6	o, (2014), p	p.859-874	4.	

		April, 5, 2013
29.	TTSNC	This is a variant of an accelerated subspace minimization three-term conjugate gradient algorithm for unconstrained optimization in which the three-term search direction is equal to the Newton direction. The search direction is computed as:
		$d_{k+1} = -g_{k+1} + a_k s_k + b_k y_k,$ 2(y_t^T g_{k+1})
		$a_{k} = \frac{-(y_{k} g_{k+1})}{y_{k}^{T} g_{k}} - \frac{-(y_{k} g_{k+1})}{y_{k}^{T} y_{k}},$
		$b_{k} = \frac{1}{(y_{k}^{T} y_{k})^{2}} \left[(y_{k}^{T} s_{k})(\omega_{k} - y_{k}^{T} g_{k+1}) - (y_{k}^{T} g_{k+1})(y_{k}^{T} y_{k}) \right],$
		$\omega_{k} = g_{k+1}^{T} y_{k} + \frac{(g_{k+1}^{T} y_{k})(y_{k}^{T} y_{k})}{y_{k}^{T} s_{k}} - \frac{(g_{k+1}^{T} s_{k})(s_{k}^{T} y_{k})}{s_{k}^{T} s_{k}}.$
		TTSNC is very close to TTS. The three-term conjugate gradient algorithm TTS is obtained as the minimization of the quadratic approximation model of function f in a subspace spanned by
		$-g_{k+1}$, s_k and y_k . In this algorithm the searching direction is
		computed as above, where the parameters a_k and b_k are determined as:
		$a_{k} = \frac{2(y_{k}^{T}g_{k+1} - s_{k}^{T}g_{k+1})}{y_{k}^{T}s_{k}} - \frac{\omega_{k} - y_{k}^{T}g_{k+1}}{y_{k}^{T}y_{k}},$
		$b_{k} = \frac{(y_{k}^{T} s_{k})(\omega_{k} - y_{k}^{T} g_{k+1})}{(y_{k}^{T} y_{k})^{2}} - \frac{y_{k}^{T} g_{k+1} - s_{k}^{T} g_{k+1}}{y_{k}^{T} y_{k}}.$
		Observe the difference between these two formulae for a_k and
		b_k computation. It is the explicit presence of the term $s_k^T g_{k+1}$ into the
		formulae for a_k and b_k computation in TTS.
		The algorithm is presented in: N. Andrei, Another three-term conjugate gradient algorithm for unconstrained optimization. Technical Report, September 11, 2013 (Please see the file ttsnc.doc)

31.	TTDES	TTDES implements a three-term conjugate gradient algorithm obtained by minimizing the one-parameter quadratic model of the objective
		function in which the symmetrical approximation of the Hessian matrix
		satisfies the general quasi-Newton equation: $B_{k+1}s_k = \omega^{-1}y_k$, with
		$\omega \neq 0$.
		The search direction is computed as:
		$d_{k+1} = -Q_{k+1}g_{k+1} = -g_{k+1} + \frac{y_k^T g_{k+1} - \omega s_k^T g_{k+1}}{y_k^T s_k} s_k - \frac{s_k^T g_{k+1}}{y_k^T s_k} y_k,$
		where $2 \sqrt{1 + 12 + 12}$
		$\omega = \frac{2}{\ s_k\ ^2} \sqrt{\ s_k\ ^2} \ y_k\ ^2 - (y_k^T s_k)^2.$
		This choice of the parameter ω makes the condition number of
		$\mathbf{O} = I - \frac{\mathbf{s}_k (\mathbf{y}_k - \boldsymbol{\omega} \mathbf{s}_k)^T}{\mathbf{y}_k \mathbf{s}_k^T} + \frac{\mathbf{y}_k \mathbf{s}_k^T}{\mathbf{y}_k \mathbf{s}_k^T}$
		$\mathcal{Q}_{k+1} = \mathbf{I} = \begin{bmatrix} y_k^T s_k \end{bmatrix} \begin{bmatrix} y_k^T s_k \end{bmatrix}$
		approach its minimum.
		- N. Andrei. A new three-term conjugate gradient algorithm for
		unconstrained optimization. Numerical Algorithms, vol.68, (2015),
		pp.305-321.
		<i>Unconstrained Optimization</i> , vol. 158 Springer Optimization and Its
		Applications, Springer, 2020, (Chapter 9, pp.334-345)
		(Please see the file: paper-ttdes.doc)
		0.95 -
		0.9 - CG-DESCENT
		0.85 -
		0.8 - TTDES CG-DESCENT = - #iter 621 83 56
		0.75 - #fg 468 254 38 - cpu 289 285 186
		0.7 -
		0.65 CPU time metric, 760 problems
		October 24, 2013
32.	TTCG	TTCG implements an accelerated conjugate gradient algorithm with
		conditions are guaranteed.
		The search direction is computes as:
		$a_{k+1} = -g_{k+1} - o_k s_k - \eta_k y_k,$
		$\delta_{k} = \left(1 + 2\frac{\ y_{k}\ ^{2}}{y_{k}^{T}s_{k}}\right) \frac{s_{k}^{T}g_{k+1}}{y_{k}^{T}s_{k}} + \frac{y_{k}^{T}g_{k+1}}{y_{k}^{T}s_{k}},$

$$\eta_{k} = \frac{s_{k}^{T} g_{k+1}}{y_{k}^{T} s_{k}},$$
The algorithm is described in:
• N. Andrci, On three-term conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation, vol.219, 2013, pp.6316-6327.
(Please see the file AMC_17812, pdf)
• N. Andrei, Nonlinear Conjugate Gradient Methods for Unconstrained Optimization, vol. 158 Springer Optimization and Its Applications, Springer, 2020, (Chapter 9, pp.316-323)
33. NADCG
This program implements an adaptive conjugate gradient algorithm. The search direction is computed as the sum of the negative gradient and vector determined by minimizing the quadratic approximation of the objective function at the current point. Using a special approximation of the sufficient descent and the conjugacy conditions. The search direction is computed as:

$$d_{k+1} = -g_{k+1} + \max\left\{\frac{y_{k}^{T}g_{k+1} - a_{k}g_{k}^{T}g_{k+1}}{y_{k}^{T}g_{k}}\right\}s_{k} - \frac{s_{k}^{T}g_{k+1}}{y_{k}^{T}g_{k}}y_{k},$$
where

$$a_{k} = \left\{\frac{2\sqrt{\tau-1} \left\|\frac{y_{k}}{y_{k}}\right\|_{s}^{2}}{(y_{k}^{T}g_{k})^{2}}\right\}$$
The parameter $\tau > 1$ is the adaptive parameter. The algorithm is not very much sensitive the the values of τ .

		<i>scale unconstrained optimization.</i> Paper published into the book: " <i>Optimization and Applications in Control and Data Science</i> ", edited by Boris Goldengorin. Springer Optimization and Its Applications, Vol.115. 2016, pp.1-16. This paper is written in honour of Prof. Boris T. Polyak celebrating his 80th anniversary. (Please see the file: nadcg.doc) June 18, 2015
34.	ADCG	An adaptive conjugate gradient algorithm for large-scale unconstrained
		The search direction is computed as
		$d_{k+1} = -Q_{k+1}g_{k+1} = -g_{k+1} + \frac{(y_k - t_k s_k)^T g_{k+1}}{y_k^T s_k} s_k - \frac{s_k^T g_{k+1}}{y_k^T s_k} y_k,$
		where, $t_k \equiv \omega_k \ y_k\ ^2 / y_k^T s_k$ is computed as:
		$t_{k} = \begin{cases} 2\sqrt{\tau - 1} \frac{\ y_{k}\ }{\ s_{k}\ }, & \text{if } \frac{\ y_{k}\ ^{2} \ s_{k}\ ^{2}}{(y_{k}^{T} s_{k})^{2}} \ge \tau, \end{cases}$
		0, otherwise,
		where $\tau > 1$ is a positive constant.
		The algorithm is described into the paper: N. Andrei , <i>An adaptive conjugate gradient algorithm for large-scale unconstrained optimization</i> , Journal of Computational and Applied Mathematics, 292 (2016), pp.83-91. May 20, 2015
35.	EIGN-SING	In this directory I placed the paper and the Fortran files:
		 N. Andrei, Eigenvalues versus singular values study in conjugate gradient algorithms for large-scale unconstrained optimization. Technical Report, July 14, 2015. (See the file: paper10.doc) The Fortran packages SVCG.FOR and NADCG.FOR implements the singular value approach and eigenvalues approach in conjugate gradient algorithms, respectively. Directory MINPACK contains 5 applications from MINPACK-II collection. 1) The NADCG algorithm implements the eigenvalues clustering in conjugate gradient algorithms. The search direction is computed as:
		$d_{k+1} = -g_{k+1} + \max\left(\frac{y_k^T g_{k+1} - \omega_k s_k^T g_{k+1}}{y_k^T s_k}, 0\right) s_k - \frac{s_k^T g_{k+1}}{y_k^T s_k} y_k.$
		$2\sqrt{\tau-1}\frac{\ y_k\ }{\ s_k\ }, a_k \ge \tau,$
		$\left\ egin{array}{c} \omega_k = \ 2\sqrt{a_k-1} \frac{\ y_k\ }{\ s_k\ } & a_k < au. \end{array} ight.$
		Here
		Here $a_{k} = \frac{\ y_{k}\ ^{2} \ s_{k}\ ^{2}}{(y_{k}^{T} s_{k})^{2}}.$

