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Abstract. In the hybrid conjugate gradient algorithms, we suggest in this letter, the 
parameter kβ  is computed as a convex combination of the Polak-Ribière-Polyak and Dai-

Yuan conjugate gradient algorithms, i.e. (1 ) PRP DY
k k k k kβ θ β θ β= − + . In one hybrid 

algorithm the parameter kθ  is computed in such a way that the conjugacy condition is 
satisfied, independent of the line search. In the other, it is computed in such a way that the 
conjugate gradient direction is the Newton direction. The algorithms use the standard Wolfe 
line search conditions. Numerical comparisons with conjugate gradient algorithms using a 
set of 750 unconstrained optimization problems, some of them from the CUTE library, show 
that the hybrid computational scheme based on conjugacy condition outperform the known 
hybrid conjugate gradient algorithms. 
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1. Introduction 
Let us consider the nonlinear unconstrained optimization problem 
                                                             { }min ( ): ,nf x x R∈                                                   (1) 

where : nf R → R  is a continuously differentiable function, bounded from below. For solving 
this problem, starting from an initial guess 0

nx R∈ , a nonlinear conjugate gradient method, 

generates a sequence { }kx  as: 

                                                               1k k k kx x dα+ = + ,                                                      (2) 
where 0kα >  is obtained by line search, and the directions  are generated as: kd
                                                    1 1k k kd g ksβ+ += − + 0 0d g= −,   .                                        (3) 
In (3) kβ  is known as the conjugate gradient parameter, 1k ks x x+ k= −  and . 

Consider 

( )k kg f x= ∇

.  the Euclidean norm and define 1k ky g g+ k= − . The line search in the conjugate 
gradient algorithms often is based on the standard Wolfe conditions: 
                                                 ( ) ( ) T

k k k k k k k ,f x d f x g dα ρα+ − ≤                                       (4) 

                                                 ,                                                                    (5) 1
T
k k k kg d g dσ+ ≥ T

1.where  is a descent direction and 0kd ρ σ< ≤ <  Plenty of conjugate gradient methods are 
known, and an excellent survey of these methods, with a special attention on their global 
convergence, is given by Hager and Zhang [10]. Different conjugate gradient algorithms 
correspond to different choices for the scalar parameter .kβ  Some of these methods as 
Fletcher and Reeves (FR) [8], Dai and Yuan (DY) [3] and Conjugate Descent (CD) proposed 
by Fletcher [7]: 
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have strong convergence properties, but they may have modest practical performance due to 
jamming. On the other hand, the methods of Polak – Ribière [14] and Polyak (PRP) [15], 
Hestenes and Stiefel (HS) [11] or Liu and Storey (LS) [13]: 
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T
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k k
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y s
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T
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g s
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−

 

in general may not be convergent, but they often have better computational performances. 
In this paper we focus on hybrid conjugate gradient methods. These algorithms have 

been devised to exploit the attractive features of the above conjugate gradient algorithms. 
They are defined by (2) and (3) where the parameter kβ  is as in Table 1. 

Table 1. Hybrid conjugate gradient algorithms.  
Nr. Formula Author(s) 

 1. { }{ }, ,hDY DY HS DY
k k kmax c minβ β β= kβ , 

(1 ) /(1 )c σ σ= − +  

Hybrid Dai-Yuan [4] 
(hDY) 

2. { }{ }0, ,hDYz HS DY
k kmax minβ β= kβ  Hybrid Dai-Yuan zero 

[4] (hDYz) 

3. { }{ }, ,GN FR PRP FR
k k kmax minβ β β= − kβ  Gilbert and Nocedal [9] 

(GN) 

4. { }{ }0, ,HuS PRP FR
k kmax minβ β= kβ  Hu and Storey [12] 

(HuS) 

5. 
0 ,

otherwise

PRP PRP FR
TaS k k
k FR

k

kβ β β
β

β
⎧ ≤ ≤

= ⎨
⎩

 
Touati-Ahmed and 
Storey [16] (TaS) 

6. { }{ }0, ,LS CD LS CD
k kmax minβ β− = kβ  Hybrid Liu-Storey, 

Conjugate-Descent  
(LS-CD) 

In this paper we propose another hybrid conjugate gradient as a convex combination of PRP 
and DY conjugate gradient algorithms. We selected these two methods to combine in a hybrid 
conjugate gradient algorithm because PRP has good computational properties, on one side, 
and DY has strong convergence properties, on the other side. Often PRP method performs 
better in practice than DY and we speculate this in order to have a good practical conjugate 
algorithm. The iterates  of our algorithms are computed by means of the 
recurrence (2) where the stepsize 

0 1 2, , ,x x x …
0kα >  is determined according to the Wolfe conditions (4) 

and (5), and the directions  are generated as: kd
                                                ,   1 1

