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Abstract. Conjugate gradient methods represent an important class of unconstrained
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1. Introduction. Conjugate gradient methods represent an important class of unconstrained
optimization algorithms with strong local and global convergence properties and modest
memory requirements. An excellent survey of development of different versions of nonlinear
conjugate gradient methods, with special attention to global convergence properties, is
presented by Hager and Zhang [23]. This family of algorithms includes a lot of variants, well
known in the literature, with important convergence properties and numerical efficiency. The
purpose of this paper is to present these algorithms as well as their performances to solve a
large variety of large-scale unconstrained optimization problems.

For solving the nonlinear unconstrained optimization problem

min{f(x):XeR”}, (1)
where f :R" — R is a continuously differentiable function bounded from below, starting
from an initial guess X, € R" a nonlinear conjugate gradient method, generates a sequence
{X} as

X = X% Fondy, (2)

where ¢, >0 is obtained by line search, and the directions d, are generated as
At == + B, dy=—-0,. 3
In (3) f, is known as the conjugate gradient parameter, S, = X,,, —X, and g, =Vf (X, ).
Consider |||| the Euclidean norm and define y, = ¢,,, — 0, . The line search in the conjugate

gradient algorithms often is based on the standard Wolfe conditions:

f(x +ad) - f(x) < pag.d,, “4)
Okl > o9, , (5)
where d, is a descent direction and 0 < p < o <1. For some conjugate gradient algorithms,

stronger versions of the Wolfe conditions are needed to ensure convergence and to enhance
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stability. According to formula for £, computation, the conjugate gradient algorithms can be

classified as: classical, hybrid, scaled, modified and parametric. In the following we shall
present these algorithms and insist on their numerical Dolan and Moré’s performances
profiles for solving large-scale unconstrained optimization problems.

The history of conjugate gradient method begins with the seminal paper of Hestenes and
Stiefel [24] who presented an algorithm for solving symmetric, positive definite linear
algebraic systems. In 1964 Fletcher and Reeves [19] extended the domain of application of
conjugate gradient method to nonlinear problems, thus starting the nonlinear conjugate
gradient research direction. The main advantages of the conjugate gradient method are its low
memory requirements, and its convergence speed. A large variety of nonlinear conjugate
gradient algorithms are known. For each of them convergence results have been proved in
mild conditions which refer to the Lipschitz and boundedness assumptions. To prove the
global convergence of nonlinear conjugate gradient methods, often the Zoutendijk condition
is used combined with analysis showing that the sufficient descent condition

g,d, < —C||gk||2 holds, and that there exists a constant & such that ||dk||2 < oK. Often, the

convergence analysis of conjugate gradient algorithms, for general nonlinear functions,
follows insights developed by Gilbert and Nocedal [20]. The idea is to bound the change

U, —U, in the normalized direction u, =d, / ||dk , which is used to conclude, by

contradiction, that the gradients cannot be bounded away from zero.

2. Classical conjugate gradient algorithms. These algorithms are defined by (2) and (3),
where the parameter [, is computed as in Table 1. Observe that these algorithms can be

classified as algorithms with ||gk +1|| in the numerator of £, and algorithms with g; aYe In

the numerator of parameter f3, .

Table 1. Classical conjugate gradient algorithms.

Nr. Formula Author(s)
yT g Hestenes and Stiefel [24] (HS)
1. kHs = % The first conjugate gradient algorithm
Y Sk for linear algebraic systems.
gT g Fletcher and Reeves [19] (FR)
2. kFR = w The first conjugate gradient algorithm
0, 9« for nonlinear functions.
T Polak-Ribiere [33] and Polyak [34]
Y« 9
3. R = Zk Skl (PRP)
9y 9«
yT 9 Polak-Ribiere and Polyak + (PRP+)
RPY = max 0,% suggested by Powell [35]
4. Ok Ok
T Conjugate Descent (CD) introduced
5 — —% by Fletcher [18]
g, dy
T -
] s YO Liu and Storey [27] (LS)
: kK — T
gy dy
- -
, ov _ OraGen Dai and Yuan [13] (DY)
. K =T
Yi Sk