		very much sensitive the the values of τ .
		2) The SVCG algorithm implements the singular values approach
		(minimizing the comdition number) in conjugate gradient algorithms.
		The search direction is computed as:
		$y_k^T g_{k+1} = s_k^T g_{k+1}$
		$a_{k+1} = -g_{k+1} + \frac{1}{y_k^T s_k} s_k - \frac{1}{y_k^T s_k} y_k.$
		Observe that this is a modification of the Hestenes and Stiefel
		conjugate gradient algorithm.
		Some comparisons of these algorithms versus CG-DESCENT by Hager
		and Zhang, using 800 unconstrained optimization test problems, are as
		Ionows:
		NADCG
		03 de CG-DESCENT 03 de CG-DESCENT -
		0.85
		0.8 #iter 631 88 52 . 0.8 #iter 634 92 53 . #ifg 483 249 39
		0.75 - Cpu 203 210 272 - 0.75 - Cpu 249 237 250 -
		07 CPU time metric, 771 problems
		0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
		Disease and the moment N. Andres Eisensulves survey since the second
		rease, see the paper: N. Andrei , <i>Eigenvalues versus singular values</i>
		antimization Optimization Methods and Software vol. 32 no. 3, 2017
		np. 534-551
		July 14, 2015
36.	ACGSSV	An adaptive class of nonlinear conjugate gradient algorithms is
		suggested. The search direction in these algorithms is given by
		suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A.
		suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, <i>A modified conjugate gradient algorithm</i> . Operations Research,
		suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, <i>A modified conjugate gradient algorithm</i> . Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The
		suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, <i>A modified conjugate gradient algorithm</i> . Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance
		suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, <i>A modified conjugate gradient algorithm</i> . Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search
		suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, <i>A modified conjugate gradient algorithm</i> . Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update by Oren
		suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, <i>A modified conjugate gradient algorithm</i> . Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update by Oren in the Frobenius norm. Two variants of the parameter in the search
		suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, <i>A modified conjugate gradient algorithm</i> . Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update by Oren in the Frobenius norm. Two variants of the parameter in the search direction are presented as those given by: Oren and Luenberger [S.S. Oren D. C. Luenberger Solf sealing variable metric (SSVM)
		suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, A modified conjugate gradient algorithm. Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update by Oren in the Frobenius norm. Two variants of the parameter in the search direction are presented as those given by: Oren and Luenberger [S.S. Oren, D. G. Luenberger, Self-scaling variable metric (SSVM) algorithms I. Critaria and sufficient conditions for scaling a class of
		suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, A modified conjugate gradient algorithm. Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update by Oren in the Frobenius norm. Two variants of the parameter in the search direction are presented as those given by: Oren and Luenberger [S.S. Oren, D. G. Luenberger, <i>Self-scaling variable metric (SSVM)</i> algorithms. I. Criteria and sufficient conditions for scaling a class of algorithms. Management Sci. 20 (1973/74) 845-8621 and Oren and
		suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, A modified conjugate gradient algorithm. Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update by Oren in the Frobenius norm. Two variants of the parameter in the search direction are presented as those given by: Oren and Luenberger [S.S. Oren, D. G. Luenberger, <i>Self-scaling variable metric (SSVM)</i> <i>algorithms. I. Criteria and sufficient conditions for scaling a class of</i> <i>algorithms.</i> Management Sci., 20 (1973/74) 845-862] and Oren and Spedicato [S.S. Oren, E. Spedicato, Optimal conditioning of self-
		suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, A modified conjugate gradient algorithm. Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update by Oren in the Frobenius norm. Two variants of the parameter in the search direction are presented as those given by: Oren and Luenberger [S.S. Oren, D. G. Luenberger, <i>Self-scaling variable metric (SSVM)</i> <i>algorithms. I. Criteria and sufficient conditions for scaling a class of</i> <i>algorithms.</i> Management Sci., 20 (1973/74) 845-862] and Oren and Spedicato [S.S. Oren, E. Spedicato, <i>Optimal conditioning of self-</i> <i>scaling variable metric algorithms</i> , Math, Program., 10 (1976) 70-90].
		suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, A modified conjugate gradient algorithm. Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update by Oren in the Frobenius norm. Two variants of the parameter in the search direction are presented as those given by: Oren and Luenberger [S.S. Oren, D. G. Luenberger, <i>Self-scaling variable metric (SSVM)</i> <i>algorithms. I. Criteria and sufficient conditions for scaling a class of</i> <i>algorithms.</i> Management Sci., 20 (1973/74) 845-862] and Oren and Spedicato [S.S. Oren, E. Spedicato, <i>Optimal conditioning of self- scaling variable metric algorithms.</i> Math. Program., 10 (1976) 70-90]. The corresponding algorithm, ACGSSV, is equipped with a vey well
		suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, A modified conjugate gradient algorithm. Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update by Oren in the Frobenius norm. Two variants of the parameter in the search direction are presented as those given by: Oren and Luenberger [S.S. Oren, D. G. Luenberger, <i>Self-scaling variable metric (SSVM)</i> <i>algorithms. I. Criteria and sufficient conditions for scaling a class of</i> <i>algorithms.</i> Management Sci., 20 (1973/74) 845-862] and Oren and Spedicato [S.S. Oren, E. Spedicato, <i>Optimal conditioning of self-</i> <i>scaling variable metric algorithms.</i> Math. Program., 10 (1976) 70-90]. The corresponding algorithm, ACGSSV, is equipped with a vey well known acceleration scheme of conjugate gradient algorithms.
		suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, A modified conjugate gradient algorithm. Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update by Oren in the Frobenius norm. Two variants of the parameter in the search direction are presented as those given by: Oren and Luenberger [S.S. Oren, D. G. Luenberger, <i>Self-scaling variable metric (SSVM)</i> <i>algorithms. I. Criteria and sufficient conditions for scaling a class of</i> <i>algorithms.</i> Management Sci., 20 (1973/74) 845-862] and Oren and Spedicato [S.S. Oren, E. Spedicato, <i>Optimal conditioning of self-</i> <i>scaling variable metric algorithms.</i> Math. Program., 10 (1976) 70-90]. The corresponding algorithm, ACGSSV, is equipped with a vey well known acceleration scheme of conjugate gradient algorithms.
		suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, A modified conjugate gradient algorithm. Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update by Oren in the Frobenius norm. Two variants of the parameter in the search direction are presented as those given by: Oren and Luenberger [S.S. Oren, D. G. Luenberger, <i>Self-scaling variable metric (SSVM)</i> <i>algorithms. I. Criteria and sufficient conditions for scaling a class of</i> <i>algorithms</i> . Management Sci., 20 (1973/74) 845-862] and Oren and Spedicato [S.S. Oren, E. Spedicato, <i>Optimal conditioning of self- scaling variable metric algorithms</i> . Math. Program., 10 (1976) 70-90]. The corresponding algorithm, ACGSSV, is equipped with a vey well known acceleration scheme of conjugate gradient algorithms.
		suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, A modified conjugate gradient algorithm. Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update by Oren in the Frobenius norm. Two variants of the parameter in the search direction are presented as those given by: Oren and Luenberger [S.S. Oren, D. G. Luenberger, <i>Self-scaling variable metric (SSVM)</i> <i>algorithms. I. Criteria and sufficient conditions for scaling a class of</i> <i>algorithms</i> . Management Sci., 20 (1973/74) 845-862] and Oren and Spedicato [S.S. Oren, E. Spedicato, <i>Optimal conditioning of self- scaling variable metric algorithms</i> . Math. Program., 10 (1976) 70-90]. The corresponding algorithm, ACGSSV, is equipped with a vey well known acceleration scheme of conjugate gradient algorithms.
		suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, A modified conjugate gradient algorithm. Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update by Oren in the Frobenius norm. Two variants of the parameter in the search direction are presented as those given by: Oren and Luenberger [S.S. Oren, D. G. Luenberger, <i>Self-scaling variable metric (SSVM)</i> <i>algorithms. I. Criteria and sufficient conditions for scaling a class of</i> <i>algorithms</i> . Management Sci., 20 (1973/74) 845-862] and Oren and Spedicato [S.S. Oren, E. Spedicato, <i>Optimal conditioning of self- scaling variable metric algorithms</i> . Math. Program., 10 (1976) 70-90]. The corresponding algorithm, ACGSSV, is equipped with a vey well known acceleration scheme of conjugate gradient algorithms. The algorithm is described in the paper: N. Andrei, <i>Accelerated adaptive Perry conjugate gradient algorithms</i> <i>based on the self-scaling memoryless BFGS update</i> . Journal of Computational and Applied Mathematics wel. 225, 2017, pp. 140, 164
		suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, <i>A modified conjugate gradient algorithm</i> . Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update by Oren in the Frobenius norm. Two variants of the parameter in the search direction are presented as those given by: Oren and Luenberger [S.S. Oren, D. G. Luenberger, <i>Self-scaling variable metric (SSVM)</i> <i>algorithms</i> . <i>I. Criteria and sufficient conditions for scaling a class of</i> <i>algorithms</i> . Management Sci., 20 (1973/74) 845-862] and Oren and Spedicato [S.S. Oren, E. Spedicato, <i>Optimal conditioning of self- scaling variable metric algorithms</i> . Math. Program., 10 (1976) 70-90]. The corresponding algorithm, ACGSSV, is equipped with a vey well known acceleration scheme of conjugate gradient algorithms. The algorithm is described in the paper: N. Andrei, <i>Accelerated adaptive Perry conjugate gradient algorithms</i> <i>based on the self-scaling memoryless BFGS update</i> . Journal of Computational and Applied Mathematics, vol. 325, 2017, pp.149-164. (Please see the file ICAM-2017 (40) rdf)
		suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, <i>A modified conjugate gradient algorithm</i> . Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update by Oren in the Frobenius norm. Two variants of the parameter in the search direction are presented as those given by: Oren and Luenberger [S.S. Oren, D. G. Luenberger, <i>Self-scaling variable metric (SSVM)</i> <i>algorithms</i> . I. Criteria and sufficient conditions for scaling a class of <i>algorithms</i> . Management Sci., 20 (1973/74) 845-862] and Oren and Spedicato [S.S. Oren, E. Spedicato, Optimal conditioning of self- scaling variable metric algorithms. Math. Program., 10 (1976) 70-90]. The corresponding algorithm, ACGSSV, is equipped with a vey well known acceleration scheme of conjugate gradient algorithms. The algorithm is described in the paper: N. Andrei , Accelerated adaptive Perry conjugate gradient algorithms based on the self-scaling memoryless BFGS update. Journal of Computational and Applied Mathematics, vol. 325, 2017, pp.149-164. (Please see the file JCAM-2017 (40).pdf)
37.	DLE	suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, <i>A modified conjugate gradient algorithm</i> . Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update by Oren in the Frobenius norm. Two variants of the parameter in the search direction are presented as those given by: Oren and Luenberger [S.S. Oren, D. G. Luenberger, <i>Self-scaling variable metric (SSVM)</i> <i>algorithms. I. Criteria and sufficient conditions for scaling a class of</i> <i>algorithms</i> . Management Sci., 20 (1973/74) 845-862] and Oren and Spedicato [S.S. Oren, E. Spedicato, <i>Optimal conditioning of self- scaling variable metric algorithms</i> . Math. Program., 10 (1976) 70-90]. The corresponding algorithm, ACGSSV, is equipped with a vey well known acceleration scheme of conjugate gradient algorithms. The algorithm is described in the paper: N. Andrei, <i>Accelerated adaptive Perry conjugate gradient algorithms based on the self-scaling memoryless BFGS update</i> . Journal of Computational and Applied Mathematics, vol. 325, 2017, pp.149-164. (Please see the file JCAM-2017 (40).pdf) January 16, 2017 A new value for the parameter in Dai and Liao conjugate gradient
37.	DLE	suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, A modified conjugate gradient algorithm. Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update by Oren in the Frobenius norm. Two variants of the parameter in the search direction are presented as those given by: Oren and Luenberger [S.S. Oren, D. G. Luenberger, <i>Self-scaling variable metric (SSVM)</i> <i>algorithms. I. Criteria and sufficient conditions for scaling a class of</i> <i>algorithms.</i> Management Sci., 20 (1973/74) 845-862] and Oren and Spedicato [S.S. Oren, E. Spedicato, <i>Optimal conditioning of self- scaling variable metric algorithms.</i> Math. Program., 10 (1976) 70-90]. The corresponding algorithm, ACGSSV, is equipped with a vey well known acceleration scheme of conjugate gradient algorithms. The algorithm is described in the paper: N. Andrei , <i>Accelerated adaptive Perry conjugate gradient algorithms based on the self-scaling memoryless BFGS update.</i> Journal of Computational and Applied Mathematics, vol. 325, 2017, pp.149-164. (Please see the file JCAM-2017 (40).pdf) January 16, 2017 A new value for the parameter in Dai and Liao conjugate gradient algorithm is presented. This is based on the clustering the eigenvalues

