
NUMERICAL COMPARISON OF
CONJUGATE GRADIENT ALGORITHMS
FOR UNCONSTRAINED OPTIMIZATION

Neculai Andrei

Research Institute for Informatics,
Center for Advanced Modeling and Optimization,

8-10, Averescu Avenue, Bucharest 1, Romania,
E-mail: nandrei@ici.ro

Abstract. Conjugate gradient methods represent an important class of unconstrained
optimization algorithms with strong local and global convergence properties and modest
memory requirements. This family of algorithms includes a lot of variants, well known in
the literature, with important convergence properties and numerical efficiency. The
purpose of this paper is to present these algorithms as well as their Dolan and Moré’s
performances to solve a large variety of large-scale unconstrained optimization problems.
Some comparisons with well established limited memory quasi-Newton and truncated
Newton methods are also presented.

MSC2000: 49M07, 49M10, 90C06, 65K
Keywords and phrases: unconstrained optimization, conjugate gradient, hybrid conjugate
gradient, scaled conjugate gradient, conjugacy condition, numerical comparisons, Dolan-
Moré profile.

1. Introduction. Conjugate gradient methods represent an important class of unconstrained
optimization algorithms with strong local and global convergence properties and modest
memory requirements. An excellent survey of development of different versions of nonlinear
conjugate gradient methods, with special attention to global convergence properties, is
presented by Hager and Zhang [23]. This family of algorithms includes a lot of variants, well
known in the literature, with important convergence properties and numerical efficiency. The
purpose of this paper is to present these algorithms as well as their performances to solve a
large variety of large-scale unconstrained optimization problems.
For solving the nonlinear unconstrained optimization problem
 { }min (): ,nf x x R∈ (1)

where : nf R → R is a continuously differentiable function bounded from below, starting
from an initial guess 0

nx R∈ a nonlinear conjugate gradient method, generates a sequence

{ }kx as

 1k k k kx x dα+ = + , (2)
where 0kα > is obtained by line search, and the directions are generated as kd
 1 1k k kd g ksβ+ += − + 0 0d g= −, . (3)
In (3) kβ is known as the conjugate gradient parameter, 1k ks x x+ k= − and .

Consider

()k kg f x= ∇

. the Euclidean norm and define 1k ky g g+ k= − . The line search in the conjugate
gradient algorithms often is based on the standard Wolfe conditions:
 () () T

k k k k k k k ,f x d f x g dα ρα+ − ≤ (4)

 , (5) 1
T
k k k kg d g dσ+ ≥ T

1.where is a descent direction and 0kd ρ σ< ≤ < For some conjugate gradient algorithms,
stronger versions of the Wolfe conditions are needed to ensure convergence and to enhance

 1

mailto:nandrei@ici.ro

stability. According to formula for kβ computation, the conjugate gradient algorithms can be
classified as: classical, hybrid, scaled, modified and parametric. In the following we shall
present these algorithms and insist on their numerical Dolan and Moré’s performances
profiles for solving large-scale unconstrained optimization problems.
The history of conjugate gradient method begins with the seminal paper of Hestenes and
Stiefel [24] who presented an algorithm for solving symmetric, positive definite linear
algebraic systems. In 1964 Fletcher and Reeves [19] extended the domain of application of
conjugate gradient method to nonlinear problems, thus starting the nonlinear conjugate
gradient research direction. The main advantages of the conjugate gradient method are its low
memory requirements, and its convergence speed. A large variety of nonlinear conjugate
gradient algorithms are known. For each of them convergence results have been proved in
mild conditions which refer to the Lipschitz and boundedness assumptions. To prove the
global convergence of nonlinear conjugate gradient methods, often the Zoutendijk condition
is used combined with analysis showing that the sufficient descent condition

2T
k k kg d c g≤ − holds, and that there exists a constant δ such that

2 .kd kδ≤ Often, the
convergence analysis of conjugate gradient algorithms, for general nonlinear functions,
follows insights developed by Gilbert and Nocedal [20]. The idea is to bound the change

 in the normalized direction 1ku u+ − k /k k ku d d= , which is used to conclude, by
contradiction, that the gradients cannot be bounded away from zero.

2. Classical conjugate gradient algorithms. These algorithms are defined by (2) and (3),
where the parameter kβ is computed as in Table 1. Observe that these algorithms can be

classified as algorithms with
2

1kg + in the numerator of kβ and algorithms with in

the numerator of parameter
1

T
kg y+ k

kβ .

Table 1. Classical conjugate gradient algorithms.
Nr. Formula Author(s)

1. 1

T
HS k k
k T

k k

y g
y s

β +=
Hestenes and Stiefel [24] (HS)
The first conjugate gradient algorithm
for linear algebraic systems.

2. 1 1

T
FR k k
k T

k k

g g
g g

β + +=
Fletcher and Reeves [19] (FR)
The first conjugate gradient algorithm
for nonlinear functions.