N
k k k kd g sβ+ += − + 0 0d g= − ,                                          (6)  

where  

                            (1 )N PRP DY
k k k k k

1 1(1 )
T T
k k k k

k kT
k k k k

g y g g
g g y s

θ θ 1
T

+ + += − +                     (7) β θ β θ β= − +

and kθ  is a scalar parameter satisfying 0 k 1θ≤ ≤ , which follows to be determined. Observe 

that if 0kθ = , then , and if N PR
k kβ β= P 1kθ = , then  On the other hand, if .N D

k kβ β= Y

0 1kθ< < , then N
kβ  is a convex combination of PRP

kβ  and .DY
kβ  It easy to see that:  

                           1 1
1 1 (1 )

T T
k k k k

k k k k kT T
k k k k

y g g gd g s
g g y s

θ θ+ +
+ += − + − + 1

ks+

0

.                        (8) 

Supposing that  is a descent direction (kd 0d g= − ), then for the algorithm given by (2) and 
(8) we can prove the following results. 
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Theorem 1.  Assume that kα  in algorithm (2) and (8) is determined by Wolfe line search (4) 
and (5). If 0 1kθ< < , and 

                                               
2 1 1

1 2

( )(T T
k k k k k k

kT
k k k

g s g y g sg
y s g

+ +
+ ≥

)T

1

,                                          (9) 

then direction  given by (8) is a descent direction. 1kd +

Proof. Since 0 kθ< < , from (8) we get 

2 1 1 1
1 1 1 1 1(1 )

T T
T Tk k k k
k k k k k k k k kT T

k k k k
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+ +≤ − + + 21 1

1 11
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k kT T

k k k k

g s y gg g
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+ +

+ +

⎛ ⎞
= − + +⎜ ⎟
⎝ ⎠

ks  

2 1
1 1

T T
Tk k k k

k kT T
k k k k

g s y gg g
y s g g

+
+ += + ks . 

But, by (5) and since 0T
k ky s > 0T

k kg s ≤ , it follows that 
2

1 0
T
k k

kT
k k

g s g
y s + ≤ . Therefore, from 

(9), it follows that , i.e. the direction 1 1 0T
k kg d+ + ≤ 1kd +  is a descent one. ■ 

Theorem 2. Suppose that 1 1( )( ) 0T T
k k k kg y g s+ + .≤  If 0 1kθ< <  then the direction  given 

by (8) satisfies the sufficient descent condition 
1kd +

                                              
21

1 1 11
T

T k k
k k k kT

k k

g sg d g
y s

θ +
+ + +

⎛ ⎞
≤ − −⎜ ⎟

⎝ ⎠
.                                       (10) 

Proof. From (8) we have: 
2 1 1

1 1 1 1 1(1 )
T T

T Tk k k k
k k k k k k k kT T

k k k k

g y g gg d g g s g s
g g y s

θ θ+ +
+ + + + += − + − + 1 T

k
+  

2 21 1 1 )T
+

1 1
( )((1 )

T T
k k k k k k

k k k kT T
k k k k

g s g y g sg g
y s g g

θ θ+ +
+ += − + + − 21

11 0
T
k k

k kT
k k

g s g
y s

θ +
+

⎛ ⎞
≤ − − ≤⎜ ⎟

⎝ ⎠
. 

Observe that, since  by (5) and since  then 

 Therefore, if 

0T
k ky s > 1 ,T T T T

k k k k k k k kg s y s g s y s+ = + <

1/T T
k k k ky s g s+ >1. 1,0 kθ< <  it follows that Therefore 1/T T

k k k k ky s g sθ +< .

11
T
k k

k T
k k

g s
y s

θ +− 0> , proving the theorem. ■ 

To select the parameter kθ  we consider the following two possibilities. In the first 
hybrid conjugate gradient algorithm the parameter kθ is selected in such a manner that the 

conjugacy condition  is satisfied at every iteration, independent on the line search. 

Hence, from 
1 0T

k ky d + =

1 0T
k ky d + =  after some algebra, using (8), we get: 

                                 1 1
2 2

1 1

( )( ) ( )( .
( )( )

T T T T
CCOMB k k k k k k k k

k k T T
k k k k k k

y g y s y g g g
y g y s g g

θ θ + +

+ +

−
≡ =

−

)
                            (11) 

In the second algorithm the parameter kθ is selected in such a manner that the direction 1kd +  
from (8) is the Newton direction, i.e. 

                       2 1 1 1
1 1 1( ) (1 )

T T
k k k k

k k k k k kT T
k k k k

y g g g 1 .kf x g g s s
g g y s

θ θ− + +
+ + +−∇ = − + − + +                 (12) 
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Having in view that 2
1( )k k k ,f x s y+∇ = from (12) we get: 

                           
2

1 1 1
2 2

1 1

( ) ( )(
.