The FR, CD and DY with ||gk " ||2 in the numerator of S, have strong convergence theory,

but all these methods are susceptible to jamming. They begin to take small steps without



making any significant progress to the minimum. On the other hand, HS, PRP and LS
methods with g[ .Y in the numerator of parameter /3, , have a built-in restart feature that

addresses the jamming phenomenon. When the step S, is small, the factor y, =,,, — 0, in
the numerator of f, tends to zero. Therefore, S, becomes small and the new direction d,,,
in (3) is essentially the steepest descent direction —(,,,. With other words, HS, PRP and LS

methods automatically adjust S, to avoid jamming, and their performances are better than

. 2 .
the performance of methods with ||gk+1 || in the numerator of f, .

3. Hybrid conjugate gradient methods. These algorithms have been devised to exploit the
attractive features of the classical conjugate gradient algorithms. They are defined by (2) and

(3) where the parameter /3, is as in Table 2. There are two classes of hybrid algorithms. The
first class of the hybrid algorithms combines in a projective manner the algorithms having

2, . . . .
||gk " || in the numerator of [, with the algorithms having ng Y, in the numerator of

parameter 3, . The second class of hybrid algorithms, more recent established, considers

o . : 2
convex combinations of algorithms with |g,,,

in the numerator of f, and the algorithms

having ng Y, in the numerator of parameter f, . In general, the performances of hybrid

conjugate gradient algorithms are higher than the performances of classical conjugate gradient
algorithms.

Table 2. Hybrid conjugate gradient algorithms.

Nr. Formula Author(s)
hDY : HS DY Hybrid Dai-Yuan
1. _max{cﬂ .min{ 5, B, }} L3](hDY)
hDYz _ ; HS DY Hybrid Dai-Yuan zero
2. | B _max{O,mln{ S ! }} (5] (hDY2)
PRP FR Gilbert and Nocedal
3. | B8 _max{ mln{ ! }} 1201 GN)
4 HuS _ max{O mm{ PRP kFR}} gllluaél;d Storey [25]
PRP PRP FR Touati-Ahmed and
0< <
5 T = kFR 2 ' B Storey [39] (TaS)
¥ otherwise
LS-CD LS cD Hybrid Liu-Storey,
6. k = Mmax {O mm{ k }} Conjugate-Descent
(LS-CD)

CCOMB gk Vi gk O Convex combination of
! =(-0)- 57~ =1 PRP and DY where 6,

Oy 9y i Sk . .
T T T is obtained by
_ (Ve 9e) Yk S) = Ve 940 (G 9, ' conjugacy condition.

2 2 Andrei [7] (CCOMB

(yzgk+1)()’l5k)_||gk+l|| ”gk” e :

If 6, <0, thenset §, =0, i.c CCOMB = kPRP;
if 6, 21, then take 6, =1, i.c. ﬂCCOMB kDY-

NDOMB gk Yi g 19 Convex combination of
1 19k+1
> =(1-6)"F = +0— 5 PRP and DY where 6,

S
gk 9 yk K is obtained using the

Newton direction.
Andrei [7] (NDOMB)
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If 6, <0, thenset 6, =0, ie. £ =B,

if 6, >1,then take 6, =1,ie. A" = B>,

NDHSDY I Y 1.0, Convex combination of
1 1941
> (=60 +t0~ > HS and DY, where 6,

k = T
S S
T YicSe YicSe is obtained using the
0 =— S Qi Newton direction.
kT : Andrei [8] (NDHSDY)
gk gk+1

If g, <0, thenset 6, =0, i.e. ﬂkNDHSDY _ kHS;

if 6, >1,then take 6, =1,ie. B°7" = B2,

4. Scaled conjugate gradient algorithms. The algorithms in this class generates a sequence
X, of approximations to the minimum X" of f , in which

X = Xi + 2,y (0)