3. 1

T
PRP k k
k T

k k

y g
g g

β +=
Polak-Ribiere [33] and Polyak [34]
(PRP)

4.
10,

T
PRP k k
k T

k k

y gmax
g g

β + +⎧ ⎫
= ⎨ ⎬

⎩ ⎭

Polak-Ribiere and Polyak + (PRP+)
suggested by Powell [35]

5. 1 1

T
CD k k
k T

k k

g g
g d

β + += −
Conjugate Descent (CD) introduced
by Fletcher [18]

6. 1

T
LS k k
k T

k k

y g
g d

β += −
Liu and Storey [27] (LS)

7. 1 1

T
DY k k
k T

k k

g g
y s

β + +=
Dai and Yuan [13] (DY)

The FR, CD and DY with

2
1kg + in the numerator of kβ have strong convergence theory,

but all these methods are susceptible to jamming. They begin to take small steps without

 2

making any significant progress to the minimum. On the other hand, HS, PRP and LS
methods with in the numerator of parameter1

T
kg y+ k kβ , have a built-in restart feature that

addresses the jamming phenomenon. When the step is small, the factor in
the numerator of

ks 1k ky g g+= − k

kβ tends to zero. Therefore, kβ becomes small and the new direction 1kd +
in (3) is essentially the steepest descent direction 1.kg +− With other words, HS, PRP and LS
methods automatically adjust kβ to avoid jamming, and their performances are better than

the performance of methods with
2

1kg + in the numerator of kβ .

3. Hybrid conjugate gradient methods. These algorithms have been devised to exploit the
attractive features of the classical conjugate gradient algorithms. They are defined by (2) and
(3) where the parameter kβ is as in Table 2. There are two classes of hybrid algorithms. The
first class of the hybrid algorithms combines in a projective manner the algorithms having

2
1kg + in the numerator of kβ with the algorithms having in the numerator of

parameter
1

T
kg y+ k

kβ . The second class of hybrid algorithms, more recent established, considers

convex combinations of algorithms with
2

1kg + in the numerator of kβ and the algorithms

having in the numerator of parameter1
T
kg y+ k kβ . In general, the performances of hybrid

conjugate gradient algorithms are higher than the performances of classical conjugate gradient
algorithms.

Table 2. Hybrid conjugate gradient algorithms.
Nr. Formula Author(s)

 1. { }{ }, ,hDY DY HS DY
k k kmax c minβ β β= kβ Hybrid Dai-Yuan

[15](hDY)

2. { }{ }0, ,hDYz HS DY
k kmax minβ β= kβ Hybrid Dai-Yuan zero

[15] (hDYz)

3. { }{ }, ,GN FR PRP FR
k k kmax minβ β β= − kβ Gilbert and Nocedal

[20] (GN)

4. { }{ }0, ,HuS PRP FR
k kmax minβ β= kβ Hu and Storey [25]

(HuS)

5.
0 ,

otherwise

PRP PRP FR
TaS k k
k FR

k

kβ β β
β

β
⎧ ≤ ≤

= ⎨
⎩

Touati-Ahmed and
Storey [39] (TaS)

6. { }{ }0, ,LS CD LS CD
k kmax minβ β− = kβ Hybrid Liu-Storey,

Conjugate-Descent
(LS-CD)

7. 1 1(1)

T T
CCOMB k k k k
k k kT T

k k k k

g y g g
g g y s

β θ θ+ += − + 1+ ,

1 1
2 2

1 1

()() ()(.
()()

T T T T
k k k k k k k k

k T T
k k k k k k

y g y s y g g g
y g y s g g

θ + +

+ +

−
=

−

)

If 0,kθ ≤ then set 0kθ = , i.e.

if

;CCOMB PRP
k kβ β=

1kθ ≥ , then take 1kθ = , i.e. .CCOMB DY
k kβ β=

Convex combination of
PRP and DY where kθ
is obtained by
conjugacy condition.
Andrei [7] (CCOMB)

8. 1 1(1)

T T
NDOMB k k k k
k k kT T

k k k k

g y g g
g g y s

β θ θ+ += − + 1+ ,
Convex combination of
PRP and DY where kθ
is obtained using the
Newton direction.
Andrei [7] (NDOMB)

 3

2
1 1 1

2 2
1 1

() ()(
.

()()

T T T T
k k k k k k k k k

k T T
k k k k k k

y g s g g g y y s

g g g y y s
θ + + +

+ +

− −
=

−

)

If 0,kθ ≤ then set 0kθ = , i.e.

if

;NDOMB PRP
k kβ β=

1kθ ≥ , then take 1kθ = , i.e. .NDOMB DY
k kβ β=

9. 1 1(1)

T T
NDHSDY k k k k
k k kT T

k k k k

g y g g
y s y s

β θ θ+ += − + 1+ ,

1

1

T
k k

k T
k k

s g
g g

θ +

+

= − .