		This value of the parameter lead us to a variant of the Dai and Liao algorithm which is more efficient and more robust than the variants of the same algorithm based on the minimizing the condition number of the matrix associated to the search direction. Babaie-Kafaki and Ghanbari [1] suggested two choices for the scaling parameter: $t_{k1}^{*} = \frac{y_{k}^{T} s_{k}}{\ s_{k}\ ^{2}} + \frac{\ y_{k}\ }{\ s_{k}\ } $ (M1) and $t_{k2}^{*} = \frac{\ y_{k}\ }{\ s_{k}\ } $ (M2) In this paper I suggest the following value:
		$t_k^* = \frac{y_k^T s_k}{\left\ s_k\right\ ^2}.$
		[1] Babaie-Kafaki, S., Ghanbari, R.: The Dai-Liao nonlinear conjugate gradient method with optimal parameter choices. European Journal of Operational Research 234, 625-630 (2014)
		The algorithm is described in: N. Andrei , (2018). <i>A Dai-Liao conjugate gradient algorithm with clustering the eigenvalues</i> . Numerical Algorithms, 77(4), 1273-1282. (Please see the file: Paper332R1.doc) January 4, 2017
38.	CGLIN	Solving linear algebraic systems with positive definite matrices using the linear conjugate gradient method.
		1. Select an initial point x_0 and $\varepsilon > 0$ sufficiently small
		2. Set $r_0 = Ax_0 - b$, $d_0 = -r_0$ and $k = 0$
		3. If $ r_k \le \varepsilon$, then stop. Otherwise continue with step 4
		4. Compute: $\alpha_{k} = \frac{r_{k}^{T} r_{k}}{d_{k}^{T} A d_{k}}, x_{k+1} = x_{k} + \alpha_{k} d_{k}, r_{k+1} = r_{k} + \alpha_{k} A d_{k}, \beta_{k} = \frac{r_{k+1}^{T} r_{k+1}}{r_{k}^{T} r_{k}}, d_{k+1} = -r_{k+1} + \beta_{k} d_{k}$
		5. Set $k = k + 1$ and continue with step 3 \blacklozenge
		The linear algebraic system $Ax = b$, where:
		$A = \begin{bmatrix} 2 & -1 & & \\ -1 & 2 & \ddots & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & 2 & -1 \\ & & & -1 & 2 \end{bmatrix}, \text{ and } b = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix},$
		is obtained from the finite difference numerical method to discretize the one-dimensional Poisson equation. For $n = 1000$, the linear conjugate gradient algorithm gives a solution in 500 iterations. Figure 1 shows the evolution of the error $ b - Ax_k $ along the iterations for obtaining a solution with accuracy less than or

		Fig. 1. Evolution of the error $ b - Ax_k $ of the linear conjugate gradient			
		algorithm for different numbers (n_2) of blocks on the main diagonal			
		of matrix A.			
		 Please, see the Books: 1. N. Andrei, Nonlinear Conjugate Gradient Methods for Unconstrained Optimization. Springer, vol. 158 Springer Optimization and Its Applications, Springer, 2020. 2. N. Andrei, Optimizare fără Restricții – Metode de Direcții Conjugate, MATRIXROM, București, 2000, pp. 78-79 și 109- 112. 			
		(modified version) January 3, 2019			
40.	ACGSYS	ACGSYS is the accelerated version of CGSYS. This is a subroutine			
	(See: CGSYS)	dedicated to compute the minimizer of a differentiable function with a			
		large number of variables.			
		The search direction of this algorithm is a linear combination of $-g_{k+1}$			
		and s_k , where the coefficients in this linear combination are computed			
		in such a way that both the descent and the conjugacy conditions to be			
		guaranteed at every iteration $k \ge 1$.			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$			
		Fig. 1. Performance profiles of CGSYS versus HS-DY, DL ($t = 1$), CG-DESCENT and DESCONa			
		The accelerated version of CGSYS is described in the paper: N. Andrei, An accelerated conjugate gradient algorithm with guaranteed descent and conjugacy conditions for unconstrained optimization. (cgsyspap.doc). March 6, 2009.			

		given in Figure 2.
		$f_{0.05} = \frac{1}{1000} \int_{1000}^{0.05} \frac{1}{1000} \int_{1000}^{0.05} \frac{1}{10000} \int_{10000}^{0.05} \frac{1}{10000000000000000000000000000000000$
42	CCSVSI Ba	June 17, 2019 Combination of the CGSVS algorithm with the limited memory L
42.	ССЭТЭГР	BFGS algorithm by interlacing iterations of the CGSYS with iterations of the L-BFGS algorithms subject to the closeness of the minimizing function to a quadratic. Compute the parameter: $t_{k} = \left \frac{2(f_{k} - f_{k+1} + g_{k+1}^{T} s_{k})}{y_{k}^{T} s_{k}} - 1 \right .$ If t_{k} is close to zero, then φ_{k} is regarded as a quadratic function, otherwise not. In other words, if $t_{k} \leq c$, where c is a small positive constant ($c = 10^{-8}$), we can conclude that φ_{k} is close to a quadratic function. If $t_{k} \geq c$, then the CGSYS iterations are performed, otherwise the L-BFGS ($m = 5$) iterations are considered. In this algorithm, we called CGSYSLBq, the iterations of CGSYS are performed only if $t_{k} \geq c$. Otherwise, the iterations of L-BFGS ($m = 5$) are performed. CGSYSLBqa is the accelerated version of CGSYSLBq.

-		
		Applications, Springer, 2020, (Chapter 11)
		January 18, 2020
44.	CG3LS	Fortran program for unconstrained optimization using 6 procedures for computation of the conjugate parameter β_k : Hager-Zhang, Dai-Kou, Hestenes-Stiefel, Polak-Ribière-Polyak, Dai-Yuan and minimizing the measure function φ of Byrd and Nocedal, under the 3 line search procedures: standard Wolfe, approximate Wolfe of Hager and Zhang and improved Wolfe of Dai and Kou. The program is that of Hager and Zhang (CG-DESCENT), where the formula for beta computation is modified as that given by Dai and Kou, or HS, PRP, DY, FI. Please see the Book: N. Andrei, <i>Nonlinear Conjugate Gradient Methods for Unconstrained</i> <i>Optimization</i> . Springer, vol. 158 Springer Optimization and Its Applications, Springer, 2020. (Chapter 8)
		In 17 2010
45.	CG3LSpre	Fortran program for unconstrained optimization using 6 procedures for computation of the conjugate parameter β_k : PRECONDITIONED Hager-Zhang, Dai-Kou, Hestenes-Stiefel, Polak-Ribière-Polyak, Dai- Yuan and minimizing the measure function φ of Byrd and Nocedal, under the 3 line search procedures: standard Wolfe, approximate Wolfe of Hager and Zhang and improved Wolfe of Dai and Kou. Only the conjugate gradient parameter β_k of Hager and Zhang algorithm is preconditioned with a diagonal approximation of the Hessian. The program is that of Hager and Zhang (CG-DESCENT), where the formula for beta computation is modified as that given by Dai and Kou, or HS, PRP, DY, FI. Please see the Book: N. Andrei, <i>Nonlinear Conjugate Gradient Methods for Unconstrained</i> <i>Optimization</i> . Springer, vol. 158 Springer Optimization and Its Applications, Springer, 2020. (Chapter 1 for diagonal approximation to
		the Hessian and Chapter 8) January 17, 2019
46.	CGALLpre	30 conjugate gradient unconstrained optimization algorithms with
		standard Wolfe line search. The following conjugate gradient algorithms are implemented: betatype = (1) HS, (2) FR, (3) PRP, (4) PRP+, (5) CD, (6) LS, (7) DY, (8) DL(t=1), (9) DL+, (10) SDC, (11) hDY, (12) hDY0, (13) GN, (14) HuS, (15) TAS, (16) LS-CD, (17) Birgin-Martinez, (18) Birgin- Martinez+, (19) scaledPRP, (20) scaledFR, (21) new cg from PRP, (22) newDY, (23) variant of newDY, (24) another variant of newDY, (25)

Hager-Zhang, (26) Hager-Zhang preconditioned, (27) Dai-Kou, (28) Dai-Kou preconditioned, (29) PRP preconditioned, (30) Hager-Zhang SSML-BFGS preconditioned
The algorithms corresponding to betatype = 26, 28, 29 and 30 are preconditioned conjugate gradient algorithms, where the preconditioner is computed as a diagonal approximation to the Hessian. Please see the Book: - N. Andrei, Nonlinear Conjugate Gradient Methods for Unconstrained Optimization, vol. 158 Springer Optimization and Its Applications, Springer, 2020.
For betatype = 30 the Hager-Zhang algorithmmis preconditioned with the Self-Scaling Limited Memory C BFGS updation to the Hessian. The preconditioner is given by the self-scaling memoryless BFGS update of Perry and Shanno (8.104), and the scaling parameter tau is computed as in (8.111).
 Please see the Book: N. Andrei, Nonlinear Conjugate Gradient Methods for Unconstrained Optimization, vol. 158 Springer Optimization and Its Applications, Springer, 2020. (Please, see Chapter 8 for self-scaling memoryless BFGS update of Perry and Shanno, and Chapter 10 for preconditioning.)
 Criticism of preconditioning: See the Book: N. Andrei, Nonlinear Conjugate Gradient Methods for Unconstrained Optimization, vol. 158 Springer Optimization and Its Applications, Springer, 2020, (Chapter 10)
The search direction can be computed as: 1) $d(i) = -r(i) + beta * d(i)$, $beta=0$, i.e. $d(i)=-r(i)$ In this case we have a quasi-Newton method in which the inverse approximation to the Hessian is computed as a self-scaled memoryless BFGS update.
2) $d(i) = -r(i) + beta * d(i)$ In this case we have a preconditioned conjugate gradient method. Refering to Chapter 10. Finally, we emphasize that in 2) there must be a balance concerning the quality of the preconditioner (i.e. the closeness to the inverse Hessian), namely, if the definition of the preconditioner contains useful information about the inverse Hessian of the objective function, it is better to use the search direction d=-Pg , since the addition of the last term beta*d may prevent d=-Pg+beta*d from being an efficient descent direction, unless the line search is sufficiently accurate.
Compare HZSS.rez where the search direction is computed as in 1) above, i.e $d(i)=-r(i)$ versus HZSSc.rez where the search direction is computed as in 2), i.e. $d(i) = -r(i) + beta * d(i)$. HZSS is better. (May 21, 2019)