Ayt = =0 9 + BiSis (7
where 6,,, is a parameter. The iterative process is initialized with an initial point X, and
d, =—0,. Observe that if 8,,, =1, then we get the classical conjugate gradient algorithms
according to the value of the scalar parameter f3,. On the other hand, if [, =0, then we
get another class of algorithms according to the selection of the parameter 6, ,, . Considering
By =0, there are two possibilities for 8, , : a positive scalar or a positive definite matrix. If

0,., =1, then we have the steepest descent algorithm. If 6, , =V?f(X,,)",or an

approximation of it, then we get the Newton or the quasi-Newton algorithms, respectively.
Therefore, we see that in the general case, when 6, , # Ois selected in a quasi-Newton

manner, and S, #0, (7) represents a combination between the quasi-Newton and the
conjugate gradient methods. However, if 6, ,, is a matrix containing some useful information
about the inverse Hessian of function f , we are better off using d,,, =—6,,,9,,, since the
addition of the term /3, S, in (7) may prevent the direction d, from being a descent direction

unless the line search is sufficiently accurate. Therefore, in the following we shall consider
6,., as a positive scalar which contains some useful information to the inverse Hessian of

function f.
To determine [, consider the following procedure [1-4]. As we know, the Newton

direction for solving (1) is given by d,,, =-V? f(X,,,)"' g,,,. Therefore, from the equality
=V 1 (%) et = =G it + BicSio

we get:
T2 T
_ SV f (Xk+1 )9k+1 9kt~ Sk Yk (8)
‘ sV T (XS, '
Using the Taylor development, after some algebra we get:
(O Yi =S G
Bi=""" N ©)

T
Yi Sk
where Y, = 0,,, — 0,. Birgin and Martinez [10], who firstly introduced scaled conjugate
gradient algorithms, arrived at the same formula for /3, , but using a geometric interpretation



of quadratic function minimization. The parameter [, in (7) can be defined, as in Table 3,

where the scaling parameter 6, is computed as:

) 5 S (10)
k+1 y;' Sk
Table 3. Scaled conjugate gradient algorithms.
Nr. Formula Author(s)
T _ Scaled Perry. Suggested by
1. kBM = w Birgin and Martinez [10] and
Yi Sk Andrei [1-4] (BM)
e gT y gT S Scaled Perry+. Suggested by
2. kBM+ =max- 0, = T"” kL k;l k Birgin and Martinez [10] (BM+)
Yk Sk Yk Sk
orp 0, gI y Scaled  Polak-Ribiére-Polyak.
3. . = —“Tk Suggested by Birgin and
6,9y 9y Martinez [10] and Andrei [1-4]
(sPRP)
e 0 gl g Scaled Fletcher-Reeves.
4. = +1Tk” Suggested by Birgin and
0,9k 9y Martinez [10] and Andrei [1-4]
(sFR)
s gT y Scaled Hestenes-Steifel
5.0 B° =6, = (sHS)[1]
k %k

Another scaled conjugate gradient algorithm has been presented by Andrei [1-4]. This is a
scaled memoryless BFGS preconditioned conjugate gradient algorithm. The basic idea is to
combine the scaled memoryless BFGS method and the preconditioning technique in the frame
of conjugate gradient method. The preconditioner, which is also a scaled memoryless BFGS
matrix, is reset when the Powell restart criterion holds. The parameter scaling the gradient is
selected as the spectral gradient (10).

Algorithm SCALCG [1-4]
Step 1. Initialization. Select X, € R", and the parameters 0 < g, < g, <1. Compute f(X,)
and g, = Vf(X,). Set d, =—-0, and , =1/H90H~ Set k =0.
Step 2. Line search. Compute «, satisfying the Wolfe conditions (4) and (5). Update the
variables X,,, = X, +&,d,. Compute f(X,,,),d,,, and S, = X,,; = X,» Y =0y — ;-
Step 3. Test for continuation of iterations. If this test is satisfied the iterations are stopped,
T T T T
S S
HE jyk . [H 6., Y0 j NP
Yk Sk