If 0,kθ ≤ then set 0kθ = , i.e. ;NDHSDY HS
k kβ β=

if 1kθ ≥ , then take 1kθ = , i.e. .NDHSDY DY
k kβ β=

Convex combination of
HS and DY, where kθ
is obtained using the
Newton direction.
Andrei [8] (NDHSDY)

4. Scaled conjugate gradient algorithms. The algorithms in this class generates a sequence
xk of approximations to the minimum ofx * f , in which

 x x dk k k+ k= +1 α , (6)
 d g sk k k k+ + + k= − +1 1 1θ β , (7)
where θ k+1 is a parameter. The iterative process is initialized with an initial point x0 and
d g0 = − .0 Observe that if θ k+ =1 1, then we get the classical conjugate gradient algorithms
according to the value of the scalar parameter β k . On the other hand, if β k = 0, then we
get another class of algorithms according to the selection of the parameter θ k+1 . Considering
β k = 0, there are two possibilities for θ k+1 : a positive scalar or a positive definite matrix. If
θ k+ =1 1 , then we have the steepest descent algorithm. If θ k kf x+ +

−= ∇1
2

1
1() , or an

approximation of it, then we get the Newton or the quasi-Newton algorithms, respectively.
Therefore, we see that in the general case, when θ k+ ≠1 0 is selected in a quasi-Newton
manner, and β k ≠ 0, (7) represents a combination between the quasi-Newton and the
conjugate gradient methods. However, if θ k+1 is a matrix containing some useful information
about the inverse Hessian of function f , we are better off using d gk k+ + k+= −1 1 1θ since the
addition of the term β k ks in (7) may prevent the direction from being a descent direction
unless the line search is sufficiently accurate. Therefore, in the following we shall consider

dk

θ k+1 as a positive scalar which contains some useful information to the inverse Hessian of
function f .

To determine β k consider the following procedure [1-4]. As we know, the Newton
direction for solving (1) is given by d f xk k+ + gk

−
+= −∇1

2
1

1
1() . Therefore, from the equality

− ∇ = − ++
−

+ + +
2

1
1

1 1 1f x g g sk k k k k() k ,θ β
we get:

 β
θ

k
k
T

k k k k
T

k

k
T

k k

s f x g s g
s f x s

=
∇ −

∇
+ + + +

+

2
1 1 1 1
2

1

()
()

. (8)

Using the Taylor development, after some algebra we get:

 β
θ

k
k k k

T
k

k
T

k

y s g
y s

=
−+()

,1 +1 (9)

where y g gk k k= −+1 . Birgin and Martínez [10], who firstly introduced scaled conjugate
gradient algorithms, arrived at the same formula for β k , but using a geometric interpretation

 4

of quadratic function minimization. The parameter kβ in (7) can be defined, as in Table 3,
where the scaling parameter kθ is computed as:

 θ k
k
T

k

k
T

k

s s
y s+ =1 . (10)

Table 3. Scaled conjugate gradient algorithms.

Nr. Formula Author(s)

 1. 1()T

BM k k k k
k T

k k

g y s
y s
θβ + −

=
Scaled Perry. Suggested by
Birgin and Martínez [10] and
Andrei [1-4] (BM)

2. 1 10,

T T
BM k k k k k
k T T

k k k k

g y g smax
y s y s

θβ + + +⎧ ⎫
= ⎨ ⎬

⎩ ⎭
−

Scaled Perry+. Suggested by
Birgin and Martínez [10] (BM+)

3. 1

1

T
sPRP k k k
k T

k k k k

g y
g g

θβ
α θ

+

−

=
Scaled Polak-Ribière-Polyak.
Suggested by Birgin and
Martínez [10] and Andrei [1-4]
(sPRP)

4. 1 1

1

T
sFR k k k
k T

k k k k

g g
g g

θβ
α θ

+ +

−

=
Scaled Fletcher-Reeves.
Suggested by Birgin and
Martínez [10] and Andrei [1-4]
(sFR)

5. 1

1

T
sHS k k
k k T

k k

g y
y s

β θ +
+=

Scaled Hestenes-Steifel
(sHS)[1]

Another scaled conjugate gradient algorithm has been presented by Andrei [1-4]. This is a
scaled memoryless BFGS preconditioned conjugate gradient algorithm. The basic idea is to
combine the scaled memoryless BFGS method and the preconditioning technique in the frame
of conjugate gradient method. The preconditioner, which is also a scaled memoryless BFGS
matrix, is reset when the Powell restart criterion holds. The parameter scaling the gradient is
selected as the spectral gradient (10).

Algorithm SCALCG [1-4]
Step 1. Initialization. Select and the parameters 0 1x R n

0∈ , 1 2< ≤ <σ σ . Compute f x()0

and g f x0 0= ∇ (). Set d g0 0= − and α 0 01= / g . Set k = 0.
Step 2. Line search. Compute α k satisfying the Wolfe conditions (4) and (5). Update the
variables x x dk k k+ = k+1 α . Compute f x gk k(),+1 1+ and s x xk k k= −+1 , y g gk k k= −+1 .
Step 3. Test for continuation of iterations. If this test is satisfied the iterations are stopped,
else set k k= +1.
Step 4. Scaling factor computation. Compute θ k using (10).
Step 5. Restart direction. Compute the (restart) direction d as: k

1 1
1 1 1 1 1 11 .

T T T
k k k k k k k k

k k k k k k kT T T
k k k k k k k k

g s y y g s g yd g y
y s y s y s y s

θ θ θ θ+ +
+ + + + + +

1
T

kT s+
⎡ ⎤⎛ ⎞ ⎛ ⎞

= − + − + −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

Step 6. Line search. Compute the initial guess:α αk k k kd d= − −1 1 2
/

2
. Using this

initialization compute α k satisfying the Wolfe conditions. Update the variables
x x dk k k+ = +1 kα . Compute f xk(),+1 gk+1 and s x xk k k= −+1 , y g gk k k= −+1 .