( )( )

T T T T
k k k k k k k k kNDOMB

k k T T
k k k k k k

y g s g g g y y s

g g g y y s
θ θ + + +

+ +

− −
≡ =

−

)
                      (13) 

Observe that the parameter kθ  given by (11) or (13) can be outside the interval [0 . 
However, in order to have a real convex combination in (7) the following rule is considered: 
if 

,1]

0,kθ ≤  then set 0kθ =  in (7), i.e.  if ;N PRP
k kβ β= 1kθ ≥ , then take 1kθ =  in (7), i.e. 

 Therefore, under this rule for .N DY
k kβ β= kθ  selection, the direction 1kd +  in (8) combines in 

a convex combination manner the properties of PRP and DY algorithms. 
 
2. The New Hybrid Conjugate Gradient Algorithms (CCOMB, NDOMB) 
Step 1. Initialization. Select 0

nx R∈  and the parameters 0 1.ρ σ< ≤ <  Compute 0( )f x  and 

 Consider  and set the initial guess: 0.g 0d = − 0g 0 01/ .gα =  

Step 2. Test for continuation of iterations. If 610kg −
∞
≤ , then stop. 

Step 3. Line search. Compute 0kα >  satisfying the Wolfe line search condition (4) and (5) 
and update the variables 1k k k kx x dα+ = + . Compute  1k ks x x+ k= −  and  1 .k ky g g+= − k

Step 4. kθ  parameter computation. If 2 2
1 1( )( )T T

k k k k k ky g y s g g+ + 0− = , then set 0kθ = , 

otherwise compute kθ  as follows: 

CCOMB algorithm ( kθ  from Conjugacy Condition):  .CCOMB
k kθ θ=

NDOMB algorithm ( kθ  from Newton Direction):  .NDOMB
k kθ θ=

Step 5. N
kβ  conjugate gradient parameter computation. If 0 k 1,θ< <  then compute N

kβ  as in 

(7). If 1kθ ≥ , then set  If .N D
k kβ β= Y 0,kθ ≤  then set  .N PR

k kβ β= P

kStep 6. Direction computation. Compute . If the restart criterion of Powell 1
N

k kd g sβ+= − +

                                                       
2

1 0.2 ,T
k k kg g g+ ≥ 1+

1k+ d

                                                    (14) 

is satisfied, then set  otherwise define1kd g+ = − 1kd + = . Compute the initial guess 

α αk k k kd d= − −1 1 / ,  set k k= +1 and continue with step 2.  
 It is well known that if f is bounded along the direction  then there exists a 
stepsize 

dk

α k  satisfying the Wolfe line search conditions (4) and (5). In our algorithm when 
the Powell restart condition is satisfied, then we restart the algorithm with the negative 
gradient − +gk 1 .  More sophisticated reasons for restarting the algorithms have been proposed 
in the literature [5], but we are interested in the performance of a conjugate gradient algorithm 
that uses this restart criterion, associated to a direction satisfying the conjugacy condition or is 
equal to the Newton direction. Under reasonable assumptions, conditions (4), (5) and (14) are 
sufficient to prove the global convergence of the algorithm.  
 
3. Numerical experiments and comparisons 
In this section we present the computational performance of a Fortran implementation of the 
CCOMB and NDOMB algorithms on a set of 750 unconstrained optimization test problems. 
The test problems are the unconstrained problems in the CUTE [2] library, along with other 
large-scale optimization problems presented in [1]. We selected 75 large-scale unconstrained 
optimization problems in extended or generalized form. Each problem is tested 10 times for a 
gradually increasing number of variables: n = 1000 2000 10000, , ,… .  At the same time we 
present comparisons with other conjugate gradient algorithms, including the performance 
profiles of Dolan and Moré [6].  
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 All algorithms implement the Wolfe line search conditions with 0.0001ρ =  

and 0.9σ = , and the same stopping criterion gk ∞
−≤ 10 6 , where .

∞
is the maximum 

absolute component of a vector.  The comparisons of algorithms are given in the following 
context. Let and be the optimal value found by ALG1 and ALG2, for problem 

 respectively. We say that, in the particular problem  the performance of 
ALG1 was better than the performance of ALG2 if:  

f i
ALG1 f i

ALG2

i = 1 750, ,… , i,

                                                       f fi
ALG

i
ALG1 2 10− < −3                                                 (15) 

and the number of iterations, or the number of function-gradient evaluations, or the CPU time 
of ALG1 was less than the number of iterations, or the number of function-gradient 
evaluations, or the CPU time corresponding to ALG2, respectively. 
All codes are written in double precision Fortran and compiled with f77 (default compiler 
settings) on an Intel Pentium 4, 1.8GHz workstation. All these codes are authored by Andrei. 
The performances of these algorithms have been evaluated using the profiles of Dolan and 
Moré [6]. That is, for each algorithm we plot the fraction of problems for which the algorithm 
is within a factor of the best CPU time. The left side of these Figures gives the percentage of 
the test problems, out of 750, for which an algorithm is more successful; the right side gives 
the percentage of the test problems that were successfully solved by each of the algorithms. 
Mainly, the right side represents a measure of an algorithm’s robustness. Figure 1 shows the 
performance profiles of CCOMB and NDOMB versus PRP and DY, respectively. 