		(CUBICa is the accelerated version of CUBIC.)			
		See the Book: - N. Andrei. Nonlinear Conjugate Gradient Methods for			
		Unconstrained Optimization, vol. 158 Springer Optimization and Its Applications, Springer, 2020, (Chapter 11, Section 11.4)			
49.	CGSECM	Conjugate gradient algorithm based on the equality of the Newton direction with the conjugate gradient direction and modified secant condition. The search direction is computed as:			
		$d_{k+1} = -g_{k+1} + \beta_k s_k,$			
		$\beta_k = \max\left\{\frac{y_k^T g_{k+1}}{y_k^T s_k + \delta\eta}, 0\right\} - \left(1 - \frac{\delta\eta}{s_k^T s_k}\right) \frac{s_k^T g_{k+1}}{y_k^T s_k + \delta\eta},$			
		$\eta = 6(f_k - f_{k+1}) + 3(g_k + g_{k+1})^T s_k,$			
		$\delta = \begin{cases} 0, \\ 1 \end{cases}$ a parameter.			
	DEGGONIA	February 12, 2008			
50.	DESCON14	 Performances of DESCON package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A) 4. Robot kinematics problem (A) 5. Solar Spectroscopy (A) 6. Estimation of parameters (A) 7. Propan combustion in air (A) 8. Gear train with minimum inertia (A) 9. Human Heart Dipole. Andrei U84, pp.65 10. Neurophysiology (A) 11. Combustion application (A) 12. Thermistor (A) 13. Optimal design of a Gear Train (A) 14. Circuit design (A) Directory DESCON14: DESCON14.FOR (Fortran package with all subroutines.) 			
		 FUNC14.TXT (Name of the applications) R2020T14.DOC (Technical Report.) The performances of DESCON14 are presented in:			
		N. Andrei, Numerical experiments with DESCON for solving 14 applications of unconstrained optimization. AOSR – Academy of Romanian Scientists, Bucharest, Romania, Technical Report No.14/2020, June 3, 2020. (Romanian Academy Library) (10 pages)			
		June 3, 2020			
51.	CUBIC14	Performances of CUBIC package for solving 14 applications of unconstrained optimization. The applications are as follows:			

		1. Weber Function (1) (Andrei, U71)
		2. Enzyme reaction (Andrei, U79) (A)
		3. Solution of a chemical reactor (A)
		4. Robot kinematics problem (A)
		5. Solar Spectroscopy (A)
		6. Estimation of parameters (A)
		7. Propan combustion in air (A)
		8. Gear train with minimum inertia (A)
		9. Human Heart Dipole. Andrei U84, pp.65
		10. Neurophysiology (A)
		11. Combustion application (A)
		12. Thermistor (A)
		13. Optimal design of a Gear Train (A)
		14. Circuit design (A)
		Directory CUBIC14:
		- CUBIC14.FOR (Fortran package with all subroutines.)
		- FUNC14.TXT (Name of the applications)
		- R2020T15.DOC (Technical Report.)
		The norfermon and of CUDIC14 are presented in
		The performances of CUBIC14 are presented in:
		N. Andrei, Numerical experiments with COBIC for solving 14
		applications of unconstrained optimization. AOSR – Academy of Demonion Scientists Dupherest Demonio Technical Deport
		No 15/2020 June 2, 2020 (Demonior Academy Library) (11 rease)
		No.15/2020, June 5, 2020. (Romanian Academy Library) (11 pages)
		June 3, 2020
52.	CG	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows:
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71)
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A)
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A)
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A) 4. Robot kinematics problem (A)
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A) 4. Robot kinematics problem (A) 5. Solar Spectroscopy (A)
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A) 4. Robot kinematics problem (A) 5. Solar Spectroscopy (A) 6. Estimation of parameters (A)
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A) 4. Robot kinematics problem (A) 5. Solar Spectroscopy (A) 6. Estimation of parameters (A) 7. Propan combustion in air (A)
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A) 4. Robot kinematics problem (A) 5. Solar Spectroscopy (A) 6. Estimation of parameters (A) 7. Propan combustion in air (A) 8. Gear train with minimum inertia (A)
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A) 4. Robot kinematics problem (A) 5. Solar Spectroscopy (A) 6. Estimation of parameters (A) 7. Propan combustion in air (A) 8. Gear train with minimum inertia (A) 9. Human Heart Dipole. Andrei U84, pp.65
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A) 4. Robot kinematics problem (A) 5. Solar Spectroscopy (A) 6. Estimation of parameters (A) 7. Propan combustion in air (A) 8. Gear train with minimum inertia (A) 9. Human Heart Dipole. Andrei U84, pp.65 10. Neurophysiology (A)
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A) 4. Robot kinematics problem (A) 5. Solar Spectroscopy (A) 6. Estimation of parameters (A) 7. Propan combustion in air (A) 8. Gear train with minimum inertia (A) 9. Human Heart Dipole. Andrei U84, pp.65 10. Neurophysiology (A) 11. Combustion application (A)
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A) 4. Robot kinematics problem (A) 5. Solar Spectroscopy (A) 6. Estimation of parameters (A) 7. Propan combustion in air (A) 8. Gear train with minimum inertia (A) 9. Human Heart Dipole. Andrei U84, pp.65 10. Neurophysiology (A) 11. Combustion application (A) 12. Thermistor (A)
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A) 4. Robot kinematics problem (A) 5. Solar Spectroscopy (A) 6. Estimation of parameters (A) 7. Propan combustion in air (A) 8. Gear train with minimum inertia (A) 9. Human Heart Dipole. Andrei U84, pp.65 10. Neurophysiology (A) 11. Combustion application (A) 12. Thermistor (A) 13. Optimal design of a Gear Train (A)
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A) 4. Robot kinematics problem (A) 5. Solar Spectroscopy (A) 6. Estimation of parameters (A) 7. Propan combustion in air (A) 8. Gear train with minimum inertia (A) 9. Human Heart Dipole. Andrei U84, pp.65 10. Neurophysiology (A) 11. Combustion application (A) 12. Thermistor (A) 13. Optimal design of a Gear Train (A) 14. Circuit design (A)
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A) 4. Robot kinematics problem (A) 5. Solar Spectroscopy (A) 6. Estimation of parameters (A) 7. Propan combustion in air (A) 8. Gear train with minimum inertia (A) 9. Human Heart Dipole. Andrei U84, pp.65 10. Neurophysiology (A) 11. Combustion application (A) 12. Thermistor (A) 13. Optimal design of a Gear Train (A) 14. Circuit design (A)
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A) 4. Robot kinematics problem (A) 5. Solar Spectroscopy (A) 6. Estimation of parameters (A) 7. Propan combustion in air (A) 8. Gear train with minimum inertia (A) 9. Human Heart Dipole. Andrei U84, pp.65 10. Neurophysiology (A) 11. Combustion application (A) 12. Thermistor (A) 13. Optimal design of a Gear Train (A) 14. Circuit design (A) Directory CGDESCENT14:
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A) 4. Robot kinematics problem (A) 5. Solar Spectroscopy (A) 6. Estimation of parameters (A) 7. Propan combustion in air (A) 8. Gear train with minimum inertia (A) 9. Human Heart Dipole. Andrei U84, pp.65 10. Neurophysiology (A) 11. Combustion application (A) 12. Thermistor (A) 13. Optimal design of a Gear Train (A) 14. Circuit design (A) Directory CGDESCENT14: - CGDESCENT14.FOR (Fortran package with all subroutines.)
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A) 4. Robot kinematics problem (A) 5. Solar Spectroscopy (A) 6. Estimation of parameters (A) 7. Propan combustion in air (A) 8. Gear train with minimum inertia (A) 9. Human Heart Dipole. Andrei U84, pp.65 10. Neurophysiology (A) 11. Combustion application (A) 12. Thermistor (A) 13. Optimal design of a Gear Train (A) 14. Circuit design (A) Directory CGDESCENT14: - CGDESCENT14.FOR (Fortran package with all subroutines.) - FUNC14.TXT (Name of the applications) PROMORED ADD (Content of the applications)
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A) 4. Robot kinematics problem (A) 5. Solar Spectroscopy (A) 6. Estimation of parameters (A) 7. Propan combustion in air (A) 8. Gear train with minimum inertia (A) 9. Human Heart Dipole. Andrei U84, pp.65 10. Neurophysiology (A) 11. Combustion application (A) 12. Thermistor (A) 13. Optimal design of a Gear Train (A) 14. Circuit design (A) Directory CGDESCENT14: - CGDESCENT14.FOR (Fortran package with all subroutines.) - FUNC14.TXT (Name of the applications) - R2020T16.DOC (Technical Report.)
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A) 4. Robot kinematics problem (A) 5. Solar Spectroscopy (A) 6. Estimation of parameters (A) 7. Propan combustion in air (A) 8. Gear train with minimum inertia (A) 9. Human Heart Dipole. Andrei U84, pp.65 10. Neurophysiology (A) 11. Combustion application (A) 12. Thermistor (A) 13. Optimal design of a Gear Train (A) 14. Circuit design (A) Directory CGDESCENT14: - CGDESCENT14.FOR (Fortran package with all subroutines.) - FUNC14.TXT (Name of the applications) - R2020T16.DOC (Technical Report.)
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A) 4. Robot kinematics problem (A) 5. Solar Spectroscopy (A) 6. Estimation of parameters (A) 7. Propan combustion in air (A) 8. Gear train with minimum inertia (A) 9. Human Heart Dipole. Andrei U84, pp.65 10. Neurophysiology (A) 11. Combustion application (A) 12. Thermistor (A) 13. Optimal design of a Gear Train (A) 14. Circuit design (A) Directory CGDESCENT14: - CGDESCENT14.FOR (Fortran package with all subroutines.) - FUNC14.TXT (Name of the applications) - R2020T16.DOC (Technical Report.) The performances of CGDESCENT14 are presented in: N. Andrei. Numerical areas with CG. DESCENT for aching 14
52.	CG DESCENT14	June 3, 2020 Performances of CG-DESCENT package for solving 14 applications of unconstrained optimization. The applications are as follows: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A) 3. Solution of a chemical reactor (A) 4. Robot kinematics problem (A) 5. Solar Spectroscopy (A) 6. Estimation of parameters (A) 7. Propan combustion in air (A) 8. Gear train with minimum inertia (A) 9. Human Heart Dipole. Andrei U84, pp.65 10. Neurophysiology (A) 11. Combustion application (A) 12. Thermistor (A) 13. Optimal design of a Gear Train (A) 14. Circuit design (A) Directory CGDESCENT14: - CGDESCENT14.FOR (Fortran package with all subroutines.) - FUNC14.TXT (Name of the applications) - R2020T16.DOC (Technical Report.) The performances of CGDESCENT14 are presented in: N. Andrei, Numerical experiments with CG-DESCENT for solving 14 amplications of unconstrained antimization AOSP - Academy: of