Step 7. Store: θ θ= k , and s sk= y yk= .
Step 8. Test for continuation of iterations. If this test is satisfied the iterations are stopped,
else set k k= +1.

 5

Step 9. Restart. If the Powell restart criterion:
2

1 0.2 ,T
k k kg g g+ ≥ 1+ is satisfied, then go to

step 4 (a restart step); otherwise continue with step 10 (a standard step).
Step 10. Standard direction. Compute the direction as: dk

d v
g s w g w s

y s
y w
y s

g s
y s

sk
k
T

k k
T

k

k
T

k

k
T

k
T

k

k
T

k

k
T

k
k+

+ + += − +
+

− +
⎛

⎝
⎜

⎞

⎠
⎟1

1 1 11
() ()

,

where and are computed as: v w

1
1

T
k

k T

g sv g y
y s

θ θ +
+

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
1 11 ,

T TT
k k

T T T

g s g yy y s
y s y s y s

θ θ+ +
⎡ ⎤⎛ ⎞

+ + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

and
T
k

k T

y sw y y
y s

θ θ
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

1 ,
T TT
k k

T T T

y s y yy y s
y s y s y s

θ θ
⎡ ⎤⎛ ⎞

+ + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

with saved values θ , and s y.
Step 11. Line search. Compute the initial guess: α αk k k kd d= − −1 1 2

/
2
. Using this

initialization compute α k satisfying the Wolfe conditions. Update the variables
x x dk k k+ = +1 kα . Compute f xk(),+1 gk+1 and s x xk k k= −+1 , y g gk k k= −+1 .

Step 12. Test for continuation of iterations. If this test is satisfied the iterations are stopped,
else set k k= +1 and go to step 9.

To a great extent, SCALCG algorithm is very close to the Perry/Shanno computational
scheme [32,36,37]. SCALCG is a scaled memoryless BFGS preconditioned algorithm where
the scaling factor is the inverse of a scalar approximation of the Hessian. If the Powell restart
criterion

2
1 0.2T

k k kg g g+ ≥ 1+ is used, for general functions f bounded from below with

bounded second partial derivatives and bounded level set, using the same arguments
considered by Shanno in [37] it is possible to prove that the iterates either converge to a point

satisfying x* g x() ,* = 0 or the iterates cycle.

5. Modified conjugate gradient algorithms. We know a large variety of modified conjugate
gradient algorithms. All of them are designed to improve the performances of the classical
computational schemes using the idea of preconditioning or the modification of classical
schemes in order to satisfy the sufficient descent condition. The algorithms in this class are
characterized by (2) and (3), where the parameter kβ is computed as in Table 4.

Table 4. Modified conjugate gradient algorithms.
Nr. Formula Author(s)
 1.

1 1
N

k k k kdd g β+ += − + 0 0d g, = − ,

{ },N N
k kmax kβ β η= ,

{ }
1

,k
k kd min g

η
η

−
= , 0.01η =

2

1
1 2

T

kN
k k kT T

k k k k

y
y d

y d y d
β kg +

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

,

Introduced by Hager şi Zhang
[21, 22]. (CG_DESCENT)
This scheme is obtained by
deleting a term from the search
direction for the memoryless
quasi-Newton scheme of Perry
[32] and Shanno [36, 37].
In [9] Andrei proved that this
computational scheme is also a
modification of HS formula.

 6

2.
1

1
1

TT
ACGA k k

k k kT T
k k k k

g yy s
y s y s

β +
kg +

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

Suggested by Andrei [9]
(ACGA)

3.
1max 0, 1

T T
ACGA k k k k

k T T
k k k k

y g s g
y s y s

β + +⎧ ⎫⎛
= −⎨ ⎬⎜

⎩ ⎭⎝
1+ ⎞
⎟
⎠

Suggested by Andrei [9]
(ACGA+)

4.
1 1 1

CGSD
k k k k kdd gθ β+ + += − + 0 0d g, = − ,

1
1 1

1
TT

CGSD k k
k k kT T

k k k k

g yg s
y s y s

β +
+ +

⎛
= −⎜ ⎟

⎝ ⎠
kg

⎞

2
1

1
1

k
k T

k k

g
y g

θ +
+

+

=

Introduced by Andrei [5]
(CGSD) as a modification of
DY method.

5. 2

12
1

T

kAPRP
k k kT

k k k

y
y s

y s g
β kg +

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

Suggested by Andrei [9]
(APRP)
This is a modification of PRP
method.

Maximization in formula for N

kβ computation scheme by Hager and Zhang plays the role of
the truncation operation like in the PRP+ scheme, for example. Hager and Zhang obtained this
algorithm by deleting a term from the search direction for the memoryless quasi-Newton
scheme of Perry [32] and Shanno [36]. In [21] Hager and Zhang proved the global
convergence with inexact line search showing that for any line search and any function, the
sufficient descent condition

2(7 / 8)T
k k kg d g≤ − is satisfied and the jamming is avoided

essentially due to the term in the formula for 1
T
k ky g + .N

kβ
The ACGA and ACGA+ computational schemes are a modification of the DY conjugate
gradient algorithm, designed to satisfy the sufficient descent condition. In [9] Andrei proved
that for uniformly convex functions under strong Wolfe condition the ACGA is globally
convergent. The CGSD algorithm is also a modification of Dai and Yuan conjugate gradient
algorithm. In [9] Andrei proved the global convergence of CGSD for general nonlinear
functions under the Wolfe conditions.
One of the best conjugate gradient algorithm in this class is CONMIN by Shanno [36] and
Shanno and Phua [38]. Using the Hestenes and Stiefel formula for updating kβ , Perry [32]
suggested a formula for computing the search direction 1kd + which satisfy a system of linear
equations, similar but not identical, to the quasi-Newton equation. Shanno [36] reconsiders
the method of Perry and interprets it as a memoryless BFGS updating formula. In this
algorithm is modified by a positive definite matrix which best estimates the inverse
Hessian, without any additional storage requirements. For convex functions, under inexact
line search Shanno [37] proved the global convergence of CONMIN.