Fig. 1. Performance profiles based on CPU time. 
 
From Figure 1 we see that both CCOMB and NDOMB are more performant than PRP and 
DY. Observe that, CCOMB is more successful than NDOMB. In Figure 2 we present the 
Dolan-Moré performance profiles of CCOMB versus some hybrid conjugate gradient 
algorithms. 
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Fig. 2. Performance profiles of CCOMB versus hybrid algorithms: hDY, hDYz, GN and HuS. 
 
 
4. Conclusion 
The known hybrid conjugate gradient algorithms are based on projection of the classical 
conjugate gradient algorithms FR, DY, CD, PRP, HS and LS. In this paper we have proposed 
new hybrid conjugate gradient algorithms in which the parameter kβ is computed as a convex 

of PRP
kβ  and ,DY

kβ  i.e. (1 ) PRP DY
k k k k kβ θ β θ β= − + . The parameter kθ  is computed in such a 

manner that the conjugacy condition is satisfied, or the corresponding direction in hybrid 
conjugate gradient algorithm is the Newton direction. The Dolan and Moré CPU performance 
profile of hybrid conjugate gradient algorithm based on conjugacy condition (CCOMB 
algorithm) is higher than the performance profile corresponding to the hybrid algorithm based 
to the Newton direction (NDOMB algorithm). The performance profile of CCOMB algorithm 
was higher than those of the well established hybrid conjugate gradient algorithms (hDY, 
hDYz, GN, HuS) for a set consisting of 750 unconstrained optimization test problems, some 
of them from CUTE library. Additionally the proposed hybrid conjugate gradient algorithm 
CCOMB is more robust than the PRP and DY conjugate gradient algorithms. 
 
References 
[1] N. Andrei, “Test functions for unconstrained optimization”. http://www.ici.ro / camo / 

neculai/ SCALCG/ evalfg.for                                    
[2] I. Bongartz, A.R. Conn, N.I.M. Gould and P.L. Toint, CUTE: constrained and 

unconstrained testing environments, ACM Trans. Math. Software, 21, pp.123-160, 
1995. 

[3] Y.H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global 
convergence property, SIAM J. Optim., 10 (1999), pp. 177-182. 

[4] Y.H. Dai and Y. Yuan, An efficient hybrid conjugate gradient method for unconstrained 
optimization, Ann. Oper. Res., 103 (2001), pp. 33-47. 

 6



[5] Y.H. Dai, L.Z. Liao and Duan Li, On restart procedures for the conjugate gradient 
method. Numerical Algorithms 35 (2004), pp. 249-260.  

[6] E.D. Dolan and J.J. Moré, “Benchmarking optimization software with performance 
profiles”, Math. Programming, 91 (2002), pp. 201-213.  

[7] R. Fletcher, Practical Methods of Optimization, vol. 1: Unconstrained Optimization, John 
Wiley & Sons, New York, 1987. 

[8] R. Fletcher and C. Reeves, Function minimization by conjugate gradients, Comput. J., 7 
(1964), pp.149-154. 

[9] J.C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods 
for optimization, SIAM J. Optim., 2 (1992), pp. 21-42. 

[10] W.W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods. Pacific 
journal of Optimization, 2 (2006), pp.35-58. 

[11] M.R. Hestenes and E.L. Stiefel, Methods of conjugate gradients for solving linear 
systems, J. Research Nat. Bur. Standards, 49 (1952), pp.409-436. 

[12] Y.F. Hu and C. Storey, Global convergence result for conjugate gradient methods. J. 
Optim. Theory Appl., 71 (1991), pp.399-405. 

[13] Y. Liu, and C. Storey, Efficient generalized conjugate gradient algorithms, Part 1: 
Theory. JOTA, 69 (1991), pp.129-137. 

[14] E. Polak and G. Ribière, Note sur la convergence de directions conjuguée, Rev. 
Francaise Informat Recherche Operationelle, 3e Année 16 (1969), pp.35-43. 

[15] B.T. Polyak, The conjugate gradient method in extreme problems. USSR Comp. Math. 
Math. Phys., 9 (1969), pp.94-112. 

[16] D. Touati-Ahmed and C. Storey, Efficient hybrid conjugate gradient techniques. J. 
Optim. Theory Appl., 64 (1990), pp.379-397. 

 
October 1, 2007 

Sent to Rodin (AML) 
 
 
 
 

 7