X1 = Xy + ¢, dy. Compute f(Xy,), Gy and S =Xy = Xis Vi = Gy — -
Step 7. Store: 8 =6,, S=S, and Y=Y,.

else set K =k +1.
Step 4. Scaling factor computation. Compute 6, using (10).
S,.-
Yk Sk Vi Si }
Step 6. Line search. Compute the initial guess:a, =, , Hdk_l Hz /Hdkuz' Using this
Step 8. Test for continuation of iterations. If this test is satisfied the iterations are stopped,
else set K =k +1.

dk+1 = _9k+lgk+1 + ‘9k+1 (

k <k

the wvariables

Step 5. Restart direction. Compute the (restart) direction d, as:
initialization compute ¢, satisfying the Wolfe conditions. Update



Step 9. Restart. If the Powell restart criterion: ‘g[“gk‘ > O.2||gk+1 ? | is satisfied, then go to

step 4 (a restart step); otherwise continue with step 10 (a standard step).
Step 10. Standard direction. Compute the direction d, as:

(ggﬂsk)w-’_(ggﬂw)sk —(l yk ngzﬂsks
Y Sk Y S/ Y Sk

dy,, =-V+ K>

where V and W are computed as:

T
Vzegkﬂ_g(gkﬂ Jy + ( Hy y ]gk{fl (9 gk+1y ,
y's y's ) y's y's

T T

ery_e yk y + 1+9yy ykS —H yky S,
k T T
y's y's )y's y's

with saved values €, S and Y.

and

Step 11. Line search. Compute the initial guess: &, =, , Hdkf1 Hz /Hdkuz' Using this
initialization compute ¢, satisfying the Wolfe conditions. Update the variables
X = X + @, dy. Compute f(X,), G,y and Sy = Xy = X» Yy = Gy — Yy

Step 12. Test for continuation of iterations. If this test is satisfied the iterations are stopped,
else set K =k +1 and go to step 9. W

To a great extent, SCALCG algorithm is very close to the Perry/Shanno computational
scheme [32,36,37]. SCALCQG is a scaled memoryless BFGS preconditioned algorithm where
the scaling factor is the inverse of a scalar approximation of the Hessian. If the Powell restart

criterion ‘gL]gk‘ > O.2||gk+1 ||2 is used, for general functions f bounded from below with

bounded second partial derivatives and bounded level set, using the same arguments
considered by Shanno in [37] it is possible to prove that the iterates either converge to a point

X" satisfying ”g(X* )” = 0, or the iterates cycle.

5. Modified conjugate gradient algorithms. We know a large variety of modified conjugate
gradient algorithms. All of them are designed to improve the performances of the classical
computational schemes using the idea of preconditioning or the modification of classical
schemes in order to satisfy the sufficient descent condition. The algorithms in this class are

characterized by (2) and (3), where the parameter S, is computed as in Table 4.

Table 4. Modified conjugate gradient algorithms.
Nr. Formula Author(s)
L g == +8Nd. . d =— Introduced by Hager si Zhang
1 = "G T B, dy =-0,. [21, 22]. (CG_DESCENT)
_ This scheme is obtained by
B =max { ﬂkN 5y } , deleting a term from the search
direction for the memoryless
~00] quasi-Newton scheme of Perry
I n [32] and Shanno [36, 37].
In [9] Andrei proved that this
1 ” y ” computational scheme is also a
N k

ﬂk Y, — dk Oeus modification of HS formula.
T +12
Y Og d Yk d,

", IIm'“{




2. T T Suggested by Andrei [9]
ACGA 1 ~ Gea Yk S (ACGA)
k - T yk T k gk+1
Yi Sk Yi Sk
3. yT g N g Suggested by Andrei [9]
OO = max 0, Tkl 1) ] Sk Skl (ACGA+)
k Sk Yi S
4 1 d =-6 +3°%Pq  d =-— Introduced by Andrei [5]
k+l Gt P k> 70 . % (CGSD) as a modification of
1 T DY method.
CGSD _ 9. — Ok Vi s g
k - T k+1 T k k+1
Yi Sk Yi Sk
ek — ||gk+1 ||2
+1 T
Yi Gkt
5. 2 T Suggested by Andrei [9]
APRP 1 _ ”yk ” S (APRP)
k - yT s Y ” ”2 k| Gk This is a modification of PRP
k =k 9 method.