1kg +

6. Parametric conjugate gradient algorithms. The parametric conjugate gradient algorithms
have been introduced in the same way that the quasi-Newton methods have been combined to
get the Broyden or the Huang families. These algorithms are defined by (2) and (3) where the
parameter kβ is as in Table 5.

Table 5. Parametric conjugate gradient algorithms.
Nr. Formula Author(s)

 1. 1()T

DL k k k
k T

k k

g y ts
y s

β + −
= , is a constant 0t >

Dai and Liao [12] (DL)

 7

2. 1 1max 0,

T T
DL k k k k
k T T

k k k k

y g s gt
y s y s

β + + +⎧ ⎫
= −⎨ ⎬

⎩ ⎭
,

0t > is a constant.

Dai and Liao + [12] (DL+)

3. 1() ,

T
YT k k k
k T

k k

g z ts
d z

β + −
=

where ,k
k k kT

k k

z y u
s u
δξ

= +

 1 16() 3() ,T
k k k k k kf f g gξ + += − + + s

0δ ≥ is a constant and satisfies n
ku R∈ 0;T

k ks u ≠

for example .k ku d=

Suggested by Yabe and Takano
[41] (YT) based on a modified
secant condition given by Zhang
et al. [40]

4. 1 1max 0, .

T T
YT k k k k
k T T

k k k k

g z g st
d z d z

β + + +⎧ ⎫
= −⎨ ⎬

⎩ ⎭

Suggested by Yabe and Takano
plus [41] (YT+)

5.

2
1

2 (1)
k

k T
k k k k k

g

g d y
β

λ λ
+=

+ −
[0,1]k, λ ∈ .

The FR algorithm corresponds to 1kλ = .

The DY algorithm correspond to 0kλ = .

Suggested by Dai and Yuan [14]

6.

2
1 1

2

(1)
,

(1)

T
k k k k k

k T
k k k k k

g g y

y
, [0,1k k

g d

µ µ
β

λ λ
+ ++ −

=
+ −

].λ µ ∈

Suggested by Nazareth [30]
This two parameter family
includes the methods: FR, DY,
PRP and HS in extreme cases.

7.

2
1 1

2

(1)
,

(1)

T
k k k k k

k T T
k k k k k k k k k

g g y

g d y d g

µ µ
β

λ ω λ ω
+ ++ −

=
− − + −

, [0,k k 1]λ µ ∈ and [0,1].k kω λ∈ −

Suggested by Dai and Yuan [14]
This three parameter family
includes the six classical
conjugate gradient algorithms,
as well as the previous one-
parameter and two-parameter
families.

7. Performance profiles. In this section we present the computational performance of a
Fortran implementation of conjugate gradient algorithms on a set of 750 unconstrained
optimization test problems. The test problems are the unconstrained problems in the CUTE
[11] library, along with other large-scale optimization problems presented in [6]. We selected
75 large-scale unconstrained optimization problems in extended or generalized form. For each
function we have considered ten numerical experiments with the number of variables

 CG_DESCENT is authored by Hager and Zhang [21,22],
CONMIN by Shanno and Phua [38]. The CG_DESCENT code contains the variant
CG_DESCENT(w) implementing the Wolfe line search and the variant CG_DESCENT(aw)
implementing an approximate Wolfe line search. The Wolfe conditions implemented in
CG_DESCENT(w) can compute a solution with an accuracy on the order of the square root of
the machine epsilon. In contrast, the approximate Wolfe line search implemented in
CG_DESCENT(aw) can compute a solution with an accuracy of the order of machine epsilon.
The rest of all algorithms considered in this study are authored by Andrei. All codes are
written in double precision Fortran and compiled with f77 (default compiler settings) on an
Intel Pentium 4, 1.8GHz workstation.

n = 1000 2000 10000, , ,… .

 8

All algorithms implement the Wolfe line search conditions with 0.0001ρ = and 0.9σ = ,

and the same stopping criterion gk ∞
−≤ 10 6 , where .

∞
is the maximum absolute

component of a vector.
The comparisons of algorithms are given in the following context. Let and be
the optimal value found by ALG1 and ALG2, for problem

f i
ALG1 f i

ALG2

i = 1 750, ,… , respectively. We
say that, in the particular problem the performance of ALG1 was better than the
performance of ALG2 if:

i,

f fi
ALG

i
ALG1 2 10− < −3

and the number of iterations, or the number of function-gradient evaluations, or the CPU time
of ALG1 was less than the number of iterations, or the number of function-gradient
evaluations, or the CPU time corresponding to ALG2, respectively.
The performances of these algorithms have been evaluated using the profiles of Dolan and
Moré [17] corresponding to this set of 750 test problems we extracted from the CUTE
collection [11] and from [6]. For each algorithm, we plot the fraction of problems for which
the algorithm is within a factor of the best CPU time. The left side of these Figures gives the
percentage of the test problems, out of 750, for which an algorithm is more successful; the
right side gives the percentage of the test problems that were successfully solved be each of
the algorithms. Mainly, the right side represents a measure of an algorithm’s robustness.