Romania No.16/20	n S 20, J	cientists, Buc une 3, 2020. (Re	harest, Ro omanian Aca	omania, ademy Lib	Technical Report rary) (11 pages)
The Tec	hnica	1 Report 17/20	20: N And	trei. Com	parison of modern
conjugat	e gra	dient methods:	DESCON.	CUBIC. C	G-DESCENT(4.1)
for solvi	19 14	small-scale ap	plications o	f unconstr	ained optimization.
presents	a co	omparison amo	ng the pe	rformance	s of DESCON14.
CUBIC1	4 an	d CGDESCEN	T14 for	solving 1	4 applications of
unconstr	ained	optimization.		0	TT T
		Per	rformances of DESCON	14	
n iter	fgcnt t	ime(c) fx*	gnorm	Name of App.	lication
2 1878 4 48 6 85 8 1843 4 12 4 46 5 724 8 1916 6 93 10 51 3 1839 4 1842	10001 143 264 10006 38 150 2246 154 10002 632 142 10005 10004	0 -0.24453144650x-03 0 0.307056038514z-03 0 0.96659946586382x-15 0 0.845391044732x-05 0 0.8312307625538x-01 0 0.122415394374282x-06 0 0.12241539474282x-06 1 0.1226712598065x-01 1 0.43390576151718x-01 0 0.639912079492x-10 0 0.1726024587058x-03 0 0.2387180742094z-02	$\begin{array}{c} 0 & 82067408315762-06\\ 0 & 6867609900372-06\\ 0 & 42312316129382-07\\ 0 & 17817826182602-02\\ 0 & 68557223876482-07\\ 0 & 69567232876482-07\\ 0 & 518664243876482-07\\ 0 & 1816604464242-07\\ 0 & 17609864940982-07\\ 0 & 166618464242-07\\ 0 & 68567238742-07\\ 0 & 6825183047922-07\\ 0 & 13349382313848+02\\ 0 & 1995056769282-04\\ 0 & 1995056769282-04\\ \end{array}$	 Waber Function Enzyme reaction Solution of at Robot Kinemati Solar Spectroso Estimation of program combust Gear train with Human Heart Dipi Neurophysiolo Combustion apple Thermistor (A Optimal design 	<pre>(Andress, UT1) n (Andress, UT3) (A) chemical reactor (A) cospy (A) parameters (A) ion in air (A) pole. Andresi UB4, pp.65 gy (A) plication (A)) n of a Geat Train (A)</pre>
9 739 TOTAL 11130	55953	2 0.1454860731888E-13 15.00 centeseconds	0.1554041459749E-06	14. Circuit desig	n (A)
Date: M	onth: 6 D	ay: 3 Year: 2020			
n iter	fgcnt	Pe time(c) fx	gnorm	4 Name of Applica	tions
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5001 116 287 5017 31 96 1670 138 5006 79 139 5003 101 1639	1 -0.24217900421450-03 0.37050566600945-03 0.74581420045407-15 1.4429459121831F=00 0.8312307695614F=01 0.3112570933023F=01 0.4799163456469E=05 0.1751192330768F=01 1.0.1199116073210F=01 0.4567405721874E=09 0.2322924674570E=04 3.0854433431670F=14	0.667598703212+00 0.114013575396E-06 0.4147895257289E-07 0.492424215598E+00 0.71046163475728-06 0.5662905294548-06 0.3662905294548-06 0.9461310264398-05 0.9461310264398-06 0.37866181468078-01 0.3898972631342-06 0.236153575838+01 0.78670650113828-06 0.28904895861808-06	 Weber Function Enzyme reaction Solution of a ' Robot kinemati Solar Spectross Estimation of f Propan combust Gear train wit Human Heart Di; Neurophysiolo Combustion ap; Thermistor (A 13. Optimal design Circuit design 	<pre>(Andresi, UT1) n (Andresi, UT9) (A) chemical reactor (A) cosp roblem (A) cosp (A) persmeters (A) ion in air (A) h minimum interita (A) pole. Andresi U84, pp.65 gy (A) plication (A)) n of a Gear Train (A) n (A)</pre>
TOTAL 4339	24323	12.00 centeseconds			
Date:> M	onth: 6 D	ay: 3 Year: 2020			
n iter	fgent	Perform time(c) fx	nances of CG-DESCENT gnorm	<pre>Image of Applica</pre>	tions
2 130 4 87 6 242 8 13 4 34 4 6 39 9001 2 14 8 2 6 39 10 55 3 32 4 1 9 7485	526 183 531 79 73 1436 18039 86 57 100 114 462 56 15457	0 -0.2644531414650er03 0.375057506207e-03 0.1546034033470z-11 0.1046034033470z-11 0.6872367741557z+06 0.3279939047682-03 0.1327993904768c-03 0.1326268282641z+01 0.1799018139032z+00 0.42939057615171z+01 0.1279714516413z-09 0.1279714516413z-09 0.1279714516413z-03 0.2179144215211z-10 0.2179145145211z-10 0.21791	$\begin{array}{c} 0.43605550210968+00\\ 0.3951232497388-06\\ 0.83289996538628-06\\ 0.2897120723798-02\\ 0.37534216345758-06\\ 0.301359273358-03\\ 0.9984546779198-06\\ 0.301359273358-03\\ 0.6851854571689-01\\ 0.313594255788-01\\ 0.313594255788-01\\ 0.313594255788-01\\ 0.313294255788-02\\ 0.313294255788-02\\ 0.313294255788-02\\ 0.313294255788-02\\ 0.313294255788-02\\ 0.31331294255788-02\\ 0.31331294255788-02\\ 0.3133129268285788-02\\ 0.313312768288286828686886868686868686868686868$	 Weber Function Enzyme reactio Solution of a Robot kinemati Solar Spectros Forgan combust Gear train with Human Heart Di Neurophysiolo Combustion ap Thermistor (A Optimal design Circuit design Circuit design 	<pre>(Andrei, U71) n (Andrei, U79) (A) chemical reactor (A) copy (A) parameters (A) ion in air (A) h minimum inartia (A) pole. Andrei U84, pp.65 gy (A) plication (A) o de a Gear Train (A) n (A)</pre>
TOTAL 17773	37199	14.00 centeseconds			
Date: M Line Search wit	wolfe co	ay: 4 Year: 2020 nditions			
		Performances of DE	SCON, CUBIC	and CG-DESC	CENT
		DESCON14	iter	fgcnt	time 15
		CUBIC14	4339	24323	13
	C	G-DESCENT14(w)	17773	37199	14
	C	G-DESCENT14(aw)	17773	37199	13
(w) - Wolfe	line sea	arch Wolfe line search			
	mat	the fine search			June 4, 2020

BFGS - MODIFIED

1.	SBFGS	A new adaptive scaled BFGS method for unconstrained optimization is presented. The third term in the standard BFGS update formula is scaled in order to reduce the large eigenvalues of the approximation to the Hessian of the minimizing function. Under the inexact Wolfe line search conditions, the global convergence of the adaptive scaled BFGS method is proved in very general conditions without assuming the convexity of the minimizing function. The algorithm is described in the paper: N. Andrei, <i>An adaptive scaled BFGS method for unconstrained</i> <i>optimization.</i> Numerical Algorithms, DOI: 10.1007/s11075-017- 0321-1
		(Please see the file: mbrgs-K2.doc)
2.	TPSBFGS	A double parameter scaled BFGS method for unconstrained optimization is presented. In this method, the first two terms of the known BFGS update formula are scaled with a positive parameter while the third one is scaled with another positive parameter. These parameters are selected in such a way as to improve the eigenvalues structure of the BFGS update. The parameter scaling the first two terms of the BFGS update is determined by clustering the eigenvalues of the scaled BFGS matrix. On the other hand, the parameter scaling the third term is determined as a preconditioner to the Hessian of the minimizing function combined with the minimization of the conjugacy condition from conjugate gradient methods. The algorithm is described in the paper: N. Andrei, A double parameter scaled BFGS method for unconstrained optimization, Journal of Computational and Applied Mathematics, vol.332 (2018), pp.26-44 (Please see the file: JCAM-2018(43).pdf)
3.	DPSS	A double parameter self-scaled memoryless BFGS method for unconstrained optimization is presented. In this method the first two terms of the self-scaled memoryless BFGS method are scaled with a positive parameter, while the third one is scaled with another positive parameter. The scaling parameters are selected in such a way to improve the eigenvalue structure of the BFGS update. The first parameter scaling the first two terms is determined to cluster the eigenvalues of the BFGS matrix. The second parameter scaling the third term is computed as a preconditioner to the Hessian of the minimizing function combined with minimization of the conjugacy condition from the conjugate gradient methods in order to shift the large eigenvalues of the self-scaled memoryless BFGS matrix to the left.

Г

		$(a) \qquad \qquad$
		The algorithm is described in the paper: N. Andrei , A double parameter self-scaled memoryless BFGS method for unconstrained optimization. Computational and Applied Mathematics, vol., 2020. (Please see the file: COAMR1.doc) November 12, 2017
4.	DSBFGS (ROMAN- POLYAK)	A scaled BFGS method with two parameters for unconstrained optimization is presented. In this method the first two terms of the known BFGS update formula are scaled with a positive parameter and the third one is scaled with another positive parameter. The parameter scaling the first two terms of the BFGS update is determined by clustering the eigenvalues of the scaled BFGS matrix. On the other hand, the parameter scaling the third term is determined as a preconditioner to the Hessian of the minimizing function combined with the minimization of the conjugacy condition from conjugate gradient methods. This parameter is determined to reduce the large eigenvalues, thus obtaining a better distribution of them. The algorithm is described in the paper: N. Andrei, A scaled BFGS method with two parameters for unconstrained optimization. (Please see the file: Paper-Roman.doc) May 5, 2017
5.	DNRTR	A diagonal quasi-Newton updating algorithm. The elements of the diagonal matrix approximating the Hessian are determined by minimizing both the size of the change from the previous estimate and the trace of the update, subject to the weak secant equation. Figure 1 presents the performances of DNRTR versus steepest descent (SP) and versus Cauchy with Oren-Luenberger scaling in its complementary form (COL).