Maximization in formula for ,EKN computation scheme by Hager and Zhang plays the role of

the truncation operation like in the PRP+ scheme, for example. Hager and Zhang obtained this
algorithm by deleting a term from the search direction for the memoryless quasi-Newton
scheme of Perry [32] and Shanno [36]. In [21] Hager and Zhang proved the global
convergence with inexact line search showing that for any line search and any function, the

sufficient descent condition g, d, < —(7/8)||gk||2 is satisfied and the jamming is avoided

essentially due to the y[ 0., term in the formula for ﬂkN .

The ACGA and ACGA+ computational schemes are a modification of the DY conjugate
gradient algorithm, designed to satisfy the sufficient descent condition. In [9] Andrei proved
that for uniformly convex functions under strong Wolfe condition the ACGA is globally
convergent. The CGSD algorithm is also a modification of Dai and Yuan conjugate gradient
algorithm. In [9] Andrei proved the global convergence of CGSD for general nonlinear
functions under the Wolfe conditions.

One of the best conjugate gradient algorithm in this class is CONMIN by Shanno [36] and

Shanno and Phua [38]. Using the Hestenes and Stiefel formula for updating [, , Perry [32]

suggested a formula for computing the search direction d,,, which satisfy a system of linear
equations, similar but not identical, to the quasi-Newton equation. Shanno [36] reconsiders
the method of Perry and interprets it as a memoryless BFGS updating formula. In this
algorithm @, ,, is modified by a positive definite matrix which best estimates the inverse

Hessian, without any additional storage requirements. For convex functions, under inexact
line search Shanno [37] proved the global convergence of CONMIN.

6. Parametric conjugate gradient algorithms. The parametric conjugate gradient algorithms
have been introduced in the same way that the quasi-Newton methods have been combined to
get the Broyden or the Huang families. These algorithms are defined by (2) and (3) where the

parameter [, is as in Table 5.

Table 5. Parametric conjugate gradient algorithms.
Formula
-
oL _ G (Vi —180)

1. , =———5———, >0 isaconstant
Yi Sk

Nr. Author(s)

Dai and Liao [12] (DL)




t k gk+l
Yk Sy

kDL+ — max{ yk gk+l} ,
Ve S,

t > 0 is a constant.

Dai and Liao + [12] (DL+)

=
YT gk+1(zk _tsk)
T .
where Z, =Y, + ék — Uy,
k k
& =o6(f —f . )+3(g, + gk+l)T S

0 20 isaconstant and U, € R" satisfies S:Uk #0;

for example U, = dk.

Suggested by Yabe and Takano
[41] (YT) based on a modified
secant condition given by Zhang
et al. [40]

gT 7 gT S Suggested by Yabe and Takano
T =max 4 0, Kk g Skeltk plus [41] (YT+)
d, z, d, z,
” g ” Suggested by Dai and Yuan [14]
= < , A €[0,1].

Aol +a=2)d7y,
The FR algorithm corresponds to 4, =1.
The DY algorithm correspond to A, =0.

Hy ”gk+1 ”2 +(1_,Uk)g;+1 Yk
Alad +a=20d7y,

b=

s ﬂ'k’:uk 6[0:1]

Suggested by Nazareth [30]

This two parameter family
includes the methods: FR, DY,
PRP and HS in extreme cases.

Hy ||gk+1 ”2 +(1_,Uk)g;+1 Yi
(-4 - a)k)”gk” +ﬂkdk Y —od kgk
A i, €[0,1] and @, €[0,1-4,].

k —

Suggested by Dai and Yuan [14]
This three parameter family
includes the six classical
conjugate gradient algorithms,
as well as the previous one-

parameter and two-parameter
families.