In the first set of numerical experiments we compare the classical conjugate gradient
algorithms. Figure 1 shows the CPU time performance profiles of these algorithms.

Fig. 1. Performance profiles of HS, FR, PRP, PRP+, CD, LS and DY.

From Figure 1 we see that the first set of methods FR, CD and DY although they have strong
convergence properties, they may not perform well in practice due to jamming. In contrast,
although the second set of methods HS, PRP and LS in general may not converge, they often
perform better than the methods in the first set.

 9

Figure 2 presents the performance profiles of some hybrid conjugate gradient algorithms.

 10

Fig. 2. Performance profiles of some hybrid conjugate gradient algorithms.

Figure 3 presents the performance profiles of NDHSDY versus the classical conjugate
gradient algorithms: PRP, PRP+, LS and CD. It seems that the best algorithm is the hybrid
algorithm NDHSDY given by a convex combination of HS and DY, where the parameter in
the convex combination is obtained using the Newton direction.

 11

Fig. 3. Performance profiles of NDHSDY versus some classical conjugate gradient algorithms.

In the next set of numerical experiments we compare the scaled conjugate gradient
algorithms. Figure 4 shows the performance profiles of SCALCG, BM, BM+, sPRP and sFR.
We see that SCALCG algorithm is top performer among the scaled conjugate gradient
algorithms.

Fig. 4. Performance profiles of scaled conjugate gradient algorithms.

Figure 5 shows the performance profile of SCALCG versus classical conjugate gradient
algorithms PRP and PRP+, as well as the hybrid algorithms CCOMB and NDHSDY.

 12

Fig. 5. Performance profiles of SCALCG versus PRP, PRP+, CCOMB and NDHSDY.
In the following we compare the modified conjugate gradient algorithms CG_DESCENT(w),
ACGA, ACGA+, CGSD and APRP. Figure 6 presents the performance profiles of these
algorithms.

Fig. 6. Performance profiles of CG_DESCENT, ACGA, ACGA+, CGSD and APRP.

Figure 7 presents the performance profiles of CG_DESCENT(w) and PRP, PRP+, NDHSDY
and SCALCG.

 13

Fig. 7. Performance profiles of CG_DESCENT(w) versus PRP, PRP+, NDHSDY and SCALCG.

Now, comparing CONMIN with some other modified conjugate gradient algorithms: ACGA,
ACGA+, CGSD and APRP, the following performance profiles have been obtained, as in
Figure 8.

Fig. 8. Performance profiles of CONMIN, ACGA, ACGA+, CGSD and APRP.

 14

We see that CONMIN is top performer. Figure 9 presents the performances profiles of
CONMIN and PRP, NDHSDY, SCALCG and CG_DESCENT.

Fig. 9. Performance profiles of CONMIN versus PRP, NDHSDY, SCALCG and CG_DESCENT.

Finally, let us consider the parametric conjugate gradient algorithms DL(t=1) and DL+(t=1).
Figure 10 shows the performance profiles of DL and DL+ versus PRP, SCALCG and
CONMIN.

 15

Fig. 10. Performance profiles of DL(t=1) and DL+(t=1) versus PRP, SCALCG and CONMIN.

8. Conclusion and discussion. Conjugate gradient algorithms are one of the most elegant and
probably the simplest algorithms for computational nonlinear optimization. Their theory is
well established (please, see [23]) and they proved to be surprisingly effective in solving real
practical applications. The computational study presented here, which include 29 conjugate
gradient algorithms, shows that the most effective are CONMIN, CG_DESCENT and
SCALCG. Close to these algorithms is NDHSDY, a convex combination of HS and DY
conjugate gradient algorithms in which the parameter is computed using the Newton
direction. Concerning the robustness, CG_DESCENT is on the first place.
This computational study involves a large variety of nonlinear test functions. However, to
conclude about the effectiveness of these algorithms, the test functions must be organized on
some classes with well established characteristics, and to see which conjugate gradient
algorithm is more successful. This remains to be explored.
It is worth seeing a comparison between the most successful conjugate gradient algorithms
and quasi-Newton limited BFGS algorithm of Nocedal [31]. Quasi-Newton methods
gradually build up an approximate Hessian matrix (or an approximate inverse Hessian matrix)
by using the gradient information from some of the previous iterates. Given the current iterate

kx and the approximate Hessian matrix kB at kx , the so called the Newton system
()k k kB d f x= −∇ is solved in order to generate the direction . The best known quasi-

Newton method is BFGS. However, the BFGS approach is not affordable due to the memory
requirements. The limited BFGS variant introduced by Nocedal [31] overcomes this difficulty
by approximating the product

kd

()k kd H f xk= − ∇ , where is a positive definite
approximation to the inverse of the Hessian at

kH

kx , in terms of the most recently computed

pairs

m

{ },i is y , where and 1i is x x+= − i .i1() ()i iy f x f x+= ∇ −∇ When the pair is
computed, the oldest pair is discarded and its location in the memory is replaced by the new
one. Figure 11 shows the performance profiles of CONMIN, SCALCG, CG_DESCENT and

1m +

 16

NDHSDY versus L-BFGS (m=3) an implementation given by Liu and Nocedal [26] using the
line search of Moré and Thuente [28].