		Fig. 1 Performance profiles of DNRTR versus SP and versus COL. CPU time metric. $n = 100$. Please see the paper: N. Andrei, A diagonal quasi-Newton updating method for unconstrained optimization. Numerical Algorithms, vol.81(2), (2019) pp 575 590
		(2017), pp.373-370.
6.	YONS	February 26, 2018 A new diagonal quasi-Newton updating algorithm for unconstrained
0.	YONS	A new diagonal quasi-Newton updating algorithm for unconstrained optimization is presented. The elements of the diagonal matrix approximating the Hessian, are determined as scaled forward finite differences directional derivatives of the components of the gradient. Under mild classical assumptions, the convergence of the algorithm is proved to be linear. In this method the approximation Hessian B_{k+1} is a diagonal matrix computed as: $B_{k+1} = Y_k S_k^{-1}$, where $Y_k = diag(y_k^1,, y_k^n)$ and $S_k = diag(s_k^1,, s_k^n)$, y_k^i , $i = 1,, n$, being the components of the vector y_k and s_k^i , $i = 1,, n$, being the components of vector s_k . Therefore, the diagonal elements of the matrix B_{k+1} , are computed as: $b_{k+1}^i = y_k^i / s_k^i$, $i = 1,, n$. In other words, $b_{k+1}^i = \frac{y_k^i}{s_k^i} = \frac{g_{k+1}^i - g_k^i}{x_{k+1}^i - x_k^i} = \frac{g^i(x_k + \alpha_k d_k) - g^i(x_k)}{\alpha_k d_k^i}$, $i = 1,, n$, where g_k^i , is the i -th component of the gradient in x_k and d_k^i is the
		where g_k , is the <i>i</i> -th component of the gradient in x_k and a_k is the <i>i</i> -th component of the search direction.
		Therefore, in this approach, the element b_{k+1}^t may be considered as an approximation of the second order derivative of function f
		corresponding to the <i>i</i> -th diagonal element of the Hessian, computed in x_{k+1} by a scaled forward finite differences directional
		<i>derivative scheme</i> . Observe that $1/d_k^i$ is a scaling factor.
		 This directory contains the following Fortran files: BFGS.FOR - Scaled BFGS method with Wolfe line search

3) NTR.FOR -
$\min \frac{1}{2} \ B_{k+1} - B_k\ ^2 + tr(B_{k+1})$
subject to:
$s_k^T B_{k+1} s_k = s_k^T y_k.$
4) PASDES.FOR – Steepest descent metod.
5) QNDIAG.FOR – Diagonal Quasi-Newton updating. Only the
diagonal elements from the BFGS updating are retained. The off diagonal elements of the BFGS update are neglected.
$b_{k+1}^{i} = b_{k}^{i} - \frac{(b_{k}^{i})^{2}(s_{k}^{i})^{2}}{\sum_{i=1}^{n} b_{k}^{i}(s_{k}^{i})^{2}} + \frac{(y_{k}^{i})^{2}}{y_{k}^{T}s_{k}}, i = 1, \dots, n.$
The algorithm was suggeted by Gilbert and Lemarechal; Gill and Murray. It is discussed by Zhu, Nazareth and Wolkowicz (SIAM 1999)
6) WQND.FOR - C This is obtained from the weak-quasi-Newton
equation. The update proposed in this paper by Dennis and Wolkowicz: J.E. Dennis, H. Wolkowicz, Sizing and least-change secant methods, SIAM J. Numerical Analysis 30(5) (1993) 1291-1314. Only the diagonal elements from the BFGS updating are retained. The off diagonal elements of the BFGS update are neglected.
$b_{k+1}^{i} = b_{k}^{i} + \frac{s_{k}^{T} y_{k} - \sum_{i=1}^{n} b_{k}^{i} (s_{k}^{i})^{2}}{\left(\sum_{i=1}^{n} b_{k}^{i} (s_{k}^{i})^{2}\right)^{2}} (b_{k}^{i})^{2} (s_{k}^{i})^{2}, i = 1, \dots, n,$
7) YONS.FOR - Te approximation Hessian B_{k+1} is a diagonal matrix
computed as $B_{k+1} = Y_k S_k^{-1}$. (Please, see above.)
The algorithm is described in the paper: N. Andrei, A New Diagonal Quasi-Newton Updating Method With Scaled Forward Finite Differences Directional Derivative for Unconstrained Optimization. Numerical Functional Analysis and Optimization, 2019, VOL. 40, NO. 13, 1467–1488.
(Please see the files: NFAO2019.PDF and paperR1.doc)
February 26, 2018

<><><><><><><>

		L-BFGS
1.	LBFGS14	Limited BFGS method for solving 14 applications of unconstrained optimization. The applications solved by LBFGS14 are: 1. Weber Function (1) (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A)

	Number Date:	of sto:	red pairs nth: 6 I	s (sk,yk) Day: 6 Ye	in L-BFGS: M = 5 ear: 2020		I (2020
	9 TOTAL	22029	30723	6.00	centeseconds	0.100103/091240E-06	IV. CITCUIT GESIGN (A)
	3 4	22 9	51 10	0	0.1721671200203E+03 0.1971065573361E-05	0.1496223984167E+02 0.6630614440024E-07	 Thermistor (A) Optimal design of a Gear Train (A) Gravit design (A)
	6 10	23 155	38 179	0	0.4539057615171E+01 0.3338493557009E-11	0.2024779517274E-07 0.1532274549876E-06	 Neurophysiology (A) Combustion application (A)
	5 2 8	282 10 2	351 33 23	0 1 0	0.1746908655419E+01 0.1789025922492E+00	0.6963808917363E-07 0.4035725583973E-01 0.7325794325147E-01	 Fropan combustion in air (A) Gear train with minimum inertia (A) Human Heart Dipole. Andrei U84,
	4	23 46	29 53	0	0.8312307693160E+01 0.3185717487911E-01	0.7194096296787E-07 0.2214569790005E-07	 Solar Spectroscopy (A) Estimation of parameters (A) Descape combustion in sin (A)
	6	15316 8	22822 30	4	0.5038172519506E+00 0.6957468202726E-05	0.1643286688653E-04 0.3204751579182E-02	 Solution of a chemical reactor (A) Robot kinematics problem (A)
	2 4	55 41	218 48	0	-0.2644531414650E+03 0.3075056038494E-03	0.5851360369660E+01 0.8903176713965E-08	1. Weber Function (Andrei, U71) 2. Enzyme reaction (Andrei, U79) (A)
	n	iter	fgcnt	time(c)	fx	gnorm	Name of Applications
					Perform	ances of L-BI	FGS
	R202	0T1	8.D0	DC (]	Fechnical Re	eport with pe	erformances of LBFGS14.
	lbfgs.	rez					
	lbfgsl	14.0	ut				
	FUN	C14	.TXT	Γ			
	LBFC	GS.F	FOR	(Fort	ran package	e by Liu and	Nocedal)
	The c	onte	ents o	of the	e directory L	BFGS14 is a	as follows:
	14. C	ircu	it de	sign	(A)		
	13. 0	ptin	nal d	esign	n of a Gear 7	Frain (A)	
	12. T	hern	nisto	r (A)			
	11. C	omb	oustio	on ap	plication (A	A)	
	10. N	euro	ophy	siolo	gy (A)		
	9. Hu	man	h Hea	art D	ipole. Andre	ei U84, pp.65	
	8. Ge	ar tr	ain v	with 1	minimum in	ertia (A)	
	7. Pro	opan	con	ıbust	ion in air (A	A)	
	6. Est	tima	tion	of pa	arameters (A	()	
	5. Sol	lar S	spect	rosco	opy (A)		
	4. Ro	bot	kine	matic	cs problem (A)	
	3. Sol	lutio	on of	a che	emical react	or (A)	
			0			(

		Other Programs
1.	GRADSYS	Gradient Flow Algorithm for Unconstrained Optimization.
		The algorithm is:
		$x_{k+1} = x_k + \delta x_k,$
		where δx_k is computed as the solution of the following linear
		algebraic systems of equations:
		$\left[I + h_k \theta \nabla^2 f(x_k)\right] \delta x_k = -h_k \nabla f(x_k).$
		$\theta \in [0,1]$. If $\theta = 1$ and $h_k \to 1$, then the algorithm is quadratically
		convergent.
1		

		The algorithm is described in: N. Andrei, <i>Gradient flow algorithm for unconstrained optimization.</i> Technical Report, March 23, 2004.
		(Please see the file diff.pdf)
2	NEWCDAD	March 23, 2004 Palayad Gradiant Descant and a New Gradiant Descant Matheds for
Ζ.	NEWGKAD	Unconstrained Ontimization
		Mainly, the algorithm is the steepest gradient where the step-length is modified by a multiplicative parameter:
		$x_{k+1} = x_k - \theta_k \alpha_k \nabla f(x_k),$
		where $\theta_k \in [0,1]$ and α_k is the step-length computed by
		backtracking.
		The algorithm and its theory is described in: N. Andrei, <i>Theory versus empiricism in analysis of optimization</i> <i>algorithms.</i> Technical Press, Bucharest, 2004. ISBN: 973-31-2233-5. N. Andrei, <i>Criticism of the unconstrained optimization algorithms</i> <i>reasoning.</i> Romanian Academy Publishing House, Bucharest, 2009. ISBN: 978-973-27-1669-4.
		 Please see the papers: N. Andrei, Numerical Experiments with Gradient Descent with Backtracking for Unconstrained Optimization. March 2, 2005. (File: CGAD.DOC, 10 pages) N. Andrei, Numerical Experiments with Relaxed Gradient Descent with Backtracking for Unconstrained Optimization. March 5, 2005. (File: RELAXED.DOC, 12 pages)
		March 17, 2005

		Constrained optimization
1.	KKT	Karush-Kuhn-Tucker methods for solving inequality constraints optimization problems of the following form:
		$\min f(x)$,
		subject to:
		$g(x) \le 0,$
		where $f: \mathbb{R}^n \to \mathbb{R}$, and $g: \mathbb{R}^n \to \mathbb{R}^m$. It is supposed that all functions
		of the problem are continuousli differentiable.
		Directorul KKT conține un număr de 8 probleme de optimizare cu
		restricții inegalități: NEWTON1.FOR, NEWTON2.FOR,
		NEWTON8.FOR, SIMEQ.FOR, LS.FOR.