7. Performance profiles. In this section we present the computational performance of a
Fortran implementation of conjugate gradient algorithms on a set of 750 unconstrained
optimization test problems. The test problems are the unconstrained problems in the CUTE
[11] library, along with other large-scale optimization problems presented in [6]. We selected
75 large-scale unconstrained optimization problems in extended or generalized form. For each
function we have considered ten numerical experiments with the number of variables
n =1000,2000,...,10000. CG DESCENT is authored by Hager and Zhang [21,22],

CONMIN by Shanno and Phua [38]. The CG_DESCENT code contains the variant
CG_DESCENT(w) implementing the Wolfe line search and the variant CG_ DESCENT(aw)
implementing an approximate Wolfe line search. The Wolfe conditions implemented in
CG_DESCENT(w) can compute a solution with an accuracy on the order of the square root of
the machine epsilon. In contrast, the approximate Wolfe line search implemented in
CG_DESCENT(aw) can compute a solution with an accuracy of the order of machine epsilon.
The rest of all algorithms considered in this study are authored by Andrei. All codes are
written in double precision Fortran and compiled with f77 (default compiler settings) on an
Intel Pentium 4, 1.8GHz workstation.



All algorithms implement the Wolfe line search conditions with p =0.0001 and 0 =0.9,
and the same stopping criterion Hgk “w <107°, where ||||OO is the maximum absolute

component of a vector.
The comparisons of algorithms are given in the following context. Let fiALGI and fiA"G2 be
the optimal value found by ALG1 and ALG2, for problem i=1,...,750, respectively. We
say that, in the particular problem 1, the performance of ALGl was better than the
performance of ALG?2 if:

fiALGl _ fiALGZ <107
and the number of iterations, or the number of function-gradient evaluations, or the CPU time
of ALG1 was less than the number of iterations, or the number of function-gradient
evaluations, or the CPU time corresponding to ALG2, respectively.
The performances of these algorithms have been evaluated using the profiles of Dolan and
Moré [17] corresponding to this set of 750 test problems we extracted from the CUTE
collection [11] and from [6]. For each algorithm, we plot the fraction of problems for which
the algorithm is within a factor of the best CPU time. The left side of these Figures gives the
percentage of the test problems, out of 750, for which an algorithm is more successful; the
right side gives the percentage of the test problems that were successfully solved be each of
the algorithms. Mainly, the right side represents a measure of an algorithm’s robustness.

In the first set of numerical experiments we compare the classical conjugate gradient
algorithms. Figure 1 shows the CPU time performance profiles of these algorithms.
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Fig. 1. Performance profiles of HS, FR, PRP, PRP+, CD, LS and DY.

From Figure 1 we see that the first set of methods FR, CD and DY although they have strong
convergence properties, they may not perform well in practice due to jamming. In contrast,
although the second set of methods HS, PRP and LS in general may not converge, they often
perform better than the methods in the first set.



Figure 2 presents the performance profiles of some hybrid conjugate gradient algorithms.
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Fig. 2. Performance profiles of some hybrid conjugate gradient algorithms.

Figure 3 presents the performance profiles of NDHSDY versus the classical conjugate
gradient algorithms: PRP, PRP+, LS and CD. It seems that the best algorithm is the hybrid
algorithm NDHSDY given by a convex combination of HS and DY, where the parameter in
the convex combination is obtained using the Newton direction.
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Fig. 3. Performance profiles of NDHSDY versus some classical conjugate gradient algorithms.

In the next set of numerical experiments we compare the scaled conjugate gradient
algorithms. Figure 4 shows the performance profiles of SCALCG, BM, BM+, sPRP and sFR.
We see that SCALCG algorithm is top performer among the scaled conjugate gradient
algorithms.

1
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03 BM+ 81 199 79
il sPRP a1 131 70 i
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02t i
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CPU time metric, 622 problems
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Fig. 4. Performance profiles of scaled conjugate gradient algorithms.