Fig. 11. Performance profiles of LBFGS(m=3) versus CONMIN, SCALCG, CG_DESCENT and
NDHSDY conjugate gradient algorithms.

From Figure 11 we see that LBFGS (m=3) is way more successful than any conjugate
gradient algorithm. Closest to LBFGS is CONMIN.

It is worth presenting a comparison of conjugate gradient algorithms with truncated Newton
method TN by Nash [29]. The truncated Newton method uses an approximation of the
Hessian matrix, and stops the solving process of the Newton system ()k k kB d f x= −∇ as
soon as a suitable termination criterion is satisfied. The truncated Newton method in TN
implementation is preconditioned by a BFGS limited-memory quasi-Newton method with a
further diagonal scaling. The Newton system is solved by means of a preconditioned
conjugate gradient method. In these methods the direction satisfies the

condition
kd

2 () () ()k k k k kf x d f x f xη∇ +∇ ≤ ∇ , for some (0,1)kη ∈ , known as the

“forcing” sequence. Dembo, Eisenstat and Steihaug [16] choose the forcing terms as:
1min , (
2

r
k kc f xη ⎧ ⎫= ∇⎨ ⎬

⎩ ⎭
,

where is a positive constant and c 0 1r .< ≤
Figure 12 shows the performance profiles of TN versus CONMIN, CG_DESCENT,
SCALCG and NDHSDY.

 17

Fig. 12. Performance profiles of TN versus CONMIN, CG_DESCENT(w), SCALCG and NDHSDY
algorithms.

Even that conjugate gradient methods are relevant nonlinear optimization methods, there are
some open problems which deserve additional research.
1) In contrast to the quasi-Newton methods for which the steplength for the vast majority of
iterations is equal to 1, the steplength in conjugate gradient methods differ from 1, being
larger or smaller up to two order of magnitude depending on how the problem is scaled. In
conjugate gradient methods the size of kα vary in a very unpredictabe way.
2) Another open problem is the preconditioning of conjugate gradient algorithms. The scaled
conjugate gradient algorithms by Birgin and Martínez [10] and Andrei [1-4] introduce a
scaling of in the direction 1kg + 1kd + computation. However, if the definition of 1kθ + in (7)
does contain enough information about the inverse Hessian of the minimizing function, then
better is to use the search direction 1 1k kd 1kgθ+ + += − , since the addition of the term k ksβ in
(7) may prevent 1kd + to be a descent direction unless the line search is sufficiently accurate.
In scaled conjugate gradient algorithms there is a very delicate balance between 1 1k kgθ + +−
and k ksβ , which brings into attention the preconditioning question.
3) Another open problem with conjugate gradient methods is that the structure of the
minimizing problem is not taken into account to design more efficient computational
schemes. This is in sharp contrast to quasi-Newton or truncated Newton methods.

References
[1] ANDREI, N., Scaled memoryless BFGS preconditioned conjugate gradient algorithm for

unconstrained optimization. Optimization Methods and Software, 22 (2007), pp.561-571.
[2] ANDREI, N., A scaled BFGS preconditioned conjugate gradient algorithm for unconstrained

optimization. Applied Mathematics Letters, 20 (2007), pp.645-650.
[3] ANDREI, N., Scaled conjugate gradient algorithms for unconstrained optimization. Computational

Optimization and Applications, accepted.

 18

[4] ANDREI, N., A scaled nonlinear conjugate gradient algorithm for unconstrained optimization.
Optimization. A journal of mathematical programming and operations research, accepted.

[5] ANDREI, N., A Dai-Yuan conjugate gradient algorithm with sufficient descent and conjugacy
conditions for unconstrained optimization. Applied Mathematics Letters, accepted.

[6] ANDREI, N., Test functions for unconstrained optimization. http:// www.ici.ro/ camo/ neculai
/SCALCG /evalfg.for

[7] ANDREI, N., New hybrid conjugate gradient algorithms for unconstrained optimization. ICI
Thechnical Report, September 26, 2007.

[8] ANDREI, N., Another hybrid conjugate gradient algorithm for unconstrained optimization. ICI
Technical Report, July 18, 2007.

[9] ANDREI, N., Another nonlinear conjugate gradient algorithm for unconstrained optimization.
ICI Thechnical Report, May 17, 2007.

[10] BIRGIN, E., MARTÍNEZ, M., A spectral conjugate gradient method for unconstrained
optimization, Applied Math. and Optimization (2001) 43, pp.117-128.

[11] BONGARTZ, I., CONN, A.R., GOULD, N.I.M., TOINT, P.L., CUTE: constrained and
unconstrained testing environments, ACM Trans. Math. Software, 21, (1995) 123-160.

[12] DAI, Y.H., LIAO, L.Z., New conjugacy conditions and related nonlinear conjugate gradient
methods. Appl. Math. Optim., 43, (2001), pp.87-101.