		Problemele sunt descrise și rezolvate în lucrarea: N. Andrei, <i>Metode bazate pe condițiile Karush-Kuhn-Tucker,</i> <i>Manuscript</i> , 1995, cu CD. (În biblioteca mea.) March 3, 1995
2.	PREDCOR	Interior-Point Predictor-Corrector algorithm for linear constrained
		Directorul conține 15 exemple de probleme de optimizare cu restricții
		linare utilizând metoda de punct interior, într-o implementare naivă.
		subruruinele: DLINEQ.FOR (LU decomposition) și DRESLV.FOR (Substitutions)
		Exemplul LCPC10.FOR rezolvă aplicația: Chemical Equilibrium Problem.
		December 24, 1996
3.	SPG	SIMPLE BOUNDED OPTIMIZATION by Birgin, Martinez and Rydan $\min \{f(x), l \le x \le u\}$
		where $f(x)$ is a continuously differentiable and its gradient is available.
		<i>l</i> and <i>u</i> are simple margins on the variables. It is assumed that $l \le u$.
		- First version: February 02, 2001 by E.G.Birgin, J.M.Martinez and M.Raydan.
		- Final revision: April 30, 2001 by E.G.Birgin, J.M.Martinez and M.Raydan
		- Modified final version: May 12, 2008 by Neculai Andrei to include the safeguarded cubic interpolation
		The algorithm and its performances are presented in:
		N. Andrei, Criticism of the Constrained Optimization Algorithms
		ISBN: 978-973-27-2527-6 (pp. 169-177)
		The following applications are considered:
		APPL1.FOR - Elastic-Plastic Torsion problem APPL2 FOR - Pressure Distribution in a Journal Bearing
		APPL3.FOR - Optimal Design with Composite Materials
		APPL4.FOR - Ginzburg-Landau (1-dimensional) problem APPL5.FOR - Steady State Combustion
		The program MSPG.FOR implements the SPG subroutine for solving a train of 730 problems with simple bounds. The line search subroutine is modified by Neculai Andrei to include the safeguarded cubic interpolation.
		The following examples are presented: 1) SPGEX1.FOR is for minimizing the Freudenstein & Roth function with n=1000,, 10000. 2) SPGEX2 FOR is for minimizing the Extended Penalty function with
		$n=1000, \dots, 10000.$
		3) SPGEX3.FOR is for minimizing the Broyden Tridiagonal function with n=1000,, 10000.

		May 12, 2008
4.	SPENBAR	Package for large-scale nonlinear, equality and inequality constrained optimization.
		The optimization problem solved by SPENBAR is as follows:
		$\min F(x),$
		subject to
		$c_i(x) \ge 0, i = 1,, m,$
		$e_k(x) = 0, k = 1,, me,$
		$l_j \le x_j \le u_j, j = 1, \dots, n,$
		where all the functions are continuously differential. The program implements a modified penalty-barrier method. The unconstrained optimization problems is solved by means of truncated Newton method implemented in subroutine LMQN written by Stephen Nash.
		This directory contains 4 sub-directories (DOC, examples, PROB, REZMOD) and 4 Fortran files (HS108.FOR, IP.FOR, IP1.FOR and SPENBAR.FOR).
		The algorithm is described in a number of papers and Technical Reports as:
		N. Andrei, (1996) Computational Experience with a Modified Penalty- Barrier Method for Large-Scale Nonlinear Constrained Optimization. (FORTRAN subroutines) ICI Working Paper No. AMOL-96-1, February 6, 1996.
		N. Andrei, (1996) Computational Experience with SPENBAR a Sparse Variant of a Modified Penalty-Barrier Method for Large-Scale Nonlinear, Equality and Inequality Constrained Optimization. ICI Technical Paper No. AMOL-96-4, March 11, 1996, pp.1-69.
		N. Andrei, (2006) Numerical Examples with SPENBAR for Large-Scale Nonlinear, Equality and Inequality Constrained Optimization with Zero Columns in Jacobian Matrices. ICI Technical Paper No. AMOL-96-5, March 29, 1996.
		N. Andrei, (2001) Numerical Examples with SPENBAR - Modified penalty barrier method for large-scale nonlinear programming problems. Part I. ICI Technical Report, ICI-TR-01/2001, Bucharest, February 2001. Technical Report placed in Library of Romanian Academy.
		N. Andrei, (2001) Computational experience with SPENBAR. A sparse modified penalty-barrier method for large-scale nonlinear, equality and inequality, constrained optimization. Technical Report No.4/2001, February 19, 2001. (Manuscript. În biblioteca mea.)
		N. Andrei, (2015) <i>Criticism of the Constrained Optimization Algorithms</i> <i>Reasoning</i> , Editura Academiei Române, București, 2015. ISBN: 978-973-27-2527-6 (pp. 517-537)