Figure 5 shows the performance profile of SCALCG versus classical conjugate gradient
algorithms PRP and PRP+, as well as the hybrid algorithms CCOMB and NDHSDY.

12



e 1 08t Polak-Ribiers-Polyak+ (PRP+) 1

1 07 SCALCG 1
Polak-Ribiere-Polyak (PRP)
i SCALCG PRP+ =

05r SCALCG PRP = 0.5¢ Hiter 526 72 84
o Hiter 566 41 70 | wa #fg 428 129 125

' #fg 475 90 112 i cpu 559 87 56
0.3+ cpu 560 58 50 03l ]

7 [

CPU time metric, 677 problems CPU time metric, 682 problems

01 ! ‘ ! ! 01 ‘ ‘ ‘ . ‘ :
0 2 4 6 8 10 12 14 16 o 2 i 5 8 10 12 1 16

oal SCALCG | 05l SCALCG |
ccoms SCALCG CCOMB NDHSDY
osl - s | SCALCG NDHSDY = |
Hiter 500 95 93 06 .
#iter 489 93 110
#fg 435 123 130 #fg 409 145 138
ost cpu 478 107 103 sk

cpu 474 110 108

041

CPU time metric, 688 problems

. ‘ . . ‘ CPU time metric, 692 problems

L
I I I L I
0 2 4 6 8 10 12 14 16 0 3 4 5 P 10 12 14 16

Fig. 5. Performance profiles of SCALCG versus PRP, PRP+, CCOMB and NDHSDY.
In the following we compare the modified conjugate gradient algorithms CG_DESCENT(w),
ACGA, ACGA+, CGSD and APRP. Figure 6 presents the performance profiles of these
algorithms.

1]
09 il =TT =Tr=n _.—\ —=_ 1
08f \ 4
CG-DESCENT CGSD
07 B
0.6 B
#iter #fg cpu
05k CG-DESCENT 291 183 259 |
ACGA 180 220 216
ACGA+ 212 254 236
04l CGSD 146 147 157 |
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Fig. 6. Performance profiles of CG_DESCENT, ACGA, ACGA+, CGSD and APRP.

Figure 7 presents the performance profiles of CG_DESCENT(w) and PRP, PRP+, NDHSDY
and SCALCG.
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Fig. 7. Performance profiles of CG_DESCENT(w) versus PRP, PRP+, NDHSDY and SCALCG.

Now, comparing CONMIN with some other modified conjugate gradient algorithms: ACGA,
ACGA+, CGSD and APRP, the following performance profiles have been obtained, as in

Figure 8.
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Fig. 8. Performance profiles of CONMIN, ACGA, ACGA+, CGSD and APRP.
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We see that CONMIN is top performer. Figure 9 presents the performances profiles of
CONMIN and PRP, NDHSDY, SCALCG and CG_DESCENT.
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Fig. 9. Performance profiles of CONMIN versus PRP, NDHSDY, SCALCG and CG_DESCENT.

Finally, let us consider the parametric conjugate gradient algorithms DL(t=1) and DL+(t=1).
Figure 10 shows the performance profiles of DL and DL+ versus PRP, SCALCG and

CONMIN.
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Fig. 10. Performance profiles of DL(t=1) and DL+(t=1) versus PRP, SCALCG and CONMIN.

8. Conclusion and discussion. Conjugate gradient algorithms are one of the most elegant and
probably the simplest algorithms for computational nonlinear optimization. Their theory is
well established (please, see [23]) and they proved to be surprisingly effective in solving real
practical applications. The computational study presented here, which include 29 conjugate
gradient algorithms, shows that the most effective are CONMIN, CG_DESCENT and
SCALCG. Close to these algorithms is NDHSDY, a convex combination of HS and DY
conjugate gradient algorithms in which the parameter is computed using the Newton
direction. Concerning the robustness, CG_DESCENT is on the first place.

This computational study involves a large variety of nonlinear test functions. However, to
conclude about the effectiveness of these algorithms, the test functions must be organized on
some classes with well established characteristics, and to see which conjugate gradient
algorithm is more successful. This remains to be explored.