[13] DAI, Y.H., YUAN, Y., A nonlinear conjugate gradient method with a strong global convergence
property, SIAM J. Optim., 10 (1999) pp.177-182.

[14] DAI, Y.H., YUAN, Y., A three-parameter family of hybrid conjugate gradient method.
Mathematics of Computation, 70 (2001) pp.1155-1167.

[15] DAI, Y.H., YUAN, Y., A class of globally convergent conjugate gradient methods. Sci. China Ser.
A, 46 (2003), pp.251-261.

[16] DEMBO, R.S., EISENSTAT, S.C., STEIHAUG, T., Inexact Newton methods. SIAM J. Num.
Anal. 19 (1982), pp.400-408.

[17] DOLAN, E.D., MORÉ, J.J., Benchmarcking optimization software with performance profiles.
Mathematical Programming, vol. 91, pp.201-213, 2002.

[18] FLETCHER, R., Practical Methods of Optimization. Second edition. John Wiley & Sons,
Chichester, 1987.

[19] FLETCHER, R., REEVES, C., Function minimization by conjugate gradients. Comput. J., 7
(1964), pp.149-154.

[20] GILBERT, J.C., NOCEDAL J., Global convergence properties of conjugate gradient methods.
SIAM Journal on Optimization, 2 (1992), pp.21-42.

[21] HAGER, W.W., ZHANG, H., A new conjugate gradient method with guaranteed descent and an
efficient line search. SIAM Journal on Optimization, 16 (2005) 170-192.

[22] HAGER, W.W., ZHANG, H., Algorithm 851: CG_DESCENT, A conjugate gradient method with
guaranteed descent. ACM Transactions on Mathematical Software, 32 (2006), 113-137.

[23] HAGER, W.W., ZHANG, H., A survey of nonlinear conjugate gradient methods, Pacific Journal
of Optimization, 2 (2006), pp.35-58.

[24] HESTENES, M.R., STIEFEL, E., Methods of conjugate gradients for solving linear systems, J.
Research Nat. Bur. Standards Sec. B. 48 (1952) 409-436.

[25] HU, Y.F., STOREY, C., Global convergence result for conjugate gradient methods. J. Optim.
Theory Appl., 71 (1991), pp.399-405.

[26] LIU, D., NOCEDAL, J., On the limited memory BFGS method for large scale optimization,
Mathematical Programming B 45 (1989) 503-528.

[27] LIU, D.C., STOREY, Efficient generalized conjugate gradient algorithms. Part 1: Theory. Journal
on Optimization Theory and Applications. 69 (1991), pp.129-137.

[28] MORÉ, J.J., THUENTE, D.J., Line search algorithms with guaranteed sufficient decrease. ACM
Transactions on Mathematical Software, 20, 1994, pp.286-307.

[29] NASH, S.G., Preconditioning of truncated-Newton methods. SIAM J. Sci. Comp. 6 (1985) pp.
599-616.

[30] NAZARETH, J.L., Conjugate gradient methods. Encyclopedia of Optimization, C.Floudas and P.
Pardalos, (Eds.) Kluwer Academic Publishers, Boston, 1999.

[31] NOCEDAL, J., Updating quasi-Newton matrices with limited starage. Mathematics of
Computation, 35 (1980), pp.773-782.

[32] PERRY, A., A modified conjugate gradient algoritm. Operations Research, 26 (1978), pp.1073-
1078.

[33] POLAK, E., RIBIERE, G., Note sur la convergence de directions conjugées. Rev. Francaise
Informat. Recherche Operationelle, 3e Année 16, (1969) pp.35-43.

 19

[34] POLYAK, B.T., The conjugate gradient method in extreme problems. URSS Comp. Math. Math.
Phys., 9, (1969), pp.94-112

[35] POWELL, M.J.D., Nonconvex minimization calculations and the conjugate gradient method.
Numerical Analysis (Dundee, 1983), Lecture Notes in Mathematics, vol.1066, Springer
Verlag, Berlin, 1984, pp.122-141.

[36] SHANNO, D.F., Conjugate gradient methods with inexact searches. Mathematics of Operations
Research, vol. 3 (1978), pp.244-256.

[37] SHANNO, D.F., On the convergence of a new conjugate gradient algorithm. SIAM J. Numer.
Anal., 15 (1978), pp.1247-1257.

[38] SHANNO, D.F., PHUA, K.H., Algorithm 500, Minimization of unconstrained multivariate
functions, ACM Trans. on Math. Software, 2 (1976) 87-94.

[39] TOUATI-AHMED, D., STOREY, C., Efficient hybrid conjugate gradient techniques. Journal of
Optimization Theory and Applications, 64 (1990), pp.379-397.

[40] ZHANG, J.Z., DENG, N.Y., CHEN, L.H., New quasi-Newton equation and related methods for
unconstrained optimization. J. Optim. Theory Appl., 102 (1999), pp.147-167.

[41] YABE, H. AND TAKANO, M., Global convergence properties of nonlinear conjugate gradient
methods with modified secant conditions. Comput. Optim. Appl., (COAP) 28, (2004), pp.203-
225.

October 10, 2007
Paper for “Studies in Informatics and Control”

 20