		N. Andrei, (2017) <i>Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology.</i> Springer Optimization and Its Applications, Volume 121, Springer Science+Business Media New York 2017, ISBN: 978-3-319-58356-3, e-book ISBN: 978-3-319-58356-3, ISSN: 1931-6828, DOI: 10.1007/978-3-319-58356-3, Springer New York Heidelberg Dordrecht London, 508 + XXIV pages.
		OPIS.TXT contains the list of problems from SPENBAR collection. February 19, 2001
5.	TOLMINV	Package of subroutines that calculate the the least value of a differentiable function of several variables subject to linear constraints on the values of the variables written by M.J.D. Powell. TOLMIN, written by Powell, works with two-dimensional arrays and solves the problems of the following types: min $F(x)$, subject to: $a_j^T x = b_j$, $j = 1,, MEQ$, $a_j^T x \le b_j$, $j = MEQ + 1,, m$, $l_i \le x_i \le u_i$, $i = 1,, m$. All the subroutines of the program are modified by N. Andrei to work with vectors, without considering the spsrsity the the matrix corresponding to linear constraints. This is TOLMINV package. This Directory contains three sub-directories: TOLMIN14, TOLMINMA, TOLMINVE. Subdirectory TOLMIN14 includes three programs for solving constrained optimization problems as follows: MAIN01.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.1 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, Editura Academiei, 2015, pp. 629. THE compress 05.0000000000000000000000000000000000
		Function value in optimal point= 0.2999999978913E+01
		Execution Time: 0: 0: 0: 0
	MAIN02 FOR is the main program for solving the nonlinear	
--	--	
	ontimization problem program for solving the nonlinear	
	N A L C C C D C C C C C C C C C C C C C C C	
	N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictu,	
	Editura Academiei, 2015, pp. 266.	
	THE COMPUTED SOLUTION POINT IS	
	2 0.1305663058260E+00	
	3 0.0000000000E+00	
	4 0.00000000000000000000000000000000000	
	6 0.4168581403599E+00	
	7 0.0000000000E+00	
	9 0.1522805326970E+01	
	10 0.5379458016316E+00	
	11 0.1013056630583E+01 12 0.5527662053395E+00	
	13 0.0000000000E+00	
	14 0.0000000000E+00	
	15 0.6010093996177E+00	
	X(I) X(I)-XL(I) XU(I)-X(I)	
	1 4.0027378E-01 4.0027378E-01 1.5997262E+00	
	2 1.3056631E-01 1.3056631E-01 1.8694337E+00 3 0.0000000E+00 0.0000000E+00 2.0000000E+00	
	4 0.000000E+00 0.000000E+00 2.000000E+00	
	5 9.0337936E-01 9.0337936E-01 1.0966206E+00	
	7 0.0000000E+00 0.000000E+00 2.000000E+00	
	8 1.5093341E+00 1.5093341E+00 4.9066590E-01	
	9 1.5228053E+00 1.5228053E+00 4.7719467E-01 10 5.3794590E-01 5.3794590E-01 1.4620542E+00	
	11 1.0130566E+00 1.0130566E+00 9.8694337E-01	
	12 5.5276630E-01 5.5276630E-01 1.4472337E+00	
	13 0.000000E+00 0.000000E+00 2.000000E+00 14 0.000000E+00 0.000000E+00 2.000000E+00	
	15 6.0100940E-01 6.0100940E-01 1.3989906E+00	
	FINAL CONSTRAINT RESIDUALS = -1.3878E-16 0.0000E+00 4.4409E-16 3.3307E-16 5.5511E-16 6.6613E-16 1.1102E-15	
	Function value in optimal point= 0.2192129651805E+02	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book:	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii,	
	 Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, Editura Academiei, 2015, pp. 266. 	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, Editura Academiei, 2015, pp. 266. THE COMPUTED SOLUTION POINT IS 1 0.2812500000000000001	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, Editura Academiei, 2015, pp. 266. THE COMPUTED SOLUTION POINT IS 1 0.2812500000000E+01 2 0.0000000000E+00	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, Editura Academiei, 2015, pp. 266. THE COMPUTED SOLUTION POINT IS 1 0.2812500000000E+01 2 0.000000000000E+01 3 0.7187500000000E+01 4 0.027500000000E+01	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, Editura Academiei, 2015, pp. 266. THE COMPUTED SOLUTION POINT IS 1 0.2812500000000E+01 2 0.000000000000E+01 4 0.3750000000000E+01 5 0.00000000000000E+01	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, Editura Academiei, 2015, pp. 266. THE COMPUTED SOLUTION POINT IS 1 0.2812500000000E+01 2 0.000000000000E+01 4 0.375000000000E+01 5 0.000000000000E+00 6 0.000000000000E+00	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, Editura Academiei, 2015, pp. 266. THE COMPUTED SOLUTION POINT IS 1 0.2812500000000E+01 2 0.0000000000E+01 4 0.375000000000E+01 5 0.0000000000E+00 6 0.0000000000E+00 7 0.00000000000E+01 8 0 31250000000000E+01	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, Editura Academiei, 2015, pp. 266. THE COMPUTED SOLUTION POINT IS 1 0.2812500000000E+01 2 0.00000000000E+01 3 0.71875000000000E+01 4 0.3750000000000E+01 5 0.00000000000E+00 6 0.00000000000E+00 8 0.3125000000000E+01 9 0.0000000000E+00	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, Editura Academiei, 2015, pp. 266. THE COMPUTED SOLUTION POINT IS 1 0.2812500000000E+01 2 0.00000000000E+01 4 0.375000000000E+01 5 0.00000000000E+01 5 0.00000000000E+00 6 0.00000000000E+00 7 0.00000000000E+00 8 0.3125000000000E+01 9 0.0000000000E+00 10 0.0000000000E+00 11 0.00000000000E+00	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, Editura Academiei, 2015, pp. 266. THE COMPUTED SOLUTION POINT IS 1 0.2812500000000E+01 2 0.00000000000E+01 4 0.375000000000E+01 5 0.00000000000E+01 5 0.00000000000E+00 6 0.00000000000E+00 7 0.00000000000E+00 8 0.3125000000000E+00 1 0.0000000000E+00 1 0.00000000000E+00 1 0.00000000000E+00 1 0.00000000000E+00 1 0.00000000000E+00 1 0.00000000000E+00 1 0.0000000000000E+00 1 0.000000000000E+00 1 0.000000000000E+00 1 0.00000000000E+00 1 0.00000000000E+00 1 0.00000000000E+00 1 0.000000000000E+00 1 0.0000000000000E+00 1 0.000000000000E+00 1 0.00000000000E+00 1 0.000000000000E+00 1 0.000000000000E+00 1 0.00000000000E+00 1 0.00000000000E+00 1 0.00000000000E+00 1 0.00000000000E+00 1 0.00000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.00000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.00000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.00000000000E+00 1 0.00000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.00000000000E+00 1 0.000000000000E+00 1 0.000000000000E+00 1 0.000000000000E+00 1 0.00000000000E+00 1 0.0000000000000E+00 1 0.00000000000000000000E+0	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, Editura Academiei, 2015, pp. 266. THE COMPUTED SOLUTION POINT IS 1 0.281250000000E+01 2 0.0000000000E+01 3 0.7187500000000E+01 4 0.37500000000E+01 5 0.00000000000E+00 6 0.0000000000E+00 8 0.312500000000E+00 10 0.0000000000E+00 11 0.0000000000E+00 12 0.5718750000000E+02 13 0.256250000000E+02	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, Editura Academiei, 2015, pp. 266. THE COMPUTED SOLUTION POINT IS 1 0.2812500000000E+01 2 0.00000000000E+01 3 0.7187500000000E+01 4 0.375000000000E+01 5 0.00000000000E+00 6 0.00000000000E+00 8 0.312500000000E+00 10 0.0000000000E+00 11 0.0000000000E+00 12 0.5718750000000E+02 13 0.256250000000E+02 X(I) X(I) -X(I) XI(I) -X(I)	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, Editura Academiei, 2015, pp. 266. THE COMPUTED SOLUTION POINT IS 1 0.2812500000000E+01 2 0.00000000000E+01 3 0.7187500000000E+01 4 0.375000000000E+01 5 0.00000000000E+00 6 0.00000000000E+00 8 0.312500000000E+00 10 0.0000000000E+00 11 0.0000000000E+00 12 0.5718750000000E+00 12 0.5718750000000E+02 13 0.256250000000E+02 X(I) X(I)-XL(I) XU(I)-X(I) 1 2.8125000E+00 2.8125000E+00 9.7187500E+01	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, Editura Academiei, 2015, pp. 266. THE COMPUTED SOLUTION POINT IS 1 0.281250000000E+01 2 0.0000000000E+01 3 0.718750000000E+01 4 0.37500000000E+01 5 0.0000000000E+01 6 0.0000000000E+01 9 0.0000000000E+01 1 0.281250000000E+01 2 0.0000000000E+01 3 0.718750000000E+01 4 0.3750000000E+01 9 0.0000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.256250000000E+02 X(I) X(I)-XL(I) XU(I)-X(I) 1 2.812500E+00 9.7187500E+01 2 0.0000000E+00 1.000000E+02	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, Editura Academiei, 2015, pp. 266. THE COMPUTED SOLUTION POINT IS 1 0.2812500000000E+01 2 0.00000000000E+01 4 0.37500000000E+01 5 0.00000000000E+01 6 0.00000000000E+00 7 0.00000000000E+00 8 0.312500000000E+00 10 0.0000000000E+00 11 0.0000000000E+00 12 0.571875000000E+00 12 0.571875000000E+02 X(I) X(I)-XL(I) XU(I)-X(I) 1 2.8125000E+00 2.8125000E+00 9.7187500E+01 2 0.0000000E+00 1.0000000E+02 3 7.1875000E+00 7.187500E+00 9.28125000E+01 4 3.750000E+00 7.187500E+00 9.28125000E+01	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, Editura Academiei, 2015, pp. 266. THE COMPUTED SOLUTION POINT IS 1 0.281250000000E+01 2 0.00000000000000000000000000000000000	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, Editura Academiei, 2015, pp. 266. THE COMPUTED SOLUTION POINT IS 1 0.281250000000E+01 2 0.00000000000E+01 3 0.718750000000E+01 4 0.37500000000E+01 5 0.00000000000E+00 6 0.0000000000E+00 1 0.256250000000E+01 2 0.5718750000000E+01 3 0.71850000000E+01 4 0.312500000000E+00 1 0.00000000000E+00 1 0.00000000000E+02 X(I) X(I)-XL(I) XU(I)-X(I) 1 2.8125000E+00 9.7187500E+01 2 0.000000000E+02 1.0000000E+02 X(I) X(I)-XL(I) XU(I)-X(I) 1 2.8125000E+00 9.7187500E+01 2 0.000000E+00 1.000000E+02 3 7.1875000E+00 9.625000E+01 <t< th=""></t<>	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, Editura Academiei, 2015, pp. 266. THE COMPUTED SOLUTION POINT IS 1 0.281250000000E+01 2 0.0000000000E+01 3 0.718750000000E+01 5 0.0000000000E+00 6 0.0000000000E+00 8 0.312500000000E+00 10 0.0000000000E+00 11 0.0000000000E+00 12 0.5718750000000E+00 13 0.256250000000E+00 14 3.75000000E+00 9.7187500E+01 2 0.000000000E+00 9.28125000E+01 3 7.1875000E+00 7.187500E+01 3 7.1875000E+00 9.28125000E+02 3 7.1875000E+00 3.7500000E+02 4 3.7500000E+00 9.28125000E+01 5 0.000000E+00 0.000000E+02 4 3.750000E+00 3.750000E+02 6 0.000000E+00 0.00000E+00 1.000000E+02 6 0.000000E+00 0.00000E+00 1.000000E+02 6 0.000000E+00 0.000000E+00 1.000000E+02 6 0.000000E+00 0.000000E+00 1.000000E+02 6 0.000000E+00 0.000000E+00 1.000000E+02 8 3.1250000E+00 0.000000E+00 1.000000E+02 6 0.000000E+00 0.000000E+00 1.000000E+02 8 3.125000E+00 0.00000E+00 1.00000E+02 8 3.125000E+00 0.00000E+00 1.00000E+02 8 3.125000E+00 0.00000E+00 1.00000E+02 8 3.125000E+00 0.000000E+00 1.00000E+02 8 3.125000E+00 0.00000E+00 1.00000E+02 8 3.125000E+00 0.000000E+00 1.00000E+02 8 3.125000E+00 0.00000E+00 1.00000E+00 1.00000E+02 8 3.125000E+00 0.00000E+00 1.00000E+00 1.00000E+02 8 3.125000E+00 0.00000E+00 0.0000E+00 1.00000E+00 1.00000E+02 8 3.125000E+00 0.00000E+00 0.00000E+00 1.00000E+00 1	
	Function value in optimal point= 0.2192129651805E+02 Execution Time: 0: 0: 0: 0 MAIN03.FOR is the main program for solving the nonlinear optimization problem presented in Example 14.3 in the book: N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, Editura Academiei, 2015, pp. 266. THE COMPUTED SOLUTION POINT IS 1 0.281250000000E+01 2 0.0000000000E+01 3 0.718750000000E+01 5 0.0000000000E+00 6 0.0000000000E+00 8 0.31250000000E+00 1 0.00000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.0000000000E+00 1 0.000000000E+00 1 0.000000000E+00 1 2.8125000E+00 9.7187500E+01 2 0.0000000E+00 1.000000E+02 X(I) X(I) -X(I) XU(I) -X(I) 1 2.8125000E+00 9.2812500E+01 2 0.000000E+00 1.000000E+02	

		11 0.000000E+00 0.000000E+00 1.0000000E+02 12 5.7187500E+01 5.7187500E+01 4.2812500E+01 13 2.5625000E+01 2.5625000E+01 7.437500E+01
		FINAL CONSTRAINT RESIDUALS =
		-1.7764E-15 0.0000E+00 3.5527E-15 5.3291E-15 1.4211E-14 0.0000E+00
		Function value in optimal point= 0.1568830990135E+07
		Execution Time: 0: 0: 0: 0
		November 22, 1995
6.	PSO-CO	Particle Swarm Optimization (PSO).
		optimization using the particle swarm optimization method.
		For solving the problem $\min\{f(x), c_i(x) \le 0, i = 1,, m\}$ the algorithm
		for PSO considers the following strategy.
		penalty function:
		F(x) = f(x) + h(t)H(x),
		where:
		$H(x) = \sum_{i=1}^{m} \theta(q_i(x))(q_i(x))^{\gamma(q_i(x))},$
		$q_i(x) = \max\{0, c_i(x)\}, i = 1,, m,$
		$(10, \text{ dacă} q_i(x) < 0.001,$
		20, dacă $0.001 \le q_i(x) < 0.1$,
		$\Theta(q_i(x)) = \begin{cases} 100, & \text{dac} \\ 100, & \text{dac} $
		300, dacă $q_i(x) \ge 1$,
		$(1, \text{ dacă } q_i(x) < 1,$
		$\gamma(q_i(x)) = \begin{cases} 2, & \text{dac} \\ 2, & \text{dac} \\ 2, & \text{dac} \end{cases} = 1,$
		$h(t) = t \sqrt{t}$
		Here, t is the number of iteration.
		The applications solved by this method are as follows:
		ALKI-PSO - Optimization of an alkylation process, variant 1, CAM-PSO - Shape optimization of a cam
		DES-PSO - Distribution of electrons on a sphere,
		HANG-PSO - Hanging chain,
		MSP3-PSO - 3-stage membrane separation, MSP5 PSO - A 5 stage membrane separation process
		PPSE-PSO - Static Power Scheduling,
		PREC-PSO - Optimal Reactor Design,
		TRAFO-PSO - Transformer design.
		EX1-PSO – Example 1.
		EX2-PSO – Example 2,
		LATHE.PSO - Multi-spindle automatic lathe
		SPRING.PSO - Minimizing the weight of a tension/compression spring WESSEL.PSO - Pressure vessel

		Please, see the book: " <i>Critica Rațiunii Algoritmilor de Optimizare cu Restricții</i> ", București, Editura Academiei Române, 2015, Capitolul 19. See also: the paper Anale-PSO.doc and the technical report PSO.doc (October 9, 2014). Please, see the directory PSO-CO in CONSTRAINED-OPTIM. May 21, 2014
7.	CAON	 A collection of nonlinear optimization applications in GAMS language. Se prezintă 25 de modele de optimizare neliniară, exprimate în limbajul GAMS. See: N. Andrei, <i>CAON: O colecție de aplicații de optimizare neliniară în limbajul GAMS</i>. Technical Report No.1/2011, January 31, 2011. (105 pages with CD). Please, see the directory CAON in CONSTRAINED_OPTIM. Please, see the Technical Report: r1a11.doc. The mathematical models in GAMS are placed in directory CD-GAMS.
		January 31, 2011