It is worth seeing a comparison between the most successful conjugate gradient algorithms
and quasi-Newton limited BFGS algorithm of Nocedal [31]. Quasi-Newton methods
gradually build up an approximate Hessian matrix (or an approximate inverse Hessian matrix)
by using the gradient information from some of the previous iterates. Given the current iterate

X, and the approximate Hessian matrix B, atX,, the so called the Newton system

B, d, =-Vf(X,) is solved in order to generate the directiond, . The best known quasi-

Newton method is BFGS. However, the BFGS approach is not affordable due to the memory
requirements. The limited BFGS variant introduced by Nocedal [31] overcomes this difficulty

by approximating the product d, =—H,Vf(X,), where H, is a positive definite
approximation to the inverse of the Hessian at X, , in terms of the most recently computed m
pairs {S,Y;}, where s; =X, —X and Y, =Vf(x,,)—Vf(X). When the m+1 pair is

computed, the oldest pair is discarded and its location in the memory is replaced by the new
one. Figure 11 shows the performance profiles of CONMIN, SCALCG, CG_DESCENT and
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NDHSDY versus L-BFGS (m=3) an implementation given by Liu and Nocedal [26] using the
line search of Moré and Thuente [28].
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Fig. 11. Performance profiles of LBFGS(m=3) versus CONMIN, SCALCG, CG_DESCENT and
NDHSDY conjugate gradient algorithms.

From Figure 11 we see that LBFGS (m=3) is way more successful than any conjugate
gradient algorithm. Closest to LBFGS is CONMIN.

It is worth presenting a comparison of conjugate gradient algorithms with truncated Newton
method TN by Nash [29]. The truncated Newton method uses an approximation of the

Hessian matrix, and stops the solving process of the Newton system B,d, =—-Vf(X,) as
soon as a suitable termination criterion is satisfied. The truncated Newton method in TN
implementation is preconditioned by a BFGS limited-memory quasi-Newton method with a
further diagonal scaling. The Newton system is solved by means of a preconditioned
conjugate gradient method. In these methods the direction d, satisfies the
conditionHV2 f(x)d, +Vf (Xk)H <1, ||Vf (Xk)”, for some 7, €(0,1), known as the

“forcing” sequence. Dembo, Eisenstat and Steihaug [16] choose the forcing terms as:
.1 r
" = mm{E,C”Vf x| } ,

where C is a positive constantand 0 <r <1.
Figure 12 shows the performance profiles of TN versus CONMIN, CG DESCENT,

SCALCG and NDHSDY.
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Fig. 12. Performance profiles of TN versus CONMIN, CG_DESCENT(w), SCALCG and NDHSDY
algorithms.

Even that conjugate gradient methods are relevant nonlinear optimization methods, there are
some open problems which deserve additional research.

1) In contrast to the quasi-Newton methods for which the steplength for the vast majority of
iterations is equal to 1, the steplength in conjugate gradient methods differ from 1, being
larger or smaller up to two order of magnitude depending on how the problem is scaled. In

conjugate gradient methods the size of ¢, vary in a very unpredictabe way.

2) Another open problem is the preconditioning of conjugate gradient algorithms. The scaled
conjugate gradient algorithms by Birgin and Martinez [10] and Andrei [1-4] introduce a
scaling of @,,,in the direction d,,, computation. However, if the definition of 6, ,, in (7)
does contain enough information about the inverse Hessian of the minimizing function, then
better is to use the search direction d,,, =—6,.,9,,,, since the addition of the term /S, in

(7) may prevent d, , to be a descent direction unless the line search is sufficiently accurate.
In scaled conjugate gradient algorithms there is a very delicate balance between —6,,,0,.,

and [, , which brings into attention the preconditioning question.

3) Another open problem with conjugate gradient methods is that the structure of the
minimizing problem is not taken into account to design more efficient computational
schemes. This is in sharp contrast to quasi-Newton or truncated Newton methods.
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